浙教版七年级数学下期末复习试卷 (2179)

合集下载

浙教版七年级数学第二学期期末测试试卷

浙教版七年级数学第二学期期末测试试卷

浙教版七年级数学第二学期期末测试试卷及答案一、选择题(本题共有10小题,每小题3分,共30分,请将正确的选项写在答题纸上.)1.下列式子是分式的是( ▲ )A.2x B.1+x x C. y x +2 D. 3x2.下列计算正确的是( ▲ )A .2a a a += B.3332b b b = C. 33a a a ÷= D. 527()a a =3.如图,直线a ∥b ,∠1=70°,那么∠2的度数是( ▲ )A .130° B. 110° C.70° D. 80°4.下列各因式分解正确的是( ▲ ) A. –x 2+(–2)2=(x –2)(x +2) B. x 2+2x –1=(x –1)2 C. 4x 2–4x +1=(2x –1)2D. x 2–4x =2(x +2)(x –2)5.下列调查中,适合采用全面调查方式的是( ▲ )A .对衢江水质情况的调查B .对端午节期间市场上粽子质量情况的调查 C. 对某班50名同学体重情况的调查 D .对某类烟花爆竹燃放安全情况的调查6.已知{21x y ==是二元一次方程组{81mxny nx my +=-=的解,则2m -n 的算术平方根为( ▲ ) A.2± B.2 C.4 D.2 7.下列关于"平移"的说法,不正确的是( ▲ )A .平移不改变图形的形状和大小,只改变图形的位置B .图形经过平移,连接各组对应点所得的线段相等C .图形经过平移,连接各组对应点所得的线段互相平行D .图形在平移时,图形中线段的长度、 角度的大小不发生改变8.若43=x ,79=y,则y x 23-的值为( ▲ )A .74B .47C .3-D .729.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形形(不重叠无缝隙),则该长方形的面积是( ▲ )10.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,由题意列出的方程是( ▲ ) A.141401101+=-+-x x x B.401141101-=++-x x x C.141401101-=+-+x x x D.141401101-=+++x x x二、填空题(本题共有6小题,每小题3分,共18分,请将答案写在答题纸上.) 11.当x ________________________时,分式x-31有意义. 12.若m 为正实数,且13m m-=,221m m +=__________________________ .13.已知点A ,B 在数轴上,它们所对应的数分别是-2,731x x --,且点A 、B 到原点的距离相等,则x 的值为________________________ .14.已知P =3xy -8x +1,Q =x -2xy -2,当x ≠0时,3P -2Q =7恒成立,则y 的值为__________________________ . 15.将一条两边沿互相平行的纸带按如图折叠,设∠1=x 度,用含有x 的代数式表示∠2,则∠2=____________.16.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求方程组1112222323a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以3,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .三、解答题(本题共有8小题,共52分,请将答案写在答题纸上,务必写出解答过程.)A . 2cm 2B . 2acm 2C . 4acm 2D . (a 2﹣1)cm 2ab21(第3题图)(第9题图) (第13题图)(第15题图)七下数学试卷共4页,第(1)页七下数学试卷共4页,第(2)页-217.因式分解(每小题3分,共6分)(1)282-m (2) 296ab ab a +- 18. 计算(每小题4分,共8分)(1)4201120134-)-()(--2+ (2)))(()22b a b a b a -(+--19. 解下列方程或方程组(每小题4分,共8分)⎩⎨⎧=--=+82313)1(y x y x (2)x x x -=+--2122120.(本题6分)先化简分式xx x 1112-÷+)(,再从-1,0,1,2四个数中选一个恰当的数作为x 的值,代入求值.21.(本题4分)给定下面一列分式:3579234x x x x y y y y--, , , ,,(其中0x ≠)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第2013个分式.22.(本题6分)衢州市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)请将条形图补充完整;(3)如果本市有8万名初中学生,那么在试卷评讲课中,“独立思考”与“讲解题目”的学生约有多少万人?23.(本题6分)如图,已知∠EFC +∠BDC =0180,∠DEF =∠B ,试判断DE 与BC 的位置关系,并说明理由.24.(本题8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量 单价:元/吨单价:元/吨17吨及以下a 0.80 超过17吨但不超过30吨的部分b 0.80 超过30吨的部分6.000.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费) 已知小王家2013年4月用水15吨,交水费45元,5月份用水25吨,交水费91元. (1)求a ,b 的值;(2)如果小王家6月份上交水费150元 ,则小王家这个月用水多少吨?(第23题图)七下数学试卷共4页,第(4)页(第22题图)250 人数 200 150 100 84 168224质疑思考专注 听讲讲解 题目项目主动 质疑 独立 思考讲解 题目 专注听讲40%七下数学试卷共4页,第(3)页。

浙教版七年级期末数学试卷附答案

浙教版七年级期末数学试卷附答案

浙教版七年级(下)期末数学试卷附答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版初中数学七年级下册期末试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1 B.2 C.3 D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2 B.2n C.2n+2 D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB =∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11. 12. 28 13.±2 14. 2α. 15. 5 16. 27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。

浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

浙教版第二学期七年级数学期末试题(含答案)

浙教版第二学期七年级数学期末试题(含答案)

浙教版七年级第二学期期末教学质量调研数 学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写上姓名和准考证号,座位号等信息.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑。

5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列调查中,需要普查的是( )A. 学生的视力情况B. 旅客携带违禁物品乘机的情况C. 钱塘江的水质情况D. 某市老年人参加晨练的情况2.将数53.0610⨯用小数表示,正确的是( )A. 0.0306B. 0.00306C. 0.000306D. 0.00003063.下列各式的变形中,正确的是( )A .2(3)(3)9x x x -+=-B .2(3)(3)9x x x --+=--C .2243(2)1x x x -+=-+D .22(1)21x x x -+=-+4.如图,DAF ∆沿直线AD 平移得到CDE CE AF ∆,,的延长线交于点B .若111AFD ∠=︒,则CED ∠=( )A.110︒B.111︒C.112︒D.113︒5.下面是甲,乙两人10次射击成绩(环数)的条形统计图,则( )甲乙A. 甲的平均成绩比乙好B. 乙的平均成绩比甲好C. 甲、乙两人的平均成绩一样D. 无法确定谁的平均成绩好6.某文具店一本练习本和一支水笔的单价合计为3元,小明在该店买了20本练习本和10支水笔,共花了36元.设练习本每本为x 元,水笔每支为y 元,则( )A .3201036x y x y -=⎧⎨+=⎩ B .3201036x y x y +=⎧⎨+=⎩ C.3201036y x x y -=⎧⎨+=⎩ D .3102036x y x y +=⎧⎨+=⎩7. 如图,能判断//AD BC 的条件是( )A .DAC BCA ∠=∠B .180DCB ABC ︒∠+∠=C. ABD BDC ∠=∠ D .BAC ACD ∠=∠8. 化简111x x -++,得( ) A .21x x -+ B .221x x x +-+ C. 22x - D .221x x -+ 9. 若4s t +=,则228s t t -+的值是( )A .8B .12 C. 16 D .3210. 如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x y >).则①x y n -=;②224m n xy -=;③22x y mn -=;④22222m n x y -+=,中正确的是( )A .①②③B .①②④ C. ①③④ D .①②③④二、填空题:本大题有6个小题,每小题4分,共24分.11. 当x ≠ 时,分式33x x +-有意义. 12.因式分解:2m m += .13. 从某服装厂即将出售的一批休闲装中抽检200件,其中不合格休闲装有15件.那么3000件这种休闲装,合格的休闲装的件数约为 .14.如图,直线12//l l ,直线AB 交1l ,2l 于D ,B 两点,AC AB ⊥交直线1l 于点C ,若11520∠=︒',则2∠= .15.已知43335x y m x y m +=-⎧⎨-=-⎩(m 为常数),则x y -= .16.已知实数,a b ,定义运算:(,0)(,0)b b a a b a a b a a b a -⎧>≠=⎨≤≠⎩且※且,若(3)1a a -=※,则a = . 三、解答题 :本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.化简:(1)523()(2)a a a -÷+;(2)2(2)(3)a a a --+18.解方程或方程组: (1)223419x y x y +=⎧⎨-=⎩ (2)214111x x x ++=-- 19.下图是某水果连锁店各分店某天桃子销售量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).(1)求a 的值。

浙教版七年级下册数学期末测试卷及含答案

浙教版七年级下册数学期末测试卷及含答案

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.2、当分式的值为0时,字母x的取值应为()A.﹣1B.1C.﹣2D.23、如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互补C.互余D.不能确定4、在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。

若矩形ABCD的面积为16,HP:PF=1:4,则CH的值为( )A. B.1 C. D.25、下列是分式方程的是()A. +1=0B. =0C.D.6x 2+4x+1=06、为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A. B. C. D.7、下列运算正确的是()A.a 2•a 3=a 6B.(﹣2ab 3)2=﹣4a 2b 6C.(﹣a 2)3=﹣a6 D.2a+3b=5ab8、下列运算正确的是()A.(a3)2=a6B.a2•a4=a8C.a6÷a2=a3D.3a2-a2=39、如图,可以判定AD//BC的是( )A. B. C. D.10、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. -2 mB. 2 mC. 2 m-8D.611、太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×10 14B.2×10 14C.76×10 15D.7.6×10 1412、下列计算中正确的是( )A.a 6÷a 2=a 3B.(a 4)2=a6C.3a 2-a 2=2D.a 2·a 3=a 513、一元一次方程组的解的情况是()A. B. C. D.14、下列关于x的方程中,是分式方程的是( ).A. B. C. D.3x-2y=115、为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为________.17、因式分解:=________.18、如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.19、已知方程x m-3+y2-n=6是二元一次方程,则m-n=________20、分解因式:m2+2m=________.21、计算:x(x﹣2)=________22、如图,在一块边长为a的正方形花圃中,两纵两横的4条宽度为的人行道把花圃分成9块,下面是四个计算花圃内种花土地总面积的代数式:① ;② ;③ ;④ .其中正确的有________.23、化简:= ________ 。

2022-2023学年浙教新版七年级下册数学期末复习试卷(含解析)

2022-2023学年浙教新版七年级下册数学期末复习试卷(含解析)

2022-2023学年浙教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式是二元一次方程的是( )A.x2+y=0B.x=C.D.y+x2.下列算式中,结果一定等于a6的是( )A.a3+a2B.a3•a2C.a8﹣a2D.(a2)33.含有新冠病毒的气溶胶直径通常小于5微米,其病原体含量非常少,携带新冠病毒的气溶胶在空气中被健康人群直接吸入的概率较低.人们更应该注意那些随气溶胶沉降在物体表面的冠状病毒,做到勤消毒、勤洗手,防止接触后造成感染.5微米转换成国际单位“米”为单位是0.000005米,将数字0.000005写成科学记数法得到( )A.0.5×105B.5×106C.0.5×10﹣5D.5×10﹣64.有下列变形:①a(x+y)=ax+ay;②12x2﹣6x=6x(2x﹣1);③2mR+2mr=2m (R+r).其中是因式分解的有( )A.3个B.2个C.1个D.0个5.下列问题中,不适合用普查的是( )A.了解全班同学每周体育锻炼时间B.旅客上飞机安检C.学生会选干部D.了解全市中学生的新年红包6.如图,直线a∥b,一块含45°角的直角三角板的直角顶点恰好在直线a上,若∠1=30°,则∠2的度数是( )A.55°B.65°C.75°D.80°7.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为x张、y张,则下面的方程组正确的是( )A.B.C.D.8.若分式方程﹣=0有增根,则m的值是( )A.3B.2C.1D.﹣19.已知方程组的解满足x+y=2,则k的值为( )A.4B.﹣4C.2D.﹣210.当a=﹣1时,分式的值是( )A.2B.﹣2C.﹣4D.4二.填空题(共6小题,满分24分,每小题4分)11.当a 时,分式有意义.12.已知2x﹣y=﹣3,用含x的式子表示y,则 .13.78×73= .14.已知是方程组的解,则a+b= .15.如果(x+1)(x﹣2)=x2+mx+n,那么n m= .16.如图,图1,图2都是由8个一样的小长方形拼成的,且图2中的阴影部分(正方形)的面积为1.则小长方形的长为 .三.解答题(共8小题,满分66分)17.(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x2﹣12y2.18.先化简,再求值:(﹣1)÷,其中m=2.19.解方程(1)解分式方程:=﹣1;(2)解二元一次方程组.20.如图,在8×8的正方形网格中有△ABC,点A,B,C均在格点上.(1)画出点B到直线AC的最短路径BD;(2)过C点画出AB的平行线,交BD于点E;(3)将△ABC向左平移4格,再向下平移3格后得到△A1B1C1,画出△A1B1C1;(4)判断∠BAC和∠CED的数量关系 .21.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只能选一种),在全校范围内随机调查了部分学生,并将统计结果绘制了两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)本次调查问卷共调查了多少名学生,表示“其它”的扇形圆心角的度数是多少?(2)请你补充完整条形统计图;(3)如果该校有1000名学生,请估计该校最喜欢用“微信”进行沟通的学生约有多少名?22.如图,△ABC中,D是AC上一点,过D作DE∥BC交AB于E点,F是BC上一点,连接DF.若∠1=∠AED.(1)求证:DF∥AB.(2)若∠1=50°,DF平分∠CDE,求∠A的度数.23.某工厂生产某种型号的螺母和螺钉两种零件,每名工人平均每天生产的螺母比螺钉多800个,1个螺钉需要配2个螺母,生产50000个螺母和生产30000个螺钉所用的时间相同.(1)求每名工人平均每天生产螺母和螺钉各多少个?(2)若该车间有工人22名,如何分配使每天生产的螺钉和螺母刚好配套?24.如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)解答下列问题.①当∠A=50°时,∠ABN的度数是 .②∵AM∥BN,∴∠ACB=∠ .(2)当∠A=x°,求∠CBD的度数(用x的代数式表示).(3)当点P运动时,∠ADB与∠APB的度数之比是否随点P的运动而发生变化?若不变化,请求出这个比值,若变化,请写出变化规律.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A.该方程是二元二次方程,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B.是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B选项不合题意;C.符合二元一次方程的定义,是二元一次方程,即C选项符合题意;D.不是方程,即D选项不合题意.故选:C.2.解:A.a3与a2不能合并,故A不符合题意;B.a3•a2=a5,故B不符合题意;C.a8与a2不能合并,故C不符合题意;D.(a2)3=a6,故D符合题意;故选:D.3.解:将0.000005用科学记数法表示为5×10﹣6.故选:D.4.解:①a(x+y)=ax+ay,是整式的乘法,不是因式分解;②12x2﹣6x=6x(2x﹣1),是因式分解;③2mR+2mr=2m(R+r),是因式分解.其中是因式分解的有2个.故选:B.5.解:A、了解全班同学每周体育锻炼时间,调查范围小,适合普查;B、旅客上飞机安检是事关重大的调查,适合普查;C、学生会选干部,调查范围小,适合普查;D、了解全市中学生的新年红包,适合抽样调查;故选:D.6.解:如图,∵∠1=30°,∴∠3=∠1+45°=75°,∵直线a∥b,∴∠2=∠3=75°,故选:C.7.解:根据题意列方程组,得.故选:D.8.解:方程两边同时乘(x﹣2)得:m﹣1﹣x=0,∴x=m﹣1,∵方程有增根,∴x﹣2=0,∴x=2,∴m﹣1=2,∴m=3,故选:A.9.解:,①×2﹣②×3得:y=4﹣k,②×5﹣①×3得:x=2k﹣6,代入x+y=2中得:2k﹣6+4﹣k=2,解得:k=4,故选:A.10.解:当a=﹣1时,原式=,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵分式有意义,∴2a+1≠0,解得:a≠﹣.故答案为:a≠﹣.12.解:由2x﹣y=﹣3,解得:y=2x+3,故答案为:y=2x+313.解:78×73=78+3=711.故答案为:711.14.解:将代入得:,∴,∴a+b=﹣2,故答案为:﹣2.15.解:∵(x+1)(x﹣2)=x2﹣x﹣2,=x2+mx+n,∴m=﹣1,n=﹣2,∴n m=(﹣2)﹣1=﹣.故答案为:﹣.16.解:设小长方形的长为x,宽为y,依题意得:,解得:.故答案为:5.三.解答题(共8小题,满分66分)17.解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).18.解:(﹣1)÷====,当m=2时,原式==6.19.解:(1)方程两边都乘x﹣1,得2=﹣x﹣x+1,解得:x=﹣,检验:当x=﹣时,x﹣1≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣;(2),①×3+②,得10x=20,解得:x=2,把x=2代入①,得4+y=3,解得:y=﹣1,所以方程组的解为.20.解:(1)如图,BD即为所求.(2)如图,直线CE即为所求.(3)如图,△A1B1C1即为所求.(4)∵CE∥AB,∴∠BAC=∠ECD,∵BD⊥AD,∴∠ADB=90°,∴∠DCE+∠DEC=90°,∴∠BAC+∠DEC=90°,即∠BAC和∠CED的数量关系为互余.故答案为:互余.21.解:(1)40÷20%=200(名),360°×=18°;答:本次调查问卷共调查了200名学生,表示“其它”的扇形圆心角的度数是18°;(2)短信的人数为:200×5%=10(名),微信人数为:200﹣40﹣10﹣60﹣10=80(名),补全条形统计图如图所示:(3)1000×=400(名),答:该校有1000名学生中,估计喜欢用“微信”进行沟通的学生有400名.22.解:(1)∵DE∥BC,∴∠B=∠AED,∵∠1=∠AED,∴∠1=∠B,∴DF∥AB.(2)∵DE∥BC,∴∠EDF=∠1=50°,∵DF平分∠CDE,∴∠EDC=2∠EDF=100°,∴∠A=∠EDC﹣∠AED=∠EDC﹣∠1=100°﹣50°=50°.23.解:(1)设每名工人平均每天生产螺母x个,螺钉(x﹣800)个,根据题意得:解得:x=2000当x=2000时,x(x﹣800)≠0,∴x﹣800=1200个,∴每名工人平均每天生产螺母2000个,螺钉1200个;(2)设x个工人生产螺钉,y个工人生产螺母,根据题意得:解得答:10个工人生产螺钉,12个工人生产螺母.24.解:(1)①∵AM∥BN,∴∠A+∠ABN=180°,∵∠A=50°,∴∠ABN=130°,故答案为:130°;②∵AM∥BN,∴∠ACB=∠CBN;故答案为:∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=x°,∴∠ABN=180°﹣x°,∴∠ABP+∠PBN=180°﹣x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°﹣x°,∴∠CBD=∠CBP+∠DBP=(180°﹣x°)=90°﹣x°;(3)不变,∠ADB:∠APB=1:2,理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=1:2.。

【完整版】浙教版七年级下册数学期末测试卷

【完整版】浙教版七年级下册数学期末测试卷

浙教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生2、在下列实数,,,-3.14,,其中无理数出现的频率为()A.20%B.40%C.60%D.80%3、以下是分式方程去分母后的结果,其中正确的是()A.2-1-x=1B.2-1+x=1C.2-1+x=2xD.2-1-x=2x4、已知P=m−1,Q=m2−m(m为任意实数),则P、Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定5、如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180°B.270°C.360°D.540°6、同一平面内五条直线l1, l2, l3, l4与l5的位置关系如图所示,根据图中标示的角度,下列判断正确的是( )A.l1∥l3, l2∥l3B.l2∥l3, l4与l5相交 C.l1与l3相交,l4∥l5D.I1与l2相交,l1∥l37、已知a+b=m,ab=n,则(a﹣b)2等于( )A.m 2﹣nB.m 2+nC.m 2+4nD.m 2﹣4n8、下列计算正确的是()A.3a+4b=7abB.(ab 3)2=ab 6C.(a+2)2=a 2+4D.x 12÷x 6=x 69、下列计算错误的是()A. B. C. D.10、已知a=2+ ,b=2﹣,则a2+b2的值为()A.12B.14C.16D.1811、下列式子是分式的是()A. B. C. D.12、下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()A.1个B.2个C.3个D.4个13、下列多项式中能用平方差公式分解因式的是( )A.x 2+4B.x 2-xyC.x 2-9D.-x 2-y 214、如图,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°15、若,,则的值为()A.5B.4C.3D.2二、填空题(共10题,共计30分)16、化简;÷(﹣1)=________.17、若a+b=2,则代数式a2﹣b2+4b=________.18、如图,已知EF∥AD,∠1=∠2.求证∠DGA+∠BAC=180°.请将下列证明过程填写完整:证明:∵EF∥AD(已知),∴∠2=________(________).又∵∠1=∠2(已知),∴∠1=∠3(________).∴AB∥________(________).∴∠DGA+∠BAC=180°(________).19、若方程4x m﹣n﹣5y m+n﹦6是二元一次方程,则m﹦________ ,n﹦________20、如果x- =3,那么x2+ 的值为________21、若方程4x m﹣n﹣5y m+n﹦6是二元一次方程,则m﹦________ ,n﹦________22、已知2x=3,2y=5,则22x-y-1的值是________.23、若多项式可以因式分解成,那么a=________.24、已知4y2+my+9是完全平方式,则m=________.25、多项式各项的公因式是________.三、解答题(共5题,共计25分)26、先化简,再求值:()÷ ,其中a= ,b=﹣1.27、某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?28、已知,如图,∠1+∠2=180° ,求证:∠3=∠4.29、如果计算(mx+8)(2﹣3x)展开后不含x的一次项,求m的值.30、化简:a﹣b﹣.参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、C5、C6、B7、D8、D9、C10、B11、B12、C13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。

浙教版数学七年级下册期末考试试题含答案

浙教版数学七年级下册期末考试试题含答案

浙教版数学七年级下册期末考试试卷一、选择题(共10小题,每题3分,共30分)1.下列各式是二元一次方程的是()A.2x2+y=0B.C.x﹣y D.2.“潮涌”是2022年杭州亚运会会徽,钱塘江和钱江潮头是会徽的形象核心,如图是会徽的一部分,在以下四个选项中,能由该图经过平移得到的是()A.B.C.D.3.使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣24.如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠55.计算42×2021+48×2021+62×2021的结果为()A.2021B.20210C.202100D.20210006.如图为某服装品牌公司2016~2020年销售额年增长率的统计图,则这5年中,该公司销售额最大的是()年.A.2020B.2019C.2018D.20177.一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4 8.如图,∠B+∠DCB=180°,AC平分∠DAB,且∠D:∠DAC=5:2,则∠D的度数是()A.100°B.105°C.110°D.120°9.甲瓶糖水含糖量为,乙瓶糖水含糖量为,从甲、乙两瓶中各取质量相等的糖水混合制成新糖水的含糖量为()A.B.C.D.由所取糖水质量而定10.已知方程组,下列说法正确的是()①a2+b2=12;②(a﹣b)2=8;③;④.A.1B.2C.3D.4二、填空题(本大题有6个小题,每小题4分,共24分)11.已知一组数据的频数为24,频率为0.8,则样本容量为.12.计算(﹣s+t)(﹣s﹣t)=.13.已知是方程x+3y=1的一个解,请再写出这个方程的一个解.14.若mn=3,m﹣n=7,则m2n﹣mn2=.15.2020年某企业生产医用口罩,为扩大产量,添置了甲、乙两条生产线.甲生产线每天生产口罩的数量是乙生产线每天生产口罩数量的2倍,两生产线各加工6000箱口罩,甲生产线比乙生产线少用5天.则甲、乙两生产线每天共生产的口罩箱数为.16.如果两个多项式有公因式,则称这两个多项式为关联多项式,若x2﹣25与(x+b)2为关联多形式,则b=;若(x+1)(x+2)与A为关联多项式,且A为一次多项式,当A+x2﹣6x+2不含常数项时,则A为.三、解答题(本大题有7个小题,共66分.应写出文字说明、证明过程或演算.)17.分解因式(1)a2﹣6ab+9b2;(2)a2b﹣16b.18.静静同学解分式方程的过程如下:去分母得:﹣6x﹣2(3﹣x)=5(x﹣1)去括号得:﹣6x﹣6﹣2x=5x﹣5移项得:﹣6x﹣2x﹣5x=﹣5﹣6合并同类项得:﹣13x=﹣11两边同除以13得:x=经检验x=是方程的解.静静的解答过程是否有错误?如果有错误,请写出正确的解答过程.19.为了普及新冠病毒的有关知识,某校举办了一场关于新冠病毒的知识竞赛.为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题.(1)数据分组时的组距为分.(2)自左至右分别为第1,2,3,4组,频数最大的是哪一组?并说出该组的组中值.(3)学校决定为成绩在80分以上(包括80分)的学生颁发优秀证书,若该校共有800名学生,请估计能拿到优秀证书的学生人数.20.如图,政府规划由西向东修一条公路.从A修至B后为了绕开村庄,改为沿南偏东25°方向修建BC段,在C处又改变方向修建CD段,测得∠BCD=70°,在D处继续改变方向,朝与出发时相同的方向修至E.(1)补全施工路线示意图,求∠CDE的度数;(2)原计划在AB的延长线上依次修建两个公交站M,N(均在CD右侧),连结DM 和MN,求∠CDM与∠DMN的数量关系.21.亮亮计算一道整式乘法的题(3x﹣m)(2x﹣5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“﹣”写成了“+”,得到的结果为6x2﹣5x﹣25.(1)求m的值;(2)计算这道整式乘法的正确结果.22.如图,在长方形ABCD中,放入8个完全相同的小长方形.(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?23.光线反射是一种常见的物理现象,在生活中有广泛地应用.例如提词器可以帮助演讲者在看演讲词的同时也能面对摄像机,自行车尾部的反光镜等就是应用了光的反射原理.(1)提词器的原理如图①,AB表示平面镜,CP表示入射光线,PD表示反射光线,∠CPD=90°,求∠APC的度数;(2)自行车尾部的反光镜在车灯照射下,能把光线按原来的方向返回(如图②),a表示入射光线,b表示反射光线,a∥b.平面镜AB与BC的夹角∠ABC=α,求α.(3)如图③,若α=108°,设平面镜CD与BC的夹角∠BCD=β(90°<β<180°),入射光线a与平面镜AB的夹角为x(0°<x<90°),已知入射光线a从平面镜AB开(可始反射,经过2或3次反射,当反射光线b与入射光线a平行时,请直接写出β的度数.用含x的代数式表示).参考答案一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式是二元一次方程的是()A.2x2+y=0B.C.x﹣y D.解:A.该方程是二元二次方程,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B.是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B选项不合题意;C.不符合二元一次方程的定义,不是二元一次方程,即C选项不合题意;D.符合二元一次方程的定义,是二元一次方程,即D选项符合题意.故选:D.2.“潮涌”是2022年杭州亚运会会徽,钱塘江和钱江潮头是会徽的形象核心,如图是会徽的一部分,在以下四个选项中,能由该图经过平移得到的是()A.B.C.D.解:根据平移的性质可知:能由该图经过平移得到的是C,故选:C.3.使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣2解:当分母2x﹣4≠0,即x≠2时,分式有意义.故选:B.4.如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠5解:由图可知:能看作∠1的内错角的是∠3,故选:B.5.计算42×2021+48×2021+62×2021的结果为()A.2021B.20210C.202100D.2021000解:原式=2021×(42+2×4×6+62)=2021×(4+6)2=2021×102=2021×100=202100,故选:C.6.如图为某服装品牌公司2016~2020年销售额年增长率的统计图,则这5年中,该公司销售额最大的是()年.A.2020B.2019C.2018D.2017解:根据折线统计图,增长率在减小,但销售额在增大,所以这5年中,该商场销售额最大的是2020年,故选:A.7.一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4解:(15x3y5﹣10x4y4+20x3y2)÷(5x3y2)=15x3y5÷(5x3y2)﹣10x4y4÷(5x3y2)+20x3y2÷(5x3y2)=3y3﹣2xy2+4.故选:B.8.如图,∠B+∠DCB=180°,AC平分∠DAB,且∠D:∠DAC=5:2,则∠D的度数是()A.100°B.105°C.110°D.120°解:∵∠B+∠DCB=180°,∴AB∥CD.∴∠D+∠DAB=180°.设∠D=5x,则∠DAC=2x.∵AC平分∠DAB,∴∠DAB=2∠DAC=2•2x=4x.∵AB∥CD,∴∠D+∠DAB=180°.∴5x+4x=180°.∴x=20°.∴∠D=5x=5×20=100°.故选:A.9.甲瓶糖水含糖量为,乙瓶糖水含糖量为,从甲、乙两瓶中各取质量相等的糖水混合制成新糖水的含糖量为()A.B.C.D.由所取糖水质量而定解:设从甲乙两瓶中各取重量相等的糖水x,则混合制成新糖水的含糖量为:,故选:C.10.已知方程组,下列说法正确的是()①a2+b2=12;②(a﹣b)2=8;③;④.A.1B.2C.3D.4解:因为方程组,①a2+b2=(a+b)2﹣2ab=42﹣4=12,故①正确;②(a﹣b)2=(a+b)2﹣4ab=42﹣8=8,故②正确;③+===2,故③正确;④+===6,故④正确.故选:D.二、填空题(本大题有6个小题,每小题4分,共24分)11.已知一组数据的频数为24,频率为0.8,则样本容量为30.解:24÷0.8=30,故答案为:30.12.计算(﹣s+t)(﹣s﹣t)=s2﹣t2.解:(﹣s+t)(﹣s﹣t)=(﹣s)2﹣t2=s2﹣t2.故答案为:s2﹣t2.13.已知是方程x+3y=1的一个解,请再写出这个方程的一个解.解:将方程x+3y=1变形为x=1﹣3y,令y=0,则x=1.则解为,故答案为:.14.若mn=3,m﹣n=7,则m2n﹣mn2=21.解:∵mn=3,m﹣n=7,∴m2n﹣mn2=mn(m﹣n)=3×7=21.故答案为:21.15.2020年某企业生产医用口罩,为扩大产量,添置了甲、乙两条生产线.甲生产线每天生产口罩的数量是乙生产线每天生产口罩数量的2倍,两生产线各加工6000箱口罩,甲生产线比乙生产线少用5天.则甲、乙两生产线每天共生产的口罩箱数为1800.解:设乙生产线每天生产x箱口罩,则甲生产线每天生产2x箱口罩,依题意,得:﹣=5,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.600+1200=1800(箱),答:甲、乙两生产线每天共生产的口罩箱数为1800,故答案为:1800.16.如果两个多项式有公因式,则称这两个多项式为关联多项式,若x2﹣25与(x+b)2为关联多形式,则b=±5;若(x+1)(x+2)与A为关联多项式,且A为一次多项式,当A+x2﹣6x+2不含常数项时,则A为﹣2x﹣2或﹣x﹣2.解:①∵x2﹣25=(x+5)(x﹣5),∴x2﹣25的公因式为x+5、x﹣5.∴若x2﹣25与(x+b)2为关联多形式,则x+b=x+5或x+b=x﹣5.当x+b=x+5时,b=5.当x+b=x﹣5时,b=﹣5.综上:b=±5.②∵(x+1)(x+2)与A为关联多项式,且A为一次多项式,∴A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2﹣6x+2不含常数项,则k=﹣2.∴A=﹣2(x+10=﹣2x﹣2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2﹣6x+2不含常数项,则2k=﹣2.∴k=﹣1.∴A=﹣x﹣2.综上,A=﹣2x﹣2或A=﹣x﹣2.故答案为:±5,﹣2x﹣2或﹣x﹣2.三、解答题(本大题有7个小题,共66分.应写出文字说明、证明过程或演算.)17.分解因式(1)a2﹣6ab+9b2;(2)a2b﹣16b.解:(1)原式=a2﹣6ab+(3b)2=(a﹣3b)2;(2)原式=b(a2﹣16)=b(a+4)(a﹣4).18.静静同学解分式方程的过程如下:去分母得:﹣6x﹣2(3﹣x)=5(x﹣1)去括号得:﹣6x﹣6﹣2x=5x﹣5移项得:﹣6x﹣2x﹣5x=﹣5﹣6合并同类项得:﹣13x=﹣11两边同除以13得:x=经检验x=是方程的解.静静的解答过程是否有错误?如果有错误,请写出正确的解答过程.解:静静的解答过程有错误,正确的解答过程为:去分母得:6x﹣2(3﹣x)=5(x﹣1)去括号得:6x﹣6+2x=5x﹣5移项得:6x+2x﹣5x=﹣5+6合并同类项得:3x=1两边同除以3得:x=,经检验x=是方程的解.所以原方程的解为:x=.19.为了普及新冠病毒的有关知识,某校举办了一场关于新冠病毒的知识竞赛.为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题.(1)数据分组时的组距为10分.(2)自左至右分别为第1,2,3,4组,频数最大的是哪一组?并说出该组的组中值.(3)学校决定为成绩在80分以上(包括80分)的学生颁发优秀证书,若该校共有800名学生,请估计能拿到优秀证书的学生人数.解:(1)根据题意得:6人组的组边界值分别为70与80,则组距为80﹣70=10(分),故答案为:10;(2)频数最大的是15人组,该组的组中值为85;(3)抽取的部分参赛学生的成绩在80分以上(包括80分)的有15+14=29(人),800×=580(人),答:估计能拿到优秀证书的学生人数有580人.20.如图,政府规划由西向东修一条公路.从A修至B后为了绕开村庄,改为沿南偏东25°方向修建BC段,在C处又改变方向修建CD段,测得∠BCD=70°,在D处继续改变方向,朝与出发时相同的方向修至E.(1)补全施工路线示意图,求∠CDE的度数;(2)原计划在AB的延长线上依次修建两个公交站M,N(均在CD右侧),连结DM 和MN,求∠CDM与∠DMN的数量关系.解:(1)补全施工路线如图1所示.过C作l⊥AB的延长线于G,过D作直线m⊥AB 的延长线于H,则l∥m,根据平行线的性质可得:∠BCG=25°,∠CDH=∠GCD=70°﹣∠BCG=70°﹣25°=45°,又∠HDE=90°,∴∠CDE=∠CDH+∠HDE=45°+90°=135°.(2)如图1所示,设∠DMN=x,∠CDM=y,由于DE∥FN,∴∠EDM=180°﹣∠DMN=180°﹣x,又∠CDM=y=∠CDE﹣∠EDM=135°﹣(180°﹣x)=x﹣45°,则x﹣y=45°,即∠DMN﹣∠CDM=45°.21.亮亮计算一道整式乘法的题(3x﹣m)(2x﹣5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“﹣”写成了“+”,得到的结果为6x2﹣5x﹣25.(1)求m的值;(2)计算这道整式乘法的正确结果.解:(1)根据题意可得,(3x+m)(2x﹣5)=6x2﹣15x+2mx﹣5m=6x2﹣(15﹣2m)x﹣5m,即﹣5m=﹣25,解得m=5;(2)(3x﹣5)(2x﹣5)=6x2﹣15x﹣10x+25=6x2﹣25x+25.22.如图,在长方形ABCD中,放入8个完全相同的小长方形.(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?解:(1)设小长方形的长为x厘米,宽为y厘米,依题意,得:,解得:,答:每个小长方形的长和宽分别是10厘米,2厘米;(2)∵每个小长方形的长和宽分别是10厘米,2厘米,∴图中阴影部分面积为18×(12+2)﹣8×2×10=92(平方厘米).答:图中阴影部分面积为92平方厘米.23.光线反射是一种常见的物理现象,在生活中有广泛地应用.例如提词器可以帮助演讲者在看演讲词的同时也能面对摄像机,自行车尾部的反光镜等就是应用了光的反射原理.(1)提词器的原理如图①,AB表示平面镜,CP表示入射光线,PD表示反射光线,∠CPD=90°,求∠APC的度数;(2)自行车尾部的反光镜在车灯照射下,能把光线按原来的方向返回(如图②),a表示入射光线,b表示反射光线,a∥b.平面镜AB与BC的夹角∠ABC=α,求α.(3)如图③,若α=108°,设平面镜CD与BC的夹角∠BCD=β(90°<β<180°),入射光线a与平面镜AB的夹角为x(0°<x<90°),已知入射光线a从平面镜AB开(可始反射,经过2或3次反射,当反射光线b与入射光线a平行时,请直接写出β的度数.用含x的代数式表示).解:(1)∵平面镜成像原理入射角等于反射角,∴∠APC=∠BPD,∵∠CPD=90°,∴∠APC+∠BPD=90°,∴∠APC=45°;(2)如图②:过点P作PG⊥AB,QG⊥BC,相交于点G,∵平面镜成像原理入射角等于反射角,∴∠EPG=∠QPG,∠PQG=∠FQG,∵a∥b,∴∠EPQ+∠PQF=180°,∴2(∠GPQ+∠PQG)=180°,∴∠GPQ+∠PQG=90°,∵∠GPQ+∠PQG+∠PGQ=180°,∴∠PGQ=90°,∵PG⊥AB,QG⊥BC,∴∠PBQ+∠BQG+∠QGP+∠GPB=360°,∴∠PBQ=360°﹣90°﹣90°﹣90°=90°,即α=90°.(3)若经过两次反射,如图③所示,延长AB、DC交于点E,由(2)知,∠E=90°,∵α=108°,∴∠BCE=α﹣∠E=108°﹣90°=18°,∴β=180°﹣∠BCE=180°﹣18°=162°;若经过三次反射标记各反射点,如图③﹣2所示,作FM∥a∥b,∵∠BHF=∠AHa=x,∴∠BFH=∠CFG=180°﹣α﹣x=180°﹣108°﹣x=72°﹣x,∴∠aHF=180°﹣2x,∠HFG=180°﹣2∠BFH=180°﹣2(72°﹣x)=36°+2x,∵a∥b,∴∠aHF+∠HFG+∠FGb=360°,∴∠FGb=360°﹣(36°+2x)﹣(180°﹣2x)=144°,则∠CGF=180°﹣∠FGb=36°,由∠CGF+∠CFG+β=180°,得β=180°﹣∠CFG﹣∠CGF=180°﹣(72°﹣x)﹣36°=72°+x,综上,β角的度数为162°或72°+x.。

浙教版数学七年级下册期末考试试题含答案

浙教版数学七年级下册期末考试试题含答案

浙教版数学七年级下册期末考试试卷一、选择题(共10小题,每小题3分).1.下列图案中,能通过平移得到如图的图案是()A.B.C.D.2.下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.“国家宝藏”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量3.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣84.下列计算正确的是()A.a•a2=a2B.a2+a4=a8C.(ab)3=ab3D.a3÷a=a25.若是关于x,y的二元一次方程1﹣ay=3x的一组解,则a的值为()A.﹣5 B.﹣1 C.2 D.76.某电动车厂2018年第三、四季度各月产量情况如图所示.则下列说法错误的是()A.7月份产量为300辆B.从10月到11月的月产量增长最快C.从11月到12月的月产量减少了20%D.第四季度比第三季度的产量增加了70%7.下列从左到右的变形正确的是()A.(﹣a﹣b)(a﹣b)=a2﹣b2B.=C.2x2﹣x﹣6=(2x+3)(x﹣2)D.4m2﹣6mn+9n2=(2m﹣3n)28.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.9.关于x的方程=1有增根,则方程的增根是()A.﹣1 B.4 C.﹣4 D.210.如图,正方形ABCD被分割成2个长方形和1个正方形,要求图中阴影部分的面积,只要知道下列图形的面积是()A.长方形AEFD B.长方形BEGH C.正方形CFGH D.长方形BCFE 二、填空题(每题4分,共24分)11.计算:(﹣1)0=,(﹣5)﹣2=.12.计算:(14a3﹣7a)÷(7a)=.13.如图,已知四条直线a,b,c,d,∠1=81°,∠2=79°,∠3=101°,则∠α的度数为.14.一次统计七年级若干名学生每分钟跳绳次数的频数分布直方图如图,数据分组时,组距是,自左至右最后一组的频率是.15.已知x﹣=2,则x2+=.16.对x,y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).例如:F(1,1)=2m+2n,F(﹣1,0)=3m.当F(1,﹣1)=﹣8,F(1,2)=13,则F(x,y)=;当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,则m,n满足的关系式是.三、解答题(本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:(1)2a2•a3+(﹣a2)3÷a;(2)(2x﹣1)(2x+1)﹣(4x+3)(x﹣6).18.因式分解:(1)﹣ab+2a2b﹣a3b;(2)(x﹣y)2﹣x+y.19.先化简,再求值:(+)÷,其中x=3.20.解方程(组):(1);(2)=﹣5.21.某校学生会调查了七年级部分学生对“垃圾分类”的了解程度.(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性的方案是;方案①:调查七年级部分男生;方案②:调查七年级部分女生;方案③:到年级每个班去随机调查一定数量的学生;(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图(如图1、图2),请你根据图中信息,回答下列问题:①本次调查学生人数共有名;②补全图1中的条形统计图,图2中“了解一点”的圆心角度数为;③根据本次调查估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有多少名.22.如图,已知AC⊥BC,CD⊥AB,DE⊥AC.(1)DE与BC平行吗?请说明理由.(2)若∠1与∠2互补,求∠BFH的度数.23.某生态柑橘园现有柑橘31吨,租用9辆A和B两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A型货车的总费用500元,B型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?24.阅读理解并解答:【方法呈现】(1)我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式,同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+2x+3=(x2+2x+1)=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.则这个代数式x2+2x+3的最小值是,这时相应的x的值是.【尝试应用】(2)求代数式﹣x2+14x+10的最小(或最大)值,并写出相应的x的值.【拓展提高】(3)将一根长300cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和有最小(或最大)值?若有,求此时这根铁丝剪成两段后的长度及这两个正方形面积的和;若没有,请说明理由.参考答案一、选择题(每小题3分,共30分,每小题给出的四个选项中只有一项符合题目要求)1.下列图案中,能通过平移得到如图的图案是()A.B.C.D.解:能通过平移得到如图的图案是选项B.故选:B.2.下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.“国家宝藏”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;C、对国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;故选:B.3.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣8解:0.000000022=2.2×10﹣8.故选:D.4.下列计算正确的是()A.a•a2=a2B.a2+a4=a8C.(ab)3=ab3D.a3÷a=a2解:a•a2=a3,故选项A不合题意;a2与a4不是同类项,所以不能合并,故选项B不合题意;(ab)3=a3b3,故选项C不合题意;a3÷a=a2,正确,故选项D符合题意.故选:D.5.若是关于x,y的二元一次方程1﹣ay=3x的一组解,则a的值为()A.﹣5 B.﹣1 C.2 D.7解:根据题意,可得:1﹣a=3×2,∴1﹣6=a,解得a=﹣5.故选:A.6.某电动车厂2018年第三、四季度各月产量情况如图所示.则下列说法错误的是()A.7月份产量为300辆B.从10月到11月的月产量增长最快C.从11月到12月的月产量减少了20%D.第四季度比第三季度的产量增加了70%解:由图可得,7月份产量为300辆,故选项A正确,从10月到11月的月产量增长最快,故选项B正确,从11月到12月的月产量减少了≈16.7%,故选项C错误,第四季度比第三季度的产量增加了=70%,故选项D正确,故选:C.7.下列从左到右的变形正确的是()A.(﹣a﹣b)(a﹣b)=a2﹣b2B.=C.2x2﹣x﹣6=(2x+3)(x﹣2)D.4m2﹣6mn+9n2=(2m﹣3n)2解:A、(﹣a﹣b)(a﹣b)=﹣a2+b2,原变形错误,故此选项不符合题意;B、=,原变形错误,故此选项不符合题意;C、2x2﹣x﹣6=(2x+3)(x﹣2),原变形正确,故此选项符合题意;D、4m2﹣12mn+9n2=(2m﹣3n)2,4m2﹣6mn+9n2不能在实数范围内因式分解,原变形错误,故此选项不符合题意;故选:C.8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.9.关于x的方程=1有增根,则方程的增根是()A.﹣1 B.4 C.﹣4 D.2解:由分式方程有增根,得到x+1=0,解得:x=﹣1.故选:A.10.如图,正方形ABCD被分割成2个长方形和1个正方形,要求图中阴影部分的面积,只要知道下列图形的面积是()A.长方形AEFD B.长方形BEGH C.正方形CFGH D.长方形BCFE 解:如图所示:在△GDF与△BGE中,,∴△GDF≌△BGE(SAS).∴S△GDF=S△BEG,则S阴影=S△EFB=S矩形BCFE.所以只要知道长方形BCFE的面积即可求得答案.故选:D.二、填空题(每题4分,共24分)11.计算:(﹣1)0=1,(﹣5)﹣2=.解:(﹣1)0=1,(﹣5)﹣2==.故答案为:1,.12.计算:(14a3﹣7a)÷(7a)=2a2﹣1.解:(14a3﹣7a)÷(7a)=14a3÷(7a)﹣7a÷(7a)=2a2﹣1.故答案为:2a2﹣1.13.如图,已知四条直线a,b,c,d,∠1=81°,∠2=79°,∠3=101°,则∠α的度数为81°.解:如图,∵∠4=∠3=101°,而∠2=79°,∴∠2+∠4=79°+101°=180°,∴c∥d,∴∠α=∠1=81°,故答案为:81°.14.一次统计七年级若干名学生每分钟跳绳次数的频数分布直方图如图,数据分组时,组距是25,自左至右最后一组的频率是0.2.解:数据分组时,组距是87﹣62=25,∵样本容量为2+4+6+3=15,∴自左至右最后一组的频率是3÷15=0.2,故答案为:25,0.2.15.已知x﹣=2,则x2+=8.解:将x﹣=2两边平方得:(x﹣)2=4,整理得:x2+﹣4=4,则x2+=8.故答案为:8.16.对x,y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).例如:F(1,1)=2m+2n,F(﹣1,0)=3m.当F(1,﹣1)=﹣8,F(1,2)=13,则F(x,y)=9x2+12xy﹣5y2;当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,则m,n满足的关系式是3m+n=0.解:(1)∵F(1,﹣1)=﹣8,F(1,2)=13,∴(m﹣n)×[3﹣(﹣1)]=﹣8,(m+2n)(3×1﹣2)=13.∴m﹣n=﹣2,m+2n=13.∴m=3,n=5.∴F(x,y)=(mx+ny)(3x﹣y)=(3x+5y)(3x﹣y)=9x2﹣3xy+15xy﹣5y2=9x2+12xy ﹣5y2.(2)∵F(x,y)=(mx+ny)(3x﹣y),F(y,x)=(my+nx)(3y﹣x),∴F(x,y)=3mx2﹣mxy+3nxy﹣ny2=3mx2+(3n﹣m)xy﹣ny2.F(y,x)=3my2﹣mxy+3nxy﹣nx2=3my2+(3n﹣m)xy﹣nx2.若当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,∴当x2≠y2时,3mx2+(3n﹣m)xy﹣ny2=3my2+(3n﹣m)xy﹣nx2对任意有理数x,y都成立.∴当x2≠y2时,(3m+n)x2=(3m+n)y2对任意有理数x,y都成立.∴3m+n=0.故答案为:9x2+12xy﹣5y2,3m+n=0.三、解答题(本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:(1)2a2•a3+(﹣a2)3÷a;(2)(2x﹣1)(2x+1)﹣(4x+3)(x﹣6).解:(1)2a2•a3+(﹣a2)3÷a=2a5+(﹣a6)÷a=2a5+(﹣a5)=a5;(2)(2x﹣1)(2x+1)﹣(4x+3)(x﹣6)=4x2﹣1﹣(4x2﹣24x+3x﹣18)=4x2﹣1﹣4x2+21x+18=21x+17.18.因式分解:(1)﹣ab+2a2b﹣a3b;(2)(x﹣y)2﹣x+y.解:(1)原式=﹣ab(1﹣2a+a2)=﹣ab(a﹣1)2;(2)原式=(x﹣y)2﹣(x﹣y)=(x﹣y)(x﹣y﹣1).19.先化简,再求值:(+)÷,其中x=3.解:原式=(﹣)•=•=2(x+2)=2x+4,当x=3时,原式=2×3+4=10.20.解方程(组):(1);(2)=﹣5.解:(1),②×3,得3x+9y=6③,①﹣③,得y=1,将y=1代入②得,x=﹣1,∴方程组的解为;(2)=﹣5两边都乘以y﹣1,得:﹣3=y﹣5(y﹣1),解得:y=2,经检验:分式方程的解为y=2.21.某校学生会调查了七年级部分学生对“垃圾分类”的了解程度.(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性的方案是方案③;方案①:调查七年级部分男生;方案②:调查七年级部分女生;方案③:到年级每个班去随机调查一定数量的学生;(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图(如图1、图2),请你根据图中信息,回答下列问题:①本次调查学生人数共有120名;②补全图1中的条形统计图,图2中“了解一点”的圆心角度数为216°;③根据本次调查估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有多少名.解:(1)根据选择“样本”的广泛性、代表性和可操作性可得,最具有代表性的方案是方案③,故答案为:方案③;(2)①1本次调查学生人数共12÷10%=120(名),故答案为:120;②(120﹣12﹣36)÷120=72÷120=60%,360°×60%=216°,故答案为:216°;③500×=150(名),答:比较了解“垃圾分类”的学生大约有150名.22.如图,已知AC⊥BC,CD⊥AB,DE⊥AC.(1)DE与BC平行吗?请说明理由.(2)若∠1与∠2互补,求∠BFH的度数.解:(1)DE//BC.理由如下:∵AC⊥BC,DE⊥AC,∴DE∥BC;(2)∵DE∥BC,∴∠1=∠DCB,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠DCB+∠2=180°,∴FH∥DC,∴∠HFB=∠CDB,∵CD⊥AB,∴∠HFB=∠CDB=90°.23.某生态柑橘园现有柑橘31吨,租用9辆A和B两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A型货车的总费用500元,B型货车的总费用480元,每辆B 型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?解:(1)设每辆A型货车运费为x元,由题意得:,解得:x=100.经检验:x=80是原方程的解且符合题意,1.2x=120.答:每辆A型货车运费100元,B型货车的运费120元.(2)设每辆A型货车运a吨,B型货车运b吨,由(1)知,=5(辆),=4(辆).由题意得:,解得,答:每辆A型货车运3吨,B型货车运4吨.24.阅读理解并解答:【方法呈现】(1)我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式,同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+2x+3=(x2+2x+1)=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.则这个代数式x2+2x+3的最小值是2,这时相应的x的值是﹣1.【尝试应用】(2)求代数式﹣x2+14x+10的最小(或最大)值,并写出相应的x的值.【拓展提高】(3)将一根长300cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和有最小(或最大)值?若有,求此时这根铁丝剪成两段后的长度及这两个正方形面积的和;若没有,请说明理由.解:(1)∵x2+2x+3=(x+1)2+2≥2,∴其最小值为2,这时相应的x的值为﹣1.故答案为:2,﹣1;(2)﹣x2+14x+10=﹣(x2﹣14x+49﹣49)+10=﹣(x﹣7)2+59,∵﹣(x﹣7)2≤0,∴﹣(x﹣7)2+59≤59,故代数式﹣x2+14x+10的最大值为59,相应的x的值为7,(3)有最大值,设一段铁丝长为xcm,则另一段长为(300﹣x)cm,由题意得:,当x=150,两个正方形的面积之和有最大值.则另一段铁丝的长度为300﹣150=150(cm).。

浙教版七年级下册数学期末测试卷(典型题)

浙教版七年级下册数学期末测试卷(典型题)

浙教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、的运算结果正确的是()A. B. C. D.a+b2、如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是()。

A.5B.7C.D.93、若分式方程有增根,则的值是( ).A.1B.0C.-1D.-24、下列计算正确的是()A.(a 3)4=a 7B.a 2+a 2=2a 4C.(-a 2b 3)2=a 4b 6D.a 3÷a 3=a5、若∠1与∠2是同位角,且∠1=60°,则∠2是()A.60°B.120°C.120°或60°D.不能确定6、如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.经过直线外一点,有且只有一条直线与这条直线平行D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行7、下列运算,正确的是()A. B. C.2a-a=1 D.a 2+a=3a8、若x2+mxy+4y2是完全平方式,则常数m的值为()A.4B.﹣4C.±4D.以上结果都不对9、如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:①三角形ABC平移的距离是4;②EG=4.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是A.①②B.②③C.③④D.②④10、下列计算正确的是()A.x 2+3x 2=4x 4B.x 2y•2x 3=2x 4yC.(6x 2y 2)÷(3x)=2x2 D.(﹣3x)2=9x 211、下列运算正确的是()A.(﹣3)0=﹣1B.3 ﹣2=﹣6C.﹣3 0=﹣1D.﹣3 ﹣2=﹣912、如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠513、计算4-(-4)0的结果是()A.3B.0C.8D.414、关于如图所示的统计图中(单位:万元),正确的说法是()A.第一季度总产值4.5万元B.第二季度平均产值6万元C.第二季度比第一季度增加5.8万元D.第二季度比第一季度增长33.5%15、下列运算中,计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若,则分式的值为________.17、如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2=________.18、的算术平方根是________.19、已知,,则________.20、若,则代数式的值为________.21、计算:(﹣3xy2)2÷(2xy)=________.22、分解因式:ax2-a=________.23、某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有________人.24、化简分式的结果为________ .25、某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________.三、解答题(共5题,共计25分)26、计算:27、如图:点、、、在一条直线上,、,,求证:.28、已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.29、已知实数a是x2﹣5x﹣14=0的根,不解方程,求(a﹣1)(2a﹣1)﹣(a+1)2+1的值.30、从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、C5、D6、A7、A8、C9、B10、D11、C12、A13、A14、C15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

浙教版七年级下册数学期末测试卷及含答案(真题汇编)

浙教版七年级下册数学期末测试卷及含答案(真题汇编)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A. B. C. D.2、下列运算,其中正确的有()A.1个B.2个C.3个D.4个3、方程组的解为()A. B. C. D.4、下列运算正确的是()A.3a•4a=12aB.(a 3)2=a 6C.(﹣2a)3=﹣2a 3D.a 12÷a 3=a 45、下列运算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 6C.(a+b)2=a 2+b 2D. +=6、下列计算中,正确的是( )A.(a 3b)2=a 6b 2B.a•a 4=a 4C.a 6÷a 2=a 3D.3a+2b=5a7、下列各等式成立的是()A.a 2+a 5=a 5B.(﹣a 2)3=a 6C.a 2﹣1=(a+1)(a﹣1) D.(a+b)2=a 2+b 28、下列等式从左到右的变形,属于因式分解是A. B. C.D.9、方程2x-3y=5、xy=3、3x-y+2z=0、x2+y=6中是二元一次方程的有()个.A.1B.2C.3D.410、已知a m=5,a n=2,则a m+n的值等于()A.25B.10C.8D.711、若分式的值为0,则的值等于()A.1B.2C.1或2D.312、若关于x的分式方程无解,则a的值为()A.1B.-1C.1或0D.1或-113、下列调查中,适宜全面调查方式的是()A.了解广州市空气质量B.调查某批次的灯泡的使用寿命C.了解珠江中生物的种类D.了解某班学生对“中国梦”内涵的知晓率14、若分式中的xy的值都变为原来的3倍,则此分式的值()A.是原来的3倍B.不变C.是原来的D.不能确定15、计算2a2•a3的结果是()A.2a 5B.2a 6C.4a 5D.4a 6二、填空题(共10题,共计30分)16、若x+y=6,xy=5,则x2+y2=________.17、某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).18、初中阶段我们学习了两个乘法公式,分别是:平方差公式:(a+b)(a﹣b)=________ ;完全平方公式:(a+b)2=________ 或(a﹣b)2=________ .请推导上面公式(从上面三个公式中任选一个进行推导).19、已知,则= ________ .(用含的代数式表示)20、(x﹣y)(x+y)(x2+y2)(x4+y4)(x8+y8)=________ .21、若x2+y2=10,xy=3,则(x﹣y)2=________.22、 ________.23、将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a,b上,若a∥b,∠1=24°,则∠2的度数为________°.24、为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是________.25、计算(﹣)3÷(﹣)2的结果是________三、解答题(共5题,共计25分)26、先化简,再选一个合适的数代入求值:(x+1﹣)÷.27、先化简再求值:-,其中x=2.28、若(2x a)2•(3y b x4)与x8y是同类项,求这两个单项式的乘积.29、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.30、如图,已知AD⊥BC,EG⊥BC,垂足分别为D、G、AD平分∠BAC,求证:∠E=∠4.证明:∵AD⊥BC,EG⊥BC(已知)∴AD∥EG( )∴∠2=∠3( )∠1= (两直线平行,同位角相等)∵AD平分∠BAC(已知)∴∠1=∠2( )∴∠E=∠3( )∵∠3=∠4( ) ∴∠E=∠4(等量代换)参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、B6、A7、C8、B9、A10、B11、B12、D13、D14、B二、填空题(共10题,共计30分)16、17、18、19、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

【浙教版】初一数学下期末试题含答案

【浙教版】初一数学下期末试题含答案

一、选择题1.下列说法正确的是( )A .抛掷一枚质地均匀的硬币两次,必有一次正面朝上B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D .“0a ≥”是必然事件2.下列事件为必然事件的是( ) A .打开电视,正在播放新闻B .买一张电影票,座位号是奇数号C .任意画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上3.下列事件是随机事件的是( )A .太阳东升西落B .水中捞月C .明天会下雨D .人的生命有限 4.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .5.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE ,则∠GFH 的度数是( )A .110°B .100°C .90°D .80°6.如图,ABC ∆中,BAC 90︒∠=,6AB =,10BC =,8AC =,BD 是ABC ∠的平分线.若P 、Q 分别是BD 和AB 上的动点,则PA PQ +的最小值是( )A .125B .4C .245D .57.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a >8.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个9.如图,若MB ND =,MBA NDC ∠=∠,添加下列条件不能直接判定ABM CDN ≌的是( )A .AM CN =B .A NCD ∠=∠C .AB CD =D .M N ∠=∠10.一个函数的图象如图,给出以下结论: ①当x=0时,函数值最大;②当0<x <2时,函数y 随x 的增大而减小; ③存在0<x 0<1,当x=x 0时,函数值为0. 其中正确的结论是( )A .①②B .①③C .②③D .①②③ 11.一个角的余角是它的补角的25,这个角是( ) A .30 B .60︒C .120︒D .150︒12.下列计算中正确的是( )A .1(1)1--=B .0(1)0-=C .1122aa-=D .﹣0.0000035=﹣3.5×10﹣6二、填空题13.一个不透明的袋中装有除颜色外其余均相同的1个红球和2个黄球,从中随机摸出一个,则摸到红球的概率P =______.14.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为偶数的卡片的概率是_____.15.如图,将一张长方形的纸片沿折痕EF 翻折,使点B 、C 分别落在点M 、N 的位置,且∠AFM =12∠EFM ,则∠AFM =_____°.16.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 的长为x 米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x 的取值范围)19.一副三角板按图1的形式摆放,把含45°角的三角板固定,含30°角的三角板绕直角顶点逆时针旋转,设旋转的角度为α(0180α︒<<︒).在旋转过程中,当两块三角板有两边平行时,α的度数为______.20.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.三、解答题21.一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球,请问:(1)“摸出的球是白球”的概率是多少? (2)“摸出的球是黄球”的概率是多少?22.如图,在网格中,每个小正方形的边长都为1,网格中有两个格点A 、B 和直线l ,且AB 长为3.6.(1)求作点A 关于直线l 的对称点1A .(2)P 为直线l 上一动点,在图中标出使AP BP +的值最小的P 点,且求出AP BP +的最小值?(3)求ABP ∆周长的最小值?23.如图,//AB CD ,点E 在CB 的延长线上,A E ∠=∠,AC ED =.(1)求证:BC CD =;(2)连接BD ,求证:ABD EBD ∠=∠.24.弹簧挂上物体后会伸长,已知一弹簧的长度(cm )与所挂物体的质量(kg )之间的关系如表所示. 所挂物体的质量()kg 0 1 2 3 4 5 6 7 弹簧的长度()cm1212.51313.51414.51515.5(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量? (2)当物体的质量为2kg 时,弹簧的长度是多少? (3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的质量为xkg ,弹簧的长度为ycm ,根据上表写出y 与x 的关系式; (5)当物体的质量为2.5kg 时,根据(4)的关系式,求弹簧的长度. 25.如图,平面上有五个点A ,B ,C ,D ,E .按下列要求画出图形.(1)连接BD ;(2)画直线AC 交BD 于点M ; (3)过点A 作线段AP BD ⊥于点P ;(4)请在直线AC 上确定一点N ,使B ,E 两点到点N 的距离之和最小(保留作图痕迹).26.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C解析:C【解析】【分析】分别分析各选项事件发生是可能性,随机事件即为不确定事件.【详解】A. 太阳东升西落一定发生,为确定事件;B. 水中捞月不可能发生,为不可能事件;C. 明天会下雨可能发生,为随机事件;D. 人的生命有限为确定事件,故选C.【点睛】此题主要考察事件的分类,可分为确定事件与随机事件两种.4.C解析:C【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.5.C解析:C【分析】根据折叠求出∠CFG=∠EFG=12∠CFE,根据角平分线定义求出∠HFE=12∠BFE,即可求出∠GFH=∠GFE+∠HFE=12∠CFB.根据平角的定义即可得答案.【详解】∵将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,∴∠CFG=∠EFG=12∠CFE,∵FH平分∠BFE,∴∠HFE=12∠BFE,∴∠GFH=∠GFE+∠HFE=12(∠CFE+∠BFE)=12×180°=90°,故选:C.【点睛】本题考查折叠的性质及角平分线的定义,根据翻折的性质得到∠CFG=∠EFG是解题关键.6.C解析:C 【分析】在BC 上截取BQ BQ '=,连接PQ ',易证PQ PQ '=,显然当A 、P 、Q '三点共线且AQ BC '⊥时,PA PQ +的值最小,问题转化为求△ABC 中BC 边上的高,再利用面积法求解即可. 【详解】解:在BC 上截取BQ BQ '=,连接PQ ',如图, ∵BD 是ABC ∠的平分线,∴∠ABD =∠CBD , 在△PBQ 和PBQ '∆中,QB Q B ABD CBD BP BP =⎧⎪∠=∠⎨='⎪⎩∴△△PBQ ≌PBQ '∆(SAS ), ∴PQ PQ '=,∴PA PQ PA PQ '+=+,∴当A 、P 、Q '三点共线且AQ BC '⊥时,PA PQ +的值最小, 过点A 作AF ⊥BC 于点F ,则PA PQ +的最小值即为AF 的长, ∵1122ABC SAB AC BC AF ∆=⋅⋅=⋅⋅, ∴6824105AB AC AF BC ⋅⨯===, 即PA PQ +的最小值为245. 故选C.【点睛】本题考查了全等三角形的判定和性质、角平分线的定义、垂线段最短和面积法求高等知识,属于常考题型,在BC 上截取BQ BQ '=,连接PQ ',构造全等三角形、把所求问题转化为求PA PQ '+的最小值是解题的关键.7.A【分析】当x=d时,BC⊥AM,C点唯一;当x≥a时,能构成△ABC的C点唯一,可确定取值范围.【详解】解:若△ABC的形状、大小是唯一确定的,则C点唯一即可,当x=d时,BC⊥AM,C点唯一;当x>a时,以B为圆心,BC为半径的作弧,与射线AM只有一个交点,x=a时,以B为圆心,BC为半径的作弧,与射线AM只有两个交点,一个与A重合,所以,当x≥a时,能构成△ABC的C点唯一,故选为:A.【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.8.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.9.A解析:A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.11.A解析:A【分析】设这个角的度数是x°,根据题意得出方程2901805x x-=-(),求出方程的解即可.【详解】解:设这个角的度数是x°,则2901805x x-=-(),解得:x=30,即这个角的度数是30°,故选A.【点睛】本题考查了余角和补角,注意:∠A 的余角是90°-∠A ,∠A 的补角是180°-∠A . 12.D解析:D【分析】根据零指数幂、负指数幂和科学记数法的表示判断即可;【详解】1(1)1--=-,故A 错误;0(11)-=,故B 错误;122a a-=,故C 错误; ﹣0.0000035=﹣3.5×10﹣6,故D 正确;故选:D .【点睛】本题主要考查了零指数幂、负指数幂和科学记数法,准确分析判断是解题的关键.二、填空题13.【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率;【详解】根据题意得:一个不透明的袋中装有除颜色外其余均相同的1个红球和2个黄球共有3个球从中随机摸 解析:13【分析】根据概率的求法,找准两点:①全部情况的总数; ②符合条件的情况数目;二者的比值就是其发生的概率;【详解】根据题意得:一个不透明的袋中装有除颜色外其余均相同的1个红球和2个黄球, 共有3个球, 从中随机摸出一个,则摸到红球的概率为:13 ; 故答案为:13. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现的m 种结果,那么事件A 的概率P(A)=m n; 14.【解析】【分析】根据一个不透明的盒子里有5张完全相同的卡片它们的标号分别为12345其中偶数有24共2个再根据概率公式即可得出答案【详解】∵共有5个数字偶数有2个分别是2和4∴随机抽取一张抽中标号为解析:25.【解析】【分析】根据一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,其中偶数有2,4,共2个,再根据概率公式即可得出答案.【详解】∵共有5个数字,偶数有2个,分别是2和4,∴随机抽取一张,抽中标号为偶数的卡片的概率是25;故答案是:25.【点睛】考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.36【分析】由折叠的性质可得∠EFM=∠EFB设∠AMF=x°由∠AFM=∠EFM可得∠EFM=∠BFE=2x°然后根据平角的定义列方程求出x的值即可得答案【详解】∵将一张长方形的纸片沿折痕EF翻折解析:36【分析】由折叠的性质可得∠EFM=∠EFB,设∠AMF=x°,由∠AFM=12∠EFM可得∠EFM=∠BFE=2x°,然后根据平角的定义列方程求出x的值即可得答案.【详解】∵将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,∴∠EFM=∠EFB,设∠AFM=x°,∵∠AFM=12∠EFM,∴∠EFM=∠BFE=2x°,∴x°+2x°+2x°=180°,解得:x=36,∴∠AFM=36°.故答案为:36【点睛】此题考查了折叠的性质与平角的定义.解题的关键是注意方程思想与数形结合思想的应用.16.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;17.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.【分析】由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC,AC=BE,由E是BC的中点,得到BE=12BC=12BD=4.【详解】解:∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB,在△ABC和△EDB中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.y =-x2+15x 【分析】由AB 边长为x 米根据已知可以推出BC=(30-x )然后根据矩形的面积公式即可求出函数关系式【详解】∵AB 边长为x 米而菜园ABCD 是矩形菜园∴BC=(30-x )菜园的面积=A解析:y =-12x 2+15x 【分析】由AB 边长为x 米,根据已知可以推出BC=12(30-x ),然后根据矩形的面积公式即可求出函数关系式.【详解】∵AB 边长为x 米,而菜园ABCD 是矩形菜园,∴BC=12(30-x ), 菜园的面积=AB×BC=12(30-x )•x , 则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为:y =-12x 2+15x , 故答案为y =-12x 2+15x. 【点睛】 本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.19.30°或45°或120°或135°或165°【分析】分五种情况进行讨论分别依据平行线的性质进行计算即可得到∠α的度数【详解】解:①当CD ∥OB 时∠α=∠D=30°②当OC∥AB时∠OEB=∠COD=解析:30°或45°或120°或135°或165°【分析】分五种情况进行讨论,分别依据平行线的性质进行计算即可得到∠α的度数.【详解】解:①当CD∥OB时,∠α=∠D=30°②当OC∥AB时,∠OEB=∠COD=90°,此时∠α=90°-∠B=90°-45°=45°③当DC∥OA时,∠DOA=∠D=30°,此时∠α=∠AOB+∠AOD=90°+30°=120°④当OD∥AB时,∠AOD=∠A=45°,此时∠α=∠A+∠AOD=90°+45°=135°⑤当CD∥AB时,延长BO交CD于点E,则∠CEO=∠B=45°∴∠DEO=180°-∠CEO=135°∴∠DOE=180°-∠DEO-∠D=15°此时∠α=180°-∠DOE=180°-15°=165°综上,在旋转过程中,当两块三角板有两边平行时, 的度数为30°或45°或120°或135°或165°【点睛】本题主要考查了平行线的性质的运用.在旋转过程中,注意分情况讨论是解题关键.20.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3)=2a解析:2a4b5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3),=2a4b5.故答案为:2a4b5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.三、解答题21.(1)0;(2)25.【解析】【分析】(1)由一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,可知没有白球,即可求得“摸出的球是白球”的概率;(2)由一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,直接利用概率公式求解即可求得答案.【详解】解:(1)∵一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,∴“摸出的球是白球”的概率是:0;(2)“摸出的球是黄球”的概率是:1062 105-=.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)见解析;(2)点P位置见解析,最小值为5;(3)8.6【分析】(1)根据题意作图即可(2)连接BA1交直线l于点P,由两点间,线段最短即可确定点P的位置(3)由(2)中求得点P的位置,即可得AB+AP+BP=AB+A1P+BP=AB+A1B【详解】(1)如图,点A1即为所作点A关于直线l的对称点(2)连接BA1交直线l于点P,连接AB,AP,则AP=A1P,由两点之间,线段最短可知,AP BP+最短值为5,(3)由(2)可知,点P 即可使△ABP最小的位置故△ABP周长的最小值为AB+AP+BP=AB+A1P+BP=3.6+A1B=3.6+5=8.6此题考查轴对称变换的作图及两点间线段最短的问题,解题关键在于掌握通过轴对称建立最短路径进行解题.23.(1)见解析;(2)见解析.【分析】(1)根据平行线的性质可得∠ABC=∠ECD ,则可利用AAS 证明△ABC ≌△ECD ,再由全等三角形的性质可证得结论;(2)根据“等边对等角”可得∠DBC=∠BDC ,结合∠ABC=∠ECD ,可得∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,再利用三角形的外角性质得∠EBD =∠ECD+∠BDC ,即可证明∠ABD=∠EBD .【详解】证明:(1)∵AB ∥CD ,∴∠ABC=∠ECD ,在△ABC 和△ECD 中,ABC ECD A EAC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ECD (AAS ),∴BC=CD .(2)证明:如图,∵BC=CD ,∴∠DBC=∠BDC ,∵∠ABC=∠ECD ,∴∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,又∵∠EBD =∠ECD+∠BDC ,∴∠ABD=∠EBD .【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识,掌握全等三角形的判定与性质及等腰三角形的性质是解题的关键.24.(1)反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)13cm ;(3)当物体的质量逐渐增加时弹簧的长度增长;(4)120.5y x =+;(5)13.25cm .(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)由表可知,当物体的质量为2kg时,弹簧的长度是13cm;(3)由表格中的数据可知,弹簧的长度随所挂物体的重量的增加而增加;(4)由表中的数据可知,x=0时,y=12,并且每增加1千克的重量,长度增加0.5cm,所以y=0.5x+12;(5)令x=2.5,代入函数解析式,即可求解.【详解】解:(1)反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)当物体的质量为2kg时,弹簧的长度是13cm;(3)当物体的质量逐渐增加时,弹簧的长度增长;(4)由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量,∴弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式为y=0.5x+12,(5)当x=2.5时,代入函数关系式得:y=12+0.5×2.5=13.25cm.【点睛】本题考查了一次函数的应用,属于基础题,关键在于根据图表信息列出等式,然后变形为函数的形式.25.(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)作图见解析.【分析】(1)、(2)、(3)利用几何语言画出对应的几何图形;(4)连接BE交AC于N,则点N满足条件.【详解】解:(1)如图,线段BD为所作;(2)如图,点M为所作;(3)如图,AP为所作;(4)如图,点N为所作.本题考查按要求画直线、射线、线段,画垂线,两点之间线段最短.掌握直线、射线、线段的定义及画法是解题关键.(4)中需注意,两点之间线段最短.26.2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷ ()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.。

浙教版数学七年级下册期末测试卷及答案

浙教版数学七年级下册期末测试卷及答案

浙教版数学七年级下册期末测试题一、选择题(共10小题,每小题3分,共30分)(共10题;共30分)1.(3分)图中的同位角是( )A .∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠32.(3分)计算(−54)3×(−45)2所得结果为( ) A .1 B .-1 C .−54 D .−453.(3分)下列图形中,能将其中一个图形平移得到另一个图形的是( )A .B .C .D .4.(3分)二元一次方程组 {x +y =3x −y =−1的解是( ) A .{x =2y =1 B .{x =1y =−2 C .{x =2y =−1 D .{x =1y =25.(3分)下列各式,能用平方差公式计算的是( )A .(a ﹣1)(﹣a ﹣1)B .(a ﹣3)(﹣a+3)C .(a+2b )(2a ﹣b )D .(﹣a ﹣3)26.(3分)为了直观地表示世界七大洲的面积各占全球陆地面积的百分比,最适合使用的统计图是( )A .扇形图B .条形图C .折线图D .直方图 7.(3分)已知方程组{2a +b =7①a −b =2②,下列消元过程错误的是( ) A .代入法消去a ,由②得a =b +2代入①B .代入法消去b ,由①得b =7−2a 代入②C .加减法消去a ,①+②×2D .加减法消去b ,①+②8.(3分)解方程组{3x −y +2z =32x +y −4z =117x +y −5z =1,若要使运算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对9.(3分)如图,三角形ABC 沿AB 方向向右平移后到达三角形A 1B 1C 1的位置,BC 与A 1C 1相交于点O ,若∠C 的度数为x ,则∠A 1OC 的度数为( )A .xB .90°﹣xC .180°﹣xD .90°+x10.(3分)一张方桌由一个桌面和四条桌腿组成.已知1m 3的木料可做50个桌面或300条桌腿,现用5m 3木料恰好做成若干张方桌.对于这个问题,若设用xm 3的木料做桌面,用ym 3的木料做桌腿,则所列方程组正确的是( )A .{x +y =550x =300yB .{x +y =5200x =300yC .{x +y =54x =yD .{x +y =5300x =200y 二、填空题(共6题,每题4分,共24分)(共6题;共24分)11.(4分)分解因式: (1)(2分)a ﹣ab= .(2)(2分)4﹣a 2= .12.(4分)若 1x −1y =1 ,则分式 2xy x−y 的值是 .13.(4分)某市为治理污水,需要铺设一段全长为 300 m 的污水排放管道.铺设 120 m 后,为了尽量减少施工对城市交 通所造成的影响,后来每天铺设管道的长度比原计划增加 20%,结果共用 30 天完成这一任务.求原计划每天铺 设管道的长度.如果设原计划每天铺设 x m 管道,那么根据题意,可得方程14.(4分)某公司要购买办公桌,A 型办公桌每张500元,B 型办公桌每张300元,购买10张办公桌共花费4200元.设购买A 型办公桌x 张,购买B 型办公桌y 张,则根据题意可列方程组为 .15.(4分)如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a+2b ),宽为(a+b )的大长方形,则需要C 类卡片 张.16.(4分)如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形统计图,其中步行人数为 .三、解答题(第17题4分,第18题4分,第19题5分,第20题8分,第21题5分,第22题5分,第23题5分,第24题10分,共8题,共46分)(共8题;共46分)17.(10分)解方程组:(1)(5分){3x +2y =13x −2y =9(2)(5分){3(x +y)=x −y x+y 2+x−y 6=1 18.(5分)先化简:(3m m+2+m m−2)⋅m 2−4m,并从1,2,3,4中选取一个合适的数作为m 的值代入求值.19.(5分)如图,在三角形 ABC 中, EF ⊥AB , CD ⊥AB ,垂足分别为 F,D ,且 ∠CDG =∠BEF ,求证: ∠AGD =∠ACB .20.(5分)甲、乙二人解关于x ,y 的方程组 {ax +by =2cx −7y =8, 甲正确地解出 {x =3y =−2, 而乙因把c 抄错了,结果解得 {x =−2y =2, 求出a ,b ,c 的值,并求乙将c 抄成了何值?21.(5分)设二元一次方程2x+y-4=0,x-y+3=0,x+2y-k=0有公共解.求k 的值.22.(5分)将多项式(x ﹣2)(x 2+ax ﹣b )展开后不含x 2项和x 项.试求:2a 2﹣b 的值.23.(5分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?24.(6分)[学习材料]——拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法.如:例1:分解因式:x2+2x-3解:原式=x2+2x+1-1-3=(x+1)2-4=(x+1-2)(x+1+2)=(x-1)(x+3)例2:分解因式:x3+5x-6解:原式=x3-x+6x-6=x(x2-1)+6(x-1)=(x-1)(x2+x+6)[知识应用]请根据以上材料中的方法,解决下列问题:(1)(1分)分解因式:x2+14x-51=.(2)(5分)化简:x 3+3x2−4 x+2答案1.【答案】C2.【答案】C3.【答案】A4.【答案】D5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】C10.【答案】B11.【答案】(1)a(1−b)(2)(2−a)(2+a)12.【答案】−213.【答案】120/x +( 300 − 120)/ ( 1 + 20 % ) x =3014.【答案】{x +y =10500x +300y =420015.【答案】316.【答案】817.【答案】(1)解:{3x +2y =1①3x −2y =9②①+②得:6x=10解得:x=53将x=53代入①解得:y=−2,方程组的解为:{x =53y =−2(2)解:原方程组整理为:{x =−2y①2x +y =3②将①代入②得:-4y+y=3,解得:y=-1,将y=-1代入①得x=2,方程组的解为:{x =2y =−1.18.【答案】解:原式=3m m+2⋅(m+2)(m−2)m +m m−2⋅(m+2)(m−2)m=3m −6+m +2=4m −4当m =1时,原式=0.(取m=3或m=4代入求值,计算正确同样给分). 19.【答案】证明:∵EF ⊥AB , CD ⊥AB∴∠BFE =∠BDC =90°∴EF∠CD∴∠BEF =∠BCD∵∠CDG =∠BEF∴∠CDG =∠BCD∴DG∠BC∴∠AGD =∠ACB20.【答案】解:把 {x =3y =−2 代入方程组 {ax +by =2cx −7y =8可得: {3a −2b =23c +14=8解得:c=−2把 {x =−2y =2 代入 ax +by =2 中,可得: −2a +2b =2可得新的方程组: {3a −2b =2−2a +2b =2解得: {a =4b =5把 {x =−2y =2 代入cx−7y=8中,可得:c=-11答:乙把c 抄成了-11,a 的值是4,b 的值是5,c 的值是−2. 21.【答案】解:它们的公共解是方程组 {2x +y −4=0x −y +3=0 的解解这个方程组,得 {x =13y =103代入x+2y-k=0得: 13+2×103−k =0 从而k=722.【答案】解:原式=x 3+ax 2﹣bx ﹣2x 2﹣2ax+2b=x 3+(a ﹣2)x 2﹣(2a+b )x+2b令a ﹣2=0,﹣(2a+b )=0∴a=2,b=﹣4∴2a 2﹣b=2×22+4=1223.【答案】【解答】解:(1)a=50﹣4﹣6﹣14﹣10=16(2)如图所示:(3)本次测试的优秀率是:16+1050×100%=52%24.【答案】(1)(x-3)(x+17)(2)解:∵x 3-x 2-4=x 3-2x 2+x 2-4=x 2(x-2)+(x+2)(x-2)=(x-2)(x 2+x+2),∴原式=(x−2)(x 2+x+2)x−2=x 2+x+2.。

浙教版七年级(下)期末数学试卷及答案(共9份)

浙教版七年级(下)期末数学试卷及答案(共9份)

浙教版七年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)下列方程中,是二元一次方程的是()A.4x=B.3x﹣2y=4z C.6xy+9=0 D.+4y=62.(3分)某校为了解七年级12个班级学生(每班4名)吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取6男6女,了解他们吃零食情况3.(3分)下列各式中,能用平方差公式计算的是()A.(3x+5y)(5y﹣3x)B.(m﹣n)(n﹣m)C.(p+q)(﹣p﹣q)D.(2a+3b)(3a﹣2b)4.(3分)下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.=2a+1 D.5.(3分)如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2 B.∠ABD=∠BDCC.∠3=∠4 D.∠BAD+∠ABC=180°6.(3分)如果把分式中的x,y都扩大3倍,那么分式的值()A.缩小3倍B.不变C.扩大3倍D.扩大9倍7.(3分)如图,有正方形A类、B类和长方形C类卡片各若干张,如果要拼一个宽为(a+2b)、长为(2a+b)的大长方形,则需要C类卡片()A.6张B.5张C.4张D.3张8.(3分)把线段AB沿水平方向平移5cm,平移后的像为线段CD,则线段AB与线段CD之间的距离是()A.等于5cm B.小于5cmC.小于或等于5cm D.大于或等于5cm9.(3分)下列说法正确的是()A.两条直线被第三条直线所截,同位角相等B.垂直于同一条直线的两条直线互相平行C.经过一点,有且只有一条直线与已知直线平行D.在同一平面内,三条直线只有两个交点,则三条直线中必有两条直线互相平行10.(3分)若方程组的解是,则方程组的解是()A.B.C.D.二.填空题(本题有6小题,每小题4分,共24分)11.(4分)使分式有意义的x的取值范围是.12.(4分)已知某组数据的频数为56,频率为0.7,则样本容量为.13.(4分)设a=192×616,b=6462﹣302,c=10542﹣7462,将数a,b,c按从小到大的顺序排列,结果是.14.(4分)已知∠A与∠B的两边分别平行,其中∠A的度数为(3x+15)°,∠B的度数为(115﹣2x)°,则∠B=度.15.(4分)若a﹣b=﹣4,(a+b)2=9,则ab=.16.(4分)某商店经销一种旅游纪念品,4月的营业额为2000元.为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.若4月份销售这种纪念品获利1000元,5月份销售这种纪念品获利元.三.解答题(本题有7小题,共66分)17.(8分)解下列方程(组):(1)(2)18.(8分)计算:(1)(2a+5b)(2a﹣5b)﹣(4a+b)2;(2)(4c3d2﹣6c2d2)÷(﹣3c3d).19.(12分)因式分解:(1)x3﹣4x(2)(2x+y)2﹣6(2x+y)+9(3)4xy2﹣4x2y﹣y320.(10分)农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某区食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉棕(以下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)本次被调查的市民有多少人,请补全条形统计图;(2)扇形统计图中大肉粽对应的圆心角是度;(3)若该区有居民约40万人,估计其中喜爱大肉粽的有多少人?21.(8分)(1)计算:(﹣)•,并求当x=﹣3时原式的值;(2)已知+=2,求代数式的值.22.(10分)如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)找出图中与∠BAC相等的角,并说明理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.23.(10分)为节约用水,某市居民生活用水按阶梯式计算,水价分为三个阶梯,价格表如下表所示:(注:居民生活用水水价=供水价格+污水处理费)某市自来水销售价格表(1)当居民月用水量在18立方米及以下时,水价是元/立方米;(2)小明家2月份用水量为20立方米,付水费59.90元.4月份用水量为33立方米,付水费132.75元.求a,b的值;(3)小明家5月份交水费112.65元,试求小明家该月的用水量.参考答案一.选择题(本题有10小题,每小题3分,共30分)1.A2.D 3.A4.D5.B6.C7.B8.C9.D10.D 二.填空题(本题有6小题,每小题4分,共24分)11.x≠3 12.80 13.a<b<c14.75或15 15.16.1200三.解答题(本题有7小题,共66分)17.解:(1),①×3+②得:10a=14,解得:a=1.4,把a=1.4代入①得:b=0.2,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=4a2﹣25b2﹣16a2﹣8ab﹣b2=﹣12a2﹣8ab﹣26b2;(2)原式=﹣d+.19.解:(1)原式=x(x2﹣4)=x(x+2)(x﹣2);(2)原式=(2x+y﹣3)2;(3)原式=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2.20.解:(1)本次被调查的市民:50÷25%=200(人),B的人数:200﹣40﹣10﹣50﹣70=30(人),补图如下:答:本次被调查的市民有200人.(2)扇形统计图中大肉粽对应的圆心角,故答案为126;(3)估计其中喜爱大肉粽的人数:(万人)答:估计其中喜爱大肉粽的有14万人.21.解:(1)原式=•==2x+8,当x=﹣3时,原式=2×(﹣3)+8=2(2)由已知+=2得x+y=2xy,原式====.22.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∠BAC相等的角有:∠BFD,∠DEC,∠FDE,∵DE∥AB,∴∠BAC=∠DEC,∠BFD=∠FDE,∵DF∥AC,∴∠BAC=∠BFD,∴∠BAC=∠DEC=∠BFD=∠FDE.(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.23.解:(1)1.90+1.00=2.90(元).故答案为:2.90.(2)18×2.90+2(a+1)=59.9,所以a=2.85,18×2.90+7(a+1)+8(b+1)=132.75,解得:b=5.7,(3)设小明家该月的用水量为x立方米,可得:18×2.90+7×3.85+6.7(x﹣25)=112.65,解得:x=30,答:小明家该月的用水量为30立方米.浙教版七年级(下)期末数学试卷一、细心选一选(本题有10小题,每小题3分,共30分)1.(3分)如图,直线m,n被直线l所截,则∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.(3分)可乐中含有大量的咖啡因,世界卫生组织建议青少年每天咖啡因的摄入量不能超过0.000085kg.则0.000085这个数字可用科学记数法表示为()A.8.5×10﹣5B.85×10﹣6C.8.5×10﹣6D.0.85×10﹣43.(3分)要使分式有意义,则x的取值应满足()A.x=﹣1 B.x=1 C.x≠1 D.x≠﹣14.(3分)下列选项中,运算正确的是()A.a2•a4=a8B.(a2)3=a5C.a6÷a3=a2D.(ab)3=a3b35.(3分)分式与的最简公分母是()A.ab B.2a2b2C.a2b2D.2a3b36.(3分)陈老师对56名同学的跳绳成绩进行了统计,跳绳个数140个以上的有28名同学,则跳绳个数140个以上的频率为()A.0.4 B.0.2 C.0.5 D.27.(3分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.a2+6a+10=(a+3)2+18.(3分)小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25% B.20% C.50% D.33%9.(3分)若x+y=2z,且x≠y≠z,则的值为()A.1 B.2 C.0 D.不能确定10.(3分)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2 C.25 D.30°二、精心填一填(本题有6小题,每小題3分,共18分)11.(3分)在二元一次方程y=6﹣2x中,当x=2时,y的值是.12.(3分)计算:(21a3﹣7a2)÷7a=.13.(3分)如果整式x2+10x+m恰好是一个整式的平方,则m的值是.14.(3分)如图,将一块长方形纸条折成如图的形状,若已知∠1=110°,则∠2=°.15.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重,问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为.16.(3分)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=,b=.三、专心练一练(本题有4小题,共28分)17.(8分)计算下列各题:(1)(3.14﹣π)0+(﹣1)2019+3﹣2(2)(m+1)2﹣m(m+3)﹣318.(8分)解下列方程(组):(1)(2)19.(6分)如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.20.(6分)小明同学以“你最喜欢的运动项目“为主题对家附近的公园里参加运动的群众进行了随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择),下面是小明根据调查结果列出的统计表和绘制的扇形统计图.男、女被调查者所选项目人数统计表根据以上信息回答下列问题:(1)m=,n=.(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为°;(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步“的约有多少人?四、耐心做做(本题有3小题,共24分)21.(7分)某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?22.(8分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示),留下一个“T”型的图形(阴影部分)(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=21米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.23.(9分)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B 种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了本.(直接写出答案)参考答案一、细心选一选(本题有10小题,每小题3分,共30分)1.B 2.A 3.C 4.D 5.B 6.C 7.C 8.B 9.A 10.D二、精心填一填(本题有6小题,每小題3分,共18分)11.2 12.3a2﹣a 13.25 14.55 15.16.225,75.三、专心练一练(本题有4小题,共28分)17.(1)原式=1+(﹣1)+=.(2)原式=m2+2m+1﹣m2﹣3m﹣3=﹣m﹣2.18.解:(1),把②代入①得:2y﹣3y+3=1,解得:y=2,把y=2代入②得:x=1,则方程组的解为;(2)去分母得:x﹣1﹣2(x+1)=7,去括号得:x﹣1﹣2x﹣2=7,解得:x=﹣10,经检验x=﹣10是分式方程的解.19.解:BC∥AD,理由:∵∠E=∠F,∴BE∥FD,∴∠B=∠BCF,又∵∠B=∠D,∴∠BCF=∠D,∴BC∥AD.20.解:(1)总人数是:4÷10%=40(人),∵健步走占30%,∴健步走的人数是:40×30%=12(人),∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为×360°=144°,故答案为:144;(3)根据题意得:3600×=720(人),答:这3600人中最喜欢的运动项目是“跑步“的约有720人.四、耐心做做(本题有3小题,共24分)21.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件.22.解:(1)(2x+y)(x+2y)﹣2y2=2x2+4xy+xy+2y2﹣2y2=2x2+5xy;(2)∵y=3x=21,∴x=7,2x2+5xy=2×49+5×7×21=833(平方米)20×833=16660(元)答:草坪的造价为16660元.23.解:(1)设A种笔记本的单价为x元,B种笔记本的单价为y元,依题意,得:,解得:.答:A种笔记本的单价为8元,B种笔记本的单价为12元.(2)设购买A种笔记本m本,B种笔记本n本,则购买C种笔记本(60﹣m﹣n)本,依题意,得:8m+12n+6(60﹣m﹣n)=480,∴m+3n=60,∴购买C种笔记本2n本.∵m,n均为正整数,且|m﹣n|<15,n<15,∴或或,∴2n=24,26,28.故答案为:24,26,28.浙教版七年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.下列方程属于二元一次方程的是()A.4x﹣8=y B.x2+y=0 C.x+=1 D.4x+y≠22.下列计算正确的是()A.a3×a3=2a3B.s3÷s=s2C.(m4)2=m6D.(﹣x2)3=x63.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°5.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如图表格,则步行到校的学生频率为()A.0.2 B.0.3 C.0.4 D.0.56.下列调查,适合用普查方式的是()A.了解义乌市居民年人均收入B.了解义乌市民对“低头族”的看法C.了解义乌市初中生体育中考的成绩D.了解某一天离开义乌市的人口流量7.若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A .(b +c )2=b 2+2bc +c 2B .a (b +c )=ab +acC .(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2acD .a 2+2ab =a (a +2b )8.已知x +y =3,xy =2,则下列结论中①(x ﹣y )2=1,②x 2+y 2=5,③x 2﹣y 2=3,④,正确的个数是( ) A .1B .2C .3D .49.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min {, }=﹣1的解为( ) A .1B .﹣1C .1或﹣1D .﹣1或﹣210.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?( )A .5个B .6个C .7个D .8个二、填空题(本题有6小题,每小题3分,共18分) 11.分解因式:9x 2﹣4y 2= .12.某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为13.如图△ABC 中,AB =BC =AC =5,将△ABC 沿边BC 向右平移4个单位得到△A 'B 'C ′,则四边形AA ′C 'B 的周长为14.明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意即:100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.则大和尚有人,小和尚有人.15.分式方程无解,则m的值为16.利用如图1的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20+1.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20+1=6表示该生为6班学生.则该系统最多能识别七年级的班级数是个.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.(6分)计算:(1)2a2b•(﹣3b2c)÷(4ab3)(2)(﹣1)2018﹣()0+()﹣218.(6分)解下列方程或方程组(1)(2)19.(6分)先化简,再求值,其中a=2019,b=201820.(6分)某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:(1)m=,a=(2)补全频数直方图;(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?21.(6分)如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.22.(6分)甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.23.(8分)【提出问题】(1)如图1,已知AB∥CD,证明:∠1+∠EPF+∠2=360°;【类比探究】(2)如图2,已知AB∥CD,设从E点出发的(n﹣1)条折线形成的n个角分别为∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度数可能在1700°至2000°之间吗?若有可能请求出n 的值,若不可能请说明理由.【拓展延伸】(3)如图3,已知AB∥CD,∠AE1E2的角平分线E1O与∠CE n E n的角平分线E n O交﹣1于点O,若∠E1OE n=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度数.(用含m、n的代数式表示)24.(8分)某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b天,剩下的工程由乙队单独做,也正好如期完工(1)当a=6,b=4时,求工程预定工期的天数.(2)若a﹣b=2.a是偶数①求甲队、乙队单独完成工期的天数(用含a的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.A 2.B 3.D 4.D 5.A 6.C 7.D 8.B 9.C 10.C二、填空题(本题有6小题,每小题3分,共18分)11.(3x+2y)(3x﹣2y).12.a+3b﹣2.13.23 14.25;75.15.或1 16.16.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.解:(1)原式=﹣6a2b3c÷(4ab3)=﹣ac;(2)原式=1﹣1+25=25.18.解:(1)①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2∴方程组的解为(2)x+3=5xx=经检验:x=是原方程的解19.解:当a=2019,b=2018时,原式=÷=•==120.解:(1)∵被调查的总人数为30÷15%=200,∴m=200×25%=50,B组人数为200×10%=20,则C组的人数为200﹣(30+20+50+60)=40,∴a=360×=72,故答案为:50、72;(2)补全频数直方图如下:(3)估计该校安全意识不强的学生约有1600×15%=240人.21.解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.22.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.23.解:(1)如图所示,过P作PG∥AB,则∠1+∠GPE=180°,∵AB∥CD,∴PG∥CD,∴∠2+∠FPG=180°,∴∠1+∠GPE+∠GPF+∠2=360°,即∠1+∠EPF+∠2=360°;(2)可能在1700°至2000°之间.如图过G作GH∥AB,…,过P作PQ∥AB,∵AB∥CD,∴AB∥GH∥…∥PQ∥CD,∴∠1+∠EGH=180°,…,∠QPF+∠n=180°,(有(n﹣1)对同旁内角)∴∠1+∠2+…∠n﹣1+∠n=180°(n﹣1),当1700°<180°(n﹣1)<2000°时,n=11,12,∴n的值为11或12;(3)如图所示,过O作OP∥AB,∵AB∥CD,∴OP∥CD,∴∠AE1O=∠POE1,∠CE n O=∠POE n,∴∠AE1O+∠CE n O=∠POE1+∠POE n=∠E1OE n=m°,的角平分线E n O交于点O,又∵∠AE1E2的角平分线E1O与∠CE n E n﹣1=2(∠AE1O+∠CE n O)=2m°,∴∠AE1E2+∠CE n E n﹣1由(2)可得,∠AE1E2+∠2+…+∠(n﹣1)+∠CE n E n=180°(n﹣1),﹣1∴∠2+∠3+∠4+…+∠(n﹣1)=180°(n﹣1)﹣2m°.24.解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+6)天.依题意,得(+)×4+×(x﹣4)=1,解得:x=12,经检验:x=12是原分式方程的解.答:工程预定工期的天数是12天;(2)①∵a﹣b=2,∴b=a﹣2,设甲队单独完成此项工程需y天,则乙队单独完成此项工程需(y+a)天,由题意得,+=1,解得:y=,经检验:y=是原分式方程的解,∴y+a=,答:甲队、乙队单独完成工期的天数分别为天,天;②方案一需付工程款:×a2﹣a,方案三需付工程款:1.5b+a2=×(a﹣2)+a2,∵:×a2﹣a﹣(a﹣3+a2)=(a﹣3)2﹣<0,故此时方案一比较合算.浙教版七年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y32.(3分)如图,若∠A=∠D,则AB∥CD,判断依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行3.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.(a+b)(a﹣b)=a2﹣b2C.x2﹣4=(x+2)(x﹣2)D.x﹣1=x(1﹣)4.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15 B.﹣2 C.8 D.25.(3分)如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F 组合成一个正方形,下面平移步骤正确的是()A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位6.(3分)计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+47.(3分)某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20 B.21 C.22 D.238.(3分)根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长9.(3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=3010.(3分)已知关于x,y的方程组,则下列结论中正确的个数有()①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x﹣3a=35,则a=5.A.1个B.2个C.3个D.4个二、填空题(共10题,共30分)11.(3分)如图,若l1∥l2,∠1=x°,则∠2=°.12.(3分)计算:(﹣2a2)2=;2x2•(﹣3x3)=.13.(3分)禽流感病毒直径约为0.00000205cm,用科学记数法表示为cm.14.(3分)因式分解:x3﹣xy2=.15.(3分)在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为.16.(3分)计算÷(1﹣)的结果是.17.(3分)已知是方程组的解,则3a﹣b=.18.(3分)若方程有增根,则m的值为.19.(3分)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).20.(3分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、解答题(共6题,共40分)21.解方程(组):(1)(2).22.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.23.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2﹣x﹣6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项﹣6也分解为两个因数的积,即﹣6=2×(﹣3);然后把1,1,2,﹣3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(﹣3)+1×2=﹣1,恰好等于一次项的系数﹣1,于是x2﹣x﹣6就可以分解为(x+2)(x﹣3).请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x﹣6=.【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2x2+5x﹣7;(2)6x2﹣7xy+2y2=.【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=.(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,请写出一组符合题意的x,y的值.参考答案与试题解析一、单选题(共10题,共30分)1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D 二、填空题(共10题,共30分)11.(180﹣x)°12.4a4;﹣6x5 13.2.05×10﹣6 14.x(x﹣y)(x+y)15.56 16..17.5 18.219.当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.20.30﹣.三、解答题(共6题,共40分)21.解:(1),由①×2,得4x﹣10y=24③,由③﹣②,并化简,得y=﹣2,把y=﹣2代入①,并化简,得x=1,则方程组的解为;(2)原式两边同时乘以3﹣x,得1﹣6+2x=x﹣2,解得:x=3,经检验:x=3是增根,舍去,∴原方程无解.22.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.23.解:(1)15÷30%=50人故答案为:50(2)踢毽子的人数:50×18%=9人,其它的人数为:50﹣15﹣9﹣16=10人,补全统计图如图:(3)其他”部分对应的圆心角的度数是:360°×=72°(4)2100×(1﹣30%﹣18%﹣20%)=672人答:估算“立定跳远”部分的学生人数672人.24.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生,根据题意得,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300×20=6000(元),方案二租金:300×11+500×4=5300(元),方案三租金:300×2+500×8=4600(元),∴方案三租金最少,最少租金为4600元.26.解:【阅读与思考】分解因式:x2+x﹣6=(x+3)(x﹣2);故答案为:(x+3)(x﹣2);【理解与应用】(1)2x2+5x﹣7=(x﹣1)(2x+7);(2)6x2﹣7xy+2y2=(x﹣1)(2x+7);故答案为:(1)(x﹣1)(2x+7);(2)(x﹣1)(2x+7);【探究与拓展】(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=(x+2y﹣1)(3x﹣y+4);故答案为:(x+2y﹣1)(3x﹣y+4)(2)∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,∴m=27+16=43或m=﹣72﹣6=﹣78,故m的值为43或﹣78;(3)x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,可以是x=﹣1,y=0(答案不唯一).浙教版七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各图案中,是由一个基本图形通过平移得到的是()A.B.C.D.2.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001243.(3分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y4.(3分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.5.(3分)下列统计中,适合用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率6.(3分)下列分式中不管x取何值,一定有意义的是()A.B.C.D.7.(3分)能使分式值为整数的整数x有()个.A..1 B.2 C.3 D..48.(3分)22018﹣22019的值是()A.B.﹣C.﹣22018D.﹣29.(3分)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y32.(3分)如图,若∠A=∠D,则AB∥CD,判断依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行3.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2B.(a+b)(a﹣b)=a2﹣b2C.x2﹣4=(x+2)(x﹣2)D.x﹣1=x(1﹣)4.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15B.﹣2C.8D.25.(3分)如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F组合成一个正方形,下面平移步骤正确的是()A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位6.(3分)计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4B.﹣3x2﹣2x+4C.﹣3x2+2x+4D.3x2﹣2x+47.(3分)某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20B.21C.22D.238.(3分)根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长9.(3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30B.﹣=C.﹣=D.+=3010.(3分)已知关于x,y的方程组,则下列结论中正确的个数有()①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x﹣3a=35,则a=5.A.1个B.2个C.3个D.4个二、填空题(共10题,共30分)11.(3分)如图,若l1∥l2,∠1=x°,则∠2=°.12.(3分)计算:(﹣2a2)2=;2x2•(﹣3x3)=.13.(3分)禽流感病毒直径约为0.00000205cm,用科学记数法表示为cm.14.(3分)因式分解:x3﹣xy2=.15.(3分)在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为.16.(3分)计算÷(1﹣)的结果是.17.(3分)已知是方程组的解,则3a﹣b=.18.(3分)若方程有增根,则m的值为.19.(3分)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).20.(3分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、解答题(共6题,共40分)21.解方程(组):(1)(2).22.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.23.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c 的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2﹣x﹣6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项﹣6也分解为两个因数的积,即﹣6=2×(﹣3);然后把1,1,2,﹣3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(﹣3)+1×2=﹣1,恰好等于一次项的系数﹣1,于是x2﹣x﹣6就可以分解为(x+2)(x﹣3).请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x﹣6=.【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2x2+5x﹣7;(2)6x2﹣7xy+2y2=.【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=.(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m 的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,请写出一组符合题意的x,y的值.参考答案与试题解析一、单选题(共10题,共30分)1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D 二、填空题(共10题,共30分)11.(180﹣x)°12.4a4;﹣6x5 13.2.05×10﹣6 14.x(x﹣y)(x+y)15.56 16..17.518.219.当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.20.30﹣.三、解答题(共6题,共40分)21.解:(1),由①×2,得4x﹣10y=24③,由③﹣②,并化简,得y=﹣2,把y=﹣2代入①,并化简,得x=1,则方程组的解为;(2)原式两边同时乘以3﹣x,得1﹣6+2x=x﹣2,解得:x=3,经检验:x=3是增根,舍去,∴原方程无解.22.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.23.解:(1)15÷30%=50人故答案为:50(2)踢毽子的人数:50×18%=9人,其它的人数为:50﹣15﹣9﹣16=10人,补全统计图如图:(3)其他”部分对应的圆心角的度数是:360°×=72°(4)2100×(1﹣30%﹣18%﹣20%)=672人答:估算“立定跳远”部分的学生人数672人.24.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生,根据题意得,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300×20=6000(元),方案二租金:300×11+500×4=5300(元),方案三租金:300×2+500×8=4600(元),∴方案三租金最少,最少租金为4600元.26.解:【阅读与思考】分解因式:x2+x﹣6=(x+3)(x﹣2);故答案为:(x+3)(x﹣2);【理解与应用】(1)2x2+5x﹣7=(x﹣1)(2x+7);(2)6x2﹣7xy+2y2=(x﹣1)(2x+7);故答案为:(1)(x﹣1)(2x+7);(2)(x﹣1)(2x+7);【探究与拓展】(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=(x+2y﹣1)(3x﹣y+4);故答案为:(x+2y﹣1)(3x﹣y+4)(2)∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,∴m=27+16=43或m=﹣72﹣6=﹣78,故m的值为43或﹣78;(3)x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,可以是x=﹣1,y=0(答案不唯一).。

浙教版七年级数学下期末复习试卷 (2179)

浙教版七年级数学下期末复习试卷 (2179)

浙教版初中数学试卷2019-2020年七年级数学下册期末测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)下列多项式中,不能运用平方差公式分解因式的是( ) A . 24m -+B .22x y --C .221x y -D .22()()m a m a --+2.(2分)足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为( ) A .1条B .2条C .3条D .4条3.(2分)下列各组数中不可能是一个三角形的边长的是( ) A. 5,12,13 B .5,7,7 C .5,7,12 D . 101,102, 103 4.(2分)下列长度的三条线段,能组成三角形的是( ) A .1cm ,2 cm ,3cm B .2cm ,3 cm ,6 cm C .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm5.(2分)给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( ) A .1B .2C .3D .46.(2分)下列计算中,正确的是( ) A .1025m m m =⋅B .(a 2)3=a 5C .(2ab 2)3=6ab 6D .(-m 2)3= -m 67.(2分)把0.000295用科学计数法表示并保留两个有效数字的结果是( ) A .43.010-⨯B .53010-⨯C .42.910-⨯D .53.010-⨯8.(2分)小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图, ,那么哥哥球衣上的实际号码是( ) A .25号 B .52号 C .55号 D .22号9.(2分)下图中,正确画出△ABC 的 AC 边上的高的是 ( ) A .B .C .D .10.(2分)方程组⎩⎨⎧=-=+134723y x y x 的解是( )A . ⎩⎨⎧=-=31y x B .⎩⎨⎧-==13y x C .⎩⎨⎧-=-=13y x D .⎩⎨⎧-=-=31y x 11.(2分)下列四组线段中,能组成三角形的是( ) A .2cm ,3 cm ,4 cmB .3 cm ,4 cm ,7 cmC .4 cm ,6 cm ,2 cmD .7 cm ,10 cm ,2 cm 12.(2分)下列现象中,属于平移变换的是( ) A .前进中的汽车轮子 B .沿直线飞行的飞机 C .翻动的书D .正在走动中的钟表指针二、填空题13.(2分) 一副扑克共有54张牌,现拿掉大王、小王后,从中任取一张牌刚好是梅花的概率是 .14.(2分) 如图,在3×3方格内,填写一些数和代数式,使图中各行、线上三个数之和都相等,则x = ,y = .15.(2分) 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 . 16.(2分)用科学记数法表示0.0000907得 . 17.(2分)当x =__________时,分式x 2-9x -3的值为零.18.(2分)在如图所示方格纸中,已知△DEF 是由△ABC 经相似变换所得的像,那么△DEF 的每条边都扩大到原来的__________倍.19.(2分)一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是 .20.(2分)在横线上填上图中各图从甲到乙的变换关系:三、解答题21.(7分)某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用 17 600元购进同种衬衫,数量是第一次的 2倍,但这次每件进价比第一次多4元,服装店仍接每件58元出售,全部售完,问:该服装店这笔生意是否盈利,若盈利,请你求出盈利多少元?22.(7分)阅读:()()()()a b c d a c d b c d ac ad bc bd ++=+++=+++,反过来,就得到()()()()ac ad bc bd a c d b c d a b c d +++=+++=++. 这样多项式 ac ad bc bd +++就变形成()()a b c d ++. 请你根据以上的材料把下列多项式分解因式:(1)2a ab ac bc -+-; (2)22x y ax ay -++23.(7分)已知 Rt △ABC 中,∠B=90°.(1)根据要求作图(尺规作图,仅留作图痕迹,不写画法): ①作∠BAC 的平分线AD 交BC 于D ;②作线段AD 的垂直平分线交AB 于E ,交AC 于F ,垂足为H ; ③连接ED ;(2)在(1)的基础上写出一对全等三角形:△ ≌△ ,并说明理由.24.(7分)如图,E 是BC 的中点,∠1=∠2,AE=DE . 求证:AB=DC .25.(7分) 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.26.(7分)尺规作图(不写作法,保留作图痕迹) 已知:α∠、β∠和线段a .求作:ABC ∆使=∠CAB α∠,∠ABC=β∠,AB=a .a27.(7分)如图,已知BD 是△ABC 的中线,延长BD 至E ,使DE =BD ,请说明AB =CE 的理由.28.(7分)计算:(1)(10x 2y -5xy 2)÷5xy (2)xx -1·x 2-1x 229.(7分)某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名小学生的学习需要y 元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:(1(2) 已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).30.(7分)阅读下列题目的计算过程:23211x x x---+ =32(1)(1)(1)(1)(1)x x x x x x ---+-+- ①ABCDE=32(1)x x --- ② =32x 2x --+ ③ =1x -- ④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: . (2)错误的原因是 . (3)本题目的正确结论是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.B 2.B 3.C 4.C 5.B 6.D 7.A 8.A 9.C 10.B 11.A 12.B二、填空题13.1414.-7,315.1516.9.07×10-5 17.3-=x 18.219.2520.轴对称,旋转,平移三、解答题21.设第一次购进衬衫x 件. 根据题意,得80001760042x x+=,解得200x =,经检验200x =是原方程的解.当200x =时,服装店这笔生意盈利= 58×(200+400)-(17600+8000)=9200(元)>0. 答:该服装店这笔生意是盈利的,盈利9200 22.(1)()()a b a c -+ (2)()()x y x y a +-+ 23.略24.证明:∵ E 是BC 的中点 ,∴ BE=CE在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE∴ △ABE ≌△DCE ,∴AB=DC . 证明:∵ E 是BC 的中点 ,∴ BE=CE 在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE25.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;而所标数字一个是奇数另一个是偶数的有4种,4263P ∴==. (24所有可能出现的结果共有16种,其中能被3整除的有5种.516P ∴=. 26.作图略.27.略.28.(1)y x -2;(2)xx 1+. 29.(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7.30.(1) ②;(2)错用了解分式方程的去分母法则. (3)11x --。

浙教版七年级数学下期末复习试卷 (2173)

浙教版七年级数学下期末复习试卷 (2173)

C.
D.
9.(2 分)某校初三(2)班 40 名同学为“希望工程”捐款,共捐款 100 元.捐款情况如下表:
捐款(元)
1234
人数
6
7
表格中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚. 若设捐款 2 元的有 x 名同学,捐款 3 元的有 y 名同学,根据题意,可得方程组( )
A.
x + y = 27 2x + 3y = 66
B.
x + y = 27 2x + 3x + 2y = 66
D.
x + y = 27 3x + 2 y = 100
10.(2 分)下列说法中,正确的是( )
A.买一张电影票,座位号一定是偶数
B.投掷一枚均匀的硬币,正面一定朝上
C.三条任意长的线段可以组成一个三角形
P
30 米
l
26.(7 分)解下列方程组:
(1)
x + y = 1 2x − y =
−4
x
(2)

2
+
y 3
=
3
x − y = 1
27.(7 分)计算: (1)(10x2y-5xy2)÷5xy
(2)x-x 1·x2x-2 1
28.(7 分)根据闯关游戏规则,请你探究“闯关游戏”的奥秘: (1)用列表或画树状图的方法表示所有可能的闯关情况;(2)求出闯关成功的概率.
留的区域是( )
A. A 区域
B.B 区域
C.C 区域
D. D 区域
2.(2 分) 某校运动员分组训练,若每组 7 入,则余 3 人;若每组 8 人,则缺 5 人,设运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版初中数学试卷
2019-2020年七年级数学下册期末测试卷
学校:__________
题号 一 二 三 总分 得分
评卷人 得分
一、选择题
1.(2分)下列多项式中,不能运用平方差公式分解因式的是( ) A . 24m −+
B .22x y −−
C .221x y −
D .22()()m a m a −−+
2.(2分)足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为( ) A .1条
B .2条
C .3条
D .4条
3.(2分)下列各组数中不可能是一个三角形的边长的是( ) A. 5,12,13 B .5,7,7 C .5,7,12 D . 101,102, 103 4.(2分)下列长度的三条线段,能组成三角形的是( ) A .1cm ,2 cm ,3cm B .2cm ,3 cm ,6 cm C .4cm ,6 cm ,8cm
D .5cm ,6 cm ,12cm
5.(2分)给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( ) A .1
B .2
C .3
D .4
6.(2分)下列计算中,正确的是( ) A .1025m m m =⋅
B .(a 2)3=a 5
C .(2ab 2)3=6ab 6
D .(-m 2)3= -m 6
7.(2分)把0.000295用科学计数法表示并保留两个有效数字的结果是( ) A .43.010−⨯
B .53010−⨯
C .42.910−⨯
D .53.010−⨯
8.(2分)小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图,
,那么
哥哥球衣上的实际号码是( ) A .25号 B .52号 C .55号 D .22号
9.(2分)下图中,正确画出△ABC 的 AC 边上的高的是 ( ) A .
B .
C .
D .
10.(2分)方程组⎩
⎨⎧=−=+1347
23y x y x 的解是( )
A . ⎩⎨⎧=−=31y x
B .⎩⎨⎧−==13y x
C .⎩
⎨⎧−=−=13y x
D .⎩
⎨⎧−=−=31
y x
11.(2分)下列四组线段中,能组成三角形的是( ) A .2cm ,3 cm ,4 cm
B .3 cm ,4 cm ,7 cm
C .4 cm ,6 cm ,2 cm
D .7 cm ,10 cm ,2 cm 12.(2分)下列现象中,属于平移变换的是( ) A .前进中的汽车轮子 B .沿直线飞行的飞机 C .翻动的书
D .正在走动中的钟表指针 评卷人 得分
二、填空题
13.(2分) 一副扑克共有54张牌,现拿掉大王、小王后,从中任取一张牌刚好是梅花的概率是 .
14.(2分) 如图,在3×3方格内,填写一些数和代数式,使图中各行、线上三个数之和都相等,则x = ,y = .
15.(2分) 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 . 16.(2分)用科学记数法表示0.0000907得 . 17.(2分)当x =__________时,分式x 2-9
x -3
的值为零.
18.(2分)在如图所示方格纸中,已知△DEF 是由△ABC 经相似变换所得的像,那么△DEF 的每条边都扩大到原来的__________倍.
19.(2分)一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则
摸出一个红球和一个黑球的概率是 .
20.(2分)在横线上填上图中各图从甲到乙的变换关系:
评卷人 得分
三、解答题
21.(7分)某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用 17 600元购进同种衬衫,数量是第一次的 2倍,但这次每件进价比第一次多4元,服装店仍接每件58元出售,全部售完,问:该服装店这笔生意是否盈利,若盈利,请你求出盈利多少元?
22.(7分)阅读:()()()()a b c d a c d b c d ac ad bc bd ++=+++=+++,反过来,就得到()()()()ac ad bc bd a c d b c d a b c d +++=+++=++. 这样多项式 ac ad bc bd +++就变形成()()a b c d ++. 请你根据以上的材料把下列多项式分解因式: (1)2a ab ac bc −+−; (2)2
2
x y ax ay −++
23.(7分)已知 Rt △ABC 中,∠B=90°.
(1)根据要求作图(尺规作图,仅留作图痕迹,不写画法): ①作∠BAC 的平分线AD 交BC 于D ;
②作线段AD 的垂直平分线交AB 于E ,交AC 于F ,垂足为H ; ③连接ED ;
(2)在(1)的基础上写出一对全等三角形:△ ≌△ ,并说明理由.
24.(7分)如图,E 是BC 的中点,∠1=∠2,AE=DE . 求证:AB=DC .
25.(7分) 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.
(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;
(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.
26.(7分)尺规作图(不写作法,保留作图痕迹) 已知:α∠、β∠和线段a .
求作:ABC ∆使=∠CAB α∠,∠ABC=β∠,AB=a .
a
27.(7分)如图,已知BD 是△ABC 的中线,延长BD 至E ,使DE =BD ,请说明AB =CE 的理由.
28.(7分)计算:
(1)(10x 2
y -5xy 2
)÷5xy (2)x
x -1
·x 2-1x 2
29.(7分)某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名小学生的学习需要y 元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:
(1(2) 已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).
30.(7分)阅读下列题目的计算过程:
2
32
11x x x
−−−+ =
32(1)
(1)(1)(1)(1)
x x x x x x −−−+−+− ①
A
B
C
D
E
=32(1)x x −−− ② =32x 2x −−+ ③ =1x −− ④
(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: . (2)错误的原因是 . (3)本题目的正确结论是 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 2.B 3.C 4.C 5.B 6.D 7.A 8.A 9.C 10.B 11.A 12.B
二、填空题
13.14
14.-7,3
15.15
16.9.07×10-5 17.3−=x 18.2
19.2
5
20.轴对称,旋转,平移
三、解答题
21.设第一次购进衬衫x 件. 根据题意,得800017600
42x x
+=
,解得200x =,经检验200x =是原方程的解.
当200x =时,服装店这笔生意盈利= 58×(200+400)-(17600+8000)=9200(元)>0. 答:该服装店这笔生意是盈利的,盈利9200 22.(1)()()a b a c −+ (2)()()x y x y a +−+ 23.略
24.证明:∵ E 是BC 的中点 ,∴ BE=CE
在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE
∴ △ABE ≌△DCE ,∴AB=DC . 证明:∵ E 是BC 的中点 ,∴ BE=CE 在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE
25.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:
(12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;
而所标数字一个是奇数另一个是偶数的有4种,42
63
P ∴==. (2
4
所有可能出现的结果共有16种,其中能被3整除的有5种.
516P ∴=
. 26.作图略.
27.略.
28.(1)y x −2;(2)
x
x 1
+. 29.(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600
800
y x ;(2)7400,7.
30.(1) ②;(2)错用了解分式方程的去分母法则. (3)1
1
x −
−。

相关文档
最新文档