压缩式制冷循环原理

合集下载

蒸气压缩式制冷的理论循环

蒸气压缩式制冷的理论循环

蒸气压缩式制冷的理论循环1. 单级蒸气压缩式制冷的理论循环的形式单级蒸气压缩式制冷的理论循环是在逆卡诺循环的基础上,作了如下变化:(1)节流阀代替膨胀机;(2)干压缩代替湿压缩。

循环的特点是制冷剂在压缩机的吸入状态和冷凝器的出口状态都是饱和状态,又将理论循环称为饱和循环。

当然,理论循环还保留逆卡诺循环的其它假定。

循环原理图和循环状态点在T-S图上的表示如图1-2、图1-3所示。

单级蒸气压缩式制冷循环由压缩机、冷凝器、节流阀和蒸发器四大部件组成。

制冷剂在循环过程中各点的状态分别是:压缩机吸入口状态1为低温低压的饱和蒸气;压缩机压缩后状态2为高温高压的过热蒸气状态;冷凝器出口状态3为常温高压的饱和液体状态;节流阀图1-2 理论循环原理图图1-3理论循环在T-S图上的表示出口状态4为低温低压的湿蒸气状态(由大部分低温饱和液体和小部分低温饱和蒸气组成)。

将这四个状态点的特性列成表来表示,见表1-1。

单级蒸气压缩式制冷理论循环各状态点特性表1-1循环过程中,各设备的作用是:压缩机起到了压缩和输送制冷剂,并造成蒸发器的低压作用;冷凝器起到了将低温物体的热量和压缩功转变的热量传给环境的作用;蒸发器则起到了吸收被冷却物体的热量的作用;节流阀起到节流降压、调节流量的作用。

制冷压缩机和节流阀将制冷系统分成高低压两个部分,高压部分从压缩机出口到节流阀进口;低压部分从节流阀出口到压缩机进口。

通过制冷循环,制冷剂不断吸收被冷却物体的热量,使被冷却物体温度维持在所需较低温度的水平,达到制冷的目的。

2. 单级蒸气压缩式制冷的理论循环在压焓图上的表示制冷循环中各过程的功量与热量的变化在压焓图中均可用过程初、终态制冷剂的焓值变化来计算,制冷工程广泛应用压焓图分析计算制冷循环。

(1)压焓图压焓图的示意图见1-4。

压焓图是以绝对压力为纵坐标(为了缩小图面,用对数坐标,其上的压力数值不需换算),以比焓为横坐标来表示制冷剂的状态。

二线、三区域、五种状态、六条等参数线。

蒸气压缩式制冷循环原理概要

蒸气压缩式制冷循环原理概要

冷凝器和蒸发器的传热温差分别△Tk和△T0时
T
Tk
Tk 3
2
Tk'
3'
2'
T0'
4'
T0
T0 4
b
1' 1
a
S
c
'
T0 Tk T0
(Tk
T0 ' T0 ' T0 ') (Tk
T0 )
c
表明具有传热温差的不可逆循环的制冷 系数,总小于相同冷热源温度时的逆卡 诺循环制冷系数,而且随传热温差△T0和 △Tk的增大而降低。
T
Pk
(Tk - T3)称为过冷度;
Tk
增加制冷量△q03,其随T3
的降低而增加;
T0
压缩机耗功量不变;
3'
3
w
0 4 4' q0
q03
2' P0
1'
制冷系数增加。
cb
a
S
二、吸气过热对制冷循环的影响
T
Pk 2' 2 T2
Tk
3'
w
w
P0
T0
0 4' q0
1' 1 T1
q04
b
ad
S
T1称为吸气过热温度; (T1-T0)称为过热度;
图1.5 变温热源逆向循环
单一物质制冷剂无法实现变温逆向循环, 非共沸混合制冷剂可以实现。
三、热泵的应用
逆向循环可以用来制冷,也可以用来供 热,或者冷、热同时使用。
用来制冷的逆向循环装置,称为制冷装 置;用来供热时则称为热泵装置。
供热系数:
c

超低温冰箱工作原理

超低温冰箱工作原理

超低温冰箱工作原理
超低温冰箱是一种用于制造超低温环境的设备,常用于科学研究、物质保存或工业生产中。

其工作原理主要涉及以下几个方面:
1. 压缩制冷循环:超低温冰箱采用了压缩制冷循环的原理。

通过压缩机、冷凝器、膨胀阀和蒸发器这四个主要部件,将工作介质(一般是氨气或氟利昂)在不同压力下进行相态转换,从而完成制冷过程。

2. 压缩机:压缩机是制冷循环中的核心部件,它能将气体压缩成高压气体。

当气体被压缩时,其温度升高。

3. 冷凝器:冷凝器用来将高温高压气体散热并冷却。

通过将高温气体与外部空气接触,散发热量,使气体冷却成高压液体。

4. 膨胀阀:膨胀阀用于调节制冷剂的流量和压力。

经过膨胀阀的高压液体流入到低压的蒸发器中。

5. 蒸发器:蒸发器是超低温冰箱中温度最低的部分。

膨胀阀进入的高压液体在蒸发器中蒸发,吸收外界的热量而冷却。

通过不断循环上述制冷循环,超低温冰箱不断将热量从内部空间中排出,从而使内部温度降低到超低温范围。

值得注意的是,超低温冰箱的制冷量大小取决于压缩机的功率和制冷介质的性质。

第五章 蒸汽压缩式制冷循环

第五章 蒸汽压缩式制冷循环
链烯烃及其卤代烃:R1( )( ) ( )。后面数字书写规则同氟利昂。
三、常用制冷剂的特性
1、水(R718)
2ห้องสมุดไป่ตู้氨(R717)
氨属于无机化合物制冷剂,具有良好的 热力学性能,单位质量制冷量大。沸点:33.4℃.R717有较强的溶水性,对钢铁不腐 蚀,但含水时会腐蚀铜及其合金(磷青铜除 外),属于微溶于润滑油的制冷剂。缺点是 毒性大,有强烈的刺激性气味,会燃烧、会 爆炸。
(1)R12 分子式:CCl2F2 沸点:-29.8℃,凝固点-
155℃ (2)R22 分子式:CHClF2 沸点:-40.8℃,凝固点-
160℃ (3)R134a分子式: C2H2F4 沸点:-29.8℃,
凝固点-155℃
四、关于CFCS的替代 1、使用替代制冷剂的原因
O3+Cl→ClO+O2 ClO+O→Cl+O2 2、替代制冷剂时必须考虑的因素 (1)制冷剂在大气中存在的寿命; (2)臭氧损耗潜能ODP; (3)在逆使用的用途中,变暖影响总单量 TEWI;
具有液体过冷的制冷循环
二、吸气过热的影响
1、定义:制冷剂蒸气的温度高于同一压力下 的饱和蒸气温度称为过热。两者之间的温 差称为过热度。
2、p-h图
3、“无效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器外。在实际制冷装置中, 为了减少有害过热,一般在吸气管道上包 扎一层隔热材料。
4、“有效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器内被冷却介质。
主要用于大型制冷装置中。
3、氟利昂
氟利昂制冷剂是应用最广泛的制冷剂。 它无色、无味、不燃烧、毒性小。含氯原子 的氟利昂与明火接触产生剧毒的光气 (COCl2)渗透性强,单位容积制冷量小。

冷泵压缩机工作原理

冷泵压缩机工作原理

冷泵压缩机工作原理
冷泵压缩机是一种用于制冷和空调系统的压缩机。

它的工作原理如下:
1. 蒸发器:制冷剂从蒸发器进入压缩机,此时状态为低温低压的蒸发气体。

制冷剂受热从液态转化为气态,吸收热量降低蒸发器的温度。

2. 压缩机:蒸发器中的制冷剂通过压缩机被压缩,提高了制冷剂的压力和温度。

压缩机是冷泵压缩机的核心部件,通常采用双轴流或螺杆式结构。

3. 冷凝器:压缩机将高压高温的气体制冷剂推入冷凝器。

在冷凝器中,制冷剂通过散热器散发热量,从而冷却并转化为高压液态。

4. 膨胀阀:高压液态制冷剂经过膨胀阀,压力迅速降低,从而形成低温低压的蒸发气体,准备重新进入蒸发器再次循环。

整个过程就是制冷循环的一个完整周期。

冷泵压缩机通过不断循环制冷剂,实现从低温低压到高温高压再到低温低压的循环,从而达到制冷和空调的效果。

蒸汽压缩式制冷工作原理

蒸汽压缩式制冷工作原理

蒸汽压缩式制冷工作原理蒸汽压缩式制冷是一种常见的制冷方式,广泛应用于家用空调、商用空调、冷库等领域。

其工作原理是利用制冷剂在压缩机内的压缩和膨胀过程中吸收和释放热量,从而实现制冷的目的。

蒸汽压缩式制冷系统由四个主要部分组成:压缩机、冷凝器、膨胀阀和蒸发器。

制冷剂在这四个部分之间循环流动,完成制冷过程。

制冷剂从蒸发器中吸收热量,变成低温低压的蒸汽。

蒸汽经过压缩机的压缩,变成高温高压的蒸汽。

在这个过程中,制冷剂吸收了外界的热量,使得压缩机内的温度升高。

接下来,高温高压的蒸汽进入冷凝器,通过与外界的热交换,将热量释放出去,变成高压液体。

在这个过程中,制冷剂释放了之前吸收的热量,使得冷凝器内的温度降低。

然后,高压液体通过膨胀阀进入蒸发器,变成低温低压的液体。

在蒸发器中,制冷剂吸收了外界的热量,变成低温低压的蒸汽。

在这个过程中,制冷剂再次吸收了外界的热量,使得蒸发器内的温度进一步降低。

低温低压的蒸汽再次进入压缩机,循环往复,完成制冷过程。

蒸汽压缩式制冷的工作原理可以用热力学的角度来解释。

在压缩机内,制冷剂的压力和温度都升高,其内能增加。

在冷凝器中,制冷剂的压力不变,但温度降低,其内能减少。

在膨胀阀中,制冷剂的压力和温度都降低,其内能减少。

在蒸发器中,制冷剂的压力不变,但温度升高,其内能增加。

这样,制冷剂在整个循环过程中,从低内能状态到高内能状态,再从高内能状态到低内能状态,完成了内能的转化,从而实现了制冷的目的。

蒸汽压缩式制冷的优点是制冷效率高、制冷量大、制冷温度可调节、使用方便等。

但同时也存在一些缺点,如噪音大、能耗高、制冷剂对环境的污染等。

因此,在使用蒸汽压缩式制冷系统时,需要注意节能减排,选择环保的制冷剂,加强维护保养等方面。

蒸汽压缩式制冷是一种常见的制冷方式,其工作原理是利用制冷剂在压缩和膨胀过程中吸收和释放热量,从而实现制冷的目的。

了解其工作原理,有助于我们更好地使用和维护制冷设备,提高制冷效率,减少能源消耗,保护环境。

单级压缩式制冷理论循环

单级压缩式制冷理论循环
压缩制冷剂蒸气,提高压力和温度
得到低温低压制冷剂
制冷剂液体吸热、蒸发、制冷
21
1.1 单级蒸气压缩式制冷循环 的基本工作原理
制冷剂的变化过程(flash)
22
制冷剂的变化过程
制冷剂在制冷压缩机中的变化
制冷剂蒸气由蒸发器的末端进入 压缩机吸气口时,压力越高温度 越高,压力越低温度越低。
制冷剂蒸气在压缩机中被压缩成
5
T0
1
TL
44
3) 制冷剂液体在节流前无过冷,为饱 和液体。
4) 制冷剂在管路中流动时无任何状态 变化,即无流阻压降,无传热。
5) 节流为绝热过程,节流前后焓值相 等。
45
qK
P
4
2
w0
5
1
q0
单级蒸汽压缩制冷循环
ht 液相区
C 气相区 s
两相区
v
x=0 x
x
p
x=1 t
h
46
3、理论循环的热力状态图 p-h 图
吸热蒸发,变成低温低压制冷剂气
26
作业:
简单描述单级蒸汽压缩式制冷循环。 蒸气压缩制冷循环系统主要由哪些部件
组成,各有何作用?
27
二、理论的单级蒸气压缩式制冷循环及 热力计算
28
单级蒸汽压缩式制冷理论循环组成:
制冷压缩机 冷凝器 节流器 蒸发器
单级蒸气压缩式制冷循环,是指制冷剂在一 次循环中只经过一次压缩,最低蒸发温度可 达-40~-30℃。单级蒸气压缩式制冷广泛用 于制冷、冷藏、工业生产过程的冷却,以及 空气调节等各种低温要求不太高的制冷工程。
饱和蒸气在等温条件下,继续放出热 量而冷凝产生了饱和液体。
制冷剂在节流元件中的变化

压缩式制冷机工作原理

压缩式制冷机工作原理

压缩式制冷机工作原理
压缩式制冷机利用压缩、冷凝、膨胀和蒸发等物理过程来实现制冷。

其基本工作原理如下:
1. 压缩:制冷剂进入压缩机,通过机械压缩使其压力和温度升高。

2. 冷凝:高压高温的制冷剂进入冷凝器,外界冷却介质(如空气或水)使其温度下降,导致制冷剂冷却并转化为高压液体。

3. 膨胀:高压液体制冷剂通过膨胀阀或节流装置进入蒸发器,压力急剧降低,从而使制冷剂蒸发和吸收周围热量,从而降低温度。

4. 蒸发:蒸发器中的制冷剂蒸发为低温蒸汽,吸收周围的热量,使蒸发器内部温度降低。

通过以上四个步骤不断循环,制冷机可以持续地将热量从低温区域转移到高温区域,实现制冷效果。

制冷机的压缩机和冷凝器通常位于室外,而蒸发器常常位于室内,这使得室内温度降低。

压缩机制冷工作原理

压缩机制冷工作原理

压缩机制冷工作原理压缩机是制冷系统中的重要组件,用于提供制冷循环中所需的压力差。

其工作原理可以简要概括为:通过压缩低温低压制冷剂,使其温度和压力升高,然后通过传热工质(通常是空气或水)进行热交换,将热量排出系统,从而使制冷剂的温度降低,达到制冷的目的。

以下将详细介绍制冷机的工作原理。

1. 制冷循环基本原理制冷循环是制冷机的基本工作原理,常用的制冷循环包括蒸汽压缩循环和吸收循环。

其中,蒸汽压缩循环是应用最广泛的制冷循环,大多数家用冰箱、空调以及商业冷冻设备都采用这种循环。

蒸汽压缩循环由四个基本组件组成:压缩机、冷凝器、膨胀阀和蒸发器。

这些组件通过输送制冷剂,使其发生相态变化、吸收和释放热量,从而实现制冷。

制冷循环主要通过以下四个步骤完成: 1. 压缩:压缩机将低温低压的制冷剂蒸汽抽吸入腔体,然后通过机械压缩,使其温度和压力升高。

因为理想气体的温度与压力成正比,所以通过增加制冷剂的压力可以提高其温度。

2. 冷凝:高温高压的制冷剂蒸汽从压缩机中排出后,会进入冷凝器。

冷凝器通常采用管道或片状换热器,通过与外界的传热工质进行热交换,使制冷剂的温度降低,从而使其转化为高压液体。

3. 膨胀:高压液体通过膨胀阀进入低压区域,由于阀门的突然变窄,压力降低,制冷剂液体蒸发成为低温低压的蒸汽。

此时,制冷剂从液态到气态的相变过程吸收了大量的热量。

4. 蒸发:蒸发器是制冷系统中的换热器之一,制冷剂蒸汽在蒸发器中与冷负荷(空气或水等)进行热交换。

在这些交换过程中,制冷剂的温度会进一步降低,然后吸热并达到所需的制冷效果。

蒸发后的低温低压制冷剂再次进入压缩机,循环往复。

2. 压缩机的工作原理在制冷系统中,压缩机起到提高制冷剂温度和压力的关键作用。

根据工作原理的不同,常见的压缩机可分为往复式压缩机和旋转式压缩机。

2.1 往复式压缩机往复式压缩机由活塞、气缸和阀门组成。

其工作原理如下: 1. 吸气过程:活塞向下运动,增大气缸内的体积,形成一个负压区域,制冷剂低温低压蒸汽由进气阀吸入气缸内。

蒸汽压缩式制冷的基本原理

蒸汽压缩式制冷的基本原理
制 冷 技 术
第2讲 讲 蒸汽压缩式制冷的基本原理
一,热力学基本定律
热力学第一定律:能量守恒和转换定律 热力学第一定律: 热力学第二定律:能量贬值原理 热力学第二定律:
不可能把热从低温物体传向高温物体而不引起其它变化. 不可能把热从低温物体传向高温物体而不引起其它变化.
人工制冷: 低温物体
热量 外界补偿
T Tk Tk ' T0' T0
Tk
3 3'
2 2'
T0
4' 4
1' 1
0
b
a
s
图1-2 有传热温差的制冷循环
有传热温差的制冷循环的制冷系数小于 逆卡诺循环的制冷系数. 逆卡诺循环的制冷系数. 热力完善度: 热力完善度 : 工作于相同温度间的实
际制冷循环பைடு நூலகம்制冷系数与逆卡诺循环制冷系数的 比值. 比值. η = ε / εc 程度. 程度. ≤1
四,有传热温差的制冷循环
Tk' — 冷却介质的温度 T0' — 被冷却介质的温度 逆卡诺循环: 逆卡诺循环:1'-2'-3'-4'-1' Tk — 冷凝器中制冷剂的温度 T0 — 蒸发器中制冷剂的温度 有传热温差的循环: 有传热温差的循环:1-2-3-4-1 耗功量增加: 耗功量增加:阴影面积 制冷量减少: 制冷量减少:1-1'-4'-4-1
高温物体
二,理想循环
1. 逆卡诺循环 1-2 等熵压缩 T0→Tk 耗功w1 2-3 等温压缩 吸热qk=Tk(sa-sb) 3-4 等熵膨胀 Tk→T0 做功w2 4-1 等温膨胀 放热q0=T0(sa-sb)
两个恒温热源 两个等温过程 两个等熵过程

压缩机冷凝器的制冷原理

压缩机冷凝器的制冷原理

压缩机冷凝器的制冷原理压缩机冷凝器是压缩式制冷系统中的一个重要组件,它扮演着将制冷剂从气态转变为液态的关键角色。

其制冷原理可以通过以下几个步骤来解释。

制冷剂从蒸发器进入压缩机。

在蒸发器中,制冷剂吸收热量,从而产生蒸汽。

这些蒸汽随后通过压缩机的进气口进入压缩腔。

压缩机内部有一个活塞,当蒸汽进入压缩腔时,活塞开始向下运动。

接下来,活塞向下运动时,会增加蒸汽的密度和压力。

随着活塞的运动,蒸汽被压缩成高压气体,并通过压缩机的出气口排出。

这个过程使得蒸汽的温度和压力都升高。

然后,高压气体进入冷凝器。

冷凝器是一个热交换器,通常由一组金属管组成,外部则有一个风扇用于散热。

高压气体在冷凝器中流动,同时与冷凝器的金属管接触。

当高压气体与金属管接触时,它会释放热量,并逐渐冷却下来。

高压气体在冷却过程中逐渐凝结成液体。

这个过程中,制冷剂释放出的热量会被冷凝器散发出去,从而使制冷剂的温度降低。

液体制冷剂随后通过冷凝器的出口流出,并进入膨胀阀。

总结来说,压缩机冷凝器的制冷原理可以概括为:制冷剂经过蒸发器蒸发吸收热量产生蒸汽,然后通过压缩机被压缩成高压气体,进入冷凝器。

在冷凝器中,高压气体通过与金属管接触释放热量,并逐渐冷却凝结成液体。

通过这样的循环过程,制冷剂能够持续地从气态转变为液态,从而实现制冷效果。

压缩机冷凝器在压缩式制冷系统中起到至关重要的作用。

通过将制冷剂的温度降低,它能够有效地实现制冷效果。

同时,压缩机冷凝器的设计和制造也需要考虑到散热效果,以确保制冷剂能够充分地释放热量并保持稳定的工作状态。

因此,在实际应用中,需要根据具体的制冷需求和环境条件,选择合适的压缩机冷凝器,并进行适当的维护和保养,以保证其正常运行和高效工作。

压缩机冷凝器的制冷原理是将制冷剂从气态转变为液态的过程。

它通过蒸发器和压缩机的作用,将制冷剂从蒸汽状态压缩成高压气体,并通过冷凝器的散热作用使其冷却凝结成液体。

这个过程不仅能够实现制冷效果,还能够保证制冷剂的正常循环和稳定工作。

《工程热力学》第十一章制冷循环

《工程热力学》第十一章制冷循环
剂无法被压缩液化。
粘度
粘度小的制冷剂流动性好,有 利于传热。
密度
密度决定了制冷剂在相同体积 下的质量,密度越大,质量越
大,制冷效果越好。
制冷剂的热力学特性
压缩系数
压缩系数决定了制冷剂在压缩过 程中的体积变化,压缩系数越小,
体积变化越小,有利于提高制冷 效率。
热导率
热导率决定了制冷剂的传热效率, 热导率越大,传热效率越高。
制冷剂在蒸发器中蒸发成气体后被压缩机吸入,再次压缩,完成一个循环。
压缩式制冷循环的主要设备
压缩机
用于压缩制冷剂,提高 其压力和温度。
冷凝器
用于将高温高压的制冷 剂冷却成液体,释放出
潜热。
膨胀阀
用于将高压的液态制冷 剂减压至适合蒸发吸热
的低压状态。
蒸发器
用于使液态制冷化
未来的制冷系统将更加注重多功能化,除了温度调节外, 还将具备湿度控制、空气净化等功能,提高室内环境的舒 适度和健康性。
高效化
随着能源价格的上涨和节能减排的需求,制冷循环将更加 注重能效提升,采用先进的节能技术和优化算法,降低运 行成本和提高能源利用效率。
THANKS
感谢观看
吸收式制冷循环利用制冷剂在溶液中的溶解特性,通过制冷剂在溶液中 的蒸发和冷凝,实现制冷效果。
吸收式制冷循环中,常用的制冷剂有氨和水、溴化锂和水的混合溶液等, 这些制冷剂在吸收剂的作用下被吸收,再通过加热解吸,释放出冷量。
吸收式制冷循环的工作原理基于热力学第二定律,通过消耗热能实现制 冷效果,相比压缩式制冷循环,具有更高的能效比。
强化换热器设计
优化换热器的结构和设计,提高换热 效率。
引入智能控制技术
利用先进的控制算法和传感器技术, 实现制冷系统的智能控制,提高运行 效率。

空调压缩机制冷原理

空调压缩机制冷原理

空调压缩机制冷原理空调压缩机制冷原理空调压缩机制冷原理,空调能够制冷制热,主要是依靠空调制冷压缩机的工作,可以说,压缩机就是空调的心脏,决定空调制冷效果的好坏,这样我们才能享受到更好的使用效果,一起来看看空调压缩机制冷原理。

空调压缩机制冷原理1一、制冷循环系统由压缩机、冷凝器、蒸发器、膨胀阀四个基本部件组成。

一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。

压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。

我们用一张图来表现它们制冷剂状态的变化:我们可以大概归纳总结为:两个控制,两个转换。

1、压缩机:吸入蒸发器内蒸气,维持其低温低压;压缩出高压、高温蒸气。

为什么要压缩?因为制冷剂要回收再利用。

如不压缩,直接排入冷凝器。

常温已高于制冷剂沸点温度,无法冷却、冷凝成液体。

[压力越高,沸点越高;压力越低,沸点越低]。

只有通过提高制冷剂的压力,使制冷剂的凝结点(沸点)高于室外温度,才能让制冷剂向室外散热,温度降低,制冷剂凝结成液体。

2、冷凝器:将压缩机排出的'高温高压蒸气冷却成液体;释放出的热量被水或空气带走。

可分为水冷式、空气冷却式、水和空气混合冷却式三种类型。

空调冷凝器大多采用翅片盘管式结构,为提高换热效率常将铝合金翅片压成各种形状,以增加换热面积。

3、节流装置:当制冷剂流体通过一小孔时,一部分静压力转变为动压力,流速急剧增大,成为湍流流动,流体发生扰动,摩擦阻力增加,静压下降。

节流阀主要作用:节流降压;调节流量,使流体达到降压调节流量的目的。

3.1、毛细管特点:无运动件、结构简单;无储液器,充入的制冷剂量小。

热力膨胀阀结构3.2、热力膨胀阀特点:又称感温式膨胀阀,接在蒸发器的进口上,器感温包紧贴蒸发器的出口管上。

制冷工作原理

制冷工作原理

制冷工作原理
制冷工作原理是通过吸热和放热的循环过程来降低物体的温度。

其基本原理是利用物质在不同温度下的蒸发和凝结过程中的热量变化。

主要通过压缩制冷循环来实现。

制冷循环是由四个主要组件组成:压缩机、冷凝器、膨胀阀和蒸发器。

首先,压缩机将低温低压的制冷剂气体吸入,然后通过压缩使其升高温度和压力。

高温高压的气体进入冷凝器,与外部环境接触,通过散热的方式将热量释放出去,使气体冷却并转化为高压液体。

高压液体通过膨胀阀进入蒸发器,在蒸发器内,制冷剂液体受到减压,迅速蒸发并吸收周围物体的热量,使蒸发器内部温度降低,同时气体又被压缩机吸入,循环再次开始。

通过不断重复蒸发和凝结的过程,制冷剂持续吸收和释放热量,从而将热量从蒸发器吸收,再通过冷凝器释放出去,使得被制冷物体的温度下降。

制冷工作原理的关键在于制冷剂的特性,因为不同的制冷剂具有不同的压力-温度特性。

常见的制冷剂有氨、氟利昂等。

制冷工作原理的应用广泛,包括家用冰箱、空调系统、工业制冷设备等。

通过制冷工作原理,我们能够在不同场景中实现温度的控制和调节,提供舒适的生活和工作环境。

制冷原理—蒸汽压缩式制冷的理论循环和实际循环

制冷原理—蒸汽压缩式制冷的理论循环和实际循环
制冷剂压焓图
一、制冷剂压焓图(P-V图)
制冷系统中循环流动的工作介质叫制冷剂(又称制
冷工质),它在系统的各个部件间循环流动以实现能
量的转换和传递,达到制冷机向高温热源放热;从
低温热源吸热,实现制冷的目的。
一、制冷剂压焓图(P-V图)
以特定制冷剂的焓值为横坐标,以压
力为纵坐标绘制成的线图成为该制冷剂的
具有蒸汽过热的循环称为蒸汽过热循环。
有效过热:过热吸收热量来自被冷却介质,
产生有用的制冷效果。
有害过热:过热吸收热量来自被冷却介质以外,无制冷效果。
1、有害过热分析:
(1)单位制冷量不变,单位压缩功增加
(2)单位冷凝负荷增大
(3)进入压缩机的制冷剂比容增大
(4)压缩机的排气温度升高
(1)蒸发器面积大于设计所需面积(有效过热)
压焓图。为了缩小图的尺寸,并使低压区
内的线条交点清楚,所以纵坐标使用压力
的对数值LgP绘制,因此压--焓图又称
LgP-E图。
一、制冷剂压焓图(P-V图)
一点(临界点)
两线(饱和液体线;干饱和蒸气线)
三区(过冷区;湿蒸气区;过热气区)
五状态(未饱和液体;饱和液体;湿饱
和蒸气;干饱和蒸气; 过热蒸气)
在循环制冷计算中,将制冷剂饱和液
体的温度降低就变为过冷液体。
气液两相区:介于饱和液体线与饱和
气体线之间的区域为。
过热蒸气区:干饱和蒸气线右边区域。
饱和液体线
干饱和蒸气线
饱和液体线
(压力)
未饱和液体
过热蒸气

六参数:
➢等压线p — 水平线
➢等焓线 h— 垂直线
➢等干度线 x
2、蒸气压缩制冷循环的P-h图,试指出进行各热力过程相应设备的名

蒸汽压缩式制冷循环原理图及计算(带例题)

蒸汽压缩式制冷循环原理图及计算(带例题)

蒸汽压缩式制冷循环原理图及计算(带例题)1、单级蒸汽压缩式制冷系统的组成压缩机:制冷系统的“心脏”,压缩和输送制冷剂蒸气。

冷凝器:输出热量,冷却制冷剂。

节流阀:节流降压,并调节进入蒸发器的制冷剂流量。

蒸发器:吸收热量(输出冷量)从而制冷。

2、单级蒸汽压缩式制冷理论循环热力计算图上各线段代表循环的不同过程1-2:压缩机中的等熵(绝热)压缩过程。

2-3:冷凝器内的等压冷却、冷凝、过冷过程。

3-4:节流阀内的等焓节流过程。

4-1:蒸发器内的吸热等压气化过程。

1.制冷压缩机2.冷凝器3.蒸发器4.节流阀状态点的确定1点:Po等压线与x=1蒸气干饱和线交点2点:Pk等压线与s1等熵线交点3点:Pk等压线与x=0液态饱和线交点4点:Po等压线与h3等焓线交点3、单级蒸汽压缩式制冷理论循环热力计算(1)单位质量制冷量q0 kJ/kg q0=h1- h4(2)单位容积制冷量qv kJ/m3 qv= q0/v1=(h1-h4)/v1(3)单位质量耗功率w kJ/kg w=h2-h1(4)单位冷器热负荷qk kJ/kg qk= h2-h3(5)理论制冷系数ε ε=q0/w=(h1-h4)/ (h2-h1)(6)制冷剂质量流量qm kg/s qm =Q0/q0(7)压缩机的理论耗功率N= qm w= qm(h2-h1) kW(8)冷凝器总负荷Qk kW Qk = qm qk= qm(h2-h3)例题:某单级蒸汽压缩式制冷循环系统,设定总制冷量Q0=100Kw,在空调工况下工作。

采用R22作制冷剂时,试做理论循环的热力计算。

解:在空调工况下工作,蒸发温度t0=5℃,冷凝温度tk=40 ℃R22的压焓图得:计算结果4、工况变化对运行特性的影响压缩机的工况:决定循环的蒸发、冷凝温度、过冷度等。

工况参数对制冷工作的影响:制冷压缩机的制冷量,制冷压缩机的轴功率。

其他条件不变,供液过冷度、吸气过热度的影响有害过热:发生在蒸发器后的吸气管中的过热过程,装置的q0未增加,Q0和 下降。

制冷机原理是什么

制冷机原理是什么

制冷机原理是什么
制冷机的原理是基于热力学和热传递的基础上进行工作的。

它通过从低温物体吸收热量,然后将热量传递给高温物体,使得低温物体的温度进一步降低,从而起到制冷的效果。

制冷机的工作原理主要有两种:蒸发冷却和压缩冷却。

1.蒸发冷却:制冷机中的制冷剂在低压下通过蒸发器,吸收低
温物体的热量,使得制冷剂从液态变成气态。

当制冷剂从蒸发器进入压缩机后,被压缩成高压气体,同时也提高了温度。

接下来,制冷剂经过冷凝器,通过释放热量到高温物体,使得制冷剂重新变成液态,完成一个制冷循环。

2.压缩冷却:制冷机中的制冷剂在低温低压状态下通过蒸发器,吸收低温物体的热量,从而转变成气态。

制冷剂随后被压缩机压缩成高压气体,通过排热器将热量传递给高温物体,并转变成高温高压的气态制冷剂。

最后,制冷剂通过节流阀或展开阀降低压力和温度,重新变为低温低压的气态制冷剂,完成一个制冷循环。

制冷机的工作原理可以通过不断的制冷循环来实现持续的制冷效果。

同时,制冷机还可以通过调节系统中的参数(如温度、压力等)来实现不同的制冷效果以满足不同的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩式制冷循环原理
液体气化的吸热作用可用来制冷,如氨液气化、氟利昂气化都有良好的吸热制冷能力。

但是,如果液体气化后排放到大气中,则既浪费又污染环境,且制冷效应只能维持到液体全部气化为止。

为了解决上述问题,必需设法将气化后的蒸汽恢复到液体状态重复利用。

这就需要通过压缩机和冷凝器等来完成。

以下我们以氨为例来说明蒸气压缩式制冷循环原理。

理论上,最简单的压缩式制冷循环系统由:蒸发器、压缩机、冷凝器和膨胀阀四大部件组成。

从蒸发器出来的氨的低温低压蒸气(状态1)被吸入压缩机内,压缩成高压高温的过热蒸气(状态2),然后进入冷凝器。

由于高压高温过热氨气的温度高于其环境介质的温度,且其压力使氨气能在常温下冷凝成液体状态,因而排至冷凝器时,经冷却、冷凝成高压常温的氨液(状态3)。

高压常温的氨液通过膨胀崐时,因节流而降压,在压力降低的同时,氨液因沸腾蒸发吸热使其本身的温度也相应下降,从而变成了低压低温的氨液(状态4)。

把这种低压低温的氨液引入蒸发器吸热蒸发,即可使其周围空气及物料的温度下降而达到制冷的目的。

从蒸发器出来的低压低温氨气重新进入压缩机,从而完成一个制冷循环。

然后重复上述过程。

相关文档
最新文档