商业大数据全生命周期

商业大数据全生命周期
商业大数据全生命周期

生命周期是指从出生到死亡的整个过程。大数据是一种特殊的信息资源,也有其自身的生命周期。无论是商业大数据还是政府大数据,在大数据交易平台上作为产品进行交易之前,都要经过数据生成、采集、预处理和分析的过程,这个过程就是不断积累大数据价值的过程,为建立大数据权主体和利益分配奠定了基础。

大数据交易完成后,大数据买家将利用大数据产品,挖掘其潜在价值。买家的反馈将对大数据交易市场产生重要影响。买方使用大数据后,应按与大数据交易平台或卖方签订的合同处理大数据。大数据的生成、收集、预处理、分析、交易、反馈和处置是大数据产品的全生命周期过程。

在商业大数据的生成过程中,大数据来源方主要是个人和企业,个人会产生网页浏览记录、消费行为、出行轨迹、文字评论、上传的

多媒体资料等大数据,企业则产生业务、财务等方面的大数据。

在商业大数据的采集、预处理、分析过程中,企业占据主导地位,大数据交易平台次之,个人仅占很少比例,这是因为企业、大数据交易平台本身具有人才众多、技术手段先进、资金雄厚等天然优势,而个人在人力、时间、软件、硬件、技术手段等多方面都处于明显劣势,所以参与度很低。

在购买商业大数据时,企业是主要参与方,政府、事业单位、大数据交易平台、个人较少,这种现象的产生与各个买方对大数据的利用目的是分不开的:企业有非常明确的盈利目的,渴望通过利用大数据实现自身业务的进一步发展以实现盈利;而政府、大部分事业单位(自收自支事业单位除外)不以盈利为目的,没有强烈的购买动机;大数据交易平台只是起到一个中介作用,渴望引入更多品种、数量的大数据产品,吸引更多大数据买卖双方在自己的平台进行交易以抽取提成实现盈利;个人用户中有部分买家是处于科研目的购买大数据,

其他买方或是出于兴趣,或是出于盈利目的,都不是商业大数据的主流买方。

在对商业大数据进行使用反馈时,少数大数据交易平台有一定的反馈渠道,买方可以根据自己对大数据产品的使用效果进行反馈。在商业大数据的处置过程中,买方转变成最终处置方。

以上就是全部内容,希望对大家有所帮助,感谢您的阅读!

产品全生命周期管理

产品全生命周期管理 PLM构建高效研发体系 当前,全球经济正处于迅速变革的大潮之中,德国力推工业4.0,美国聚焦物联网应用,我国正在全面推进“中国制造2025”,实现制造业转型升级。国家大力扶持制造企业推进智能制造,去年和今年连续支持智能制造专项和智能制造示范企业。智能制造包括智能产品、智能装备、智能工厂、智能研发、智能管理、智能供应链和智能服务等领域,需要实现企业信息系统和自动化系统的无缝集成,进而支撑企业智能决策。 《中国制造2025》核心就是:创新引领、提质增效、绿色发展、两化融合为主线、智能制造为突破口。智能制造是实现整个制造业价值链的智能化和创新,是信息化与工业化深度融合的进一步提升。智能制造绝不止生产那点事,一定是从设计开始,否则是无源之水,无根之树,合作,才能共赢。 产品创新研发是企业永续经营的基石 企业的生命是以其产品为载体的,产品的兴衰也意味着企业的兴亡,企业唯有不断开发研制适应消费者需求变化的新产品,才能永保企业生命活力。而建立一个先进的产品研发管理体系是保证企业保持强大产品研发能力的前提。 企业的创新研发能力,除了要有专业的研发人员,更需要有一个好的管理体系来支撑。现代产品研发是一个复杂的数据关联协同过程,有大量数据之间的约束关联,还有产品研发流程中各个环节各个部门的不同的人之间需要很强的协调,这些关联协调的复杂程度单靠人工是难以管理好的。在现代信息化时代,如果没有有效的管理体系支撑,个人的创新能力再大也难以发挥。 产品生命周期在缩短,企业必须缩短研发周期,加快新产品上市的速度,抢占新产品市场,才能获取超额利润。 市场竞争令产品复杂性增加。消费者的需求在不断增加,企业需要不断提高产品的功能和质量,提升客户的满意度,才能取得竞争优势。 市场竞争迫使企业需要细分客户群,研发针对性的差异化产品,取得差异化的竞争优势,因此企业需要适应大规模订制的平台化产品研发解决方案。 对产品成本及品质的控制,必须从设计源头开始,才能起到根本上的作用,必须在产品研发过程中设法控制质量,才能既可以提高产品质量,又减少工作反复,缩短产品交货周期。 金蝶K/3 PLM的价值 战略层:提升企业产品创新能力和供应链协同设计/系统制造能力 快速研发出符合客户需要的产品 强化研发环节流程和质量控制,提高产品研发质量 降低产品研发成本 提供跨地域、跨企业、跨部门的项目研发协同能力,提高供应链的产品竞争力 管理层:优化、控制产品研发过程 固化优化产品研发流程,增强团队协作,掌控项目进度 建立企业级产品数据库,保证数据安全,统一企业产品数据版本 集成ERP、MES等相关信息系统,消除信息孤岛

浅析全生命周期成本管理(1)16

浅析全生命周期造价成本管理Some Britain and the United States actual workers and engineering cost of scholars put forward a new theory of project cost In the late 1970s and early 80s, the whole life cy cost theory. Then it evolved into a very standard and perfect theory system under promoting of the royal surveyors groups and vigorously. Through Europe and the United States and other developed countries scholars and practitioners constantly improve and promote, it has been widely used in developed countries at present. Under the background of economic globalization and socialist market economic system gradually perfect, from the whole process of engineering cost management to whole lifecycle engineering cost management is the inevitable trend.1 WHC 理论概述In the late 1970s and early 80s, British and American scholars put forward the whole life cost to achieve the goal of minimizing the total life cycle cost management (WLC, whole life cost). Total life cycle theory of engineering cost is the total life cycle cost analysis which is applied to the engineering cost theory, that has become the project investment decision-making,and is an effective analysis tool, also a kind of alternative mathematical method used to select project.20世纪70年代末和80年代初英美的一些实际工作者和造价工程界的学者提出了一种全新的工程造价理论—全生命周期造价工程理论,此后在英国皇家测量师的组织和大力推动下,演变成一个非常规范和完善的理论体系。经过欧美等发达国家学者以及实际工作者的不断完善、推广,目前在发达国家已经被普遍采用。随着我国经济全球化的加剧和社会主义市场经济体制的逐渐完善,工程造价管理的理论及方法由全过程工程造价管理转变为全生命周期工程造价 管理是必然趋势。在经济全球化和社会主义市场经济体制逐渐完善的背景下,从全过程工程造价管理向全生命周期工程造价管理转变是必然趋势。 1 WLC 理论概述 20世纪70年代末和80年代初,英美一些学者提出了以实现整个生命周期总造价最小化为目标的全生命周期造价管理理论(WLC ,whole life cost )。全生命周期工程造价理论是将全生命周期成本分析应用于工程造价理论,目前已、管路敷设技术防腐跨接地线弯曲半径标高等,设技术中包含线槽、管架等多文电气课件中管壁薄、接口不线敷设技术。线缆敷设原则:在回路交叉时,应采用金属隔板要进行检查和检测处理。、电气课件中调试杂设备与装置高中资料试卷调试中资料试卷试验方案以及系统过程中高中资料试卷电气设备过关运行高中资料试卷技术指导资料试卷技术问题,作为调试相关技术资料,并且了解现场情况与有关高中资料试卷电气系据规范与规程规定,制定设备。调试高中资料试卷技术行自动处理,尤其要避免错误动作,并且拒绝动作,来避免然停机。因此,电力高中资料试要求电力保护装置做到准确灵中资料试卷调试技术是指发采用高中资料试卷主要保护装

浅议工程项目全生命周期管理

浅议工程项目全生命周期管理 蔡琦斌 工程项目建设一般都是企业的重大投资,一方面它占用企业很多的资源,另一方面也能为企业带来较大的经济效益和社会效益。工程项目投资成功与否将对企业产生长期影响,甚至与企业生死攸关。如何有效管理工程项目,确保其设计合理、运行安全有效,同时降低运行和维护成本,将是现代企业管理的一个重要课题。 对工程项目实施有效的管理,可以避免规划、设计失误或设备选型错误造成影响工程使用效果,资金浪费的现象,帮助企业提高资产运营效率,降低运营成本,节约资源。 工程项目生命周期 工程项目的生命周期,指项目从可行性研究、设计、设备选型、采购、安装、运营、维护到最后报废的全过程。工程项目的生命周期可以划分为5个阶段。 可行性研究阶段。以自然资源和市场预测为基础,选择建设项目,寻找有利的投资机会;判断工程项目的生命力,进行市场调查、工厂试验等专题研究;对建设规模、产品方案、建设地点、主要技术工艺、工程项目的经济效益和社会效益等进行研究和初步评价和可行性论证;深入研究市场、生产纲领、工艺、设备、建设周期、总投资额等问题。 设计/选型阶段。编制设计方案及工程项目总概算书,考虑项目实施的成本、费用支出,以及系统运行的安全性,进行设备选型。 建设实施阶段。包括施工准备、组织施工和竣工前的生产准备,对设备按照设计方案进行安装与调试。 运营/维护期。对工程从安装调试合格进入正常使用起,直至该工程退出生产的全过程,通过组织、管理、监督等一系列措施,使工程项目处于良好的技术状态,需要对工程进行更新改造、对设备进行维护。根据工程使用情况,及时作出报废、整改、替换的决定。 跟踪/评估期。合理选取指标,科学建立模型,选择不同的评估时点进行动态评估,实现对工程项目的跟踪管理。将评估结果及时反馈,根据实际情况做出分析,指导日后的建设管理,形成闭环管理体系。 工程项目管理现状分析 工程项目的全生命周期管理对实现科学决策,防止资金浪费,及时纠正项目

第二章 数据库应用系统生命周期

第二章数据库应用系统生命周期 2.1数据库应用系统生命周期 2.1.1 软件工程与软件开发方法 1、软件工程:将工程化应用于软件生产 2、软件工程的目标:在给定成本、进度的前提下,开发出满足用户需求并具有下述特征的软件产品:可修改性、有效性、可靠性、可理解性、可维护性、可重用性、可适应性、可移植性、可追踪性和可互操作性。 3、软件生命周期:指软件产品从考虑其概念开始,到该产品交付使用的整个时期,包括概念阶段、需求阶段、设计阶段、实现阶段、测试阶段、安装部署及交付阶段; 4、软件项目管理:为了能使软件开发按预定的质量、进度和成本进行,而对成本、质量、进度、人员、风险等进行分析和有效管理的一系列活动。 5、软件工程以关注软件质量为特征,由方法、工具和过程三部分组成; 6、软件过程模型(软件开发模型):是对软件过程的一种抽象表示,表示了软件过程的整体框架和软件开发活动各阶段间的关系,常见的有:瀑布模型、快速原型模型、增量模型和螺旋模型。 2.1.2 DBAS软件组成 1、数据库应用软件在内部可看作由一系列软件模块/子系统组成,这些模块/子系统可分成两类: (1) 与数据访问有关的数据库事务模块:利用DBMS提供的数据库管理功能,以数据库事务方式直接对数据库中的各类应用数据进行操作,模块粒度较小; (2) 与数据访问无直接关联的应用模块:在许多与数据处理有关的应用系统中,对数据库的访问只是整体中的一部分,其他功能则与数据库访问无直接关系,这部分模块粒度可以比较大。 2、 DBAS设计开发的硬件方面:主要涉及根据系统的功能、性能、存储等需求选择和配置合适的计算机硬件平台,并与开发好的DBAS软件系统进行集成,组成完整的数据库应用系统; 2.1.3 DBAS生命周期模型 1、数据库应用系统的生命周期模型: (1) 参照软件开发瀑布模型的原理,DBAS的生命周期由项目规划、需求分析、系统设计、实现和部署、运行管理与维护等5个基本活动组成; (2) 将快速原型模型和增量模型的开发思路引入DBAS生命周期模型,允许渐进、迭代地开发DBAS; (3) 根据DBAS的软件组成和各自功能,细化DBAS需求分析和设计阶段,引入了数据组织与存储设计、数据访问与处理设计、应用设计三条设计主线,分别用于设计DBAS中的数据库、数据库事务和应用程序; (4) 将DBAS设计阶段细分为概念设计、逻辑设计、物理设计三个步骤,每一步的设计内容又涵盖了三条设计主线。

LCC:全生命周期成本管理

LCC对中国客车业的价值转型是为了推动进步 LCC:全生命周期成本管理 在高速成长15年之后,中国客车业遭遇了瓶颈。 一方面,客运行业受高铁的影响,其传统优势线路风光不再,而油价和人力成本的持续上涨,也让这些企业的运营环境遭受到了更大的冲击;另一方面,伴随着国内经济形势的日趋严峻,公交公司所能得到当地政府的经济支持越来越难,补贴不足、资金难到位,公交企业的运营也越发艰难。 趋势向下的市场环境使得越来越多的客运公交公司开始重视成本的压力,但从过去几年来看,国内大多数客运、公交公司在产品采购价格上的关注更重,而降价带来的配置降低,却又使得很多公司不得不面对因产品品质下滑所带来的后期维护成本偏高,这似乎成为了一种很难去打破的恶性循环。 “是时候去改变这种用户单位与生产企业之间的零和博弈了”。这种声音不仅仅来自于客车生产企业,也来自越来越多的用户单位。 但是,改变的办法在哪儿? 2013年6月4日,宇通正式向外界推出客车LCC(Life Cycle COST,全生命周期费用)理念,似乎为这种亟待改变的中国客车业困局给出了答案。 LCC带来的改变 客观来说,LCC并不是个新概念。 早在20世纪50年代,美国就开始了对LCC的研究,这种研究最初主要是应用于军事物资的研发和采购,并适用于产品使用周期长、材料损耗量大、维护费用高的产品领域。到20世纪90年代之后,LCC开始被民事领域所广泛接受。 从LCC的基本模型来看,一款产品的全生命周期费用是涵盖初置成本、运行成本、养护成本、维修成本和最终残值的。这种理念的落地非常符合目前大部门客运、公交客户在客车产品使用中的理解,在客车的采购之后,“用和养”,同样是客车业所必须正视的问题。 在过去的3年时间里,宇通有专门进行过对客车LCC的追踪性研究,通过对有效案例的分析发现,以目前国内客车使用10年的寿命折算,客车的采购成本大概在15%左右,而后期客车使用中持续产生的燃料成本、维保成本等已占到了客车全生命周期成本的70%。换句话说,其实真正对客户成本产生巨大影响的是客车产品采购之后的使用环节,而目前虽然大多数客户已经非常清楚地感受到了燃料及维护成本的压力,但真正调研结果出现的如此巨大的数值差距,却还是让很多用户始料未及。 有前期参与宇通LCC研究的客户表示:“当通盘考虑之后,LCC其实给了中国客车业一个很明确的方向,就是采购客车不能仅看初置成本,还应该兼顾对产品后期使用的长期性和

产品数据管理(PDM)与产品全生命周期管理(PLM)课案

产品数据管理(PDM)与产品全生命周期管理(PLM) 摘要:产品全生命周期管理是企业实现制造业信息化的必经途径,也是企业提高自身竞争力的重要手段。本文重点讨论了产品生命周期管理的主要研究内容,它的核心思想,并在此基础上探讨产品生命周期管理的技术架构及其主要功能。初步阐述了我国实现PLM的重要性。 关键字:PLM;PDM;技术架构;信息孤岛; Abstract: the products lifecycle management is the necessary way for enterprises to realize manufacturing informatization, and is the key methods to improve their own competitiveness. Th is paper discusses the main research contents of products lifecycle management and its core idea s, and based on this we discussed the technology framework and main functions of products lifec ycle management. The article expounded the importance of PLM technology in China. Keyword: PLM; technology framework; Information Island; 前言 经济全球化和工业信息化使制造业竞争环境、发展模式和活动空间等发生了深刻的变化,这些变化对制造业提出了严峻的挑战。为满足日益变化的客户需求,产品制造商需要从以生产推动销售的方式,转变到按客户需求订单安排生产的方式。特别是近年来兴起的企业外包业务和单一的客户需求的增加,生产厂商只有降低产品成本、提高产品质量、加快产品上市时间,以及为客户提供优质的产品服务,才能最终实现企业利润最大化,实现企业生产经营目标。人们已经认识到产品全生命周期管理对企业作为一个集成系统运行的重要性。可以认为,产品全生命周期管理是适用于企业过程、组织方式的技术,具有强烈的企业运行模式的背景。[1] 产品生命周期管理PLM自提出以来,便迅速成为制造业关注的焦点。PLM结合电子商务技术与协同技术,将产品开发流程与SCM、CRM、ERP等系统进行集成,将孤岛式流程管理转变成集成化的一体管理,实现从概念设计、产品设计、产品生产、产品维护到管理信息的全面数字化;实现企业知识价值的提升与知识共享管理,产品开发与业务流程的优化,从而全面提升企业生产效率,降低产品生命周期管理的成本,以提升企业的市场竞争力。 随着计算机技术的快速发展,各种单元软件(CAD/CAM/CAPP等)和企业管理软件(ERP/SCM等)在企业中得到广泛的应用。在产品全生命周期管理过程中由于采用不同的系统、不同的应用、不同的技术平台,使得产品数据难以顺畅流动,导致产品数据资源不能共享,

数据库设计阶段和软件项目生命周期对比教学内容

数据库设计的基本步骤: 1.需求分析阶段: 准确了解与分析用户需求(包括数据与处理),是整个设计过程的基础,是最困难、最耗费时间的一步。这个不用多说吧? 2.概念结构设计阶段: 是整个数据库设计的关键,通过对用户的需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型。从实际到理论。 3.逻辑结构设计阶段: 将概念结构转换为某个DBMS所支持的数据模型,对其进行优化。优化理论。 4.数据库物理设计阶段: 为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)。选择理论落脚点。 5.数据库实施阶段: 运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果,建立数据库,编制与调试应用程序,组织数据入库,并进行试运行。理论应用于实践。 6.数据库运行和维护阶段: 数据库应用系统经过试运行后即可投入正式运行。在数据库系统运行过程中必须不断地对其进行评价、调整与修改。理论指导实践,反过来实践修正理论。

释:软件生存周期各个阶段活动定义_普通__行业透视_eNet硅谷动力商用软件 频道 首先讲一下软件生存周期的定义,即以需求为触发点,提出软件开发计划的那一刻开始直到软件在实际应用中完全报废为止可以认为是一个完整的软件生存周期,软件生存周期的提出是为了更好的管理、维护和升级软件。其中更大的意义在于管理软件开发的步骤和方法。它把整个的软件生存时间看作是一个整体,以时间的推移和软件开发的工作重心之间作为划分点,把软件开发和维护的工作细分为若干个相对独立的部份,从而更好的控制软件的开发进度和难度,同时也十分有利于降低软件的出错频律,协调各个部门间的工作配合和责任分配。 软件生存周期的各个阶段的划分并没有一成不变的法则,不同的开发方式、软件种类、软件规模和开发环境都会在不同程度上影响软件生存周期各阶段的划分,但无论最终把生存周期如果根据自己的实际情况进行划分,都是旨在更好的利用手中的资源(主要指人力资源、软件资源、技术资源和源码资源),降低软件的开发风险、复杂度和开发成本(主要以开发的时间和投入资源为衡量标准),要做到最好的对软件生存周期各阶段进行划分,就必须遵循一条基本的原则,那就是在各阶段的任务应尽可能的相对独立,同一阶段各项任务的性质应尽可能的相同,从而达到降低每个阶段任务的复杂度,减少不同阶段任务之间的联系。这样做对软件项目开发的组织管理是十分有必要的,同时对最终的软件项目开发成功是不可或缺的。 尽管软件的生存周期各阶段的划分没有一个明确的法则,但就一般性而言,软件生存周期包括可行性分析、项目开发计划、需求分析、概要设计、详细设计、编写代码、软件测试和软件维护等活动(有的文档资料和开发项目把概要设计和详细设计合在一起,统称为软件设计或设计),这些活动的每一个可以说是软件开发过程中必须要经历的,所以我们应该将它们按照项目的划分合理的安排到各个阶段里面去。 既然软件开发周期这么重要,无论对软件项目最终开发是否能取得成功或是对软件管理和资源投入,我们就应当充份的了解周期里各个活动的定义和任务,才能合理,准确,客观的安排每一阶段的工作,以下就对各种活动的定义和任务做一下

数据库生命周期

数据库生命周期 数据库的生命周期主要分为四个阶段:需求分析、逻辑设计、物理设计、实现维护。 数据库的物理设计,包括索引的选择与优化、数据分区等内容。这些内容也非常丰富,而且可以自成体系,园子里也有很多好文章,故在本系列中不作主要关注。本文最后将给出一些链接供大家参考。 数据库生命周期的四个阶段又能细分为多个小步骤,我们配合图(1)来看看每一小步包含的内容。 阶段1 需求分析 数据库设计与软件设计一样首先需要进行需求分析。 我们需要与数据的创造者和使用者进行访谈。对访谈获得的信息进行整理、分析,并撰写正式的需求文档。 需求文档中需包含:需要处理的数据;数据的自然关系;数据库实现的硬件环境、软件平台等; 图(2)阶段1 需求分析 阶段2 逻辑设计 使用ER或UML建模技术,创建概念数据模型图,展示所有数据以及数据间关系。最终概念数据模型必须被转化为范式化的表。 数据库逻辑设计主要步骤包括: a) 概念数据建模 在需求分析完成后,使用ER图或UML图对数据进行建模。使用ER图或UML图描述需求中的语义,即得到了数据概念模型(Conceptual Data Model),例如:三元关系(ternary relat ionships)、超类(supertypes)、子类(subtypes)等。 eg: 零售商视角,产品/客户数据库的ER模型简图

注:ER图的含义,以及详细标记方法将在该系列的下一篇博文中进行讨论 图(3)阶段2(a) 概念数据建模 b) 多视图集成 当在大型项目设计或多人参与设计的情况下,会产生数据和关系的多个视图。这些视图必须进行化简与集成,消除模型中的冗余与不一致,最终形成一个全局的模型。多视图集成可以使用ER 建模语义中的同义词(synonyms)、聚合(aggregation)、泛化(generalization)等方法。多视图集成在整合多个应用的场景中也非常重要。 eg: 集成零售商ER图与客户ER图 零售商ER图如图(3)所示。客户视角,产品/客户数据库的ER模型简图如下: 图(4)以客户为关注点绘制的E R图 注:现在市面上有许多辅助建模工具可以绘制ER图。使用Sybase的PowerDesigner绘制与图(4)相同语义的ER图如下: 其标记法与图(4)中略有不同,这将在今后的博文中加以说明。 这里需要指出的是辅助软件的使用不是设计的核心,大家不要被这些工具迷惑。所以后文中我们将主要使用手绘。只要掌握了ER图的语义,使用这些软件都不会是件难事。 集成零售商ER图与客户ER图 图(5)阶段2(b) 多视图集成

产品全寿命周期成本管理

产品全寿命周期成本管理 产品生命周期成本管理最早由美国国防部在20世纪60年代提出,并首次应用于武器装备的开发。它克服了传统企业成本管理只注重降低生产和制造成本的局限性。它将企业成本管理的视角向前延伸至R&D设计阶段,向后延伸至售后服务和废料回收阶段,从而拓宽了成本管理的视角它强调产品成本是研发设计的结果。它要求从产品的方案论证和初步设计开始,对产品的可生产性、可靠性、可维护性等提出要求。对产品进行整体考虑,减少设计后期发现的错误造成的返工,从而缩短产品开发周期,降低制造成本,节约使用和维护成本。产品生命周期成本管理的理念在武器装备开发领域应用后,已经逐步扩展到民用工业部门。经过多年的实际应用,其应用领域已经非常广泛,并逐渐成为大型国际企业实施成本控制、提高竞争力的有效管理手段。追溯产品的生命周期成本,也称为生命周期成本,是美国国防部在20世纪60年代末首次正式提出并首次使用的它认为,寿命周期成本是指政府为建立和获取系统以及系统的整个生命周期所消耗的总成本,包括开发、设置、使用、后勤支持和报废等成本。在此之前,美国国防部将武器系统的成本主要定义为单件产品的成本,即生产单件武器设备的成本。此后,随着武器性能的不断提高,不仅武器系统的开发和生产成本日益增加,而且由于武器装备日益复杂和精密,使用和维护要求日益严格,武器系统的使用和维护成本也空前增加。1962年,美国国防部长在他的报告中披露,1961年美国国防预算中至少有25%用于维护成本,并得出结论,产品开发的基本理念是在整

个生命周期中将维护成本降至最低。在这种情况下,很明显,单一武器系统产品的研发和生产成本已不足以反映武器系统的总成本,人们也不能再单独考虑武器系统的研发成本、部队的采购成本以及使用和维护成本。取而代之的是,它们必须结合起来,并被认为是武器系统的总生命周期成本。因此,1966年6月,美国国防部开始正式研究寿命周期成本,并于1970年开始使用寿命周期成本评估方法,要求使用武器系统的部门在做出采购决策时,不仅要考虑整个生命周期的可负担性,还要考虑可负担性。随着生命周期成本在军事领域的成功应用,20世纪70年代开始进入实用化时代。其应用领域日益扩展到民用领域,并逐渐成为大型国际企业实施成本控制、提高竞争力的有效管理手段。(2)生命周期成本构成分析(1)理论构成对产品生命周期成本的构成有不同的看法,有以下两种典型观点:1 .LCC分为六个部分LCC分为六个部分:设计成本、制造成本、销售成本、维护成本、使用成本以及回收和报废成本从产品生命周期过程的角度来看,生命周期成本是指产品从酿造开始,经过论证、研究、设计、开发、生产和使用直至最终废弃的整个生命周期所消耗的研究、设计和开发成本、生产成本、使用和保证成本以及最终废弃成本的总和。具体六个部分的含义是:设计成本包括可行性研究、市场调研、图纸设计、产品试验、修改设计、编制技术规范等成本。制造成本包括材料、加工时间、工时、半成品运输、储存和组装、调试、检验、废品、修理和其他费用。销售成本包括产品包装、运输、储存和广告成本维护成本是维护设备在使用寿命期间维修或更换零件的成本。如果所设计的机

数据生命周期管理

随着市场经济的制度完善,新的政府法规和财务要求对于数据的管理要求提出了更高的要求。在欧美国家,金融、医疗、电信等行业推出了许多针对数据保留的法规,在中国,相关法规的制定和落实也在不断的完善。这都需要现有的IT系统符合和满足这些法规的特定要求,需要相关的IT信息管理手段的配合。 用户面临的问题 在当前的商业环境中,IT的重要性与需求随着经济全球化的发展与日俱增,越来越多的关联商业应用部署在各种在线的IT系统中,维系这些应用的IT基础资源架构也在不断的膨胀和增长,尤其是存储设备。如何在有限的预算下充分利用现有的存储资源以便更有效的管理好和利用好现有的应用数据,保证现有IT 系统满足并适应快速的商务系统增长需求,成为IT应用和管理部门必须面对的一个问题。 随着市场经济的制度完善,新的政府法规和财务要求对于数据的管理要求提出了更高的要求。在欧美国家,金融、医疗、电信等行业推出了许多针对数据保留的法规,在中国,相关法规的制定和落实也在不断的完善。这都需要现有的 IT系统符合和满足这些法规的特定要求,需要相关的IT信息管理手段的配合。 信息和数据,作为企业宝贵的资源,其重要性已经得到了人们的充分认同。为了保存这些珍贵的数据,越来越多的企业采购了大量的异构存储设备,建立了SAN或NAS的存储结构,虽然简化了结构,提高了数据的访问效率。但与此同时带来的问题是:不同厂商的存储设备,彼此不兼容,造成管理上更为复杂,管理的成本据高不下。 IBM 解决方案 以上问题的产生,很大程度上是由于企业在建立IT系统的规划阶段,过于关注前端的IT系统应用,对于后台的数据存储需求认识不足所造成的。在初始的IT系统设计和规划中,我们往往只关注存储设备和数据备份,而忽视了数据载体的全面存储管理。实际上,根据Enterprise Storage Group的分析报告,不同类型的业务数据都存在一个数据创建、修改、发布、利用和删除/归档的生命周期,而且,在不同的时期内,这些业务数据的利用价值也会不同。因此,需要对这些业务数据在不同阶段进行不同的数据存储管理。 信息生命周期管理(ILM)就是对不同的业务数据进行贯穿其整个生命周期的管理,通过完整的信息生命周期管理解决方案,可以让不同类型的数据存放在适合的存储设备上,利用适当的技术手段对这些数据进行处理和分析。这样,用户将可以提高现有存储设备的利用率,利用自动化的IT数据管理技术实现自动的数据管理,减少企业的IT管理成本,满足政府和企业的数据保管和管理的法规要求。 因此,一个完整的信息生命周期管理解决方案应该包括:

数据中心IDC 行业全面深度研究报告

数据中心IDC 行业全面深度研究报 告

目录 一、寻找IDC 核心驱动,判断当前景气度:数据流量与计算力的核心载体 (2) (一)IDC 为数据流量核心载体,具备增长确定性和稀缺性 (2) (二)IDC 产业链图谱:流量核心,信息基石 (3) (三)寻找IDC 驱动因素,ICT 产业链流量驱动与传导逻辑 (9) (四)当前产业景气度如何?资本开支周期末端,产业景气度正逐步回暖 (14) 二、IDC 行业属性:市场空间大+成长性强+确定性强 (20) (一)IDC 行业空间有多大?承载数据流量,建设浪潮没有尽头 (20) (二)数据中心呈现怎样的发展趋势? (22) (三)竞争格局:第三方IDC 服务商稀缺性高,迎来发展机遇 (26) (四)为什么投资IDC 行业?稀缺性、成长性与确定性 (32) 三、估值与投资建议 (35) (一)宝信软件:钢铁信息化龙头、第三方IDC 企业先锋 (38) (二)光环新网:核心资源储备丰富,成长空间较大,零售型IDC 翘楚 (40) (三)数据港:积极绑定BAT 互联网企业,批发型数据中心展露锋芒 (41) (四)万国数据:国内最大第三方IDC 企业,高成长性+强确定性 (43) (五)奥飞数据:积极并购拓展规模,数据中心部署全国 (45) 四、风险提示 (46)

一、寻找IDC 核心驱动,判断当前景气度:数据流量与计算力的核心载体 数据流量增长→计算(云和边缘)需求增加→IDC 和云厂商Capex 投入增加→投资数据中心基础设施 (一)IDC 为数据流量核心载体,具备增长确定性和稀缺性 IDC 为海量数据的承载实体,是互联网流量计算、存储及吞吐的核心资源,互联网、云计算的高速发展是IDC 产业发展的核心驱动。IDC 即Internet Data Center(互联网数据中心),是为计算机系统(包括服务器、存储和网络设备等)安全稳定持续运行提供的一个特殊基础设施,可以理解为将数据集中存储和运作的“数据图书馆”。该空间一般包含以下基础设施(即上游):建筑物、电力电气系统、制冷系统、监控管理系统、安防系统等,下游主要是互联网企业、金融机构、政府机关等。 纵观IDC 行业演进和发展史,各阶段客户需求和技术的变革决定每个阶段的服务形态,目前来看第三阶段的数据中心概念扩大,服务范围扩大,更注重高性能架构,随着云计算技术发展,数据中心走向虚

基于全生命周期的设计数据管理平台研究

龙源期刊网 https://www.360docs.net/doc/1a3042570.html, 基于全生命周期的设计数据管理平台研究 作者:刘文博汪宁侯成功 来源:《物联网技术》2018年第02期 摘要:针对目前通信规划设计工作中存在的数据流转问题,文中提出了一套基于全生命 周期的设计数据管理平台设计方法和实现方案,提高应对“新设计”所需数据整理工作的效率。 关键词:数据管理;HTML5;全生命周期;数据流转 中图分类号:TP311 文献标识码:A 文章编号:2095-1302(2018)02-00-02 0 引言 近年来,中国移动4G网络飞速发展并取得了显著成果。为了更好地支撑4G网络建设,中国移动设计院制定了“四新”战略。为响应“四新”战略,应对新发展阶段对设计和支撑工作提出的新要求,本文思考了如何从传统的生产组织模式向“平台加服务”转变的方法,并提出了一种将传统的人工保存的设计数据方式进行全面信息化并对各阶段数据进行关联存储的方式,建立不同阶段数据之间的关联纽带从而实现设计数据的全生命周期管理平台。 1 关键技术 1.1 PHP技术 PHP是一种服务器端的嵌入HTML脚本语言,已逐渐演变为超文本预处理器。由于PHP 是一种Web脚本语言,因此可以直接写入HTML中。PHP程序在服务器端表现为HTML语言,程序员可无需编译而直接阅读,其代码可直接为机器所识别,且无需进行二进制编译。客户端的浏览器同样可直接识别。PHP语言具有以下特点: (1)速度快。PHP语法混合了C,Java,Perl语法,网页执行速度比 ASP更快; (2)实用。PHP是一种完全面向对象的、跨平台的Web开发语言,无论从经济角度还是从开发者角度考虑都非常实用。 (3)语法简单,易入门,很多功能可以通过一个函数实现。 (4)功能强大。PHP在Web项目开发过程中具有强大的功能,且实现相对简单,可以操控多种主流的数据库。 1.2 HTML5技术

全生命周期成本分析与计算

全生命周期成本分析与计算 根据全生命周期工程造价管理的定义,全生命周期工程造价管理思想和方法不能只局限于工程项目建设前期的投资决策阶段和设计阶段,还应该进一步在施工组织设计方案的评价、工程合同的总体策划和工程建设的其他阶段中使用,尤其是要考虑项目的运营与维护阶段的成本管理。在全生命周期工程造价管理的很多阶段都会涉及到全生命周期成本的计算和方案的选择,只是具体细节和计算精度可能不同,例如估算阶段,建设成本和δ来运营维护成本的计算都很粗略,到了设计阶段,建设成本(施工图预算)是参照施工图,根据定额或建立在对己完工程数据库基础上的数学方法计算出来的,比较准确,在设计阶段不仅要给出设计方案还要给出δ来的运营和维护方案因此,δ来成本的准确度也比较高。在建设过程中,应对建设全生命周期的造价控制负责,严格按批准的可行性研究报告中规定的建设规模、建设内容、建设工期和批准的建设项目总投资进行建设,按照国家有关工程建设招标投标管理的法律、法规,组织设计方案竞赛、施工招标、设备采购招标等,努力把工程造价控制在批准的总造价以内。建设项目投资决策阶段的主要任务是要对拟建项目进行策划,其可行性进行技术经济分析和论证,从而作出是否进行投资的决策。决策的依据是在所有外部条件因素都相同的情况下,生命周期成本最小的方案为可选择的方案。 设计阶段是工程造价管理的重点,仅就工程造价费用而言,进行工程造价控制就是以投资估算控制初步设计工作;以设计概算控制施工图设计工作。如果设计概算超出投资估算,应对初步设计进行调整和修改。同理,如果施工图预算超过设计概算,应对施工图设计进行修改或修正。要在设计阶段有效地控制工程造价,是从组织、技术、经济、合同等各方面采取措施,随时纠正发生的投资偏差。在设计阶段,要考虑地点、能源、材料、水、室内环境质量和运营维护等因素。同时,如果有多个设计方案,则需要进行设计方案的优选,设计方案优劣的标准就是生命周期成本最小化,生命周期成本中,对建设成本、δ来的运营和维护成本都可根据我们在第五章中设计的全生命周期工程造价统一计算的方法和计算机实现步骤进行计算。 实施阶段如前所述,为了方便管理可将其进一步细分为招投标阶段和项目施工阶段两个子阶段,具体的管理如下所述。招投标阶段的工程造价管理,是以工程设计文件为依据,结合工程施工的具体情况,参与工程招标文件的制定,编制招标工程的标底,选择合适的合同计价方式,确定工程承包合同的价格。投标时分为技术标和商务标,在进行技术标的评价的时候不仅要考虑建设方案还有考虑δ来的运营和维护方案,这两者均优的方案才是最好的技术方案。在评价商务标的时候,评价的依据应该由原先的建设成本最低变为建设项目生命周期成本最低。美国爱荷华州的法律就规定,评标的决策依据就是生命周期成本最低。 施工阶段的造价管理一般是指建设项目已完成施工图设计,并完成招标阶段工作和签订工程承包合同以后,造价工程师在施土阶段进行工程造价控制的工作。施工阶段工程造价控制是把计划工程造价控制额作为工程造价控制的目标值,在工程施工过程中定期地进行工程造价实际值与目标值的比较,确保工程造价控制目标的实现。在施工阶段,需要编制资金使用计划,合理地确定实际工程造价费用的支出;以严格的工程计量,作为结算工程价款的

云计算数据中心的运维管理复习过程

云计算数据中心的运维管理 现代信息中心已成为人们日常生活中不可缺少的部分,因此信息中心机房设备的运行正常与否就非常关键。在数据中心生命周期中,数据中心运维管理是数据中心生命周期中最后一个、也是历时最长的一个阶段。加强对云计算运维管理的要点以及相应改进方面措施的研究与探讨,以此不断提高IT运维质量,实现高效的运维管理。这就给运维是否到位提出了严格要求。 1 运维在机房中的地位 在数据中心生命周期中,数据中心运维管理是数据中心生命周期中最后一个、也是历时最长的一个阶段。数据中心运维管理是,为提供符合要求的信息系统服务,而对与该信息系统服务有关的数据中心各项管理对象进行系统地计划、组织、协调与控制,是信息系统服务有关各项管理工作的总称。数据中心运维管理主要肩负合规性、可用性、经济性、服务性等四大目标。 在信息中心机房配备有运维人员,但大都是“全才”的,即什么都管,尤其是对供电系统大都是由主机运维的人员代管。当电源系统出故障时,此代管人员一问三不知,甚至连配电柜门都没开过。这实际上就是把机房的运维放在了一个次要的地位。 当然也有的地方有所分工,看似重视,实际上也没得到真正地重视。比如说机房设备长时间一直运行正常,这时如果运维人员提出要增添运维方面的测量设备,有的领导就认为多余,很难得到批准。但他不知道机房设备所以长时间一直运行正常,正是由于这些运维人员的细心维护和努力保养所获得的。并不是这些人员每天闲着无事可干,他们的这些工作一般是领导看不见的。比如同样多款的UPS在同样的环境条件下,在某卫星地面站就极少出故障,而在同系统别的地方机房同一家同规格的机器就故障连连。原来是前者的运维人员每天都在细心观察和分析机器面板LCD上显示的数据,一旦发现异常苗头及时采取措施;而后者只限于每天抄写这些数据就算完成任务,使异常苗头不断积累,以致于导致故障。比如断路器在额定闭合状态发现触点处温度高了,就要检查是不是电流过大到超过额定值,如果不是就要检查触点接触是否牢靠,是否需要再紧固一下。这样一来,故障隐患就排除了。如果一直不管不问久而久之就会导致跳闸而使系统崩溃。这都是一些小的动作,都是在巡查中顺便做的事情。所以同是运维人员在巡查,但前者在做事而后者只是走马观花。这就是数据中心可靠与不可靠的区别。 运维人员就像幼儿园的保育员和老师。孩子交到幼儿园后,起主要作用的就是保育员和老师,这时保育员和老师就是主体。机器就好比是幼儿园的孩子,孩子是否健康成长,机器是否正常运行,除去本身的健康(可靠性质量)状况外,那就是运维人员的责任了。由于云计算的要求弹性、灵活快速扩展、降低运维成本、自动化资源监控、多租户环境等特性,除基于ITIL(IT 基础设施库)的常规数据中心运维管理理念之外,以下运维管理方面的内容,需要我们加以重点关注。 2 云计算数据中心运维管理的要点 (1)理清云计算数据中心的运维对象 数据中心的运维管理指的是与数据中心信息服务相关的管理工作的总称。云计算数据中心运维对象一般可分成5大类: ①机房环境基础设施 这里主要指的是为保障数据中心所管理的设备正常运行所必需的网络通信、供配电系统、环境系统、消防系统和安保系统等。这部分设备对于用户来说几乎是透明的,比如大多数用

全生命周期下的产品数据管理PDM技术

全生命周期下的产品数据管理PDM技术 关键词:产品数据管理PDM 导语:产品数据管理PDM应该覆盖到整个企业中从产品的市场需求分析、产品设计、制造、销售、服务和维护等过程,即产品的整个生命周期中的信息。 产品数据管理英文是Product Data Mangement,简称PDM。产品数据管理PDM可理解为管理一切与产品相关的数据信息。产品数据管理PDM包括所有与产品相关的设计信息,并使它们可被所有参与产品开的人员访问。 【图示】产品数据管理PDM技术 其实,关于产品数据管理PDM的定义尚未统一定论。主要致力于产品数据管理PDM技术和计算机集成技术研究与咨询的国际咨询公司CIMdata给出的定义是:“产品数据管理PDM是一门管理所有与产品相关的信息和所有与产品相关的过程的技术。“而Gartne

r 公司则认为:” 产品数据管理PDM是一个使能器,它用于在企业范围内构件一个从产品策划到产品实现的并行化协作环境。一个成熟的产品数据管理PDM系统能够使所有参与创建、交流以及维护产品设计意图的人员在整个产品生命周期中自由共享与产品相关的所有异构数据,如图纸与数字化文档、CAD文件和产品结构等。”可以看出,从狭义上讲,产品数据管理PDM仅管理与工程设计相关领域内的信息;而从广义上看,产品数据管理PDM可以覆盖到整个企业中从产品的市场需求分析、产品设计、制造、销售、服务和维护等过程,即产品的整个生命周期中的信息。 目前,根据信息化程度不同,企业实施的产品数据管理PDM系统可分为四个层次:一是图纸文档的电子化管理;二是部门级的数据管理;三是企业级的数据管理;四是企业间的数据管理。从产品数据管理PDM广义定义看,产品数据管理PDM系统应提供全生命周期的信息管理,生产计划、财务、设备等生产和经营信息也应存入产品数据管理PDM系统中,与工程设计信息统一管理。但一般现有的MIS和MRPII系统都带有自己的数据库系统,自行管理数据。如果按照理想模式设计,现有的MRPII系统必须进行大改动。折衷的方法是建立MRPII、MIS和产品数据管理PDM系统的接口,MIS和MRPII系统需要的工程设计数据从产品数据管理PDM系统中获得。

数据库应用系统生命周期

数据库应用系统生命周期 2012-10-27 20:26:20| 分类:数据库|举报|字号订阅 1. 软件工程:知道计算机软件开发和维护的工程科学,它采用工程化的概念、原理、技术和方法,以及正确的项目管理技术,来开发和维护软件;它将系统化、规范化、定量化方法应用于软件的开发、操作和维护,也就是将工程化应用于软件生产 2. 软件工程的目标:在给定成本、进度的前提下,开发出满足用户需求并具有下述特征的软件产品:可修改性、有效性、可靠性、可理解性、可重用行、可适应性、可移植性、可跟踪性和可互操作性。 3. 软件生命周期:指软件产品从考虑其概念开始,到该产品交付使用的整个时期,包括 概念阶段(可行性分析和开发项目计划,主要确定软件的开发目标和可行性)、 需求阶段(需求分析,在确定软件开发可行的情况下,对软件实现的各个功能进行详细分析) 设计阶段(根据需求分析的结果,对整个软件系统进行设计,如系统框架设计、数据库设计等等。一般分为总体设计和详细设计。软件设计的原理包括对象、分解和模块化、耦合和内敛、封装、充分性、完整性和原始性。软件设计主要关注软件的兼容性、可扩展性、容错性、可维护性、模块化、可靠性、可重用性、健壮性、安全性、可用性和互操作性。耦合和内敛是两个用来评估软件设计质量的方法) 实现阶段(程序编码,此阶段的结果是将软件设计的结果转换成计

算机可运行的程序代码。在程序编码中必须制定统一、缝合标准的编码规范,以保证程序的可读性、易维护性,以提高程序的运行效率) 测试阶段(软件测试,在软件设计完成后要经过严密的测试,以发现软件在整个设计过程中村的问题并加以纠正。整个测试过程分为单元测试、组装测试以及系统测试三个阶段进行。测试的方法主要有白盒测试和黑盒测试。在测试中需要建立详细的测试计划并严格按照测试计划进行测试,以减少测试的随意性) 安装部署和交付阶段(运行维护,运行维护是软件生命周期中持续时间最长的阶段。在软件开发完成并投入使用后,由于多方面的原因,软件不能继续适应用户的需求。要延续软件的使用周期,就必须对软件进行维护。软件的维护包括纠错性维护和改进型维护两个方面) 4. 软件项目管理:软件项目管理的对象时软件工程项目。它涉及的范围覆盖了整个软件工程过程。为了是软件项目开发获得成功,关键问题是必须对软件项目的工作范围、可能风险、需要资源(人、软件/软件)、要实现的任务、经历的里程碑、话费工作量(成本),进度安排等做到心中有数。这种管理在技术工作之前就应开始,在软件概念到实现的过程中继续进行,当软件工程工程最后结束时才终止。 软件项目管理和其他项目管理相比有相当的特殊性。首先,软件是纯知识产品,其开发进度和质量很难估计和度量,生产效率也难以预测和保证。其实软件系统的复杂性也导致开发过程中各种风险的难以预见和控制。 软件项目管理的内容主要包括:人员的组织和管理、软甲度量、软件

相关文档
最新文档