双曲线及其标准方程详解
双曲线及其标准方程
双曲线的一支. 当|MF1|-|MF2|=2a 时,曲线仅表示焦点 F2 所对
应的一支;当|MF1|-|MF2|=-2a 时,曲线仅表示焦点 F1 所对应 的一支. (2)0<2a<|F1F2|.当 2a=|F1F2|时,则动点的轨迹是以 F1、F2 为端点的 两条射线 ;当 2a>|F1F2|时,动点轨迹不存在;当 2a
π 答案 {θ|2kπ-2<θ<2kπ,k∈Z}
探究 3 种形式:
(1)由于坐标系的建法不同,双曲线的标准方程有两
x2 y2 当焦点在 x 轴上时,其标准方程为 2- 2=1(a>0,b>0); a b y2 x2 当焦点在 y 轴上时,其标准方程为a2-b2=1(a>0,b>0). (2)若曲线方程 Ax2+By2=1 表示双曲线,只需 A、B 异号, 即 A· B<0 即可!
解析
如图,由双曲线定义
|PF2|-|PF1|=8, |QF2|-|QF1|=8,
∴|PF2|+|QF2|-(|PF1|+|QF1|)=16, 即|PF2|+|QF2|-|PQ|=16.
答案 C
x2 y2 例 2 已知 M 是双曲线 - =1 上的一点,F1,F2 是双曲 40 9 线的两个焦点,∠F1MF2=90° ,求△F1MF2 的面积.
探究 1
定义是解题的根本方法,好好利用有时能起到意想
不到的效果!
思考题 1
x2 y2 已知 F1、F2 是双曲线 - =1 的两个焦点, 16 9
PQ 是过点 F1 的弦,且 PQ 的倾斜角为 α,那么|PF2|+|QF2|-|PQ| 的值是( A.8 C.16 ) B.12 D.随 α 角的大小而变化
=0 时,动点的轨迹是线段 F1F2 的 中垂线.
要点 2
高考数学复习点拨 解读双曲线定义及其标准方程
解读双曲线定义及其标准方程一、双曲线的定义定义:平面内与两个定点12F F ,的距离的差的绝对值等于常数(小于12F F 且不等于零)的点的轨迹叫做双曲线. 集合表达式:{}122P M MF MF a =-=±|.从以下几个方面加强对定义的理解:1.对教材拉链实验的理解如图,从左边开始都减去等量的线段后,差仍然是2a .2.定义中的三个关键词定义中有三个“关键词”:“小于12F F ”、“绝对值”、“常数”,这三个关键词始终伴随着双曲线,在解题时,应首先考虑.(1) 关于“小于12F F ”,① 若将“小于12F F ”改为“等于12F F ”,其余条件不变,则曲线为两条射线.② 若将“小于12F F ”改为“大于12F F ”,其余条件不变,则曲线就不存在.(2) 关于“绝对值”若将“绝对值”去掉,其余条件不变,则点的轨迹为双曲线的一支.(3)关于“常数”若“常数”等于零,其余条件不变,则点的轨迹是线段12F F 的中垂线.当然以上还有前提是:在平面内,若去掉“在平面内”,则就是空间图形了,不是中学所研究的范畴.例 若点12(0)(0)F c F c -,,,(0c >,且c 为常数)为两个不同定点,且点M 满足122MF MF a -=(20a ≥,a 为常数),求点M 的轨迹.分析:抓住双曲线定义中的三个“关键词”,不难分为22a c >,22a c =,022a c <<及20a =四种情况讨论.解:①若22a c >,点M 的轨迹不存在;②若22a c =,点M 的轨迹是以点2F 为端点向右延伸的射线;③若022a c <<,点M 的轨迹是以点12F F ,为焦点的双曲线的右支,这时的双曲线方程为222221(0)x y x a c a-=>-;④若20a =,点M 的轨迹是线段12F F 的垂直平分线.二、双曲线的标准方程双曲线的标准方程中“标准”的含义有两层:其一是两个焦点在坐标轴上,其二是两个焦点的中点与坐标原点重合.当焦点在x 轴上时,双曲线的标准方程为22221x y a b-=(00a b >>,);当焦点在y 轴上时,双曲线的标准方程为22221(00)y x a b a b-=>>,. 说明:(1)双曲线的焦点在x 轴上时,2x 项的系数为正数,2y 项的系数为负数,其焦点坐标为(0)c ±,,且222c a b =+;双曲线的焦点在y 轴上时,2y 项的系数为正数,2x 项的系数为负数,其焦点坐标为(0)c ±,,且222c a b =+. (2)在双曲线的标准方程中,a 与b 无大小之分,但0c a >>,且有222c a b =+.(3)有关双曲线方程的实际应用问题是教材的一个难点,体现了数学的使用价值,可以激发我们学习数学的兴趣,那么,如何解答这类题型呢?①建立数学模型:就是要在读懂题意的基础上,转化为双曲线问题;②以定义法求双曲线的方程,这里注意所求方程是双曲线的一支还是两支符合条件; ③再以纯数学解答结果来解释其应用.重难点解析:双曲线的定义和标准方程与椭圆类似,如,双曲线的标准方程也是从两点间的距离关系推倒出来的.本节在数学思想和方法上没有新内容,在学习中应着重对比双曲线和椭圆的相同点与不同点,特别要注意它们的不同点.。
双曲线及其标准方程
双曲线1.双曲线的概念平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0;(1)当a <c 时,P 点的轨迹是双曲线.(2)当a =c 时,P 点的轨迹是两条射线.(3)当a >c 时,P 点的轨迹不存在.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a对称性对称轴:坐标轴对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)1.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线.(2)当m <0,n <0时,则表示焦点在y 轴上的双曲线.2.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0).(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).3.常用结论1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.((4).双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是m (5).若双曲线x )x ±ny =0.( )2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 222.双曲线2x 2-y 2=8的实轴长是=1(此条件中两条双曲线称为共轭双曲线).( )()A .2B .22C .4D .423.(2021·全国甲卷)点(3,0)到双曲线x 216-y 29=1的一条渐近线的距离为()A.95B.85C.65D.454.(教材改编)过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是()A .28B .14-82C .14+82D .825.已知双曲线E :x 216-y 2m 2=1的离心率为54,则双曲线E 的焦距为__________.双曲线的定义的应用例题:(1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为()A.x 22-y 216=1(x ≤-2) B.x 22-y 214=1(x ≥2)C.x 22-y 216=1 D.x 22-y 214=1(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为______________(4)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=__________.(5)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为()A .1B .52C .2D .5(6).(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(7)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为()A .215a 2B .15a 2C .30a 2D .15a 2(8)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为()A .1B .2+155C .4+155D .22+1(9)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是()A.4B.6C.8D.16(10)双曲线C的渐近线方程为y=±233x,一个焦点为F(0,-7),点A的坐标为(2,0),点P为双曲线第一象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.8B.10C.4+37D.3+317双曲线的标准方程求双曲线标准方程的方法:(1)定义法(2)待定系数法①当双曲线焦点位置不确定时,设为Ax2+By2=1(AB<0);②与双曲线x2a2-y2b2=1共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);③与双曲线x2a2-y2b2=1共焦点的双曲线方程可设为x2a2-k-y2b2+k=1(-b2<k<a2).例题:(1)根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7).(2)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为(-3,0),且C 的离心率为32,则双曲线C 的方程为()A.y 24-x 25=1 B.y 25-x 24=1 C.x 24-y 25=1 D.x 25-y 24=1(3)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是()A.7x 216-y 212=1 B.y 23-x 22=1C .x 2-y 23=1D.3y 223-x 223=1(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为()A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1(5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是()A .x12-y 2=1B .x 29-y 23=1C .x 2-y 23=1D .x 223-y 232=1(6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=1(7)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点M 在双曲线的右支上,点N 为F 2M 的中点,O 为坐标原点,|ON |-|NF 2|=2b ,∠ONF 2=60°,△F 1MF 2的面积为23,则该双曲线的方程为__________.双曲线的几何性质求双曲线的渐近线方程例:(1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则双曲线C 的渐近线方程为()A .y =±3xB .y =±33x C .y =±12xD .y =±2x(2)已知双曲线T 的焦点在x 轴上,对称中心为原点,△ABC 为等边三角形.若点A 在x 轴上,点B ,C 在双曲线T 上,且双曲线T 的虚轴为△ABC 的中位线,则双曲线T 的渐近线方程为()A .y =±153xB .y =±53xC .y =±33x D .y =±55x (3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=12的焦点相同,则双曲线的渐近线方程为()A .y =±3xB .y =±33x C .y =±22x D .y =±2x(4)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形F 1NF 2M 的周长为p ,面积为S ,且满足32S =p 2,则该双曲线的渐近线方程为()A .y =±32x B .y =±233xC .y =±12xD .y =±22x求双曲线的离心率(范围)例:(1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.72B.132C.7D.13(2).已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__________.(3)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过坐标原点O 的直线与双曲线C 的左、右支分别交于点P ,Q ,若|PQ |=2|QF |,∠PQF =60°,则该双曲线的离心率为()A .3B .1+3C .2+3D .4+23(4)(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(5)圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A .(2,5)B.⎪⎭⎫⎝⎛2535,C.⎪⎭⎫⎝⎛2545,D .(5,2+1)双曲线几何性质的综合应用例:(1)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是()A.⎪⎪⎭⎫⎝⎛-3333, B.⎪⎪⎭⎫⎝⎛-6363,C.⎪⎪⎭⎫⎝⎛-322322, D.⎪⎪⎭⎫⎝⎛-332332,逻辑推理(2020·新高考卷Ⅰ)(多选)已知曲线C :mx 2+ny 2=1.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线直线与双曲线的位置关系例题:若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,求k 的值.双曲线课后练习1.方程x2m+2+y2m-3=1表示双曲线的一个充分不必要条件是()A.-3<m<0B.-1<m<3C.-3<m<4D.-2<m<3 2.在平面直角坐标系中,已知双曲线C与双曲线x2-y23=1有公共的渐近线,且经过点P(-2,3),则双曲线C的焦距为()A.3B.23C.33D.433.设双曲线C:x2-4y2+64=0的焦点为F1,F2,点P为C上一点,|PF1|=6,则|PF2|为()A.13B.14C.15D.224.若双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则C的渐近线方程为()A.y=±13x B.y=±33x C.y=±3x D.y=±3x5.若双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点A到一条渐近线的距离为223a,则双曲线的离心率为()A.223B.13C.3D.226.已知双曲线的一个焦点F(0,5),它的渐近线方程为y=±2x,则该双曲线的标准方程为_____________7.已知双曲线x24-y25=1的左焦点为F,点P为其右支上任意一点,点M的坐标为(1,3),则△PMF周长的最小值为()A.5+10B.10+10C.5+13D.9+138.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB 的中点在该双曲线上,O为坐标原点,则△AOB的面积为()A.12B.1C.2D.49.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,且|PF 1|=2|PF 2|.若cos ∠F 1PF 2=14,则该双曲线的离心率等于()A.22 B.52C .2 D.3+110.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .3211.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交双曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°,若该双曲线的离心率为e ,则e 2=()A .11+43B .13+53C .16-63D .19-10312.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线C 的离心率为()A.52 B.5C.2D .213.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为)______________14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,点P 为双曲线上一点,∠F 1PF 2=120°,则双曲线的渐近线方程为__________;若双曲线C 的实轴长为4,则△F 1PF 2的面积为__________.15.已知F 1,F 2分别是双曲线x 2-y 2b 2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于_____________16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线的左、右两支于M ,N .若以MN 为直径的圆经过右焦点F 2,且|MF 2|=|NF 2|,则双曲线的离心率为____________.17.已知点P (1,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线上,F 为双曲线C 的右焦点,O 为原点.若∠FPO =90°,则双曲线C 的方程为_____________,其离心率为__________.18.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.19.(2021·山东淄博二模)已知动点P 在双曲线C :x 2-y 23=1上,双曲线C 的左、右焦点分别为F 1,F 2,下列结论错误的是()A .C 的离心率为2B .C 的渐近线方程为y =±3xC .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,|PF 1||PF 2|2的最大值为14。
第59讲 双曲线及其标准方程
(2)经过点(2,1),且渐近线与圆 x2+(y-2)2=1 相切的
双曲线的标准方程为( )
A.1x12 -1y12 =1 3
B.x22-y2=1
C.1y12 -1x12=1 3
D.1y12 -1x12 =1 3
解:(2) 设双曲线的方程为ax22-by22=λ(a>0,b>0,λ≠0),
(3)双曲线ax22-by22=1 的渐近线为ax22-by22=0.一般地,双 曲线的一个焦点到它的渐近线的距离 d=b.
【变式探究】
3.(1)(2017·新课标卷Ⅱ)若 a>1,则双曲线ax22-y2=1
的离心率的取值范围是( )
A.( 2,+∞)
B.( 2,2)
C.(1, 2)
D.(1,2)
解:(1)由题意得双曲线的离心率 e=
a2+1 a.
所以 e2=a2a+2 1=1+a12.
因为 a>1,所以 0<a12<1,所以 1<1+a12<2, 所以 1<e< 2.
答案:C
(2)(2017·山东卷)在平面直角坐标系 xOy 中,双曲线 ax22-by22=1(a>0,b>0)的右支与焦点为 F 的抛物线 x2= 2py(p>0)交于 A,B 两点.若|AF|+|BF|=4|OF|,则该双 曲线的渐近线方程为
曲线 C:x2-my2=4m(m>0)的一个焦点,则点 F 到 C 的一
条渐近线的距离为( )
A.2
B.4
C.2m
D.4m
解:双曲线 C:4xm2 -y42=1,双曲线的焦点到一条渐近
线的距离为虚轴的一半,即 2.
答案:A
双曲线的定义及标准方程(201911新)
判断下列曲线的焦点在哪轴? 并求a、b、c
x2
y2
1. 1
16 25
2. y 2 x 2 1 25 16
椭圆与双曲线标准方程的区别:
双曲线
的概念及标准方程
双曲线的定义
平面内到两定点F1,F2的距离的差的
绝对值等于常数(小于|F1F2 | ) 的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点。 两焦点的距离叫做双曲线的焦距(2c)
1、建系:以线段F1F2所在直线为x轴,
M
线段F1F2的垂直平分线为y轴。F1
F2
设|F1F2|=2c,常数为2a,
则F1(-c,0)、F2(c,0),
设M(x,y)为轨迹上任意一点,
2、列式:||MF1|-|MF2||=2a, 即|MF1|-|MF2|=2a
3、代换:(x c)2 y2 (x c)2 y2 2a
即 (x c)2 y2 (x c)2 y2 2a
一、定型:
两边平方得(x c)2 y2 (x c)2 y2 4a2 4a (x c)2 y2
即cx a2 a (x c)2 y2
两边平方得 (cx a2 )2 a2 (x2 2cx c2 y2 )
即(c2 a2 )x2 a2 y2 a2 (c2 a2 )
双曲线的标准方程
x2 a2
y2 b2
1(a>0,b>0)表示焦点在x轴上的双曲线
标准方程,其中F1(-C,0) F2(C,0)
双曲线的性质与方程解析
双曲线的性质与方程解析双曲线在数学中是一种常见的曲线类型,具有许多独特的性质与方程解析。
本文将探讨双曲线的基本定义、方程形式、性质特点以及解析方法等相关内容。
一、基本定义双曲线可以定义为平面上的一类曲线,其形状类似于打开的弓形或者两个分离的超越曲线。
具体来说,双曲线由两个分离的支线组成,每个支线都是非闭合的曲线。
二、方程形式双曲线的方程形式一般有两种常见情况:1. 标准方程:双曲线的标准方程可以表示为:(x^2/a^2) - (y^2/b^2) = 1 或者(y^2/b^2) - (x^2/a^2) = 1,其中a和b分别表示椭圆的长半轴和短半轴。
2. 参数方程:双曲线的参数方程形式可以表示为:x = a * secθ,y = b * tanθ 或者x = a * coshθ,y = b * sinhθ,其中θ是参数,a和b分别表示参数方程中的系数。
三、性质特点双曲线具有多个独特的性质和特点,包括:1. 渐近线:双曲线有两条渐近线,分别对应于横轴和纵轴方向无限延伸的情况。
这两条渐近线与曲线的分支永远不相交。
2. 焦点与准线:双曲线的焦点是曲线的特殊点,其定义决定了曲线的形状。
双曲线的准线是与焦点对称且与渐近线相切的直线。
3. 集中性质:双曲线的两个支线向外无限延伸,因此曲线逐渐集中于焦点附近。
这种集中性质在许多实际应用中都有重要的意义。
四、解析方法在解析几何中,双曲线的研究常常涉及到方程的化简、参数的确定以及曲线的绘制等问题。
以下是一些解析方法的示例:1. 方程化简:根据给定的曲线方程,可以通过代数运算将其整理为标准方程或者参数方程的形式,以便更好地研究曲线的性质。
2. 参数确定:在参数方程中,选择合适的参数取值范围,可以确定曲线的部分或者全部形状。
通过调整参数,可以观察曲线的变化情况。
3. 绘制曲线:利用计算机软件绘制双曲线图形是一种常见的方法。
通过选择适当的参数和绘图工具,可以清晰地展示双曲线的形态特征。
双曲线及其标准方程解答
2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程想一想:如何判断方程x a 2-y b 2=1(a >0,b >0)和y a 2-x b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.②①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c=5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c =3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||s i n s i n ||||222||sin ||21262BC AB A C BC AB a R R AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).由两点间距离公式得|MF|=(3-4)2+(±15-0)2=4.。
(完整版)双曲线标准方程及几何性质知识点及习题
双曲线标准方程及几何性质知识点及习题1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。
这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。
2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。
定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。
当曲线上一点沿曲线无限远离原点时,如果到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
无限接近,但不可以相交。
例1. 方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。
注:c 2=a 2+b 2【例2】求虚轴长为12,离心率为54双曲线标准方程。
【例3】求焦距为26,且经过点M (0,12)双曲线标准方程。
练习。
焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x【例4】与双曲线221916x y -=有公共渐进线,且经过点(3,A -练习。
求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.解决双曲线的性质问题,关键是找好等量关系,特别是e 、a 、b 、c 四者的关系,构造出ce a=和222c a b =+的关系式。
双曲线及其方程-知识总结
双曲线及其方程一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。
这两个定点叫双曲线的焦点。
要注意两点:(1)距离之差的绝对值。
(2)2a <|F 1F 2|。
当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在。
2、第二定义:动点到一定点F 的距离与它到一条定直线l (准线2ca )的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。
这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。
二、双曲线的标准方程(222a cb -=,其中|1F 2F |=2c )焦点在x 轴上:12222=-by a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0)(1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。
a 不一定大于b 。
判定焦点在哪条坐标轴上,不像椭圆似的比较x 2、y 2的分母的大小,而是x 2、y 2的系数的符号,焦点在系数正的那条轴上(2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (3)双曲线方程也可设为:221(0)x y mn m n-=>三、双曲线的性质xyPxyPxyPPxyPP。
双曲线及其标准方程
2.3双曲线2.3.1双曲线及其标准方程1.了解双曲线的定义,几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.(2)符号表示:||MF1|-|MF2||=2a(常数)(0<2a<|F1F2|).(3)焦点:两个定点F1、F2.(4)焦距:两焦点间的距离,表示为|F1F2|.2.双曲线的标准方程1.判断(正确的打“√”,错误的打“×”)(1)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()(2)点A(1,0),B(-1,0),若|AC|-|BC|=2,则点C的轨迹是双曲线.()(3)在双曲线标准方程x2a2-y2b2=1中,a>0,b>0且a≠b.()答案:(1)×(2)×(3)×2.已知双曲线x216-y29=1,则双曲线的焦点坐标为()A.(-7,0),(7,0)B.(-5,0),(5,0) C.(0,-5),(0,5) D.(0,-7),(0,7)答案:B3.在双曲线的标准方程中,若a=6,b=8,则其标准方程是()A.y236-x264=1B.x264-y236=1C.x236-y264=1D.x236-y264=1或y236-x264=1答案:D4.设双曲线x216-y29=1的右支上一点P到左焦点F1的距离是15,则P到右焦点F2的距离是________.答案:7探究点一 求双曲线的标准方程求适合下列条件的双曲线的标准方程.(1)a =25,经过点A (2,-5),焦点在y 轴上;(2)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);[解] (1)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0).由题设知,a =25,且点A (2,-5)在双曲线上,所以⎩⎪⎨⎪⎧a =25,25a 2-4b 2=1,解得a 2=20,b 2=16. 故所求双曲线的标准方程为y 220-x 216=1.(2)因为焦点相同,所以设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 所以c 2=16+4=20,即a 2+b 2=20.①因为双曲线经过点(32,2),所以18a 2-4b 2=1.②由①②得a 2=12,b 2=8,所以双曲线的标准方程为x 212-y 28=1.求双曲线的标准方程的步骤求双曲线的标准方程通常采用待定系数法,步骤归结如下:1.根据下列条件,求双曲线的标准方程.(1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)经过点(3,0),(-6,-3).解:(1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0).由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a 2-(15)2b 2=1,解得⎩⎨⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)设双曲线的方程为mx 2+ny 2=1(mn <0),因为双曲线经过点(3,0),(-6,-3),所以⎩⎨⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,所以所求双曲线的标准方程为x 29-y 23=1.探究点二 双曲线定义的应用设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,求△PF 1F 2的面积.[解] 由已知得2a =2,又由双曲线的定义得|PF 1|-|PF 2|=2,因为|PF 1|∶|PF 2|=3∶2,所以|PF 1|=6,|PF 2|=4.又|F 1F 2|=2c =213,由余弦定理,得cos ∠F 1PF 2=62+42-522×6×4=0, 所以△F 1PF 2为直角三角形.S △PF 1F 2=12×6×4=12.若将“|PF 1|∶|PF 2|=3∶2”改为“|PF 1|·|PF 2|=24”,求△PF 1F 2的面积.解:由双曲线方程为x 2-y 212=1,可知a =1,b =23,c =1+12=13.因为|PF 1|·|PF 2|=24,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-4c 22×24=4+2×24-4×1348=0 所以△PF 1F 2为直角三角形.所以S △PF 1F 2=12|PF 1|·|PF 2|=12.双曲线的定义是解决与双曲线有关的问题的主要依据,在应用时,一是注意条件||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)的使用,二是注意与三角形知识相结合,经常利用正、余弦定理,同时要注意整体运算思想的应用.2.(1)若双曲线x 24-y 212=1上的一点P 到它的右焦点F 2的距离为8,则点P 到它的左焦点F 1的距离是( )A .4B .12C .4或12D .6(2)已知双曲线x 24-y 29=1,F 1、F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,求△F 1MF 2的面积.解:(1)选C.由双曲线的定义得||PF 1|-|PF 2||=2a =4, 所以||PF 1|-8|=4,所以|PF 1|=4或12.(2)由双曲线方程知a=2,b=3,c=13,不妨设|MF1|=r1,|MF2|=r2(r1>r2).由双曲线定义得r1-r2=2a=4.两边平方得r21+r22-2r1·r2=16,即|F1F2|2-4 S△F1MF2=16,即4 S△F1MF2=52-16,所以S△F1MF2=9.探究点三利用双曲线的定义求轨迹问题动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.[解]设动圆半径为R,因为圆M与圆C1外切,且与圆C2内切,所以|MC1|=R+3,|MC2|=R-1,所以|MC1|-|MC2|=4.所以点M的轨迹是以C1、C2为焦点的双曲线的右支,且有a=2,c=3,b2=c2-a2=5,所以所求轨迹方程为x24-y25=1(x≥2).本例中圆的方程不变,若动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.解:如图,设动圆半径为R,根据两圆外切的条件,得|MC2|=R +1,|MC1|=R+3,则|MC 1|-|MC 2|=2.这表明动点M 与两定点C 1,C 2的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的右支(点M 与C 1的距离大,与C 2的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x >0).用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位).(2)根据已知条件确定参数a ,b 的值(定参).(3)写出轨迹方程并下结论(定论).3.(1)若动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)(2) 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解:(1)选D.由双曲线的定义得,P 点的轨迹是双曲线的一支.由已知得⎩⎨⎧2c =10,2a =6,所以a =3,c =5,b =4.故P 点的轨迹方程为x 29-y 216=1(x >0),因此选D.(2)以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c 2R (R 为△ABC 的外接圆半径).因为2sin A +sin C =2sin B ,所以2a +c =2b ,即b -a =c 2,从而有|CA |-|CB |=12|AB |=22<|AB |.所以a =2,c =22,b 2=6,所以顶点C 的轨迹方程为x 22-y 26=1(x >0,y ≠0).1.对双曲线标准方程的三点说明(1)标准方程中两个参数a 和b ,是双曲线的定形条件,确定了其值,方程也即确定.并且有b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别.(2)焦点F 1,F 2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型,若x 2的系数为正,则焦点在x 轴上,若y 2的系数为正,则焦点在y 轴上.(3)在双曲线的标准方程中,因为a ,b ,c 三个量满足c 2=a 2+b 2,所以长度分别为a ,b ,c 的三条线段恰好构成一个直角三角形,且长度为c 的线段是斜边,如图所示.2.对双曲线定义的理解设M (x ,y )为双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的任意一点,左、右焦点分别为F 1,F 2.若点M 在双曲线的右支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若点M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a .因此得到|MF 1|-|MF 2|=±2a ,这与椭圆的定义中|MF 1|+|MF 2|=2a 是不同的.[注意] 双曲线定义中||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.3.双曲线方程的其他形式(1)当双曲线的焦点所在坐标轴不易确定时可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B =1.因此,当A >0时,。
双曲线的定义及标准方程
双曲线的定义及标准方程双曲线是一种重要的数学曲线,它在数学和物理学中有着广泛的应用。
双曲线的定义及标准方程是我们学习和理解双曲线的基础,下面我们将对双曲线的定义及标准方程进行详细的介绍。
首先,让我们来了解一下双曲线的定义。
双曲线是平面上一类特殊的曲线,它的形状类似于两条相交的直线。
双曲线有两个分支,分别向无穷远处延伸,因此双曲线是无界曲线。
双曲线的两个分支在无穷远处趋近于两条平行的渐近线,这也是双曲线与其他曲线的明显区别之一。
接下来,我们来看一下双曲线的标准方程。
双曲线有两种标准方程,分别是横轴为对称轴和纵轴为对称轴的情况。
当双曲线的横轴为对称轴时,它的标准方程为,$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别为横轴上的半轴长和纵轴上的半轴长。
这种双曲线的图像是沿着$x$轴打开或收缩的,两个分支分别位于$x$轴的两侧。
当双曲线的纵轴为对称轴时,它的标准方程为,$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$,同样,$a$和$b$分别为纵轴上的半轴长和横轴上的半轴长。
这种双曲线的图像是沿着$y$轴打开或收缩的,两个分支分别位于$y$轴的两侧。
双曲线的标准方程可以帮助我们更好地理解双曲线的性质和特点。
通过标准方程,我们可以确定双曲线的几何特征,如焦点、渐近线等重要信息。
总之,双曲线是一种重要的数学曲线,它在数学、物理学等领域有着广泛的应用。
双曲线的定义及标准方程是我们理解和研究双曲线的基础,通过学习双曲线的定义及标准方程,我们可以更好地掌握双曲线的性质和特点,为进一步深入学习和应用双曲线打下坚实的基础。
高中双曲线知识点
高中双曲线知识点在高中数学中,双曲线是一个重要的曲线类型,理解和掌握双曲线的相关知识对于解决数学问题和应对考试都具有重要意义。
接下来,咱们就来详细聊聊高中双曲线的那些事儿。
一、双曲线的定义平面内到两个定点 F₁、F₂的距离之差的绝对值等于常数 2a(2a <|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距,记为 2c。
需要注意的是,当 2a =|F₁F₂|时,轨迹是以 F₁、F₂为端点的两条射线;当 2a >|F₁F₂|时,轨迹不存在。
二、双曲线的标准方程1、焦点在 x 轴上的双曲线标准方程为:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2= a^2 + b^2\),焦点坐标为\((\pm c, 0)\)。
2、焦点在 y 轴上的双曲线标准方程为:\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2= a^2 + b^2\),焦点坐标为\((0, \pm c)\)。
这里的 a 表示双曲线的实半轴长,b 表示双曲线的虚半轴长,c 表示半焦距。
三、双曲线的几何性质1、范围对于焦点在 x 轴上的双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),x 的取值范围是\(x \leq a\)或\(x \geq a\);y 的取值范围是 R。
对于焦点在 y 轴上的双曲线\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\),y 的取值范围是\(y \leq a\)或\(y \geq a\);x 的取值范围是 R。
2、对称性双曲线关于 x 轴、y 轴和原点都对称。
3、顶点焦点在 x 轴上的双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\)的顶点坐标为\((\pm a, 0)\);焦点在 y 轴上的双曲线\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)的顶点坐标为\((0, \pm a)\)。
双曲线相关公式总结大全
双曲线相关公式总结大全双曲线是二次函数的一种,其图像为两支分别向左右无限延伸的曲线,且这两支曲线在坐标原点处对称。
双曲线在数学、物理、工程和计算机等领域中都有广泛的应用,因此掌握双曲线的相关公式非常重要。
本文将对双曲线相关公式进行总结,帮助读者更好地理解和应用双曲线。
一、基本概念1. 双曲线方程双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中 a 和 b 分别为双曲线的横轴半轴长和纵轴半轴长。
2. 对称轴双曲线的对称轴为直线 $y=0$。
3. 渐近线双曲线存在两条渐近线,分别为 $y=\frac{b}{a}x$ 和 $y=-\frac{b}{a}x$。
4. 焦点和准线双曲线有两个焦点 F1 和 F2,它们和双曲线的准线距离相等,且准线在对称轴上方,焦点在对称轴的上方。
二、性质1. 双曲线是一种对称曲线,对称轴为 $y=0$。
2. 双曲线图像被横轴、纵轴和两条渐近线所限定。
当 $x$ 趋于正无穷或负无穷时,$y$ 趋近于0。
当 $y$ 趋于正无穷或负无穷时,$x$ 趋近于无穷大。
3. 双曲线有两个焦点,与双曲线的准线距离相等。
4. 双曲线的渐近线斜率为 $\frac{b}{a}$。
5. 双曲线的离心率为 $\epsilon=\sqrt{1+\frac{b^2}{a^2}}$,且$\epsilon>1$。
6. 双曲线的曲率半径为 $r=\frac{a^2}{b}$。
三、常用公式1. 双曲线的面积公式双曲线的面积可以通过定积分求解,公式为:$S=\int_{-a}^{a}\sqrt{a^2+x^2}\cdot\frac{b}{a}dx=b\int_{-a}^{a}\frac{\sqrt{a^2+x^2}}{a}dx=2b\left[\sqrt{a^2+x^2}\ln\left( x+\sqrt{a^2+x^2}\right)-a\ln\left(\sqrt{a^2}+a\right)\right]_{-a}^{a}=4b\left(\sqrt{a^2}+\ln\frac{2a}{a+\sqrt{a^2}}\right)$2. 双曲线的周长公式双曲线的周长公式为:$L=4a\int_{0}^{\infty}\sqrt{1+\left(\frac{b}{a}\right)^2\operator name{sech}^2 t}dt=4aE(\frac{b}{a})$,其中 $E(x)$ 是第一类椭圆积分。
双曲线的标准方程
双曲线的标准方程双曲线是解析几何中的一类二次曲线,具有许多特殊的几何和代数性质。
本文将详细介绍双曲线的标准方程及其性质。
1. 双曲线的定义双曲线是指一组点P和一个点F,满足从P到F到一个定点D的距离差的绝对值等于一个定值e,即PF - PD = e。
双曲线可以通过椭圆的定义进行推导。
如果从椭圆上的固定点F到点P的距离之和等于一个定值2a,那么从F到P的距离差将等于2a - 2PF,即PF - PD = e,其中e = 2a - 2c,c为椭圆的其中一个焦点到椭圆中心的距离。
因此,双曲线可以看作是一个椭圆的镜像,是的焦点位置沿着中心轴移动了一段距离,从而形成的一组点。
2. 双曲线的标准方程双曲线的标准方程通常写作:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)这里的a和b分别是椭圆的半轴。
对于双曲线的方程,可以进一步推导出其他形式。
例如,将x和y交换,在方程中加上常数c,可以得到:-y^2/a^2 + x^2/b^2 = c这种形式叫做横向双曲线;另一种形式是纵向双曲线:y^2/a^2 - x^2/b^2 = 1这里的a和b是椭圆的半轴。
3. 双曲线的几何性质双曲线有一些有趣的几何性质,如下所示:(1) 双曲线具有两个分离的分支,这两个分支无穷远处相交于双曲线的渐近线。
(2) 双曲线的渐近线是其方程中不等于0的项所对应的直线。
(3) 双曲线对称于其两条渐近线。
(4) 双曲线移动或旋转后仍然是双曲线。
(5) 两个相交的双曲线组成了双曲线族。
(6) 双曲线上的点到两个焦点的距离之差等于常数e。
4. 双曲线的代数性质双曲线也有许多有趣的代数性质,例如:(1) 双曲线是一类二次曲线,它们的方程可以写成x^2 + y^2 + Ax + By + C = 0的形式。
(2) 双曲线的法线与其渐近线的夹角相等。
(3) 双曲线的切线与两个焦点之间的连线垂直。
(4) 不同的双曲线是正交的。
双曲线及其标准方程
双曲线及其标准方程学科:数学教学内容:双曲线及其标准方程【基础知识精讲】1.双曲线的定义平面内与两定点F 1、F 2的距离差的绝对值是常数(大于零小于|F 1F 2|)的点的轨迹叫双曲线.两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示.常数用2a 表示.(1)若|MF 1|-|MF 2|=2a 时,曲线只表示焦点F 2所对应的一支双曲线. (2)若|MF 1|-|MF 2|=-2a 时,曲线只表示焦点F 1所对应的一支双曲线.(3)若2a=2c 时,动点的轨迹不再是双曲线,而是以F 1、F 2为端点向外的两条射线. (4)若2a >2c 时,动点的轨迹不存在. 2.双曲线的标准方程22a x -22b y =1(a >0,b >0)焦点在x 轴上的双曲线;22a y -22bx =1(a >0,b >0)焦点在y 轴上的双曲线. 判定焦点在哪条坐标轴上,不像椭圆似的比较x 2、y 2的分母的大小,而是x 2、y 2的系数的符号,焦点在系数正的那条轴上.本节学习方法:本节要紧数学思想和方法:方程思想,利用双曲线的定义等条件求双曲线方程.常用特定系数法、定义法和轨迹法等.双曲线和椭圆一样,差不多上解析几何的重要部分,双曲线的学习可通过与椭圆对比去把握.它与直线、圆联系紧密,涉及到距离公式、弦长问题,面积公式及方程中的韦达定理等知识,也是高考的重点内容. 【重点难点解析】1.双曲线的定义,标准方程与椭圆类似,本小节在数学思想和方法上没有新内容,学习中应着重对比椭圆与双曲线的相同点和不同点,专门是它们的不同点.2.与建立椭圆的标准方程一样,建立双曲线的标准方程是,从“平面内到两定点的距离差的绝对值是常数(与椭圆不同,那个常数要大于0且小于|F 1F 2|)的点M 的轨迹”那个双曲线的定义动身,推导出它的标准方程.推导过程说明,双曲线上任意一点的坐标都适合方程22a x -22b y =1;但关于坐标适合方程22a x -22by =1的点都在双曲线上,即完备性未加以证明. 例1 若方程m x -22+3m y 2-=1表示双曲线,则实数m 的取值范畴是( )A.-3<m <2或m >3B.m <-3或m >3C.-2<m <3D.-3<m <3或m >3分析 该方程表示双曲线,则x 2与y 2项的系数的符号相反,即(2-m)(|m |-3)<0,将问题转化为不等式的求解.答:A例2 求与椭圆252x +92y =1共焦点,且过点(32,7)的双曲线的方程.分析一 由题意知所求双曲线的焦点在x 轴上,且焦距为8,∴c=4,设所求双曲线方程为2216λ-x -22λy =1代入点(32,7),得λ2=7,故所求双曲线方程为92x -72y =1.分析二 运用与椭圆共焦点的曲线系方程.设所求双曲线方程为λ-252x +λ-92y =1,代入点(32,7),得λ=16或λ=-7(舍),故所求双曲线方程为92x -72y =1.例3 课本第108页习题8.3第一题:△ABC 一边的两个端点是B(0,6)和C(0,-6),另两边所在直线的斜率之积是94,求顶点A 的轨迹. 分析 其顶点A 的轨迹方程求得:362y -812x =1(x ≠0).若将问题一样化:B(0,a)、C(0,-a) k AB ·k AC =22b a ,则顶点A 的轨迹方程为:22a y -22b x =1(x ≠0).若B(bcot φ,acos φ)、C(-cotφ,-acsc φ).k AB ·k AC =22ba ,则顶点A 的轨迹会是如何样?反之,双曲线22a y -22b x =1(x ≠0)上任一点到B(0,a),C(0,-a)两点的连线的斜率之和,等于22b a ;若改变B 、C 的位置保持B 、C 两点关于原点对称于双曲线上,k AB ·k AC =22ba 是否成立.总之,同学们在学习过程中要多动手、多摸索,举一反三,做到“以点代面,以少胜多”.【难题巧解点拨】例1 一动圆与圆(x+3)2+y 2=1外切又与圆(x-3)2+y 2=9内切,求动圆圆心轨迹方程. 分析 如图,设动圆M 与⊙O 1外切于A ,与⊙O 2内切于B ,由位置关系可得数量关系:|MO 1|=|MA |+1 |MO 2|=|MB |-3 由|MA |=|MB |可得|MO 1|-|MO 2|=4 由定义可知M 点轨迹为双曲线的一支.解:如图,设动圆圆心M 坐标为M(x,y),圆M 与圆O 1外切于A ,与圆O 2内切于B ,则,MO 1=|MA |+1①,|MO 2|=|MB |-3②,①-②:|MO 1|-|MO 2|=4由双曲线定义知,M 点轨迹是以O 1(-3,0)O 2(3,0)为焦点2a =4的双曲线的右支 ∴b 2=32-22=5∴所求轨迹方程为:42x -52y =1(x ≥2)说明:在求轨迹方程时,要注意使用曲线的定义,现在的思路:位置关系(内切,外切)数量关系(|MO 1|=r+r 1,|MO 2|=r-r 2其中r 为动圆半径)曲线形状(写出标准方程),能够简化运算.同时应注意定义中是到两定点距离的绝对值,现在不含绝对值,要求|MO 1|>|MO 2|,因此是双曲线的右支,而不是整个双曲线.例2 过双曲线92x -162y =1的右焦点作倾角为45°的弦,求弦AB 的中点C 到右焦点F的距离,并求弦AB 的长.分析 将直线方程与双曲线方程联立,求出A 、B 两点的坐标,再求其中点,由两点的距离公式求出|CF |.解:∵双曲线的右焦点为F(5,0),直线AB 的方程为y =x-5,故消去y ,并整理得 7x 2+90x-369=0 ③此方程的两个根x 1、x 2是A 、B 两点的横坐标,设AB 的中心点C 的坐标为(x,y),则x =221x x +=2790-=-745.C 点的坐标满足方程②,故 y =-745-5=-780∴|CF |=22)780()7455(++=2(5+745) =7280又设A 点坐标为(x 1,y 1),B 点坐标为(x 2,y 2),则y 1=x 1-5,y 2=x 2-5. ∴y 1-y 2=x 1-x 2,|AB |=221221)()(y y x x -+-=221221)()(x x x x -+- =221)(2x x -=]4)[(221221x x x x -+ 由方程③知 x 1+x 2=-790,x 1·x 2=-7369 ∴|AB |=]71476498100[2+ =4936860=7192=2773 点评:利用韦达定理及两点间距离公式求弦长.【命题趋势分析】双曲线与直线、圆和椭圆联系紧密,涉及到距离公式、弦长及面积公式、方程中的韦达定理和判别式的运用;还涉及到弦的中点轨迹问题、中点弦问题,对称问题与最值问题等差不多上高考的重要内容.如“能力演练”中有许多曾是高考题或样题,同学们在学习中应该重基础知识和差不多的数学思想数学方法的运用.训练能力,创新思维,做到举一反三.触类旁通.【典型热点考题】例1 设F 1和F 2为曲线42x -y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则求△F 1PF 2的面积.分析一 依题意求出P 点的纵坐标,据面积公式运算△F 1PF 2的面积. 设P(x 1,y 1),由PF 1⊥PF 2得511+x y ·511-x y =-1即 y 21=5-x 21又 x 21-4y 21=4 联立解得y 1=±55 ∴21PF F S △=21|F 1F 2|·|y 1|=21·2c ·55 =1分析二 运用双曲线定义解题 由点P 在双曲线上,知||PF 1|-|PF 2||=4且|PF 1|2+|PF 2|2=20 联立解得|PF 1|·|PF 2|=2 ∴21PF F S △=21|PF 1|·|PF 2|=1 例2 已知l 1、l 2是过点P(-2,0)的两条互相垂直的直线,且l 1、l 2与双曲线y 2-x 2=1各有两个交点,分别为A 1、B 1和A 2、B 2.(1)求l 1的斜率k 1的取值范畴.(2)若|A 1B 1|=5|A 2B 2|;求l 1、l 2的方程.分析 设直线斜率为k ,联立方程组求解.(1)因为若l 1、l 2中有一条斜率不存在,就可推出另一条斜率为零而与双曲线不相交,因此l 1、l 2的斜率k 1、k 2均不为零.设l 1:y=k 1(x+2), l 2:y=-11k (x+2) 把它们代入双曲线方程分别得 (k 21-1)x 2+22k 21x+2k 21-1=0①(k 21-1)x 2-22x+k 21-2=0②当k 1=±1时,方程①、②均为一次方程不符合题意, 因此,当k 1≠±1时由①、②的判别式都大于零得⎪⎩⎪⎨⎧>->-041204122121k k k 1∈(-3,-33)∪(33,3)且k 1≠±1 (2)由①、②可知|A 1B 1| =211k +·212214)(x x x x -+=211k +·22121)1(412--k k |A 2B 2|=211k +·22121)1(412--k k∵|A 1B 1|=5|A 2B 2|∴解得 k 1=±2,k 2=±22 ∴所求直线方程为 l 1:y=2(x+2),l 2:y=-22(x+2) 或l 1:y=-2 (x+2),l 2:y=22(x+2). 例3 如图,给出定点A(a,0),(a >0)和直线l :x=-1.B 是直线l 上的动点,∠BOA 的角平分线交AB 于C.求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.分析 设B(-1,y 0),C(x,y),由角平分线的性质有CB AC =OB OA ,当y 0≠0时,又由平行线性质有CBAC =EDAE =BFFD =BFCE∴OBOA =EDAE =BFCE即有21y a+=1+-x x a =yy y -0 (易知y 与y 0-y 同号,0<x <a) 由21y a+=1+-x xa 得 a 2(x+1)2=(a-x)2(1+y 20) ① 又由1+-x x a =y y y -0得y 0=xa a -+1·y②由①、②消去y 0并整理得(1-a)x 2-2ax+(1+a)y 2=0 ③当y 0=0时易知点C 即为原点,现在x=0,y=0,亦满足③,故所求点C 的轨迹方程是:(1+a)x 2-2ax+(1+a)y 2=0(0≤x <a)④(1)当a=1时,方程为y 2=x(0≤x <1) 表示抛物线弧段.(2)当a ≠1时,④变形为22)1()1(a a a a x ---+2221a a y -=1(0≤x <a) 当0<a <1时,方程④表示椭圆弧段; 当a >1时,方程④表示双曲线一支的弧段.【同步达纲检测】A 级一、选择题 1.设θ∈(43π,π)则方程x 2·cos θ-y 2sec θ=1所表示的曲线是( ) A.焦点在x 轴上的双曲线 B.焦点在y 轴上的椭圆C.焦点在x 轴上的椭圆D.焦点在y 轴上的双曲线2.假如双曲线92x -y 2=1的两个焦点为F 1、F 2,A 是双曲线上一点,且|AF 1|=5,那么|AF 2|等于( )A.5+10B.5+210C.8D.113.与两圆x 2+y 2=1和x 2+y 2-8x+7=0都相切的圆的圆心轨迹是( ) A.两个椭圆 B.两条双曲线C.一条双曲线和一条直线D.一个椭圆与一条双曲线4.以椭圆32x +42y =1的焦点为顶点,以那个椭圆的长轴的端点为焦点的双曲线的方程是( )A.32x -y 2=1B.y 2-32x =1 C.32x -42y =1D. 32y -42x =15.设动点P 到定点F 1(-5,0)的距离与它到定点F 2(5,0)的距离的差等于6,则P 点轨迹方程是( )A. 92x -162y =1B. 92y -162x =1C. 92x -162y =1(x ≥3)D. 92y -162x =1(x ≤-3)二、填空题6.若椭圆mx 2+ny 2=1(0<m <n)和双曲线ax 2-by 2=1(a >0,b >0)有相同的焦点F 1、F 2,P 是两曲线的一个交点,则|PF 1|·|PF 2|= .7.过点A(-23,42)、B(3,-25)的双曲线的标准方程为 . 8.与双曲线16x 2-9y 2=-144有共同焦点,且过点(0,2)的双曲线方程为 . 三、解答题9.已知点A(3,0),圆C :(x+3)2+y 2=16,动圆P 与圆C 相外切并过点A ,求动圆圆心P 的轨迹方程.10.在双曲线x 2-y 2=1上求一点P ,使它到直线y=x 的距离为2.AA 级一、选择题1.直线l 过双曲线22a y -22bx =1的下方焦点F 1且与双曲线的下支交于A 、B 两点,F 2是双曲线的另一个焦点,且|AB |=m,则△ABF 2的周长为( )A.4a+mB.4a+2mC.4a-mD.4a-2m2.若曲线x 2-y 2=a 2与曲线(x-1)2+y 2=1恰好有三个不同的公共点,则实数a 的值只能是( )A.a=0B.a=±1C.0<|a |<1D.|a |>13.若a m x +32+am y -42=1表示双曲线,a 为负常数,则m 的取值范畴是( )A.(3a ,-4a) B.(4a ,-3a) C.(-∞,-4a )∪(3a,+∞)D.(- 3a ,4a )4.依次连接双曲线x 2-y 2=12与圆x 2+y 2=25的交点,则所成的图形是( ) A.三角形 B.菱形 C.矩形 D.正方形5.斜率为2的直线与双曲线2x 2-y 2=2交于P 、Q 两点,则线段PQ 的中点M 的轨迹方程是( )A.y=xB.y=x(|x |>2)C.y=x(|x |>22)D.y=x(|x |≥2 )二、填空题6.已知B(-5,0),C(5,0)是△ABC 的两个顶点,且sinB-sinC=53sinA,则顶点A 的轨迹方程是.7.已知双曲线22a x -22by =1(a >0,b >0)的弦AB 的中点为M ,O 为坐标原点,则直线OM和直线AB 的斜率的乘积为.8.关于x 的方程12 x =x+b 没有实数根,则实数b 的取值范畴是 . 三、解答题9.已知不论b 取何实数,直线y=kx+b 与双曲线x 2-2y=1总有公共点,试求实数k 的取值范畴.10.双曲线3x 2-y 2=1上是否存在关于直线=2x 对称的两点A 、B?若存在,试求出A 、B 两点的坐标;若不存在,说明理由.【素养优化训练】1.平面内有一条定线段AB ,其长度为4,动点P 满足|PA |-|PB |=3,O 为线段AB 的中点,则|OP |的最小值是( )A.1B.23C.2D.42.P 为双曲线C 上的一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( )A.直线B.圆C.椭圆D.双曲线3.给出下列曲线:①4x+2y-1=0;②x 2+y 2=3;③22x +y 2=1;④22x -y 2=1,其中与直线y=-2x-3有交点的所有曲线是( )A.①③B.②④C.①②③D.②③④4.若动圆P 与两定圆(x+5)2+y 2=1及(x-5)2+y 2=49都相内切或都相外切,则动圆圆心轨迹方程是( )A. 32x -42y =1B.32x -42y =1(x >0)C.92x -162y =1D.92x -162y =1(x >0)5.已知m,n 为两个不相等的非零实数,则方程mx-y+n=0与nx 2+my 2=mn 所表示的示意曲线是( )二、填空题6.已知双曲线x 2-32y =1,过点P(2,1)作直线交双曲线于A 、B 两点,并使P 为AB 的中点,则|AB |= .7.若圆C 过双曲线92x -162y =1的两焦点,且截直线y=-1所得弦长为8,则圆C 的方程为 .8.过点M(3,-1)且被点M 平分的双曲线42x -y 2=1的弦所在直线方程为 .三、解答题9.若双曲线y 2-x 2=1上的点P 与其焦点F 1、F 2的连线互相垂直,求P 点的坐标.10.设k 和r 是实数,且r >0,使得:直线y=kx+1既与圆x 2+y 2=r 2相切,又与双曲线x 2-y 2=r 2有两个交点.(1)求证:21r-k 2=1,且|k |≠1; (2)试问:直线y=kx+1能否通过双曲线x 2-y 2=42的焦点?什么缘故?【生活实际运用】活动1:求证直线y=kx+m 与双曲线22a x +22by =1相切的充要条件是:m 2=a 2·k-b 2若过双曲线上一点P(x 0,y 0)斜率为k 的切线为y=kx+y 0-kx 0,其中m=y 0-kx.且b 2x 20-a 2b 2,联立可解得斜率k=0202y a x b (y ≠0),代入切线方程可得过点P(x 0,y 0)双曲线的切线方程为20a x x -20byy =1 专门地,当y 0=0时亦合上面的方程.活动2:运用上面结论可求过双曲线22a x -22by =1上一点(x 0,y 0)的切线方程与法线方程,若双曲线方程为22a y -22bx =1时,过曲线上点(x 0,y 0)的切线和法线方程又是如何样?【知识验证实验】1.运用双曲线定义解方程||x-3|-|x+3||=2.解:该方程的解是以(-3,0),(3,0)为焦点,2为实轴长的双轴线与x 轴交点的横坐标,其方程为x 2-82y =1,令y=0得x=±1,即原方程的解为x=±1. 2.运用双曲线图形解无理不等式212-x >x+1解:令y 1=212-x ,y 2=x+1,即x 2-421y =1(y 1≥0),在同一坐标系中画出两图形,使得双曲线的部分在直线部分上方的x 的值为原不等式的解.故原不等式的解集为(-∞,-1). 【知识探究学习】1.设声速为a 米/秒,在相距10a 米的A 、B 两监听室中,听到一爆炸声的时刻差为6秒,且纪录到B 处的声强是A 处的4倍,若已知声速a=340米/秒,声强与距离的平方成反比,试确定爆炸点P 到AB 的中点M 的距离.解:以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴,建立直角坐标系,则A(-5a ,0),B(5a,0),P(x,y),|PA |-|PB |=6a ,到A 、B 两点距离差为6a 的点在双曲线,22)3(a x -22)4(a y =1(x ≥3a)上 ①, 又B 处的声强是A 处声强的4倍,∴|PA |2=4|PB |2,即(x+5a)2+y 2=4[(x-5a)2+y 2],3x 2+3y 2-50ax+75a 2=0 ②,由①、②消去y,得25x 2-150ax+81a 2=0,x=527a 或x=53a(舍去),y=5896a ,∴|PM |=22)5896()527(a a +=65a=34065(米), 答:P 点到AB 中点M 的距离为34065米.2.如图所示,某农场在P 处有一肥堆,今要把这堆肥沿道路PA 或PB 送到大田ABCD 中去,已知AP=100m ,PB=150m,∠APB=60°,能否在大田中确定一条界线,使位于界线一侧的点沿PA 送肥较近,而另一侧的点沿PB 送肥较近?如能,请确定这条界线.解题思路:大田ABCD 中的点分成三类:第一类设PA 送肥较近,第二类沿PB 送肥较近,第三类沿PA 和PB 送肥一样远近,第三类构成第一类、第二类点的界线,即我们所要求的轨迹,设以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立直角坐标系,设M 为界线所在曲线上的一点,则满足|PA |+|AM |=|PB |+|BM |,因此|MA |-|MB |=|PB |-|PA |=50.可知M 点的轨迹是以A 、B 为焦点的双曲线一支其方程可求得为6252x -37502y =1.(0≤y ≤60,25≤x ≤35)界线为双曲线在矩形中的一段.参考答案:【同步达纲检测】A 级1.D2.D3.C4.B5.C6. m 1-a17.42x -162y =1 8. 42y -212x =19.解:设P(x,y),依题意有|PC |=|PA |+4,∴P 点的轨迹是以C(-3,0),A(3,0)为焦点,且实轴长为4的双曲线的右支、其方程为42x -52y =1(x ≥2)10.解:设P(csc θ,cot θ),则2cot csc θ-θ=2∴,θθsin cos 1- =±2,∴tan 2θ=±2,由万能公式求得P(±45,±43)AA 级1.B2.A3.B4.C5.B6. 92x -162y =1(x <-3) 7. 22ab 8.(-∞,-1)∪[9,1]9.解:联立方程组⎩⎨⎧=-+=1222y x b kx y 消去y 得(2k 2-1)x 2+4kbx+2b 2+1=0,依题意有△=(4kb)2-4(2k 2-1)(2b 2+1)=-4(2k 2-2b 2-1)>0,对所有实数b 恒成立,∴2k 2-1<0,得-2k <k<22 10.解:设AB :y=-21x+m,代入双曲线方程得11x 2+4mx-4(m 2+1)=0,那个地点△=(4m)2-4×11[-4(m 2+1)]=16(2m 2+11)>0 恒成立,设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x 0,y 0,)则x 1+x 2=-11m4,∴x 0=-112m ,y 0=-21x 0+m=1112m ,若A 、B 关于直线y=2x 对称,则M 必在直线y=2x 上,∴1112m =-114m得m=1,由双曲线的对称性知,直线y=-21x 与双曲线的交点的A 、B 必关于直线y=2x 对称.∴存在A 、B 且求得A(112,-111),B(-112,111)【素养优化训练】1.B2.B3.D4.C5.C6.43374 7.x 2+(y-4)2=41 8.3x+4y-5=0 9.解:设P(x,y),∵F 1(0,-2),F 2(0, 2),∴1PF k =x y 2+,2PF k =xy 2-,∵x y 2+·x y 2-=-1,即x 2+y 2=1,又y 2-x 2=1,∴x=±22,y=±26,∴P 的坐标为(22,26),(22,-26),(-22,26)和(-22,-26) 10.解(1)因为直线y=kx+1与圆x 2+y 2=r 2相切,因此有1k 10k 02++-•=r,∴2k11+=r 2,∵r 2≠0,∴21r-k 2=1,又由于直线y=kx+1与双曲线x 2-y 2=r 2相交,故交点坐标(x,y)满足方程组⎩⎨⎧=-+=2221r y x kx y ②①,将①代入②得(1-k 2)x 2-2kx-(1+r 2)=0 ③,因直线与双曲线有两个交点,且对任意实数k ,直线不平行y 轴,故③有两个不同的实数根,因此1-k 2≠1,∴|k |≠1(2)双曲线x 2-y 2=r 2的过点是F 1(-2r,0),F 2(2r,0),若直线y=kx+1过点F 1,则 -2rk+1=0,即k=r21-,又由(1)结论21r -k 2=1得k 2=1与|k |≠1矛质.故直线y=kx+1不可能过双曲线x 2-y 2=r 2的左焦点,同理可得,直线y=kx+1也不可能过双曲线x 2-y 2=r 2的右焦点.。
(完整版)双曲线及其标准方程详解
2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1 (a >0,b >0)焦点坐标 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系c 2=a 2+b 2想一想:如何判断方程x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程 【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.② ①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c =5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c = 3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||sin sin ||||210522||sin ||21262BC AB A C BC AB a RR AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).由两点间距离公式得|MF|=(3-4)2+(±15-0)2=4.。
双曲线其标准方程
焦点与顶点关系
双曲线的焦点到顶点的距离等于c,其中a为横轴长度,b 为纵轴长度,c² = a² + b²。
双曲线的切线性质
切线斜率
对于双曲线上的任意一点P,其切线的斜率k满足k = -e²/((1+e²)(1-e²))。其中e为离心率。
双曲线及其标准方程
• 双曲线的定义 • 双曲线的几何性质 • 双曲线的标准方程 • 双曲线的应用 • 双曲线的扩展知识
目录
01
双曲线的定义
平面上的双曲线
平面上的双曲线由两条开口不 相同的抛物线组成,它们关于x 轴或y轴对称。
双曲线的两个顶点位于x轴或y 轴上,顶点之间的距离称为焦 距。
双曲线的实轴和虚轴分别与x轴 和y轴重合。
双曲线的渐近线
• 渐近线:双曲线有两条渐近线,它们是直线,与 双曲线无限接近但不相交。渐近线的斜率等于离 心率。
双曲线的对称性
• 对称性:双曲线具有对称性,它关于原点对称,也关于两 个渐近线对称。
03
双曲线的标准方程
焦点在x轴上
第一季度
第二季度
第三季度
第四季度
总结词
当双曲线的焦点位于x 轴上时,其标准方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$, 其中$a$和$b$是常数, 分别表示双曲线的实半 轴和虚半轴的长度。
空间中的双曲面
空间中的双曲面是一种三维几何 图形,由两个开口的旋转抛物面 组成,它们关于x轴、y轴或z轴
对称。
双曲面的两个顶点位于x轴、y轴 或z轴上,顶点之间的距离称为
焦距。
双曲面的实轴和虚轴分别与x轴、 y轴或z轴重合。
知识讲解_双曲线及其标准方程_基础
双曲线及其标准方程【学习目标】 1.知识与技能:从具体情境中抽象出双曲线的模型;掌握双曲线的定义、标准方程及几何图形;能正确推导双曲线的标准方程.2.过程与方法:学生亲自动手尝试画图、发现双曲线的形成过程进而归纳出双曲线的定义、图像和标准方程.3.情感态度与价值观:了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用,进一步感受数形结合的基本思想在解析几何中的作用.【要点梳理】要点一:双曲线的定义把平面内到两定点、的距离之差的绝对值等于常数(大于零且小于)的点的集合叫作双曲线. 1F 2F 12F F 定点、叫双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距. 1F 2F 要点诠释:1. 双曲线的定义中,常数应当满足的约束条件:常数=,这可以借助于三角形中边的相1212PF PF F F -<关性质“两边之差小于第三边”来理解;2. 若常数分别满足以下约束条件,则动点的轨迹各不相同:若 常数=(常数),则动点轨迹仅表示双曲线中靠焦点的一支; 1212PF PF F F -<0>2F 若 常数=(常数),则动点轨迹仅表示双曲线中靠焦点的一支. 2112PF PF F F -<0>1F 若 常数=,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点); 1212PF PF F F -=若 常数=,则动点轨迹不存在;1212PF PF F F ->若 常数=,则动点轨迹为线段F 1F 2的垂直平分线.12=0PF PF -要点二:双曲线的标准方程 1. 双曲线的标准方程2. 标准方程的推导如何建立双曲线的方程?根据求曲线方程的一般步骤,可分为4步:建系、设点、列式、化简. (1)建系取过焦点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立平面直角坐标系.(2)设点设M (x ,y )为双曲线上任意一点,双曲线的焦距是2c (c >0),那么F 1、F 2的坐标分别是(-c ,0)、(c ,0). (3)列式设点M 与F 1、F 2的距离的差的绝对值等于常数2a .由定义可知,双曲线就是集合:P ={M ||M F 1|-|M F 2||=2a }={M |M F 1|-|M F 2|=±2a }.∵ 12||||MF MF ==2a =±(4)化简将这个方程移项,得2a =±两边平方得:22222()44()x c y a x c y ++=±-+化简得:2cx a -=±两边再平方,整理得:①()()22222222ca x a y a c a --=-(以上推导完全可以仿照椭圆方程的推导) 由于方程①形式较复杂,继续化简.由双曲线定义, 即,所以. 22c a ,c a ,220c a -,令,222(0)c a b b -=,代入上式得:, 222222b x a y a b -=两边同除以,得:22a b 即,其中. 22221x y a b -=(0,0)a b >>222c a b =+这就是焦点在轴的双曲线的标准方程.x 要点诠释:若在第(1)步中以“过焦点F 1、F 2的直线为y 轴,线段F 1F 2的垂直平分线为x 轴建立平面直角坐标系”,就可以得到焦点在y 轴的双曲线方程:,其中.22221y x a b -=(0,0)a b >>222c a b =+3. 两种不同双曲线的相同点与不同点定义平面内到两定点、的距离之差的绝对值等于常数(大于零1F 2F 且小于)的点的集合12F F 图形标准方程 22221x y a b -=(0,0)a b >> 22221y x a b -=(0,0)a b >>不 同 点焦点坐标, ()10F c ,()20F c ,,()10F c ,()20F c ,a 、b 、c 的关系222c a b =+相 同 点 焦点位置的判断哪项为正,项的未知数就是焦点所在的轴要点诠释:1.当且仅当双曲线的对称中心在坐标原点,对称轴是坐标轴,双曲线的方程才是标准方程形式. 此时,双曲线的焦点在坐标轴上.2.双曲线标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由双曲线本身所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c >a ,c >b ,且c 2=b 2+a 2.3.双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x 2、y 2的系数,如果x 2项的系数是正的,那么焦点在x 轴上;如果y 2项的系数是正的,那么焦点在y 轴上.4.对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上.要点三:椭圆、双曲线的区别和联系 1. 椭圆、双曲线的标准方程对照表:椭圆双曲线图象定义 根据|MF 1|+|MF 2|=2a 根据||MF 1|-|MF 2||=2a a 、b 、c 关系a 2-c 2=b 2(a 最大) (a >c >0,b >0)c 2-a 2=b 2(c 最大) (0<a <c ,b >0)标准方程,(焦点在x 轴) 22221x y a b +=,(焦点在y 轴) 22221y x a b +=其中a >b >0,(焦点在x 轴) 22221x y a b -=,(焦点在y 轴) 22221y x a b -=其中a >0,b >0,a 不一定大于b )标准方程的 统一形式 221x y m n+=(当时,表示椭圆;当时,表示双曲线)0,0,m n m n >>≠0mn <2. 方程Ax 2+By 2=C (A 、B 、C 均不为零)表示双曲线的条件方程Ax 2+By 2=C可化为,即,221Ax By C C+=221x y C C A B+=所以只有A 、B 异号,方程表示双曲线. 当时,双曲线的焦点在x 轴上; 0,0C CA B ><当时,双曲线的焦点在y 轴上. 0,0C CA B<>要点四:求双曲线的标准方程①待定系数法:由题目条件确定焦点的位置,从而确定方程的类型,设出标准方程,再由条件确定方程中的参数、、的值. 其主要步骤是“先定型,再定量”;a b c ②定义法:由题目条件判断出动点的轨迹是什么图形,然后再根据定义确定方程.要点诠释:若定义中“差的绝对值”中的绝对值去掉,点的集合成为双曲线的一支,先确定方程类型,再确定参数a 、b ,即先定型,再定量. 若两种类型都有可能,则需分类讨论.【典型例题】类型一:双曲线的定义例1.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( )A .22197x y +=B .=1(y >0)22197x y -=C . 或22197x y -=22179x y -=D . (x >0)22197x y -=【答案】 D【解析】 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点,实轴长为6的双曲线的右支,其方程为:(x >0)22197x y -=【总结升华】对于双曲线的定义必须抓住两点:一是平面内到两个定点的距离之差的绝对值是一个常数,二是这个常数要小于,若不满足这些条件,则其轨迹不是双曲线,而是双曲线的一支或射线或轨迹不12||F F 存在.举一反三:【变式1】已知定点F 1(-2,0)、F 2(2,0),平面内满足下列条件的动点P 的轨迹为双曲线的是()A .|PF 1|-|PF 2|=±3B .|PF 1|-|PF 2|=±4C .|PF 1|-|PF 2|=±5D .|PF 1|2-|PF 2|2=±4【答案】A【变式2】已知点F 1(0,-13)、F 2(0,13),动点P 到F 1与F 2的距离之差的绝对值为26,则动点P 的轨迹方程为()A .y =0B .y =0(x ≤-13或x ≥13)C .x =0(|y |≥13)D .以上都不对【答案】C【变式3】动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆C .抛物线D .双曲线 【答案】A例2. 已知P 是双曲线上一点,双曲线的两个焦点,且求值2216436x y -=12,F F 1||17,PF =2||PF 【解析】利用双曲线的定义求解.【答案】在双曲线中,故.221164x y -=8,6,a b ==10c =由P 是双曲线上一点,得. 12||||||16PF PF -=∴或 2||1,PF =2||33,PF =又得2||2,PF c a ≥-=2||33,PF =【总结升华】本题容易忽略这一条件,而得出错误的结论或 2||2,PF c a ≥-=2||1,PF =2||33PF =举一反三:【变式1】双曲线的两个焦点为,点在双曲线上,若,求的面221916x y -=12,F F P 12PF PF ⊥1 2 PF F ∆积.S 【答案】16【解析】中,a 2=9,b 2=16,c 2=9+16=25,所以a =3,b =4,c =5.221916x y -=设,,由题意可知,11PF r =22PF r = 112212-6100.r r r r ⎧=⎪⎨+=⎪⎩,所以,()2221112111--=322r r r r r r ⎡⎤=+⎣⎦因为是直角三角形,所以.1 2 PF F ∆111==162S r r 【变式2】过双曲线的左焦点与左支相交的弦的长为,另一焦点22221(0,0)x y a b a b-=>>1F AB m 2F ,求的周长.2ABF ∆【解析】∵,且,2121||||2,||||2AF AF a BF BF a -=-=11||||AF BF m +=∴ 2211||||2||2||4AF BF a AF a BF a m +=+++=+∴的周长为:.2ABF ∆22||||||42AF BFAB a m ++=+【变式3】已知点P (x ,y ),则动点P 的轨迹4=是()A .椭圆B .双曲线中的一支C .两条射线D .以上都不对类型二:双曲线的标准方程例3.判断下列方程是否表示双曲线,若是,求出 a ,b ,c .; ; ; 22(1)142x y -=22(2)4936y x -=22(3)638x y -=; ; .822(5)134x y +=22(6)1515x y +=-【思路点拨】先看方程能否等价转化为双曲线的标准形式,若不能,则不能表示双曲线;反之,找出相应的a 2,b 2,再利用c 2= a 2+b 2得到c 的值. 【解析】(1)能.该双曲线焦点在x 轴上,=4,=2,=6,所以a =2,b,c. 2a 2b 222=c a b +(2)能.双曲线可化为:,它的焦点在x 轴上,=9,=4,=13. 所以a =3,b =2,c.22194x y -=2a 2b 222=c a b +(3)能.双曲线可化为:,它的焦点在x 轴上,=,=,=4,所以a,b2214833x y -=2a 432b 83222=c a b +c =2.(4)能. 该方程表示到定点(-5,0)和(5,0)的距离为8,由于8<10,所以表示双曲线,其中a =4,c =5,则=9,所以b =3.. 222=b c a (6)不能表示双曲线,这是椭圆的方程. (7)不能表示双曲线,该曲线不存在.【总结升华】化双曲线为标准方程的步骤为: 22Ax By C +=(1)常数化为1:两边同除以,将双曲线化为 ; C 221Ax By C C +=(2)分子上的系数化为1:22x y ,利用,将双曲线化为 ;1b a b a ⨯=221x y C C A B +=(3)注意符号:若双曲线的焦点在x 轴,则将双曲线化为; 221x y C C A B =若双曲线的焦点在y 轴,则将双曲线化为. 221y x C C BA=【变式1】双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .,0) B .,0)C .0) D .0)【答案】C【解析】将双曲线方程化为标准方程为,22=11y x ,∴a 2=1,b 2=,∴12c =故右焦点的坐标为0).【变式2】若双曲线8kx 2-ky 2=8的一个焦距为6,则k =______.【答案】 1±【解析】当k >0时,双曲线的标准方程为,此时,解得k =1; 22118x y k k =22183a b c k k =====,当k <0时,双曲线的标准方程为,此时,解得k =-22181x y k k=22813a b c k k =====,1.所以k 的值为.1±例4.已知双曲线的两个焦点F 1、F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的标准方程.【解析】由题意得2a =24,2c =26.∴a =12,c =13,b 2=132-122=25.当双曲线的焦点在x 轴上时,双曲线的方程为;22114425x y -=当双曲线的焦点在y 轴上时,双曲线的方程为.22114425y x -=【总结升华】求双曲线的标准方程就是求a 2、b 2的值,同时还要确定焦点所在的坐标轴.双曲线所在的坐标轴,不像椭圆那样看x 2、y 2的分母的大小,而是看x 2、y 2的系数的正负.举一反三:【高清课堂:双曲线的方程 357256 例1】 【变式1】求适合下列条件的双曲线的标准方程:(1)已知两焦点,双曲线上的点与两焦点的距离之差的绝对值等于8.12(5,0),(5,0)F F -(2)双曲线的一个焦点坐标为,经过点.(0,6)-(5,6)A -【答案】(1);(2).221169x y -=2211620y x -=【变式2】求与双曲线有公共焦点,且过点的双曲线的标准方程.221164x y -=2)【答案】221128x y -=【解析】解法一:依题意设双曲线方程为-=122a x 22by 由已知得,22220a b c +==又双曲线过点2)241b-=∴ 222222012481a b a b b ⎧+=⎧=⎪⇒⎨=-=⎪⎩故所求双曲线的方程为.221128x y -=解法二:依题意设双曲线方程为,221164x yk k-=-+将点代入,解得,2)221164x y k k -=-+4k =所以双曲线方程为.221128x y -=类型三:双曲线与椭圆例5.讨论表示何种圆锥曲线,它们有何共同特征. 221259x y k k+=--【思路点拨】 观察题目所给方程是关于x ,y 的二次形式,故只可能表示椭圆或双曲线.对于:221x y m n+=当时,方程表示椭圆;当时,方程表示双曲线. 0,0,.m n m n >⎧⎪>⎨⎪≠⎩0mn <【解析】(1)当k <9时,25-k >0,9-k >0,所给方程表示椭圆,由于25-k >9-k ,c 2=a 2-b 2=16,所以这些椭圆的焦点都在x 轴上,且焦点坐标都为(-4,0)和(4,0).(2)当9<k <25时,25-k >0,9-k <0,所给方程表示双曲线,其标准方程为. 221259x y k k -=--此时,a 2=25-k ,b 2=k -9,c 2=a 2+b 2=16,这些双曲线也有共同的焦点(-4,0),(4,0). (3)当k >25时,所给方程没有轨迹.【总结升华】椭圆和双曲线都是二次曲线系,注意它们各自定义在方程中的区别,它们a ,b ,c 的关系区别.举一反三:【变式1】设双曲线方程与椭圆有共同焦点,且与椭圆相交,在第一象限的交点为A ,且A2212736x y +=的纵坐标为4,求双曲线的方程.【答案】22145y x -=【变式2】若双曲线(M >0,n>0)和椭圆(a >b >0)有相同的焦点F 1,F 2,M 为两221x y m n -=221x y a b+=曲线的交点,则|MF 1|·|MF 2|等于________.【答案】 a -M【解析】由双曲线及椭圆定义分别可得|MF 1|-|MF 2|=①±|MF 1|+|MF 2|= ②②2-①2得,4|MF 1|·|MF 2|=4a -4M , ∴|MF 1|·|MF 2|=a -M .类型四:双曲线方程的综合应用【高清课堂:双曲线的方程 357256例2】例7. 已知A ,B 两地相距2000 M ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且已知当时的声速是330 M /s ,求炮弹爆炸点所在的曲线方程.【解析】由题知爆炸点P 应满足, ||||330413202000PA PB -=⨯=<又所以点P 在以AB 为焦点的双曲线的靠近于B 点的那一支上. ||||,PA PB >以直线AB 为x 轴,线段AB 的中垂线为y 轴建立平面直角坐标系,得21320,22000a c ==660,1000,a c ==∴222564400b c a =-=∴点P 所在曲线的方程是 221(0)435600564400x y x -=>【总结升华】应用问题,应由题干抽象出数学问题即数学模型,在解决数学问题之后,再回归到实际应用中.举一反三:【变式】设声速为 米/秒,在相距10a 米的A ,B 两个观察所听到一声爆破声的时间差为6秒,且记a 录B 处的声强是A 处声强的4倍,若已知声速 米/秒,声强与距离的平方成反比,试确定爆炸340a =点P 到AB 中点M 的距离.【答案】米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1 (a >0,b >0)焦点坐标 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系c 2=a 2+b 2想一想:如何判断方程x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程 【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.② ①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c =5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c = 3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||sin sin ||||210522||sin ||21262BC AB A C BC AB a RR AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).。