北师大版八年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)
北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](提高)
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BE BF BF=⎧⎨=⎩ ∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C.【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵精品文档用心整理∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.资料来源于网络仅供免费交流使用。
北师大版八年级数学下册各章知识点汇总
第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线角平分线1、线段的垂直平分线。
北师大版八年级下册数学[《因式分解》全章复习与巩固(基础)知识点整理及重点题型梳理]
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《因式分解》全章复习与巩固(基础)【学习目标】1.理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算;2.掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法;3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b-=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、(2016•长春模拟)先将代数式因式分解,再求值:()()222x a y a ---,其中05152a .,x .,y ===-.【思路点拨】原式变形后,提取公因式化为积的形式,将字母的值代入计算即可.【答案与解析】解:原式=()()()()22222x a y a a x y -+-=-+,当05152a .,x .,y ===-时,原式=()()0523215..-⨯-=-.【总结升华】此题主要考查了提取公因式法分解因式.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值.【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解.【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0. 【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+ B .229a y -+ C .229a y - D .229a y -- 【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码.【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.举一反三:【变式】利用因式分解计算(1)16.9×18+15.1×18(2) 22683317-【答案】解:(1)16.9×18+15.1×18=()116.915.18⨯+ =13248⨯= (2)22683317-=()()683317683317+⨯-=1000×366=366000.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y--- (3)()()22224222x xy y x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a 2+b 2)2﹣4a 2b 2=(a 2+b 2+2ab )(a 2+b 2﹣2ab )=(a+b )2(a ﹣b )2;(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1=(x ﹣y )2﹣2(x ﹣y )+1 =(x ﹣y ﹣1)2.5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______; (2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+. 【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答;(2)根据(1)的结论直接作答.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2.(1)求证:B -A >0,并指出A 与B 的大小关系;(2)指出A 与C 哪个大?说明理由.解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-,=()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .。
北师大版八年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习等腰三角形(基础)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
北师大版八年级数学下册 线段的垂直平分线---巩固提高(提高) 含答案解析
线段的垂直平分线——巩固练习(提高)【巩固练习】一.选择题1.如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE 的值是()A、6B、4C、6D、42.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、33.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确4.如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B5.如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB6.(2015秋•陆丰市校级期中)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上 B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上 D.点P在边BC的垂直平分线上二.填空题7.(2016•长沙)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC 于点E,则△BCE的周长为.8.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________ .9.(2015•西宁)如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为______________.10.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_____ 度.11.如图:已知,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________ .12.如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD 的周长为_________ cm.三.解答题:13.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2-GE2=EA2.14.(2015秋•扬州校级月考)如图,∠ACB=90°,AC=BC,D为△ABC外一点,且AD=BD,DE⊥AC交CA的延长线于E点.求证:DE=AE+BC.15.(2016秋•农安县期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【答案与解析】一.选择题1.【答案】C;【解析】∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.2.【答案】B;【解析】∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.3.【答案】D;【解析】∵CP是线段AB的中垂线,∴△ABC是等腰三角形,即AC=BC,∠A=∠B,作AC、BC之中垂线分别交AB于D、E,∴∠A=∠ACD,∠B=∠BCE,∵∠A=∠B,∴∠A=∠ACD,∠B=∠B CE,∵AC=BC,∴△ACD≌△BCE,∴AD=EB,∵AD=DC,EB=CE,∴AD=DC=EB=CE.4【答案】B;【解析】A、根据线段垂直平分线的性质,得AE=BE.故该选项正确;B、因为AE>AC,AE=BE,所以AC<BE.故该选项错误;C、根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°.则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.故该选项正确;D、根据C的证明过程.故该选项正确.5.【答案】A;【解析】∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.6.【答案】D;【解析】解:∵PB=PC,∴P在线段BC的垂直平分线上,故选D.二.填空题7.【答案】13;【解析】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.8.【答案】6;【解析】∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.9.【答案】;【解析】解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.10.【答案】60;【解析】由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB的垂直平分线上的点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.11.【答案】8;【解析】∵△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,∴AD=BD,AE=CE∴△ADE的周长=AD+AE+DE=BD+DE+CE=BC=8.△ADE的周长等于8.12.【答案】13;【解析】∵AC的垂直平分线DE交BC于D,E为垂足∴AD=DC,AC=2AE=6,∵△ABC的周长为19,∴AB+BC=13(cm).∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13(cm).三.解答题13.【解析】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°-90°-45°=45°=∠ABC∴DB=DC,∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,∵在△DBH和△DCA中,BDH CDABD CDHBD ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,∵∠ABC=45°,CD⊥AB(∠CDB=90°),∴∠BCD=45°=∠ABC,∴DB=CD,∵F为BC的中点,∴DF垂直平分BC,∴BG=CG,∵∠ABE=∠CBE,BE⊥AC,∴EC=EA,在Rt△CGE中,由勾股定理得:CG2-GE2=CE2,∵CE=AE,BG=CG,∴BG2-GE2=EA2.14. 【解析】证明:连接CD,∵AC=BC,AD=BD,∴C在AB的垂直平分线上,D在AB的垂直平分线上,∴CD是AB的垂直平分线,∵∠ACB=90°,∴∠ACD=∠ACB=45°,∵DE⊥AC,∴∠CDE=∠ACD=45°,∴CE=DE,∴DE=AE+AC=AE+BC.15.【解析】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(提高)
第四章 因式分解(提高)提公因式法(提高)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式. 【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.m m(1);(2); (3);(4); (5).【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断. 【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解. 【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A. B.C. D.【答案】B ;类型二、提公因式法分解因式2、(2019春•山亭区期中)把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3. 【思路点拨】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案; (2)直接提取公因式﹣4ab ,进而分解因式得出答案. 【答案与解析】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ] =2m (m ﹣n )(5m ﹣n );()a x y ax ay +=+2221(2)(1)(1)x xy y x x y y y ++-=+++-24(2)(2)ax a a x x -=+-221122ab a b =222112a a a a ⎛⎫++=+ ⎪⎝⎭21a 1a243(2)(2)3a a a a a -+=-++2244(2)x x x ++=+11(1)x x x+=+2(1)(1)1x x x +-=-(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 举一反三:【变式】(2019春•濉溪县期末)下列分解因式结果正确的是( ) A.a b+7ab ﹣b=b (a +7a ) B.3x y ﹣3xy+6y=3y (x ﹣x ﹣2) C.8xyz ﹣6x y =2xyz (4﹣3xy ) D.﹣2a +4ab ﹣6ac=﹣2a (a ﹣2b+3c ) 【答案】D.解:A 、原式=b (a +7a+1),错误;B 、原式=3y (x ﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确. 故选D .类型三、提公因式法分解因式的应用3、若、、为的三边长,且,则按边分类,应是什么三角形? 【答案与解析】解:∵∴当时,等式成立,当时,原式变为,得出, ∴∴是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型. 4、对任意自然数(>0),是30的倍数,请你判定一下这个说法的正确性,并说说理由. 【答案与解析】 解:∵为大于0的自然数,∴为偶数,15×为30的倍数, 即是30的倍数.222222222a b c ABC ∆()()()()a b b a b a a c a b a c -+-=-+-ABC ∆()()()()a b b a b a a c a b a c -+-=-+-()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--a b =a b ≠a b a c -=-b c =a b b c ==或ABC ∆n n 422n n +-()44422222221152n n n n n n +-=⨯-=-=⨯n 2n2n422n n +-【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式. 举一反三: 【变式】说明能被7整除.【答案】 解:所以能被7整除.5、(2019春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x y+xy 的值. 【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可. 【答案与解析】解:∵xy=—3,x+y=2,∴x y+xy =xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 【巩固练习】 一.选择题1. (2019春•北京期末)把多项式2x 3y ﹣x 2y 2﹣6x 2y 分解因式时,应提取的公因式为( )A .x 2yB .xy 2C .2x 3yD .6x 2y2. 观察下列各式:①;②;③;④;⑤;⑥.其中可以用提公因式法分解因式的有()A .①②⑤B .②④⑤C .②④⑥D .①②⑤⑥ 3. 下列各式中,运用提取公因式分解因式正确的是( )A. B.C. D.4. 分解因式的结果是( )A. B.C. D.422n n +-422n n +-200199198343103-⨯+⨯200199198343103-⨯+⨯()198219833431073=-⨯+=⨯200199198343103-⨯+⨯2222abx adx -2226x y xy +328421m m m -++3223a a b ab b ++-()()()22256p q x y x p q p q +-+++()()()24ax y x y b y x +--+()()()()22222a x a a x -+-=-+()32222x x x x x x ++=+()()()2x x y y x y x y ---=-()2313x x x x --=--2322212n n n x x x +++-+()22nx xx -+()2322n x x x -+()2122n xx x +-+()322n x x x -+5. (2019秋•西城区校级期中)把﹣6x y ﹣3x y ﹣8x y 因式分解时,应提取公因式( ) A.﹣3x y B.-2x yC.x yD.﹣x y6. 计算的结果是( )A. B.-1 C. D.-2二.填空题7. 把下列各式因式分解:(1)__________.(2)_________________.8. 在空白处填出适当的式子: (1);(2)9. 因式分解:______________.10. (2019•黔南州)若ab=2,a ﹣b=﹣1,则代数式a 2b ﹣ab 2的值等于___________. 11. .12. (2019春•深圳校级期中)若m ﹣n=3,mn=﹣2,则2m 2n ﹣2mn 2+1的值为_____________.三.解答题 13.已知:,求的值. 14. (2019春•北京校级月考)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x 3﹣x 2+m 有一个因式是2x+1,求m 的值.解法一:设2x 3﹣x 2+m=(2x+1)(x 2+ax+b ),则:2x 3﹣x 2+m=2x 3+(2a+1)x 2+(a+2b )x+b比较系数得,解得,∴解法二:设2x 3﹣x 2+m=A•(2x+1)(A 为整式) 由于上式为恒等式,为方便计算了取,32222322222222()2011201022+-2010220102-2168a b ab --=()()2232xx y x y x ---=()()()()111x y y x --=-+()()238423279ab b c a bc +=+()()()x b c a y b c a a b c +--+----=2011201222_________________-=213x x +=43261510x x x ++2×=0,故 .(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.15. 先分解因式(1)、(2)、(3),再解答后面问题; (1)1++(1+); (2)1++(1+)+;(3)1++(1+)++ 问题:.先探索上述分解因式的规律,然后写出:1++(1+)+++…+分解因式的结果是_______________..请按上述方法分解因式:1++(1+)+++…+(为正整数). 【答案与解析】 一.选择题1. 【答案】A ;【解析】2x 3y ﹣x 2y 2﹣6x 2y=x 2y (2x ﹣y ﹣6). 2. 【答案】D【解析】①;②;⑤;⑥.所以可以用提公因式法分解因式的有①②⑤⑥.3. 【答案】C ;【解析】;.4. 【答案】C ;5. 【答案】D .【解析】解:﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3=﹣x 2y 2(6x+3+8y ),因此﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3的公因式是﹣x 2y 2. 故选D .6. 【答案】C ; 【解析】.二.填空题7. 【答案】(1);(2)a a a a a a a ()21a +a a a a ()21a +a ()31a +a a a a a ()21a +a ()31a +()20121a +b a a a a ()21a +a ()31a +()1na +n ()abx adx axb d -=-()222623x y xy xy x y +=+()()()()()222225656p q x y xp q p q p q x y x p q ⎡⎤+-+++=+-++⎣⎦()()()()()2244ax y x y b y x x y a x y b ⎡⎤+--+=+--⎣⎦()()()()22222a x a a x -+-=--()322221x x x x x x ++=++()()()()2011201020102010201020102010222222222+-=+-⨯-=+-⨯=-()821ab a -+()()221xx y x --【解析】.8. 【答案】(1);(2); 【解析】. 9. 【答案】;【解析】 .10.【答案】-2;【解析】∵ab=2,a ﹣b=﹣1,∴a 2b ﹣ab 2=ab (a ﹣b )=2×(﹣1)=﹣2. 11.【答案】;【解析】.12.【答案】-11;【解析】解:∵2m 2n ﹣2mn 2+1=2mn (m ﹣n )+1将m ﹣n=3,mn=﹣2代入得: 原式=2mn (m ﹣n )+1 =2×(﹣2)×3+1 =﹣11.故答案为:﹣11.三.解答题 13.【解析】解:14.【解析】()()()()()()22222323221xx y x y x x x y x x y x x y x ---=---=--1y -2427b ()()()()()()111111y x x y y x y y -+=-+-=---()()1x y bc a -++-()()()x b c a y b c a a b c +--+----()()()x b c a y b c a b c a =+--+-++-()()1x y b c a =-++-20112-()201120122011201120112011222222122-=-⨯=-=-43261510x x x ++()()()43322222222226699691169333331313x x x x x x x x x x x x x x x x x x x =++++=++++=⨯+⨯+=+=+=⨯=解:设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),取x=1,得1+m+n ﹣16=0①, 取x=2,得16+8m+2n ﹣16=0②, 由①、②解得m=﹣5,n=20. 15.【解析】解:(1)原式=;(2)原式=;(3)原式=.结果为:,.原式= = ==……=平方差公式(提高) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.()()()2111a a a ++=+()()()()()()31111111a a a a a a a a ++++=+++=+⎡⎤⎣⎦()()()21111a a a a a a ⎡⎤++++++⎣⎦()()()1111a a a a a =+++++⎡⎤⎣⎦()()()2111a a a =+++()41a =+a ()20131a +b ()()()1111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()21111......1n a a a a a a a -⎡⎤++++++++⎣⎦()()()33111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()111111n n a a a a -++++=+()()22a b a b a b -=+-(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——平方差公式1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解.【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:a b a b 2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-(1); (2)(3); (4);【答案】解:(1)原式(2)原式= = (3)原式 (4)原式2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4). 【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】(2019•杭州模拟)先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.【答案】解:原式=(2a+3b+2a ﹣3b )(2a+3b ﹣2a+3b )=4a×6b=24ab ,当a=,即ab=时,()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x yx x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-原式=24ab=4.类型二、平方差公式的应用3、(2019春•新化县期末)在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x4﹣y4=(x﹣y)(x+y)(x2+y2),当x=9,y=9时,x﹣y=0,x+y=18,x2+y2=162,则密码018162.对于多项式4x3﹣xy2,取x=10,y=10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x3﹣xy2进行因式分解,得到4x3﹣xy2=x(2x+y)(2x﹣y),然后把x=10,y=10代入,分别计算出2x+y=及2x﹣y的值,从而得出密码.【答案与解析】解:原式=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10,2x+y=30,2x﹣y=10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.4、(2019春•成武县期末)阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣. 【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【巩固练习】一.选择题1.(2019•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22. (2019春•东平县校级期末)下列多项式相乘,不能用平方差公式的是( )A.(﹣2y ﹣x )(x+2y )B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y+x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C. D. 4. 下列各式,其中因式分解正确的是( )①;② ③④A.1个B.2个C.3个D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( )A .61,63B .61,65C .63,65D .63,676. 乘积应等于( ) ()()2292323a b a b a b -+=+-()()5422228199a ab a a b a b -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭A .B .C .D . 二.填空题 7. ; . 8. 若,将分解因式为__________. 9. 分解因式:_________. 10. 若,则是_________.11. (2019春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .12.(2019•烟台)已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 . 三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)14.(2019秋•蓟县期末)已知(2a+2b+3)(2a+2b ﹣3)=72,求a+b 的值.15.设,,……,(为大于0的自然数) (1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】一.选择题1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】; ; 5121211202311_________m m a a +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422n x x x x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a ba b a a b a b a b -=+-=++-. 4. 【答案】C ;【解析】①②③正确. .5. 【答案】C ; 【解析】6. 【答案】C ;【解析】 二.填空题7. 【答案】;【解析】.8. 【答案】;【解析】. 9. 【答案】;【解析】原式=. 10.【答案】4;【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212*********=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111......11112233991010314253108119 (223344991010)1111121020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m a a a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x ++-=+-=-=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=216﹣1+1,=216因为216的末位数字是6,所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y=﹣2,x +y=2, ∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4.三.解答题13.【解析】解:(1)-1998×2000 = (2)(3)14.【解析】解:已知等式变形得:[2(a+b )+3][2(a+b )﹣3]=72,即4(a+b )2﹣9=72,整理得:(a+b )2=,开方得:a+b=±.15.【解析】解:(1)又为非零的自然数,∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256. 为一个完全平方数的2倍时,为完全平方数.21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (215050)=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、分解因式:(1); (2);(3); (4).【答案与解析】解:(1).(2).(3)()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 22363ax axy ay -+-42242a a b b -+2222216(4)x y x y -+4224816a a b b -+222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-2222216(4)x y x y -+.(4).【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1).(2).【答案】解:(1)原式 .(2)原式 .2、(2019•大庆)已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3.【思路点拨】先提公因式ab ,再根据完全平方公式进行二次分解,然后带入数据进行计算即可得解.【答案与解析】解:a 3b+2a 2b 2+ab 3= ab (a 2+2ab+b 2)= ab (a+b )2将a+b=3,ab=2代入得,ab (a+b )2=2×32=18.故代数式a 3b+2a 2b 2+ab 3的值是18.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号. 举一反三:【变式】若,是整数,求证:是一个完全平方数.【答案】解:22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+x y ()()()()4234x y x y x y x y y +++++()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令∴上式即 类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如添上什么就可以成为完全平方式? 因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:.【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如 2254x xy y u ++=2422222(2)()(55)u u y y u y x xy y ++=+=++()()()()4222234(55)x y x y x y x y y x xy y +++++=++()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-2x bx +2222()2222b b b x bx x x x ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭2352x x +-2252352333x x x x ⎛⎫+-=+- ⎪⎝⎭222555233663x x ⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25493636x ⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2257366x ⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦575736666x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭()1323x x ⎛⎫=+- ⎪⎝⎭【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决.类型三、完全平方公式的应用4、(2019春•娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x ﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵无论x 取什么数,都有(x ﹣1)2的值为非负数,∴(x ﹣1)2的最小值为0,此时x=1,∴3(x ﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为、、,且满足, 求证:.【答案】解:所以a b c 222166100a b c ab bc --++=2a c b +=22216610a b c ab bc --++()()()22222269251035a ab b b bc c a b b c =++--+=+--()()22350a b b c +--=()()2235a b b c +=-所以所以因为△ABC 的三边长分别为、、,,所以,矛盾,舍去.所以.【变式2】(2019春•萧山区期中)若(2019﹣x )(2019﹣x )=2019,则(2019﹣x )2+(2019﹣x )2= .【答案】4032.解:∵(2019﹣x )(2019﹣x )=2019,∴[(2019﹣x )﹣(2019﹣x )]2=(2019﹣x )2+(2019﹣x )2﹣2(2019﹣x )(2019﹣x )=4,则(2019﹣x )2+(2019﹣x )2=4+2×2019=4032. 【巩固练习】一.选择题1. 若是完全平方式,则的值为( )A .-5B .7C .-1D .7或-12.(2019•富顺县校级模拟)下列各式中,不能用完全平方公式分解的个数为( ) ①x 2﹣10x +25;②4a 2+4a ﹣1;③x 2﹣2x ﹣1;④;⑤.A .1个B .2个C .3个D .4个3. 如果是一个完全平方公式,那么是( ) A. B. C. D.4. (2019•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c2﹣ab ﹣bc ﹣ac 的值为( )A . 0B . 1C . 2D . 35. 若,则的值为( )A.12B.6C.3D.06. 若为任意实数时,二次三项式的值都不小于0,则常数满足的条件是( )A. B. C. D.二.填空题7.(2019•赤峰)分解因式:4x 2﹣4xy +y 2= .8. 因式分解:=_____________. 9. 因式分解: =_____________.10. 若,=_____________.3(5)a b b c +=±-28a c b b c a +==-或a b c c a b -<8b c a b =-<2a c b +=22(3)16x m x +-+m 24a ab m --m 2116b 2116b -218b 218b -3a b +=222426a ab b ++-x 26x x c -+c 0c ≥9c ≥0c >9c >()222224m nm n +-2221x x y ++-224250x y x y +-++=x y +11. 当取__________时,多项式有最小值_____________.12.(2019•宁波模拟)如果实数x 、y 满足2x 2﹣6xy+9y 2﹣4x+4=0,那么= .三.解答题13.若,,求的值.14.(2019春•怀集县期末)已知a+=,求下列各式的值: (1)(a+)2;(2)(a ﹣)2;(3)a ﹣.15. 若三角形的三边长是,且满足,试判断三角形的形状.小明是这样做的:解:∵,∴.即∵,∴.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: 为三角形的三条边,且,试判断三角形的形状.【答案与解析】一.选择题1. 【答案】D ;【解析】由题意,=±4,.2. 【答案】C ;【解析】② ③ ⑤ 不能用完全平方公式分解.3. 【答案】B ;【解析】,所以,选B. 4. 【答案】D ;【解析】解:由题意可知a ﹣b=﹣1,b ﹣c=﹣1,a ﹣c=﹣2,所求式=(2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ca ),=[(a 2﹣2ab+b 2)+(b 2﹣2bc+c 2)+(a 2﹣2ac+c 2)],=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2],x 2610x x ++44225a b a b ++=2ab =22a b +a b c 、、2222220a b c ab bc ++--=2222220a b c ab bc ++--=2222(2)(2)0a ab b c bc b -++-+=()()220a b b c -+-=()()220,0a b b c -≥-≥,a b b c a b c ====即a b c 、、2220a b c ab bc ac ++---=3m -71m =-或222211142222a ab m a a b b a b ⎛⎫⎛⎫--=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭2144m b -==[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D .5. 【答案】A ;【解析】原式=. 6. 【答案】B ;【解析】,由题意得,,所以.二.填空题 7. 【答案】(2x ﹣y )2 【解析】4x 2﹣4xy +y 2=(2x )2﹣2×2x •y +y 2=(2x ﹣y )2.8. 【答案】; 【解析】.9. 【答案】【解析】. 10.【答案】1;【解析】,所以,. 11.【答案】-3,1;【解析】,当时有最小值1. 12.【答案】.【解析】解:可把条件变成(x 2﹣6xy+9y 2)+(x 2﹣4x+4)=0,即(x ﹣3y )2+(x ﹣2)2=0,因为x ,y 均是实数,∴x﹣3y=0,x ﹣2=0,∴x=2,y=,∴==.故答案为. 三.解答题13.【解析】解:将代入 ()222623612a b +-=⨯-=()()22639x x c x c -+=-+-90c -≥9c ≥()()22m n m n +-()()()()()22222222222422m n m n m n mn m n mn m n m n +-=+++-=+-()()11x y x y +++-()()()222221111x x y x y x y x y ++-=+-=+++-()()2222425210x y x y x y +-++=-++=2,1x y ==-1x y +=()2261031x x x ++=++3x =-44224422222a b a b a b a b a b ++=++-()22222a b a b =+-2ab =()222225a b a b +-=∵≥0,∴=3.14.【解析】解:(1)把a+=代入得:(a+)2=()2=10; (2)∵(a+)2=a 2++2=10,∴a 2+=8,∴(a ﹣)2=a 2+﹣2•a•=8﹣2=6;(3)a ﹣=±=±.15.【解析】 解:∵∴∴∴,该三角形是等边三角形.十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.()()2222222259a b a b +-=+=22a b +22a b +2222222220a b c ab bc ac ++---=()()()2222222220a ab bb bc c a ac c -++-++-+=()()()2220a b b c a c -+-+-=000a b b c a c -=⎧⎪-=⎨⎪-=⎩a b c ==pq x q p x +++)(22. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式:【答案与解析】解:原式=【总结升华】将视作常数,就以为主元十字相乘可解决.举一反三:【变式】分解因式:【答案】解:原式2、分解因式:【思路点拨】该题可以先将看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解:因为22(1)(6136)x a x a a++--+()()()212332x a x a a++---()()()()23322332x a x ax a x a=--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-a x23345xy y x y++--2(34)35(35)(1)y x y x y x y=+-+-=+-+()2a a-所以:原式=[-2][ -12] ==【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:;【答案】解:原式3、分解下列因式(1) (2)【答案与解析】解:(1)令, 则原式(2)令, 原式【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事. 类型二、分组分解法4、分解因式:【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成,第4、5项→.()()()22221214a a a a a a ----=--22(2)(12)a a a a ----()()()()1234a a a a +-+-222(3)2(3)8x x x x ----()()223432x x x x =---+()()()()4112x x x x =-+--22(1)(2)12x x x x ++++-22(33)(34)8x x x x +-++-21x x t ++=222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++-2(2)(1)(5)x x x x =+-++23x x m +=2(3)(4)820(5)(4)m m m m m m =-+-=+-=+-222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++222332x xy y x y -++-+2()x y -3()x y -【答案与解析】解:原式【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)(2)(3)【答案】解:(1)原式;(2)原式;(3)原式.【变式2】(2019秋•昌江区校级期末)分解因式:.【答案】解:= ==.类型三、拆项或添项分解因式5、(2019春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax+a 2)﹣8a 2﹣a 2=(x+a )2﹣9a 2=[(x+a )+3a][(x+a )﹣3]2()3()2x y x y =-+-+(1)(2)x y x y =-+-+22a b ac bc -++225533a b a b --+23345xy y x y ++--()()()()()a b a b c a b a b a b c =+-++=+-+()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-2242244241a b c ab ac bc ++--+-2242244241a b c ab ac bc ++--+-()()()2222444241a b ab ac bcc +-+-++-()()()()222222211b a c b a c c -+-++-()()222121b a c b a c -++-+-=(x+4a )(x ﹣2a )像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x 2+2ax ﹣3a 2分解因式.(2)直接填空:请用上述的添项法将方程的x 2﹣4xy+3y 2=0化为(x ﹣ )•(x ﹣ )=0并直接写出y 与x 的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y 与x 的关系式求值.【答案与解析】解:(1)x 2+2ax ﹣3a2 =x 2+2ax+a 2﹣4a2 =(x+a )2﹣4a2 =(x+a+2a )(x+a ﹣2a )=(x+3a )(x ﹣a );(2)x 2﹣4xy+3y2 =x 2﹣4xy+4y 2﹣y2 =(x ﹣2y )2﹣y2 =(x ﹣2y+y )(x ﹣2y ﹣y )=(x ﹣y )(x ﹣3y );x=y 或x=3y ;故答案为:y ;3y(3)原式===﹣, 若x=y ,原式=﹣2;若x=3y ,原式=﹣. 【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【巩固练习】一.选择题1. (2019秋·惠民县期末)如果多项式能因式分解为,那么下列结论正确的是 ( ).A.=6B.=1C.=-2D.=32. 若,且,则的值为( ). A.5 B.-6 C.-5 D.63. 将因式分解的结果是( ).2322mx nx --()()32x x p ++m n p mnp ()2230x a b x ab x x +++=--b a <b ()()256x y x y +-+-A. B.C. D.4.(滨湖区校级期中)把多项式1+a+b+ab 分解因式的结果是( )A .(a ﹣1)(b ﹣1)B .(a+1)(b+1)C .(a+1)(b ﹣1)D .(a ﹣1)(b+1)5. 对运用分组分解法分解因式,分组正确的是( )A. B.C. D.6.如果有一个因式为,那么的值是( )A. -9B.9C.-1D.1二.填空题7.(2019•黄冈模拟)分解因式: .8. 分解因式:= .9.分解因式的结果是__________.10. 如果代数式有一因式,则的值为_________. 11.若有因式,则另外的因式是_________.12. 分解因式:(1);(2)三.解答题13. 已知,, 求的值.14. 分解下列因式:(1)(2)(3)(4) 15.(2019•巴南区一模)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.()()23x y x y +++-()()23x y x y +-++()()61x y x y +-++()()61x y x y +++-224293x x y y +--22(42)(93)x x y y ++--22(49)(23)x y x y -+-22(43)(29)x y x y -+-22(423)9x x y y +--3233x x x m +-+()3x +m 2242y xy x --+=224202536a ab b -+-5321x x x -+-a 3223a a b ab b --+()a b -3)32(2-+-+k x k kx mn m x m n x -+-+22)2(0x y +=31x y +=2231213x xy y ++()()128222+---a a a a 32344xy xy x y x y -++42222459x y x y y --43226a a a +-如:ax+by+bx+ay=(ax+bx )+(ay+by )=x (a+b )+y (a+b )=(a+b )(x+y )2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2. 【答案与解析】一.选择题1. 【答案】B ;【解析】, ∴,解得.2. 【答案】B ;【解析】,由,所以. 3. 【答案】C ;【解析】把看成一个整体,分解.4. 【答案】B ;【解析】解:1+a+b+ab=(1+a )+b (1+a )=(1+a )(1+b ).故选:B .5. 【答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得,与第二组有公因式可提取,所以分组合理,C 与D 各组均无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【答案】A ;【解析】由题意当时,代数式为零,解得.二.填空题()()()223233222x x p x p x p mx nx ++=+++=--22,32p p n =-+=-1n =()()23065x x x x --=-+b a <6b =-()x y +()()()()25661x y x y x y x y +-+-=+-++()()2323x y x y +-23x y-3x =-9m =-7. 【答案】. 【解析】解:===.8. 【答案】; 【解析】原式9. 【答案】;【解析】原式.10.【答案】16;【解析】由题意当时,代数式等于0,解得. 11.【答案】; 【解析】.12.【答案】;; 【解析】;.三.解答题13.【解析】解:由,解得 所以,原式.14.【解析】解:(1)原式;()()22x y x y -+--2242y xy x --+()2224y xy x -+-()24x y --()()22x y x y -+--()()256256a b a b -+--()224202536a ab b=-+-()()()22256256256a b a b a b =--=-+--()()()22111x x x x +--+()()()()()()()23222321111111x xx x x x x x x =-+-=-+=+--+4x =16a =()()a b a b -+()()322322a a b ab b aa b b a b --+=---()()2a b a b =-+()()31kx k x +-+()()x m x m n --+()()2(23)331kx k x k kx k x +-+-=+-+()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦()()22231213334x xy y x y x y y ++=+++0x y +=31x y +=12y =21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭()()()()()()22261223a a a a a a a a =----=+-+-。
北师大版八年级数学下册 《图形的平移与旋转》全章复习与巩固(提高)巩固练习 含答案解析
《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。
北师大版八年级数学下册全部知识点
第一章一元一次不等式和一元一次不等式组不等式:一般地,用符号“<”或“≤”,“>”或“≥”连接的式子叫做不等式。
不等式的基本性质:1、不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
即:如果a>b,那么a+c>b+c。
2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
即:如果a>b,c>0,那么ac>bc。
3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
即:如果a>b,c<0,那么ac<bc。
不等式的基本性质还有:如果a>b,那么b<a。
称为不等式的可逆性。
如果a>b,b>c,那么a>c。
称为不等式的传递性。
不等式的解:在一个含有未知数的不等式中,能使不等式成立的未知数的值,叫做这个不等式的解。
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解的集合,叫做这个不等式的解集。
解不等式:求不等式解集的过程叫做解不等式。
一元一次不等式:只含有一个未知数,未知数的次数为1,并且系数不为零的不等式叫做一元一次不等式。
说明:(1)一次不等式的左右两边都必须是整式,如<2不是一元一次不等式。
(2)任何一个一元一次不等式经过变形,都可以化成ax+b>0或ax+b<0(a0)的形式,我们把这两种形式称为一元一次不等式的标准形式。
一元一次不等式的解法:1、去分母:根据不等式的基本性质2或3,不等式两边同乘各分式分母的最小公倍数,将分母约去。
注意如果所乘数为负数,不等号的方向要改变。
2、去括号:根据去括号法则,去掉不等式中的括号。
3、移项:根据不等式的基本性质1,将含有未知数的项移到等式的一边,已知项移到另一边。
注意移项要变号。
4、合并同类项:根据合并同类项法则,将含未知数的项和已知项分别合并。
5、系数化1:根据不等式的基本性质2或3,不等式两边同时除以未知数的系数,将未知数的系数化为1.注意如果除以负数,不等号的方向要改变。
北师大版八年级下册数学知识点必看
北师大版八年级下册数学知识点必看求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
下面是小编给大家整理的一些北师大版八年级下册数学知识点的学习资料,希望对大家有所帮助。
北师大版初二数学下册知识点归纳第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(完整版)北师大版八年级数学下册各章知识要点总结
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1.有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线角平分线1、线段的垂直平分线。
北师大版八年级(下)数学知识点归纳总结
第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。
定理2 全等三角形的对应角相等。
推论1 全等三角形的面积相等。
推论2 全等三角形的周长相等。
2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。
(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。
(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。
(三线合一) 推论 2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。
【说明】①等腰直角三角形的两个底角相等且等于45°。
②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b<a <2C④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A =180°—2∠B ,∠A =∠B =2180A∠-︒2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。
定理:有两个角相等的三角形是等腰三角形。
(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。
定理2 等边三角形的三个内角都相等,并且每个角都等于60°。
推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。
2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。
定理:三个角都相等的三角形是等边三角形。
最新北师大版八年级下册数学各章知识要点总结
最新北师大版八年级下册数学各章知识要点总结___版八年级数学下册各章知识点总结第一章三角形的证明全等三角形判定定理:1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
等腰三角形的性质:等腰三角形有两边相等(定义);两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形。
等腰三角形的判定:1.有两个角相等的三角形是等腰三角形(简写成“等角对等边”)。
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
直角三角形:1.直角三角形的性质:直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2.直角三角形判定:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.互逆命题、互逆定理:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
北师大版八年级下册数学各章知识要点总结
北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章阐发知识要点总结北师大版八年级数学下卷各章知识预备班要点总结第一章十元一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
1、能使不等式成立黎曼的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有兼顾不等式的解集合在一起,构成不等式的判别式.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式数列组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共定理部分。
6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是表达式.基本性质2:在等式的两边除以都乘以或相乘同一个数(除数不为0),所得的结果仍是表达式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向恒定.(注:移项要变号,但不等号不变。
)性质2:不等式的两边都约等于(或除以)同一个正数,不等号的方向维持不变.性质3:不等式的两边都约等于(或除以)同一个负数,不等号的思路改变.不等式的基本性质、若a;b,则ac;bc;、若a;b,c;0则ac;bc,若cc,则a;c四、解不等式组的方法:1、解出不等式的重心坐标。
2、在同一数轴表示不等式的解集。
3、读到不等式组的解集。
五、列一元一次不等式组解实际问题一回的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:1、求4x-6六、分解因式的方法:1、提公因式法。
2、运用公式法。
第三章分式注:1°对于任意一个分式,分母都不能为零.2°分式与整式不同的是:分式的指数函数中含有字母,整式的分母中不含字母.3°分式的值为零含两层意思:分母不等于零;分子等于零。
(AA中B≠0时,分式有意义;分式中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。
北师大版初二数学下册知识点归纳
北师大版初二数学下册知识点归纳学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。
这里给大家整理了一些有关北师大版初二数学下册知识点归纳,希望对大家有所帮助.北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(完整版)北师大版八年级数学下册知识点重点总结精选重点难点
第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc, c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc, cbc a <2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左 四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b) ①当a>0时,解为a b x>;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x <; 5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
(完整word版)北师大版初二数学下册知识点汇总,文档
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判判定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及素来角边对应相等的两个直角三角形全等〔HL〕二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等〔简写成“等边同等角〞〕。
推论 1:等腰三角形顶角的均分线均分底边并且垂直于底边,这就是说,等腰三角形的顶角均分线、底边上的中线、底边上的高互相重合。
〔三线合一〕推论 2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直均分线为对称轴的轴对称图形;三、等腰三角形的判断1.有关的定理及其推论定理:有两个角相等的三角形是等腰三角形〔简写成“等角同等边〞。
〕推论 1:三个角都相等的三角形是等边三角形。
推论 2:有一个角等于 60°的等腰三角形是等边三角形。
推论 3:在直角三角形中,若是一个锐角等于30 °,那么它所对的直角边等于斜边的一半。
2. 反证法:先假设命题的结论不成立,尔后推导出与定义、公义、已证定理或件相矛盾的结果,从而证明命题的结论必然成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,若是一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判断若是三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互抗命题、互逆定理在两个命题中,若是一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的抗命题.若是一个定理的抗命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理 .五、线段的垂直均分线角均分线1 、线段的垂直均分线。
北师大版八年级(下)册知识点复习
八年级(下)数学●北师大版知识点复习第一章:三角形的证明一,知识点一:等腰三角形○1,全等三角形的判定定理:定理1:两边及其夹角分别相等的两个三角形全等.(SAS定理)定理2:两角及其夹边分别相等的两个三角形全等.(ASA定理)定理3:三边分别对应相等的两个三角形全等.(SSS定理)定理4:两角分别相等且其中一组等角的对边相等的两个三角形全等.(AAS定理)○2,全等三角形的性质之一:全等三角形的对应边,对应角相等.○3,等腰三角形的性质:性质1:等腰三角形是轴对称图形.性质2:等腰三角形的两腰相等.性质3:等腰三角形的两底角相等(简述为:等边对等角)性质4:等腰三角形顶角的平分线,底边上的中线及底边上的高线互相重合.(三线合一定理)性质5:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高线也相等.○4,定理:等边三角形的三个内角都相等,并且每个内角都等于60°.○5,定理:有两个角相等的三角形是等腰三角形.(简述为:等角对等边)○6,等边三角形的判定定理:定理1:三个角都相等的三角形是等边三角形.定理2:有一个角等于60°的等腰三角形是等边三角形.○7,定理:在直角三角形,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.逆定理:在直角三角形中,如果直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.二,知识点二:直角三角形○1,直角三角形的判定定理:定理1:有两个角互余的三角形是直角三角形.定理2:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.(勾股定理逆定理)○2,直角三角形的性质定理:性质1:直角三角形的两个锐角互余.性质2:直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)○3,两个直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL定理或斜边,直角边定理)三,知识点三:线段的垂直平分线○1,性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.(这个距离指线段的长度)○2,判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(这个距离指线段的长度)四,知识点四:角平分线○1,性质定理:角平分线上的点到这个角的两边的距离相等.○2,判定定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.第二章:一元一次不等式与一元一次不等式组一,知识点一:不等关系概念:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.二,知识点二:不等式的基本性质不等式的基本性质:性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变.性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.三,知识点三:不等式的解集○1,概念:能使不等式成立的未知数的值,叫做不等式的解.○2,概念:一个含有未知数的不等式的所有解,组成这个不等式的解集.四,知识点四:一元一次不等式○1,概念:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.○2,解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.(注:第一种情况:当在不等式的两边同时乘以或除以同一个负数时,不等号的方向要改变;)五,一元一次不等式组○1,概念:一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.○2,概念:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.○3,找一元一次不等式组解集的口诀:大大取大,小小取小,大小小大中间找,大大小小找不到.第三章:图形的平移与旋转一,知识点一:图形的平移○1,概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.○2,平移不改变图形的形状,大小,只改变图形的位置.○3,一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.○4,确定一个图形平移后的位置需要:平移的方向,平移的距离两个条件.○5,在平面直角坐标系中,点(x,y)平移的关系:平移方向平移距离对应点坐标沿x轴方向a个单位长度(a>0)(x+a,y)(x-a,y)沿y轴方向(x,y+a)(x,y-a)二,知识点二:图形的旋转○1,概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.○2,性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.三,知识点三:中心对称○1,概念:如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.(指两个图形)○2,把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(指一个图形)○3,常见的中心对称图形有:线段,边数为偶数的正多边形,平行四边形,圆等等.第四章:因式分解一,知识点一:因式分解○1,概念:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.○2,因式分解必须分解到每个多项式不能分解为止.○3,因式分解是整式的恒等变形.二,知识点二:提公因式法○1,公因式:把多项式各项都含有的相同因式,叫做这个多项式的公因式.○2,概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.○3,注:当多项式第一项的系数是负数时,通常先提出“-”号,使括号内第一项的系数成为正数,在提出“-”号时,多项式的各项都要变号.三,知识点三:公式法○1,平方差公式:()()b a b a b a -+=-22○2,完全平方公式:()()⎪⎩⎪⎨⎧-=+-+=++22222222b a b ab a b a b ab a ○3,注意:公式中的b a ,可以是单个的数和字母,也可以是单项式或多项式.四,因式分解的一般步骤○1,如果多项式的各项含有公因式,那么先提公因式;○2,如果多项式的各项不含有公因式,那么可以尝试运用公式法因式分解;○3,如果上述方法都不能因式分解,可以尝试先整理多项式,然后分解;○4,因式分解必须分解到每一个因式都不能再分解为止.○5,因式分解步骤简述如下:首项有“负”必先提,各项有“公”先提“公”,每项都提莫漏“1”,括号里面分到底.第五章:分式与分式方程一,知识点一:认识分式○1,概念:一般地,用A,B 表示两个整式,A÷B 可以表示成BA 的形式,如果B 中含有字母,,那么称BA为分式(B ≠0).○2,⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧≠===≠.000;0;0B A B A B B AB B A必须同时满足分式无意义的条件是:分式有意义的条件是:分式○3,分式基本性质文字叙述:分式的分子与分母都乘(或除以)同一个不等于0的整式,分式的值不变.数学符号:()0,≠÷÷=∙∙=m ma mb a b m a m b ab (当a,b,m 为多项式时,用括号括上)○4,约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(关键:找出分子,分母的公因式,当分子,分母为多项式时,要先把分式的分子与分母因式分解,最后约去公因式,化成最简分式)○5,找公因式的方法:()()⎩⎨⎧.2,1低次幂,因式取相同因式的最系数取最大公约数;○6,最简分式:分子和分母没有公因式的分式称为最简分式.(化简分式时,通常要使结果成为最简分式或者整式)二,知识点二:分式的乘除法○1,分式乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;数学语言:acbd cda b =∙分式除法法则:两个分式相除,把除式的分子分母颠倒位置后再与被除式相乘.数学语言:adbc dc a b cd ab =∙=÷○2,nn na b a b =⎪⎭⎫⎝⎛○3,⎩⎨⎧.)2(),1(也可以是多项式既可以是乘积的形式,,最后结果中的分母,成最简分式或整式;分式运算结果通常要化三,知识点三:分式的加减法○1,同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.acb ac a b ±=±○2,异分母的分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.acad bc ac ad ac bc c d a b ±=±=±○3,四,知识点四:分式方程○1,概念:分母中含有未知数的方程叫做分式方程.○2,增根:使原分式方程的分母为0的未知数的值叫做原方程的增根.()()()()()⎪⎪⎩⎪⎪⎨⎧.432,1确定最简公分母一般应先因式分解,再,如果分母是多项式,的一个因式;的指数作为最简公分母母中出现的字母连同它,把只在一个分式的分分母的一个因式;的最高次幂作为最简公同因式或因式分解后得到的相,把相同字母母的系数;小公倍数作为最简公分把各分式分母系数的最○3,因为解分式方程会产生增根,所以解分式方程必须验根.○4,解分式方程的一般步骤:第一步:去分母,把分式方程转化为整式方程(方法是:两边都乘最简公分母);第二步:解这个整式方程;第三步:验根;第四步:写出分式方程的根.第六章:平行四边形一,知识点一:平行四边形的性质○1,定义:两组对边分别平行的四边形叫做平行四边形.○2,性质1:平行四边形是中心对称图形,两条对角线的交点是它的对称中心.性质2:平行四边形的对边相等.性质3:平行四边形的对角相等.性质4:平行四边形的对角线互相平分.二,知识点二:平行四边形的判定○1,定理1:两组对边分别相等的四边形是平行四边形.○2,定理2:一组对边平行且相等的四边形是平行四边形.○3,定理3:对角线互相平分的四边形是平行四边形.三,知识点三:三角形的中位线○1,概念:连接三角形两边中点的线段叫做三角形的中位线.○2,三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.四,知识点四:多边形的内角和与外交角和○1,定理:n边形的内角和等于(n-2)●180°.○2,定理:多边形的外交和都等于360°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习等腰三角形(提高)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到以下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
(2)等腰三角形两底边上的中点到两腰的距离相等.(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.要点三、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.3. 含有30°角的直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 要点四、反证法在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题.一般证明步骤如下:(1)假定命题的结论不成立;(2)从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果;(3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.类型一、等腰三角形中的分类讨论1、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ).A.60° B.120° C.60°或150° D.60°或120°【答案】D;【解析】由等腰三角形的性质与三角形的内角和定理可知,等腰三角形的顶角可以是锐角、直角、钝角,然而题目没说是什么三角形,所以分类讨论,画出图形再作答.(1)顶角为锐角如图①,按题意顶角的度数为60°;(2)顶角为直角,一腰上的高是另一腰,夹角为0°不符合题意;(3)顶角为钝角如图②,则顶角度数为120°,故此题应选D.【总结升华】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是忽视了顶角为120°这种情况,把三角形简单的认为是锐角三角形.举一反三:【变式1】已知等腰三角形的周长为13,一边长为3,求其余各边.【答案】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.而由构成三角形的条件:两边之和大于第三边可知:3+3<7,故不能组成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【变式2】在△ABC中,∠A=40°,当∠B=时,△ABC是等腰三角形.【答案】40°、70°或100°提示:分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.类型二、等腰三角形的操作题2、如图,请将下列两个三角形分成两个等腰三角形.(要求标出每个等腰三角形的内角度数)【思路点拨】根据等腰三角形的判定定理在左图△ABC中的边BC上取一点D,使BD=AD即可;在右图△ABC中的边AC上取一点D,使BD=CD即可.【答案与解析】解:如图(1)所示:在BC上取一点D,使∠ADB=110°,∠ADC=70°,∠BAD=35°,∠CAD=40°,如图(2)所示:在AC上取一点D,使∠ABD=32°,∠CBD=16°,∠ADB=32°,∠BDC=148°.【总结升华】本题考查了等腰三角形的性质和判定、三角形的内角和定理等知识点,关键是根据题意画出图形,注意应先确定等腰三角形的各个角的度数,再根据度数画出图形.举一反三:【变式】(2015•温州模拟)如图,有甲,乙两个三角形,请你用一条直线把每一个三角形分成两个等腰三角形,并标出每个三角形各角的度数.【答案】解:如图1:直线把75°的角分成25°的角和50°的角,则分成的两个三角形都是等腰三角形;如图2,直线把120°的角分成80°和40°的角,则分成的两个三角形都是等腰三角形.类型三、等腰三角形性质与判定的综合应用3、(2016春•威海期末)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.【思路点拨】(1)连接BD由等腰三角形的性质和已知条件得出∠BAD=∠DAC=×120°=60°,再由AD=AB,即可得出结论;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA 证明△BDE≌△ADF,得出BE=AF.【答案与解析】(1)证明:连接BD,∵AB=AC,AD⊥BC,∴∠BAD=∠DAC=∠BAC,∵∠BAC=120°,∴∠BAD=∠DAC=×120°=60°,∵AD=AB,∴△ABD是等边三角形;(2)证明:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BD=AD∵∠EDF=60°,∴∠BDE=∠ADF,在△BDE与△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.【总结升华】本题考查了等腰三角形的性质、全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三:【变式】如图在Rt△ABC中,∠ACB=90°,∠B=30°,AD是∠BAC的平分线,DE⊥AB于点E,连接CE,则图中的等腰三角形共有个.【答案】4;提示:根据等腰三角形的判定,由已知可证∠BAD=∠CAD=∠B=30°,即证△ADB是等腰三角形;又证CD=DE,AE=AC,即证△CDE,△AEC是等腰三角形;再证ECB=∠B=30°,即证△BEC是等腰三角形.即图中的等腰三角形共有4个.4、如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F,求证:CE=CF.【思路点拨】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可.【答案与解析】证明:∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF.【总结升华】本题考查了直角三角形性质,等腰三角形的性质和判定,三角形的内角和定理,关键是推出∠CEF=∠CFE.举一反三:【变式】如图是由9个等边三角形拼成的六边形,现已知中间最小的等边三角形的边长是a,则围成的六边形的周长为()A. 30aB. 32aC. 34aD. 无法计算【答案】A;提示:设右下角第二个小的等边三角形的边长是x,则剩下的7个等边三角形的边长是x;x; x+a; x+a; x+2a ;x+2a; x+3a,根据题意得到方程2x=x+3a,求出x=3a,即可求出围成的六边形的周长.类型四、含30°角的直角三角形5、如图,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13m,求旗杆AB的高.【思路点拨】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD,再根据等角对等边的性质可得AD=CD,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【答案与解析】解:∵∠ACB=15°,∠ADB=30°,∴∠CAD=∠ADB-∠ACB=30°-15°=15°,即△CAD为等腰三角形,∴AD=CD=13,在△ADB中,∵AB⊥DB,∠ADB=30°,∴AB=12AD=12×13=6.5(m).【总结升华】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,熟记性质是解题的关键.举一反三:【变式】已知:如图,在Rt△ABC中,∠C=90°,∠BAD=12∠BAC,过点D作DE⊥AB,DE恰好是∠ADB的平分线,求证:CD=12 DB.【答案】解:∵DE⊥AB,∴∠AED=∠BED=90°,∵DE是∠ADB的平分线,∴∠3=∠4,又∵DE=DE,∴△BED≌△AED(ASA),∴AD=BD,∠2=∠B,∵∠BAD=∠2=12∠BAC,∴∠1=∠2=∠B,∴AD=BD,又∵∠1+∠2+∠B=90°,∴∠B=∠1=∠2=30°,在直角三角形ACD中,∠1=30°,∴CD= 12AD=12BD.类型五、反证法6、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.【思路点拨】先假设它们的对边相等,然后根据等腰三角形的性质得出假设不成立,从而证得原结论成立.【答案与解析】证明:假设它们所对的边相等;则根据等腰三角形的性质定理,“等边对等角”所以等它们所对的角也相等;这就与题设两个角不等相矛盾;因此假设不成立,故原结论成立.【总结升华】本题结合等腰三角形的性质考查反证法,解此题关键要懂得反证法的意义及步骤.举一反三:【变式】用反证法证明“三角形三个内角中至少有两个锐角”时应首先假设.【答案】三角形三个内角中最多有一个锐角.北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1.如图,在△ABC中,若AB=AC,BC=BD,AD=DE=EB,则∠A等于( ).A.30° B.36° C.45° D.54°2.用反证法证明:a,b至少有一个为0,应假设()A. a,b没有一个为0B. a,b只有一个为0C. a,b至多有一个为0D. a,b两个都为03. 如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个4. 等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半 C.90°减去顶角的一半D.90°减去底角的一半5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm6. 如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7二.填空题7.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.8. 用反证法证明“若|a|≠|b|,则a≠b.”时,应假设.9. 等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为________.10.(2015春•盐城校级月考)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm.动点D从点A出发,以每秒1cm的速度沿射线AC运动,当t= 时,△ABD为等腰三角形.11.如图,钝角三角形纸片ABC中,∠BAC=110°,D为AC边的中点.现将纸片沿过点D 的直线折叠,折痕与BC交于点E,点C的落点记为F.若点F恰好在BA的延长线上,则∠ADF =_________°.12. 如图,在ΔABC 中,∠ABC =120°,点D 、E 分别在AC 和AB 上,且AE =ED =DB =BC ,则∠A 的度数为______°.三.解答题13. 用反证法证明:一条线段只有一个中点.14.(2016秋•宜昌期中)一个等腰三角形的三边长分别为x ,2x ﹣3,4x ﹣6,求这个三角形的周长.15.(2015秋•东台市期中)如图,△ABC 中,∠C=90°,AB=10cm ,BC=6cm ,若动点P 从点C 开始,按C→A→B→C 的路径运动,且速度为每秒1cm ,设出发的时间为t 秒.(1)出发2秒后,求△ABP 的周长.(2)问t 为何值时,△BCP 为等腰三角形?(3)另有一点Q ,从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出发,当P 、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把△ABC 的周长分成相等的两部分?【答案与解析】一.选择题1. 【答案】C ;【解析】设∠A =x ,则由题意∠ADE =180°-2x ,∠EDB =2x ,∠BDC =∠BCD =90°-2x ,因为∠ADE +∠EDB +∠BDC =180°,所以x =45°. 2. 【答案】A ;【解析】由于命题:“a ,b 至少有一个为0”的反面是:“a ,b 没有一个为0”,故选A.3. 【答案】C ;【解析】①②③正确.4. 【答案】A ;【解析】解:△ABC中,∵AB=AC,BD是高,∴∠ABC=∠C=1802A-∠在Rt△BDC中,∠CBD=90°-∠C=90°-1802A-∠=2A∠.故选A.5. 【答案】C;【解析】解:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm,∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm;故选:C.6. 【答案】D;【解析】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选D.二.填空题7. 【答案】69°或21°;【解析】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.8. 【答案】a=b;【解析】a,b的等价关系有a=b,a≠b两种情况,因而a≠b的反面是a=b.9. 【答案】7cm,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)2+42=t2,解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=x,∠BED=∠EBD=2x,∠CBD=120°-2x,∠C=∠BDC=30°+x,而∠A+∠C=60°,所以x+30°+x=60°,解得x=15°.三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又因为AM=AB=AN=AB,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x=,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm ,所以P 运动的路程为18﹣7.2=10.8cm ,∴t 的时间为10.8s ,△B CP 为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P 的路程为13cm ,所以时间为13s 时,△BCP 为等腰三角形.∴t=6s 或13s 或12s 或 10.8s 时△BCP 为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t ,AQ=16﹣2t ,∵直线PQ 把△ABC 的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t ﹣8,AQ=2t ﹣16,∵直线PQ 把△ABC 的周长分成相等的两部分,∴t﹣8+2t ﹣16=12,∴t=12,∴当t 为4或12秒时,直线PQ 把△ABC 的周长分成相等的两部分.北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习直角三角形----知识讲解(提高)【学习目标】1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+-.(4)勾股数:满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……② 如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. ③22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; ④2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;⑤2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的逆定理 如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.要点六、直角三角形全等的判定(HL )在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、勾股定理1、(2016春•卢龙县期末)已知两条线段的长为3cm 和4cm ,当第三条线段的长为_________ cm 时,这三条线段能组成一个直角三角形.【思路点拨】本题从边的方面考查三角形形成的条件,涉及分类讨论的思考方法,即:由于“两边长分别为3和5,要使这个三角形是直角三角形,”指代不明,因此,要讨论第三边是直角边和斜边的情形.【答案】5或.【解析】解:①当第三边是直角边时,根据勾股定理,第三边的长==5,三角形的边长分别为3,4,5能构成三角形;②当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,,亦能构成三角形;综合以上两种情况,第三边的长应为5或,故答案为5或.【总结升华】本题考查了勾股定理的逆定理,解题时注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2、(2015春•黔南州期末)长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.【思路点拨】在折叠的过程中,BE=DE.从而设BE即可表示AE.在直角三角形ADE中,根据勾股定理列方程即可求解.【答案与解析】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).答:DE的长为cm.【总结升华】注意此类题中,要能够发现折叠的对应线段相等.类型二、勾股定理的逆定理3、如图所示,四边形ABCD中,AB⊥AD,AB=2,AD=23,CD=3,BC=5,求∠ADC 的度数.【答案与解析】解:∵ AB⊥AD,∴∠A=90°,在Rt △ABD 中,222222(23)16BD AB AD =+=+=.∴ BD =4,∴ 12AB BD =,可知∠ADB =30°, 在△BDC 中,22216325BD CD +=+=,22525BC ==,∴ 222BD CD BC +=,∴ ∠BDC =90°,∴ ∠ADC =∠ADB+∠BDC =30°+90°=120°.【总结升华】利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理. 举一反三:【变式1】△ABC 三边a b c ,,满足222338102426a b c a b c +++=++,则△ABC 是( )A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】D ;提示:由题意()()()222512130a b c -+-+-=,51213a b c ===,,,因为222a b c +=,所以△ABC 为直角三角形.【变式2】(2015春•厦门校级期末)在四边形ABCD 中,AB=AD=2,∠A=60°,BC=2,CD=4.求∠ADC 的度数.【答案】解:连接BD ,∵AB=AD=2,∠A=60°,∴△ABD 是等边三角形,∴BD=2,∠ADB=60°,∵BC=2,CD=4,则BD 2+CD 2=22+42=20,BC 2=(2)2=20, ∴BD 2+CD 2=BC 2,∴∠BDC=90°,∴∠ADC=150°.类型三、勾股定理、逆定理的实际应用4、如图所示,在一棵树的10m 高的B 处有两只猴子,一只爬下树走到离树20m 处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?【思路点拨】其中一只猴子从B →C →A 共走了(10+20)=30m ,另一只猴子从B →D →A 也共走了30m ,并且树垂直于地面,于是这个问题可化归到直角三角形中利用勾股定理解决.【答案与解析】解:设树高CD 为x ,则BD =x -10,AD =30-(x -10)=40-x ,在Rt △ACD 中,22220(40)x x +=-,解得:x =15.答:这棵树高15m .【总结升华】本题利用距离相等用未知数来表示出DC 和DA ,然后利用勾股定理作等量关系列方程求解.举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:12AA '=,12392A B π'=⨯⨯= 在Rt △AA ′B 中,根据勾股定理得: 22222129225AB AA A B ''=+=+=则AB =15.所以需要爬行的最短路程是15cm .5、(2015春•武昌区期中)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案与解析】解:1小时“远航”号的航行距离:OB=16×1=16海里;1小时“海天”号的航行距离:OA=12×1=12海里,因为AB=20海里,所以AB2=OB2+OA2,即202=162+122,所以△OAB是直角三角形,又因为∠1=45°,所以∠2=45°,故“海天”号沿西北方向航行或东南方向航行.【总结升华】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.类型四、原命题与逆命题6、下列命题中,逆命题错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形【答案】C;【解析】解:A的逆命题是:对角线互相平分的四边形是平行四边形.由平行四边形的判定可知这是真命题;B的逆命题是:平行四边形的两对邻角互补,由平行四边形的性质可知这是真命题;C的逆命题是:一组对边平行,另一组对边相等的四边形是平行四边形,也可能是等腰梯形,故是错误的;D的逆命题是:平行四边形的两组对边分别相等地,由平行四边形的性质可知这是真命题;故选C.【总结升华】分别写出每个命题的逆命题,再判断其真假即可.此题主要考查学生对逆命题的定义的理解,要求学生对基础知识牢固掌握.举一反三:【变式】下列命题中,逆命题是真命题的是()A.对顶角相等。