同济版高数课后习题答案1-9
同济第六版高等数学课后答案
x y 2 x 的反函数为 y = log x . , 解 由 y= 2 得 所以 y = x = log 2 2 1− y 1− x 2 x +1 2 x +1
x1 <0, x2
所以函数 y=x+ln x 在区间(0, +∞)内是单调增加的. 10. 设 f(x)为定义在(−l, l)内的奇函数, 若 f(x)在(0, l)内单调增加, 证明 f(x)在 (−l, 0)内也单调增加. 证明 对于∀x1, x2∈(−l, 0)且 x1<x2, 有−x1, −x2∈(0, l)且−x1>−x2. 因为 f(x)在(0, l)内单调增加且为奇函数, 所以
f(A)∩f(B), f(A∩B)⊂f(A)∩f(B). 所以
4. 设映射 f : X→Y, 若存在一个映射 g: Y→X, 使 g � f = I X , f � g = IY , 其中 IX、
IY 分别是 X、Y 上的恒等映射, 即对于每一个 x∈X, 有 IX x=x; 对于每一个 y∈Y, 有 IY y=y. 证明: f 是双射, 且 g 是 f 的逆映射: g=f −1. 证明 因为对于任意的 y∈Y, 有 x=g(y)∈X, 且 f(x)=f[g(y)]=Iy y=y, 即 Y 中任意元 素都是 X 中某元素的像, 所以 f 为 X 到 Y 的满射. 又因为对于任意的 x1≠x2, 必有 f(x1)≠f(x2), 否则若 f(x1)=f(x2)⇒g[ f(x1)]=g[f(x2)]
同济版高等数学课后习题解析
同济版高等数学课后习题解析This manuscript was revised by the office on December 10, 2020.书后部分习题解答P21页3.(3)nnn b b b a a a ++++++++∞→ 2211lim (1,1<<b a )知识点:1)等比级数求和)1(1)1(12≠--=++++-q qq a aqaq aq a n n (共n 项)2)用P14例4的结论:当1<q 时,0lim =∞→n n q解:n n n b b b a a a ++++++++∞→ 2211lim ab bb a a n n n --=----=++∞→111111lim 115.(1)判断下列数列是否收敛,若收敛,则求出极限:设a 为正常数,00>x ,)(211nn n x a x x +=+ 证:由题意,0>n x ,a x a x x a x x nn n n n =⋅⋅≥+=+221)(211(数列有下界) 又02)(2121≤-=-+=-+n n n n n n n x x a x x ax x x (因a x n ≥+1)(数列单调减少)由单调有界定理,此数列收敛;记b x n n =∞→lim ,对)(211nn n x ax x +=+两边取极限,得)(21bab b +=,解得a b =(负的舍去),故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211)1()1()]1(1[lim -++--++→x nx n x n x 21221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2)1(21+==+n n C n (若以后学了洛必达法则(00型未定型),则211)1()1(lim -++-+→x nx n x n x 2)1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页8.已知当0→x 时,1cos ~1)1(312--+x ax,求常数a .知识点:1)等价无穷小的概念;2)熟记常用的等价无穷小,求极限时可用等价无穷小的替换定理。
同济大学版高等数学课后习题答案第1章
习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济高等数学下册课后题答案详解
第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。
高等数学 同济二版上册课后答案
第一章1-4节 1、计算下列极限7)2382lim 222+--+→x x x x x分析:本题分子分母同时趋近于0,根据表达式的形式,考虑利用约分将趋于0的项约去。
解:原式6)1(lim )4(lim 14lim )2)(1()2)(4(lim2222=-+=-+=---+=→→→→x x x x x x x x x x x x 9))sin(sin sin lima x ax a x --→分析:本题分子分母同时趋于0,但不能约分,利用复合函数求极限,通过变量替换进行求解 解一:令0,,,→→+=-=u a x u a x a x u 时则。
a uua a u u u a a u u a a uau a u a u a u a u u u u u cos )2cos42sinsin (cos lim ]2cos2sin 2)2sin 21(sin [cos lim ]sin )1(cos sin [cos lim sin sin sin cos cos sin limsin sin )sin(lim020000=-=-+=-+=-+=-+=→→→→→原式 解二:利用三角函数的和差化积,以及等价替换a ax ax a x a x a x a x a x ax cos 22cos 2lim )sin(2sin 2cos2lim=--⋅+⋅=--+=→→原式11)6)1(lim )4(lim 14lim 4lim 020202230=++-=++-=++-→→→→t t t t t t t t t t t t t t t (应该为4) 13)31)312(lim 2lim )312)(4()4(2lim )312)(4(9)12(lim 4312lim44444=++=++--=++--+=--+→→→→→x x x x x x x x x x x x x x本题利用了分子有理化 2、计算下列极限 1)nnn arctan lim∞→解:因为2arctan 01π<→∞→n ,n,n 而时,无穷小与有界函数之积仍然为无穷小,所以原式n nn arctan 1lim∞→==0 2)0sin 1lim 1sin lim=+=+∞→∞→n n nn n n n n 3)1arctan 11arctan 11lim arctan arctan lim =+-=+-∞→∞→xxxx x x x x x x 第一章1-5节 1、计算下列极限 2)βαβαββααβα==→→x x x x x x x x sin sin lim sin sin lim00解法2:原式βαβα==→x x x 0lim5)212cos122sin 21lim 2cos 2sin 22sin 2lim sin cos 1lim 0200=⋅⋅=⋅=-→→→x x x x x x xx x x x x x 解法2:原式2121lim 20=⋅=→x x x x7)πππππ-=-=-=-=-→→→→uu u u u u x x u u u x 0001lim tan lim )1(tan lim 1tan lim分析:本题利用了变量替换和等价替换 9)2)2(21lim )12(coslim 222-=⎥⎦⎤⎢⎣⎡-=-∞→∞→x x x x x x分析:∞→x 时,02→x 。
第六版同济大学高等数学上下课后答案详解
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
(完整版)高等数学第六版(同济大学)上册课后习题答案解析
y1
y2
x1 1 x1
x2 1 x2
(1
x1 x2 x1)(1
x2)
0
所以函数 y x 在区间( 1)内是单调增加的 1 x
(2)对于任意的 x1 x2(0 ) 当 x1x2 时 有
这就证明了对于x1 x2(l 0) 有 f(x1) f(x2) 所以 f(x)在(l 0)内也单调 增加
11 设下面所考虑的函数都是定义在对称区间(l l)上的 证明 (1)两个偶函数的和是偶函数 两个奇函数的和是奇函数 (2)两个偶函数的乘积是偶函数 两个奇函数的乘积是偶函数 偶函数与奇 函数的乘积是奇函数 证明 (1)设 F(x)f(x)g(x) 如果 f(x)和 g(x)都是偶函数 则
1
(10) y e x
解 由 x0 得函数的定义域 D( 0)(0 ) 7 下列各题中 函数 f(x)和 g(x)是否相同?为什么? (1)f(x)lg x2 g(x)2lg x
(2) f(x)x g(x) x2
(3) f (x)3 x4 x3 g(x) x3 x 1
(4)f(x)1 g(x)sec2xtan2x 解 (1)不同 因为定义域不同 (2)不同 因为对应法则不同 x0 时 g(x)x (3)相同 因为定义域、对应法则均相相同 (4)不同 因为定义域不同
f(x1)f(x2)g[ f(x1)]g[f(x2)] x1x2 因此 f 既是单射 又是满射 即 f 是双射 对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy
yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A))
(完整word版)同济大学第六版高等数学课后答案详解全集
同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A\B 及A\(A\B)的表达式.2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B)C =AC ⋃BC . .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f(A ⋃B)=f(A)⋃f(B);(2)f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1arctan 3+-=;. (9) y =ln(x +1);(10)x e y 1=.7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec2x -tan2x .8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.. 9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x2(1-x2);(2)y =3x2-x3;(3)2211x xy +-=;(4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+= 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);.(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =xcos x ;(5)y =sin2x .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学高数上习题答案
同济大学高数上习题答案同济大学高数上习题答案高等数学作为理工科学生必修的一门课程,对于大多数学生来说是一座难以逾越的高山。
而同济大学的高数上课程更是以其难度和复杂性而著称。
为了帮助同学们更好地理解和掌握高数上的知识,我整理了一些习题答案,希望能对同学们的学习有所帮助。
第一章:函数与极限1. 设函数 f(x) = 3x^2 - 2x + 1,求 f(-1) 的值。
答案:将 x = -1 代入函数 f(x) 中,得到 f(-1) = 3(-1)^2 - 2(-1) + 1 = 6。
2. 求函数 f(x) = x^3 - 2x + 1 的极限lim(x→2) f(x)。
答案:将 x = 2 代入函数 f(x) 中,得到 f(2) = 2^3 - 2(2) + 1 = 5。
3. 求函数f(x) = √(x + 1) 的定义域。
答案:由于函数中有根号,要使函数有意义,需要满足x + 1 ≥ 0,即x ≥ -1。
所以定义域为 [-1, +∞)。
第二章:导数与微分1. 求函数 f(x) = x^2 - 3x + 2 的导数。
答案:对函数 f(x) 进行求导,得到 f'(x) = 2x - 3。
2. 求函数 f(x) = e^x 的导数。
答案:对函数 f(x) 进行求导,得到 f'(x) = e^x。
3. 求函数 f(x) = ln(x^2 + 1) 的导数。
答案:对函数 f(x) 进行求导,得到 f'(x) = 2x / (x^2 + 1)。
第三章:微分中值定理与泰勒展开1. 利用微分中值定理证明函数 f(x) = x^3 - x 在区间 [0, 1] 上存在一个点 c,使得 f'(c) = 2c - 1。
答案:由微分中值定理可知,存在一个点 c 属于 (0, 1),使得 f'(c) = (f(1) - f(0)) / (1 - 0) = 2c - 1。
2. 求函数 f(x) = sin(x) 在x = π/4 处的泰勒展开式。
高等数学同济第七版上册课后习题答案
习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。
同济高数下册课本习题答案
同济高数下册课本习题答案同济高数下册是大多数理工科学生都要学习的一门重要课程。
在学习过程中,课本上的习题是非常重要的一部分。
然而,有时候我们在自己独立思考习题答案时可能会遇到困难。
因此,在这篇文章中,我将为大家提供一些同济高数下册课本习题的参考答案,希望能够帮助大家更好地理解和掌握这门课程。
第一章导数与微分第一节导数的概念与几何意义1. 求函数f(x) = x^3 - 3x^2 - 9x + 5在x = 2处的导数。
答案:f'(2) = 3(2)^2 - 6(2) - 9 = 3(4) - 12 - 9 = 12 - 12 - 9 = -92. 求函数f(x) = sin(2x)在x = π/4处的导数。
答案:f'(π/4) = 2cos(2π/4) = 2cos(π/2) = 2(0) = 0第二节导数的运算法则1. 求函数f(x) = 3x^2 - 4x + 2的导函数。
答案:f'(x) = 6x - 42. 求函数f(x) = e^x * ln(x)的导函数。
答案:f'(x) = e^x * ln(x) + e^x/x第三节高阶导数与隐函数求导1. 已知函数y = e^x * sin(x),求dy/dx和d^2y/dx^2。
答案:dy/dx = e^x * sin(x) + e^x * cos(x)d^2y/dx^2 = 2e^x * cos(x)2. 已知函数x^2 + y^2 = 25,求dy/dx。
答案:dy/dx = -x/y第二章微分中值定理与导数应用第一节微分中值定理1. 利用拉格朗日中值定理,证明函数f(x) = sin(x)在区间[0, π/2]上至少有一个点c,使得f'(c) = 1。
答案:由拉格朗日中值定理,存在c∈(0,π/2),使得f'(c) = (f(π/2) - f(0))/(π/2 - 0) = (1 - 0)/(π/2) = 12. 利用柯西中值定理,证明函数f(x) = x^3 + x - 1在区间[0, 1]上存在两个不同的点c1和c2,使得f'(c1) = f'(c2)。
同济版高数课后习题答案1-9
习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →. 解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )}在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→. 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ, ] |)()(|)()([21)(x g x f x g x f x --+=ψ. 因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ, ] |)()(|)()([21)(00000x g x f x g x f x --+=ψ. 因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++= ] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0), 所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限:(1)52lim 20+-→x x x ;(2)3)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x x x x ; (6)a x a x a x --→sin sin lim ; (7))(lim 22x x x x x --++∞→. 解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x . (2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以 1)42(sin )4()2(sin lim 334=⋅==→πππf x x . (3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x . (4)211101111lim )11(lim )11()11)(11(lim 11lim 0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim 111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim 1=+-⋅=+-=→x x x . (6)ax a x a x a x a x a x a x --+=--→→2sin 2cos 2lim sin sin lima a a a x ax a x a x a x cos 12cos 22sinlim 2cos lim =⋅+=--⋅+=→→. (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim )(2lim 22=-++=-++=+∞→+∞→x x x x x x xx x .4. 求下列极限:(1)xx e 1lim ∞→;(2)xx x sin ln lim 0→; (3)2)11(lim x x x+∞→; (4)x x x 2cot 20)tan 31(lim +→; (5)21)63(lim -∞→++xx x x ; (6)xx x x x x -++-+→20sin 1sin 1tan 1lim . 解 (1) 1lim 01lim 1===∞→∞→e e e x x x x .(2) 01ln )sin lim ln(sin ln lim 00===→→x x xx x x . (3) []e e x x xx x x ==+=+∞→∞→21212)11(lim )11(lim .(4) []33tan 3120cot 2022)tan 31(lim )tan 31(lim e x x x x x x =+=+→→.(5)13621)631()63(--⋅+-+-+=++x x xxx x . 因为e x x x =+-+-+∞→36)631(lim , 232163lim -=-⋅+-∞→x x x , 所以2321)63(lim --∞→=++e xx xx . (6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(lim sin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→21)2(2lim sin 2sin 2tan lim )sin 1tan 1(sin )1sin 1)(sin (tan lim 320220220=⋅=⋅=+++++-=→→→x x x x x x x x x x x x x x x x x .5. 设函数⎩⎨⎧≥+<=0 0 )(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须 a f x f x f x x ===+→-→)0()(lim )(lim 00. 因为1lim )(lim 00==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 00, 所以只须取a =1.。
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点
↗
极大值
↘
拐点
↘
x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)
↗
拐点
↗
1
极大值
↘
拐点
↘
x
( 1)
-1
高等数学下(同济大学第五版)课后习题答案解析
word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济高等数学下册课后题答案详解
第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。
同济高等数学下册课后题答案详解
第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。
高等数学同济课后答案
总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件. (2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件. )(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件. (3) f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件. ∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim 0000-+-=-+=→→→→3ln 2ln )1ln(lim 3ln )1ln(lim2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B . 3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅).4. 设⎩⎨⎧>≤=0 00)(x x x x f , ⎩⎨⎧>-≤=0 0 0)(2x x x x g , 求f [f (x )], g [g (x )], f [g (x )], g [f (x )]. 解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=0 00x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0; 因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x . 5. 利用y =sin x 的图形作出下列函数的图形: (1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有 R (2π-α)=2πr ,παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=RR R r R h .圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=RR V22234)2(24a R -⋅-=πααππ(0<α<2π). 7. 根据函数极限的定义证明536lim23=---→x x x x .证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限:(1)221)1(1lim-+-→x x x x ;(2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ; (4)30sin tan limx x x x -→;(5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x .(2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x21212)1221()1221(lim ++++=+∞→x x x xe x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(4)xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→21)2(2lim cos 2sin 2sin lim 320320=⋅=⋅=→→xx x x x x x x x (提示: 用等价无穷小换). (5)x c b a c b a xx x x xx xx x x x x x x x c b a c b a 3333010)331(lim )3(lim -++⋅-++→→-+++=++, 因为e c b a x x x c b a x x x x =-+++-++→330)331(lim ,)111(lim 3133lim 00xc x b x a x c b a xx x x x x x x -+-+-=-++→→ ])1ln(1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=,所以3ln 103)3(lim abc e c b a abc x x x x x ==++→.提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v . (6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin 1[lim )(sin lim -⋅-→→-+=ππ, 因为 e x x x =-+-→1sin 12)]1(sin 1[lim π,x x x x x x x cos )1(sin sin limtan )1(sin lim 22-=-→→ππ01sin cos sin lim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ, 所以1)(sin lim 0tan 2==→e x x x π.9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为 f (0)=a ,a x a x f x x =+=--→→)(lim )(lim 200, 01sin lim )(lim 00==++→→xx x f x x ,所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续. 10. 设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln(0)(11x x x e x f x , 求f (x )的间断点, 并说明间断点所属类形. 解 因为函数f (x )在x =1处无定义, 所以x =1是函数的一个间断点.因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x ),∞==-→→++1111lim )(lim x x x e x f (提示+∞=-+→11lim 1x x ),所以x =1是函数的第二类间断点.又因为0)1ln(lim )(lim 00=+=--→→x x f x x , ee xf x x x 1lim )(lim 110==-→→++,所以x =0也是函数的间断点, 且为第一类间断点.11. 证明()11 2111lim222=++⋅⋅⋅++++∞→n n n n n .证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim2=+=+∞→∞→n n n n n n , 1111lim 1lim 22=+=+∞→∞→nn n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 12. 证明方程sin x +x +1=0在开区间)2,2(ππ-内至少有一个根.证明 设f (x )=sin x +x +1, 则函数f (x )在]2,2 [ππ-上连续.因为2121)2 (πππ-=+--=-f , 22121)2 (πππ+=++=f , 0)2()2 (<⋅-ππf f , 所以由零点定理, 在区间)2,2 (ππ-内至少存在一点ξ, 使f (ξ)=0.这说明方程sin x +x +1=0在开区间)2,2 (ππ-内至少有一个根.13. 如果存在直线L : y =kx +b , 使得当x →∞(或x →+∞, x →-∞)时, 曲线y =f (x )上的动点M (x , y )到直线L 的距离d (M , L )→0, 则称L 为曲线y =f (x )的渐近线. 当直线L 的斜率k ≠0时, 称L 为斜渐近线. (1)证明: 直线L : y =kx +b 为曲线y =f (x )的渐近线的充分必要条件是xx f k x x x )(lim),( -∞→+∞→∞→=, ])([lim),( kx x f b x x x -=-∞→+∞→∞→.(2)求曲线x e x y 1)12(-=的斜渐近线.证明 (1) 仅就x →∞的情况进行证明.按渐近线的定义, y =kx +b 是曲线y =f (x )的渐近线的充要条件是0)]()([lim =+-∞→b kx x f x .必要性: 设y =kx +b 是曲线y =f (x )的渐近线, 则0)]()([lim =+-∞→b kx x f x ,于是有 0])([lim =--∞→xb k x x f x x ⇒0)(lim =-∞→k x x f x ⇒x x f k x )(lim∞→=, 同时有0])([lim =--∞→b kx x f x ⇒])([lim kx x f b x -=∞→.充分性: 如果xx f k x )(lim ∞→=, ])([lim kx x f b x -=∞→, 则0])([lim ])([lim )]()([lim =-=--=--=+-∞→∞→∞→b b b kx x f b kx x f b kx x f x x x ,因此y =kx +b 是曲线y =f (x )的渐近线.(2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k , 11)1ln(lim21)1(lim2]2)12[(lim ]2[lim 011=-+=--=--=-=→∞→∞→∞→t t e x x e x x y b t xx xx x ,所以曲线x e x y 1)12(-=的斜渐近线为y =2x +1.总 习 题 二1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x )在点x 0可导是f (x )在点x 0连续的____________条件. f (x )在点x 0连续是f (x )在点x 0可导的____________条件.(2) f (x )在点x 0的左导数f -'(x 0)及右导数f +'(x 0)都存在且相等是f (x )在点x 0可导的_______条件. (3) f (x )在点x 0可导是f (x )在点x 0可微的____________条件. 解 (1)充分, 必要. (2) 充分必要. (3) 充分必要.2. 选择下述题中给出的四个结论中一个正确的结论:设f (x )在x =a 的某个邻域内有定义, 则f (x )在x =a 处可导的一个充分条件是( ). (A ))]()1([lim a f ha f h h -++∞→存在; (B )hh a f h a f h )()2(lim0+-+→存在;(C )h h a f h a f h 2)()(lim--+→存在; (D )hh a f a f h )()(lim 0--→存在.解 正确结论是D . 提示:xa f x a f h a f h a f h h a f a f x h h ∆-∆+=---=--→∆→→)()(lim)()(lim )()(lim000(∆x =-h ). 3. 设有一根细棒, 取棒的一端作为原点, 棒上任一点的做标x 为, 于是分布在区间[0, x ]上细棒的质量m 是x 的函数m =m (x ),应怎样确定细棒在点x 0处的线密度(对于均匀细棒来说, 单位长度细棒的质量叫做这细棒的线密度)?解 ∆m =m (x 0+∆x )-m (x 0).在区间[x 0, x 0+∆x ]上的平均线密度为xx m x x m xm ∆-∆+=∆∆=)()(00ρ.于是, 在点x 0处的线密度为)()()(lim lim 0000x m xx m x x m xm x x '=∆-∆+=∆∆=→∆→∆ρ.4. 根据导数的定义, 求xx f 1)(=的导数. 解20001)(1lim)(lim 11lim x x x x x x x x x x x x x y x x x -=∆+-=∆+∆∆-=∆-∆+='→∆→∆→∆.5. 求下列函数f (x )的f -'(0)及f +'(0),又f '(0)是否存在? (1)⎩⎨⎧≥+<=0 )1ln(0 sin )(x x x x x f ;(2)⎪⎩⎪⎨⎧=≠+=0 00 1)(1x x e x x f x .解 (1)因为10sin lim 0)0()(lim )0(00=-=--='--→→-xx x f x f f x x ,1ln )1ln(lim 0)1ln(lim 0)0()(lim )0(1000==+=-+=--='+++→→→+e x xx x f x f f x x x x ,而且f -'(0) = f +'(0), 所以f '(0)存在, 且f '(0)=1.(2)因为111lim 01lim 0)0()(lim )0(10100=+=--+=--='---→→→-xx xx x e x e x x f x f f ,011lim 001lim 0)0()(lim )0(10100=+=--+=--='+++→→→+xx xx x e x e x x f x f f ,而f -'(0)≠ f +'(0), 所以f '(0)不存在.6. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性. 解 因为f (0)=0,)0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim 000→→→=-=-不存在, 所以f (x )在x =0处不可导. 7. 求下列函数的导数: (1) y =arcsin(sin x );(2)x x y -+=11arctan ;(3)x x x y tan ln cos 2tan ln ⋅-=; (4))1ln(2x x e e y ++=;(5)x x y =(x >0) .解(1)|cos |cos cos sin 11)(sin sin 1122x x x xx x y =⋅-='⋅-='.(2)222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(3))(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(4)xxx x xx x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.(5)x x y ln 1ln =, x x x xy y 11ln 112⋅+-=', )ln 1()1ln 1(222x x x x x x x y xx-=+-='.8. 求下列函数的二阶导数: (1)y =cos 2x ⋅ln x ; (2)21x xy -=.解 (1)x x x x x x x x x y 1cos ln 2sin 1cos ln sin cos 222⋅+⋅-=⋅+⋅-=',221cos 1sin cos 212sin ln 2cos 2x x x x x x x x x y ⋅-⋅-⋅-⋅-=''22cos 2sin 2ln 2cos 2xx x x x x --⋅-=.(2)232222)1(111--=---⋅--='x xx xx x y52252)1(3)2()1(23x x x x y -=-⋅--=''-.9. 求下列函数的n 阶导数: (1)m x y +=1;(2)xx y +-=11. 解 (1)m mx x y 1)1(1+=+=,11)1(1-+='m x m y , 21)1)(11(1-+-=''m x m m y , 31)1)(21)(11(1-+--='''m x m m m y , ⋅ ⋅ ⋅,n m n x n mm m m y-++-⋅⋅⋅--=1)()1)(11( )21)(11(1.(2)1)1(2111-++-=+-=x xx y , y '=2(-1)(1+x )-2, y ''=2(-1)(-2)(1+x )-3, y '''=2(-1)(-2)(-3)(1+x )-4, ⋅ ⋅ ⋅, 1)1()()1(!)1(2)1)(( )3)(2)(1(2++-+-=+-⋅⋅⋅---=n n n n x n x n y.10. 设函数y =y (x )由方程e y +xy =e 所确定, 求y ''(0). 解 方程两边求导得e y y '+y +xy '=0, —— (1) 于是ye x y y +-=';2)()1()()(y y y y e x y e y e x y e x y y +'+-+'-='+-=''. ——(2)当x =0时, 由原方程得y (0)=1, 由(1)式得e y 1)0(-=', 由(2)式得21)0(e y =''. 11. 求下列由参数方程所确定的函数的一阶导数dx dy 及二阶导数22dx yd :(1)⎩⎨⎧==θθ33sin cos a y a x ;(2)⎩⎨⎧=+=ty t x arctan 1ln 2.解 (1)θθθθθθθtan )sin (cos 3cos sin 3)cos ()sin (2233-=-=''=a a a a dx dy ,θθθθθθθcsc sec 31sin cos 3sec )cos ()tan (422322⋅=--=''-=aa a dx y d .(2)t t t t t t dx dy 1111]1[ln )(arctan 222=++='+'=,3222222111]1[ln )1(t t t t t t t dx y d +-=+-='+'=.12. 求曲线⎩⎨⎧==-t te y e x 2在t =0相的点处的切线方程及法线方程.解t t tt t ee e e e dx dy 2212)2()(-=-=''=--.当t =0时,21-=dx dy , x =2, y =1. 所求切线的方程为)2(211--=-x y , 即x +2y -4=0; 所求法线的方程为y -1=2(x -2).13. 甲船以6km/h 的速率向东行驶, 乙船以8km/h 的速率向南行驶, 在中午十二点正, 乙船位于甲船之北16km 处. 问下午一点正两船相离的速率为多少?解 设从中午十二点开始, 经过t 小时, 两船之间的距离为S , 则有 S 2=(16-8t )2+(6t )2,t t dtdS S 72)816(162+--=,St t dt dS 272)816(16+--=.当t =1时, S =10,8.220721281-=+-==t dt dS (km/h), 即下午一点正两船相离的速度为-2.8km/h . 14. 利用函数的微分代替函数的增量求302.1的近似值.解 设3)(x x f =, 则有x x f f x f ∆=∆'≈-∆+31)1()1()1(, 或x x f ∆+≈∆+311)1(于是007.102.031102.0102.133=⋅+=+=.15. 已知单摆的振动周期gl T π2=, 其中g =980 cm/s 2, l 为摆长(单位为cm). 设原摆长为20cm , 为使周期T 增大0.05s , 摆长约需加长多少? 解 因为L gLdT T ∆⋅=≈∆π,所以23.205.020=≈∆=L gLL π(cm),即摆长约需加长2.23cm .总习题三 1. 填空:设常数k >0, 函数k ex x x f +-=ln )(在(0, +∞)内零点的个数为________. 解 应填写2. 提示: e x x f 11)(-=', 21)(x x f -=''. 在(0, +∞)内, 令f '(x )=0, 得唯一驻点x =e .因为f ''(x )<0, 所以曲线k exx x f +-=ln )(在(0, +∞)内是凸的, 且驻点x =e 一定是最大值点, 最大值为f (e )=k >0.又因为-∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x , 所以曲线经过x 轴两次, 即零点的个数为2.2. 选择以下题中给出的四个结论中一个正确的结论:设在[0, 1]上f ''(x )>0, 则f '(0), f '(1), f (1)-f (0)或f (0)-f (1)几个数的大小顺序为( ). (A )f '(1)>f '(0)>f (1)-f (0); (B )f '(1)>f (1)-f (0)>f '(0); (C )f (1)-f (0)>f '(1)>f '(0); (D )f '(1)>f (0)-f (1)>f '(0). 解 选择B .提示: 因为f ''(x )>0, 所以f '(x )在[0, 1]上单调增加, 从而f '(1)>f '(x )>f '(0). 又由拉格朗日中值定理, 有f (1)-f (0)=f '(ξ), ξ∈[0, 1], 所以 f '(1)> f (1)-f (0)>f '(0).3. 列举一个函数f (x )满足: f (x )在[a , b ]上连续, 在(a ,b )内除某一点外处处可导, 但在(a , b )内不存在点ξ , 使f (b )-f (a )=f '(ξ)(b -a ). 解 取f (x )=|x |, x ∈[-1, 1].易知f (x )在[-1, 1]上连续, 且当x >0时f '(x )=1; 当x >0时, f '(x )=-1; f '(0)不存在, 即f (x )在[-1, 1]上除x =0外处处可导.注意f (1)-f (-1)=0, 所以要使f (1)-f (-1)=f '(ξ)(1-(-1))成立, 即f '(ξ)=0, 是不可能的. 因此在(-1, 1)内不存在点ξ , 使f (1)-f (-1)=f '(ξ)(1-(-1)). 4. 设k x f x ='∞→)(lim , 求)]()([lim x f a x f x -+∞→.解 根据拉格朗日中值公式, f (x +a )-f (x )=f '(ξ )⋅a , ξ 介于x +a 与x 之间.当x →∞ 时, ξ → ∞, 于是ak f a a f x f a x f x x ='=⋅'=-+∞→∞→∞→)(lim )(lim )]()([lim ξξξ.5. 证明多项式f (x )=x 3-3x +a 在[0, 1]上不可能有两个零点.证明 f '(x )=3x 2-3=3(x 2-1), 因为当x ∈(0, 1)时, f '(x )<0, 所以f (x )在[0, 1]上单调减少. 因此, f (x ) 在[0, 1]上至多有一个零点.6. 设1210++⋅⋅⋅++n a a a n =0, 证明多项式f (x )=a 0+a 1x +⋅ ⋅ ⋅+a n x n 在(0,1)内至少有一个零点. 证明 设121012)(+++++=n n x n a x a x a x F , 则F (x )在[0, 1]上连续, 在(0, 1)内可导, 且F (0)=F (1)=0. 由罗尔定理, 在(0, 1)内至少有一个点ξ , 使F (ξ )=0. 而F '(x )=f (x ), 所以f (x )在(0, 1)内至少有一个零点.7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0.8. 设0<a <b , 函数f (x )在[a , b ]上连续, 在(a , b )内可导, 试利用柯西中值定理, 证明存在一点ξ∈(a , b )使abf b f a f ln )()()(ξξ'=-.证明 对于f (x )和ln x 在[a , b ]上用柯西中值定理, 有ξξ1)(ln ln )()(f ab a f b f '=--, ξ∈(a , b ), 即 abf b f a f ln)()()(ξξ'=-, ξ∈(a , b ). 9. 设f (x )、g (x )都是可导函数, 且|f '(x )|<g '(x ), 证明: 当x >a 时, |f (x )-f (a )|<g (x )-g (a ). 证明 由条件|f '(x )|<g '(x )得知, 1)()(<''ξξg f , 且有g '(x )>0, g (x )是单调增加的, 当x >a 时, g (x )>g (a ).因为f (x )、g (x )都是可导函数, 所以f (x )、g (x ) 在[a , x ]上连续, 在(a , x )内可导, 根据柯西中值定理, 至少存在一点ξ∈(a , x ), 使)()()()()()(ξξg f a g x g a f x f ''=--. 因此,1)()()()(|)()(|<''=--ξξg f a g x g a f x f , |f (x )-f (a )|<g (x )-g (a ).10. 求下列极限:(1)xx x x xx ln 1lim 1+--→;(2)]1)1ln(1[lim 0xx x -+→;(3)x x x )arctan 2(lim π+∞→.(4)nx xn xx x n a a a ]/) [(lim 11211+⋅⋅⋅++∞→(其中a 1, a 2, ⋅ ⋅ ⋅, a n >0).解 (1) (x x )'=(e x l n x )'=e x l n x (ln x +1)=x x (ln x +1).xx x x x x x x x x x x x x x x x x x x x xx -+-=+-+-='+-'-=+--+→→→→1)1(ln lim11)1(ln 1lim )ln 1()(lim ln 1lim 11111 21)1)(ln 11(ln 1lim11=--+++-=+→xx x x x x x x . (2)xxx xx x x x x x x x x x x x x x ++++-='+'+-=++-=-+→→→→1)1ln(111lim])1ln([])1ln([lim )1ln()1ln(lim ]1)1ln(1[lim 00002111)1ln(1lim )1ln()1(lim00=+++=+++=→→x x x x x x x(3))2ln arctan (ln lim )arctan 2(lim ππ++∞→+∞→=x x x xx ex ,因为)2lnarctan (ln lim π++∞→x x x ππ2111arctan 1lim )1()2ln arctan (ln lim22-=-+⋅=''+=+∞→+∞→xx x xx x x , 所以πππ2)2ln arctan (ln lim )arctan 2(lim -++∞→+∞→==eex x x x x x .(4)令nxxn xxn a a a y ]/) [(11211+⋅⋅⋅++=. 则]ln ) [ln(ln11211n a a a nx y xn xx-+⋅⋅⋅++=, 因为xn a a a n y xn xx x x 1]ln ) [ln(limln lim 11211-+⋅⋅⋅++=∞→∞→)1()1()ln ln ln ( 1lim121211111211''⋅+⋅⋅⋅++⋅+⋅⋅⋅++⋅=∞→xxa a a a a a a a a n n xn x xxn x x x=ln a 1+ln a 2+⋅ ⋅ ⋅+ln a n =ln(a 1⋅a 2⋅ ⋅ ⋅ a n ). 即y x ln lim ∞→=ln(a 1⋅a 2⋅ ⋅ ⋅ a n ), 从而n x nx xn xx x a a a y n a a a lim ]/) [(lim 2111211⋅⋅⋅⋅==+⋅⋅⋅++∞→∞→.11. 证明下列不等式: (1)当2021π<<<x x 时,1212tan tan x x x x >; (2):当x >0时, xxx +>+1arctan )1ln(.证明 (1)令x x x f tan )(=, )2,0(π∈x . 因为0tan tan sec )(222>->-='x xx x x x x x f ,所以在)2,0(π内f (x )为单调增加的. 因此当2021π<<<x x 时有]2211tan tan x x x x <, 即1212tan tan x x x x >. (2)要证(1+x )ln(1+x )>arctan x , 即证(1+x )ln(1+x )- arctan x >0.设f (x )=(1+x )ln(1+x )- arctan x , 则f (x )在[0, +∞)上连续,211)1ln()(xx x f +-+='.因为当x >0时, ln(1+x )>0, 01112>+-x, 所以f '(x )>0, f (x )在[0, +∞)上单调增加.因此, 当x >0时, f (x )>f (0), 而f (0)=0, 从而f (x )>0, 即(1+x )ln(1+x )-arctan x >0 .12. 设⎩⎨⎧≤+>=0 20)(2x x x x x f x , 求f (x )的极值.解 x =0是函数的间断点.当x <0时, f '(x )=1; 当x >0时, f '(x )=2x 2x (ln x +1). 令f '(x )=0, 得函数的驻点ex 1=. 列表:函数的极大值为f (0)=2, 极小值为e e ef 2)1(-=.13. 求椭圆x 2-xy +y 2=3上纵坐标最大和最小的点. 解 2x -y -xy '+2yy '=0, y x y x y 22--='. 当y x 21=时, y '=0.将y x 21=代入椭圆方程, 得32141222=+-y y y , y =±2 .于是得驻点x =-1, x =1. 因为椭圆上纵坐标最大和最小的点一定存在, 且在驻点处取得, 又当x =-1时, y =-2, 当x =1时, y =2, 所以纵坐标最大和最小的点分别为(1, 2)和(-1, -2). 14. 求数列}{n n 的最大项.解 令xx x x x f1)(==(x >0), 则x xx f ln 1)(ln =,)ln 1(1ln 11)()(1222x xx x x x f x f -=-='⋅, )ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e 为最大值点. 因此所求最大项为333}3 ,2max{=.15. 曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点处的曲率半径. 解 y '=cos x , y ''=-sin x ,xx y y sin )cos 1(||)1(2/322/32+='''+=ρ(0<x <π),xxx x x x x 2232212sin cos )cos 1(sin )sin cos 2()cos 1(23+-⋅-+='ρxx x x x 222212sin )1cos sin 3(cos )cos1(+++-=.在(0, π)内, 令ρ'=0, 得驻点2π=x .因为当20π<<x 时, ρ'<0; 当ππ<<x 2时, ρ'>0, 所以2π=x 是ρ的极小值点, 同时也是ρ的最小值点,最小值为12sin)2cos 1(2/32=+ππρ.16. 证明方程x 3-5x -2=0只有一个正根. 并求此正根的近似值, 使精确到本世纪末10-3. 解 设f (x )=x 3-5x -2, 则 f '(x )=3x 2-5, f ''(x )=6x .当x >0时, f ''(x )>0, 所以在(0, +∞)内曲线是凹的, 又f (0)=-2, +∞=--+∞→)2(lim 3x x x , 所以在(0, +∞)内方程x 3-5x -2=0只能有一个根. (求根的近似值略)17. 设f ''(x 0)存在, 证明)()(2)()(lim 020000x f hx f h x f h x f h ''=--++→.证明 hh x f h x f h x f h x f h x f h h 2)()(lim)(2)()(lim00020000-'-+'=--++→→hh x f h x f h )()(lim 21000-'-+'=→hh x f x f x f h x f h )]()([)]()([lim 2100000-'-+'-+'=→)()]()([21])()()()([lim 2100000000x f x f x f h h x f x f h x f h x f h ''=''+''=-'-+'-+'=→.18. 设f (n )(x 0)存在, 且f (x 0)=f '(x 0)= ⋅ ⋅ ⋅ =f (n )(x 0)=0, 证明f (x )=o [(x -x 0)n ] (x →x 0). 证明 因为 100)()(lim)()(lim-→→-'=-n x x nx x x x n x f x x x f20))(1()(lim-→--''=n x x x x n n x f =⋅ ⋅ ⋅)(!)(lim 0)1(0x x n x f n x x -=-→0)(!1)()(lim!10)(00)1()1(0==--=--→x fn x x x f x f n n n n x x ,所以f (x )=o [(x -x 0)n ] (x →x 0).19. 设f (x )在(a , b )内二阶可导, 且f ''(x )≥0. 证明对于(a , b )内任意两点x 1, x 2及0≤t ≤1, 有f [(1-t )x 1+tx 2]≤(1-t )f (x 1)+tf (x 2).证明 设(1-t )x 1+tx 2=x 0. 在x =x 0点的一阶泰勒公式为 20000)(!2)())(()()(x x f x x x f x f x f -''+-'+=ξ(其中ξ介于x 与x 0之间). 因为f ''(x )≥0, 所以 f (x )≥f (x 0)+f '(x 0)(x -x 0). 因此f (x 1)≥ f (x 0)+f '(x 0)(x 1-x 0), f (x 2)≥f (x 0)+f '(x 0)(x 2-x 0). 于是有(1-t )f (x 1)+tf (x 2)≥(1-t )[ f (x 0)+f '(x 0)(x 1-x 0)]+t [f (x 0)+f '(x 0)(x 2-x 0)] =(1-t )f (x 0)+t f (x 0)+f '(x 0)[(1-t )x 1+t x 2]-f '(x 0)[(1-t )x 0+t x 0] =f (x 0)+f '(x 0)x 0-f '(x 0)x 0 =f (x 0),即 f (x 0)≤(1-t )f (x 1)+tf (x 2),所以 f [(1-t )x 1+tx 2]≤(1-t )f (x 1)+tf (x 2) (0≤t ≤1).20. 试确定常数a 和b , 使f (x )=x -(a +b cos x )sin x 为当x →0时关于x 的5阶无穷小. 解 f (x )是有任意阶导数的, 它的5阶麦克劳公式为)(!5)0(!4)0(!3)0(!2)0()0()0()(55)5(4)4(32x o x f x f x f x f x f f x f +++'''+''+'+=)(!516!34)1(553x o x b a x b a x b a +--+++--=.要使f (x )=x -(a +b cos x )sin x 为当x →0时关于x 的5阶无穷小, 就是要使极限 ])(!516!341[lim )(lim552405xx o b a x b a x b a x x f x x +--+++--=→→ 存在且不为0. 为此令 ⎩⎨⎧=+=--0401b a b a ,解之得34=a , 31-=b .因为当34=a , 31-=b 时,0301!516)(lim 50≠=--=→b a x x f x ,所以当34=a ,31-=b 时, f (x )=x -(a +b cos x )sin x 为当x →0时关于x 的5阶无穷小.总习题四求下列不定积分(其中a , b 为常数): 1.⎰--xx e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(;解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(.3. ⎰-dx xa x 662(a >0); 解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662. 4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1. 5. ⎰dx xxln ln ; 解C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6. ⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan;解xxd x x d xx xdx tan sin tan tan cos sin tan22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ;解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656. 10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a axa +--=22arcsin. 11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos;解⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122. 13.⎰bxdx eaxcos ;解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax⎰⎰⎰+==sin cos 1cos 1cosdx bx e ab bx e a b bx e a de bx a b bx e a ax ax axax ax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以C bx e a b bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e b a ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e e dxx x )1111(112)1ln(11122令. c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x xdx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12. 16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a ++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17. ⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x)1ln(2;解⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx xx x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122. 21.⎰dx x arctan;解x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dx n a x x n a a x dx .24. ⎰++dx x x x 234811;解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444. 25.⎰-416x dx ;解⎰⎰⎰++-=+-=-dx xx dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81 C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx xx x ++-=+-=⎰tan sec )cos 11cos sin (22.27. dx x xx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x xx 2cos sin 212cos 212cos 2sin cos 1sin 222⎰⎰+=dx x xxd 2tan 2tanC x x dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan . 28. ⎰-dx x x x x e x23sin cos sin cos ;解⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xex xsec sin sin sin ⎰⎰+⋅-=x x xxde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x xcos sec sec sin sin sin sinC e x xex x+⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dxx x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x xC t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln( C ee x xx++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e xx+-=-)arctan(C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xde d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1C e e e x x x x ++-++-=)1ln(ln 1C e e xe x x x ++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解dx x x x x x x dx x x ])1([ln )1(ln )1(ln222222'++⋅-++=++⎰⎰⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln xd x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222C x x x x x x x +++++-++=2)1ln(12)1(ln 2222. 34.⎰+dx x x2/32)1(ln ; 解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t tx dx x 2232/321sin cos secsec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx xx xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令 ⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=. 36.⎰-dx xx x 231arccos ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1-9
x3+ 3x2 _x _3
1.求函数f(x)= ----- 2------- 的连续区间,并求极限lim f (x), lim f (x)及lim f (x).
X2+ X—6 T —」7解讪;宁2 _X—S-W3)丫Of函数在(严七6内除点xrn和Xi外是连续 X2+x—6 的,所以函数f(x)的连续区间为(=,」)、(」,2)、(2,讼).
1
在函数的连续点 x=O处,lim f(X)=f (O)=-.
T 2
在函数的间断点x=2和xi 处,
lim f(x)=lim Tx”)lim 以一1 )")款
X_32 ',X T (x+3)(x-2) ' 丿—J3 x-2 5
2.设函数f(x)与g(x)在点x o连续,证明函数
'^x^max{ f(x), g(x)},屮(x)=mi n{f(x), g(x)}
在点X o也连续.
证明已知 lim f(x)=f(X0), lim g(x)=g(X0).
X—J Xo
可以验证
1
®(x) =2[f(x) +g(x)+|f(x)—g(x)|]
,
1
叫寸
(X)+g(X)T f(x)—g(x川.
因此®(X o) =—[f (x o) +g(x o)+|
f (x o) -g(x o)
1
],
2
1
屮(X o)=-[f (X o)+g(X o)—|f(X o)—g(X o)|].
2
因为
1
X iV (
x)划。
尹以血⑴+心-回]
1
NU噪f(x)+xm^g(x)F xm?(X)—s^g(x)|]
1
石[f(x o)中g(X o)+|f(X o) —g(X o)|] =9x0), 所以W(x)在点X o也连续. 同理可证明屮(X)在点x o也连续.
(x+3)(x—2)
3.求下列极限:
(1) lim J x2-2x+5 ;
x-j o
3
2
c X +a . X -a 2cos --- sin
” sinx-sina ” 2 (6) lim -------- =lim -------
X T X 一a X T
X -a ⑵ lim (sin2x): ⑶ lim ln(2cos2x) J x 州-1 ⑷ l X m
p x ; ”L \ J 5
X -4 (5)
lim
1
-- :—
J X -4 ⑹ lim ;
T
X —a
⑺ lim (J x 2
十X -J x 2
-x). —-be
解(1)因为函数f (x)=Jx 2
-2x+5是初等函数,f(x)在点x=0有定义,所以
lim J x 2
—2x+5=f (O)=JO 2
-2 0+ 5 =亦. x —^
⑵因为函数f(x)=(sin 2x)3
是初等函数,f(x)在点
lim (sin2x)3
=f (壬)=(sin2 王)3
=1 .
4 4
⑶因为函数f(x)=ln(2cos2x)是初等函数,f(x)在点 兀 兀
lim ln(2cos2x) =f (二)=1 n(2cos2 二)=0. x _^ 6 6
x=—有定义,所以
4
x=-有定义,所以
6
⑷ lim^xF —Jlim W x 比-心上十1
^ ^30 X X T x(J x +1 +1)
i
f
/u\ r V 5X T-¥X
⑸ l x m 1
X —1 =lim I =lim X T
=1
=lim ................ 一 ___ 一 X T 0
x(J x +1 +1) X T 0
J x +1 +1
J 0+1 +1
2
=lim &5x -4 -以)(J 5x -4 + 寸 X)_li m
4x-4
%x -1)(J 5x -4+以)
(xT)(J5xT +/x)
』5x —4 +7X J 5 1—4+71 2
1
=lim [(l +^x 2 =e 2
=7e . X 1
lim (1 七tan 2
x)cot
^lim 〔(1 +3tan 2
x)
3ta
^x 3 =e 3. x T ^0
6 七-3 x4
厂f 2
.因为
.X —a 丄
sin ---
.. x+a =lim cos --- lim X T 2 T XT
^.cos^a^cosa. 2
(7) lim (J x 2
+ X -J x 2
" = lim
—-be :- -」 (J x 2 +x 4x 2 —x)(J x 2 + X +J x 2
—x) I x _j-bc (J x 2
+x + J x 2
—x)
2x
=lim —,
——, =lim - x
4(J x 2
+X &X 2
—X)x *(
=1. 4.求下列极限:
1
(1) lim e x
;
x -^pC
⑵阿I n
SnX
;
1 —
⑶ x i^(七)2
;
⑷lim(1+3ta 门
2
乂广
代
3+x
⑸ xmfc)2
;
s 、J 1 +tan X -山 t sin x ⑹
l
Xm
^ x JZ x —X
1
(1)
i
ime x
lim -
X —
=e
lim In 沁 T X
沁円nin.
X
1 - lim (1+)
2 X 2
)
-3 63x lim(1+——)H=e, lim X Y
6+x 3 +x X-1 3
所以lim (吐)h =e^ X 护 6+x ,X —1 _3 ^^6 +x 2 — 2’ J l +tanX _J l 七inx (J l +tanx -J l +sinx)(J l + sin 2x +1) (6) lim -- ” ---- =lim
x j l +sin 2x —X x(J l +sin 2x —1)(J l +tan x +J l +si nx) 2 X X 2 .\, A , . 2 s tan X 2sin — 2x(-) (tanx-sinx)W l +sin x +1) . 2 . 2 =lim ---- 2 -----』 -— -Tim 2 =lim 3 x T xs in x( J l +ta nx +v 1 +sinx) T xsi n x T x
_1 ~2 5.
设函数f(x) = X
e
X V
应当如何选择数a,使得f(x)成为在(二,比c )内的连续函
a +x X 知
数? 要使函数f(x)在(二,七C )内连续,只须f(x)在 x=0处连续,即只须
xlimf(x)=^f (x) = f (0)=a .
因为 x limf(x) Ti meX =1, limf(x) = lim(a +x)=a ,所以只须取 a=1.。