八年级第四章因式分解复习测试题

合集下载

八年级数学下册第四章因式分解测试题试题

八年级数学下册第四章因式分解测试题试题

第四章 因式分解测试题一、选择题〔10×3′=30′〕1、以下从左边到右边的变形,是因式分解的是〔 〕 A 、29)3)(3(x x x -=+- B 、))((2233n mn m n m n m ++-=- C 、)1)(3()3)(1(+--=-+y y y y D 、z yz z y z z y yz +-=+-)2(22422、以下多项式中能用平方差公式分解因式的是〔 〕 A 、22)(b a -+ B 、mn m 2052- C 、22y x -- D 、92+-x3、假设E p q p q q p ⋅-=---232)()()(,那么E 是〔 〕 A 、p q --1 B 、p q - C 、q p -+1 D 、p q -+14、假设)5)(3(+-x x 是q px x ++2的因式,那么p 为〔 〕 A 、-15 B 、-2 C 、8 D 、25、假如2592++kx x 是一个完全平方式,那么k 的值是〔 〕A 、 15B 、 ±5C 、 30D ±30 6、△ABC 的三边满足a 2+b 2+c 2=ac +bc +ab ,那么△ABC 是〔 〕 A 、等腰三角形 B 、直角三角形 C 、等边三角形 D 、锐角三角形7、2x 2-3xy+y 2=0〔xy ≠0〕,那么x y +y x的值是〔 〕A 2或者212B 2C 212D -2或者-2128、要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+〔a +b 〕x +ab 型分解为〔x +a 〕〔x +b 〕的形式,那么这些数只能是 〔 〕 A .1,-1; B .5,-5; C .1,-1,5,-5; D .以上答案都不对9、二次三项式x 2+bx+c 可分解为两个一次因式的积〔x +α〕〔x+β〕,下面说法中错误的选项是 〔 〕A .假设b >0,c >0,那么α、β同取正号;B .假设b <0,c >0,那么α、β同取负号;C .假设b >0,c <0,那么α、β异号,且正的一个数大于负的一个数;D .假设b <0,c <0,那么α、β异号,且负的一个数的绝对值较大.10、a=2021x+2021,b=2021x+2021,c=2021x+2021,那么多项式a 2+b 2+c 2-ab-bc-ca 的值是〔 〕 A 、0B 、1C 、2D 、3二、选择题〔10×3′=30′〕11、:02,022=-+≠b ab a ab ,那么ba b a +-22的值是_____________.12、分解因式:ma 2-4ma+4a=_________________________. 13、分解因式:x 〔a-b 〕2n+y 〔b-a 〕2n+1=_______________________.14、△ABC 的三边满足a 4+b 2c 2-a 2c 2-b 4=0,那么△ABC 的形状是__________. 15、假设A y x y x y x ⋅-=+--)(22,那么A =___________. 16、多项式2,12,2223--+++x x x x x x 的公因式是___.17、假设x 2+2(m-3)x+16是完全平方式,那么m=___________.18、假设a 2+2a+b 2-6b+10=0, 那么a=___________,b=___________. 19、假设(x 2+y 2)(x 2+y 2-1)=12, 那么x 2+y 2=___________.20、d c b a ,,,为非负整数,且1997=+++bc ad bd ac ,那么=+++d c b a ___________. 三、把以下各式因式分解〔10×4′=40′〕 〔1〕c b a c ab b a 233236128+-〔2〕)(6)(4)(8a x c x a b a x a ---+-〔3〕5335y x y x +- 〔4〕22)(16)(4b a b a +--〔5〕228168ay axy ax -+- 〔6〕m mn n m 222--+〔7〕2244c a a -+-〔8〕2224)1(a a -+〔9〕22)34()43)(62()3(y x x y y x y x -+-+++〔10〕27624--a a四、解答题〔4×5′=20′〕31、求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正。

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。

第四章《因式分解》测试题(含答案)

第四章《因式分解》测试题(含答案)

第四章因式分解一、选择题(本大题共8小题,每小题4分,共32分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c B.2a-b-c C.2a+b-c D.2a+b+c4.若a2+8ab+m2是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b5.对于任何整数m,多项式(4m+5)2-9一定能()A.被8整除B.被m整除C.被m-91整除D.被2m-1整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-17.因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b 的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为() A.(x+2)(x-3) B.(x-2)(x+1) C.(x+6)(x-1) D.无法确定8.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共6小题,每小题4分,共24分)9.因式分解:3a2-3b2=______________.10.计算:201820192-20172=________.11.请在二项式x2-□y2中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去半径为r的四个小圆,当R=7.2 cm,r=1.4 cm时,剩余部分的面积是________cm2(π取3.14,结果精确到个位).13.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图4-Z-1,已知边长为a,b的长方形,若它的周长为24,面积为32,则a2b +ab2的值为________.图4-Z-1三、解答题(本大题共5小题,共44分)15.(9分)将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).16.(7分)给出三个多项式:12x2+2x-1,12x2+4x+1,12x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)若a2+b2-4a+4=0,则a=________,b=________;(2)已知x2+2y2-2xy+6y+9=0,求x y的值;(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.18.(10分)如图4-Z-2①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图4-Z-2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a-b的值.19.(10分)阅读材料:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax -3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.解题过程如下:x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)=x2+2ax+a2-a2-3a2(第二步)=(x+a)2-(2a)2(第三步)=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________;(3)请你参照上述方法把m2-6mn+8n2因式分解.参考答案1.[答案] B2.[解析] A a 3-a =a (a 2-1)=a (a +1)(a -1).故选A.3.[解析] C 4a 2-(b -c )2=[2a +(b -c )][2a -(b -c )]=(2a +b -c )(2a -b +c ).故选C.4.[答案] D5.[解析] A 因为(4m +5)2-9=(4m +5)2-32=(4m +5+3)(4m +5-3)=(4m +8)(4m +2)=4·(m +2)·2(2m +1)=8(m +2)(2m +1),所以(4m +5)2-9一定能被8整除.6.[解析] A ∵(m -n )2-2m +2n =(m -n )2-2(m -n )=(m -n )(m -n -2),m -n =-1,∴原式=(-1)×(-1-2)=3.故选A.7.[解析] A 因为甲看错了a 的值,分解的结果为(x +6)(x -1),所以b =-6.因为乙看错了b 的值,分解的结果是(x -2)(x +1),所以a =-1.所以x 2+ax +b =x 2-x -6=(x +2)(x -3). 8.[解析] B (a 2-2ab +b 2)-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).因为a ,b ,c 是三角形三边的长,所以a +c >b ,a <b +c ,即a -b +c >0,a -b -c <0,所以(a -b +c )(a -b -c )<0,即(a 2-2ab +b 2)-c 2<0.故选B.[点评] 本题要充分挖掘题目的隐含条件,即a ,b ,c 是三角形的三边长,则a ,b ,c 应是正数且满足三角形三边的关系.9.[答案] 3(a -b )(a +b )10.[答案] 14[解析] 原式=2018(2019+2017)×(2019-2017)=20184036×2=14. 11.[答案] 答案不唯一,如412.[答案] 138[解析] 剩余部分的面积为πR 2-4πr 2.当R =7.2 cm ,r =1.4 cm 时,πR 2-4πr 2=π(R -2r )(R +2r )=π×(7.2-2.8)×(7.2+2.8)=π×4.4×10≈3.14×44≈138(cm 2).13.[答案] 等腰三角形[解析] ∵a +2ab =c +2bc ,∴a +2ab -c -2bc =0,∴(a -c )+2b (a -c )=0,∴(a -c )(2b +1)=0.∵2b +1≠0,∴a =c.14.[答案] 384[解析] 由题意易得a +b =12,ab =32,∴a 2b +ab 2=ab (a +b )=384.故答案为384.15.[解析] (1)先提取公因式2xy ,再用平方差公式;(2)先提取公因式3x ,再运用平方差公式;(3)先提取公因式(a -b ),再运用平方差公式.无论哪一道题目都需要分解到底.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)3x 3-27x=3x (x 2-9)=3x (x +3)(x -3).(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b )2-(a +3b )2]=(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b )2(a +b ).16.解:(1)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2+4x +1=x 2+6x=x (x +6).(2)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2-2x=x 2-1=(x +1)(x -1).(3)⎝⎛⎭⎫12x 2+4x +1+⎝⎛⎭⎫12x 2-2x=x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:(1)2 0(2)∵x 2+2y 2-2xy +6y +9=0,∴x 2+y 2-2xy +y 2+6y +9=0,即(x -y )2+(y +3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-127.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,∵a,b,c都是正整数,由三角形三边关系可知,三角形的三边长分别为1,3,3,则△ABC的周长为1+3+3=7.18.解:(1)方法一:(m+n)2-4mn;方法二:(m-n)2.(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16.∴a-b=4或a-b=-4.19.解:(1)C(2)平方差公式法(3)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n)(m-4n).。

八年级下学期第四章因式分解复习测试题

八年级下学期第四章因式分解复习测试题

八年级下学期第四章因式分解复习测试题一、单选题1、把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A.x(3x+y)(x-3y) B.3x(x2-2xy+y2) C.x(3x-y)2 D.3x(x-y)22、把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2 B.m(x+3)(x-3) C.m(x-4)2 D.m(x-3)23、分解因式a3-a的结果是()A.a(a2-1) B.a(a-1)2 C.a(a+1)(a-1) D.(a2+a)(a-1)4、下列哪个选项可以利用平方差公式进行因式分解()A.a2+b2 B.-a2-b2 C.-a2+b2 D.-(a2+b2)5、下列各式中能运用公式法进行因式分解的是()A.x2+4 B.x2+2x+4 C.x2-2x D.x2-4y26、因式分解(x-1)2-9的结果是()A.(x+8)(x+1) B.(x+2)(x-4) C.(x-2)(x+4) D.(x-10)(x+8)7、下列多项式中,不能用平方差公式分解因式的是()A.4x4-1 B. -4x2-4 C.-4x2+1 D.x2-y28、若(x+2)3-4x(x+2)=k(x+2),则k的表达式为()A.x3-4x2-8x+8 B.x3-4x2+8 C.x2+4 D.x3-4x2+49、下列多项式中,能用提取公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y210、若x2+mx-15=(x+3)(x+n),则m的值是()A.-5 B.5 C.-2 D.2二、填空题(注释)11、把多项式4ax2-ay2分解因式的结果是______.12、分解因式:x2-6xy+9y2= ______.13、分解因式:(x+y)2-4(x+y)+4=______.14、分解因式:x2-4(x-1)= ______.15、若a-b=6,ab=3,则3ab2-3a2b= ______.16、若多项式x2+kx﹣6有一个因式是(x﹣2),则k= .17、若a2+b2+2c2+2ac-2bc=0,则a+b=_____.18、分解因式:3x2-18x+27=______.19、因式分解:-4x2y-6xy2+2xy= ________.20、因式分解: = .三、解答题21、把下列多项式分解因式:(1); (2); (3); (4).22、因式分解:(1);(2).23、(1)已知x﹣y=2+a,y﹣z=2﹣a,且a2=7,试求x2+y2+z2﹣xy﹣yz﹣zx的值.(2)已知对多项式2x3﹣x2﹣13x+k进行因式分解时有一个因式是2x+3,试求4k2+4k+1的值.24、仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n ∴n+3=﹣4,m=3n,解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.25、你知道数学中的整体思想吗?解题中,若把注意力放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形、整体代入,从不同方面确定解题策略,可以使问题快速得到解决.请你用整体思想把下列式子因式分解:(1)(2a﹣3b)2+6(2a﹣3b)+9;(2)(x+2y)2﹣4(x+2y﹣1).26、因式分解:.27、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n)则x2-4x+m=x2+(n+3)x+3n∴,解得:n=-7,m=-21.∴另一个因式为(x-7),m的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x-k有一个因式是(2x-5),求另一个因式以及k的值.28、观察等式:①9-1=2×4;②25-1=4×6;③49-1=6×8…,(1)按照这种规律写出第n个等式;(2)运用所学的知识验证你的结论.。

八年级下册第四章《因式分解》单元测试题.doc

八年级下册第四章《因式分解》单元测试题.doc
解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.
3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),
故选D
4.【分析】A选项中提取公因式3xy;
D.2x﹣15
11.下列多项式中,在实数范围不能分解因式的是(

2
y22x 2y
B.x2y22xy﹣2
C.x2﹣y24x 4y
D.x2﹣y24y
﹣4
A.x + + +
+ +
+ +
+
12.n是整数,式子
[ 1﹣(﹣1)n](n2﹣1)计算的结果(

A.是0B.总是奇数
C.总是偶数D.可能是奇数也可能是偶数
故选:B.
5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.
解:∵ab=﹣3,a﹣2b=5,
22
a b﹣2ab =ab(a﹣2b)=﹣3×5=﹣15.
6.【分析】直接提取公因式法分解因式求出答案.
解:(﹣2)2015+22014
=﹣22015+22014
=22014×(﹣2+1)
=﹣22014.
=(x+y)2﹣1
=(x+y﹣1)(x+y+1).
(6)【分析】 将x2y2看作一个整体,然后进行因式分解.
解:(x2y2+3)(x2y2﹣7)+37

八年级下数学《第四章因式分解》单元测试(含答案)

八年级下数学《第四章因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。

北师大八年级下册第四章《因式分解》单元测试题含答案解析

北师大八年级下册第四章《因式分解》单元测试题含答案解析

第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1) B.(x﹣1) C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z) D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)+2等于()A.2B.﹣2 C.﹣2 D.27.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)+2=﹣2+2=2×(﹣2+1)=﹣2.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。

第四章 因式分解复习题---解答题(含解析)

第四章 因式分解复习题---解答题(含解析)

北师大版数学八下第四章分解因式---解答题一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay24.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=;(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.6.(2018秋•松江区期中)因式分解:x4﹣16y4.7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片张,B类卡片张,C类卡片张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.23.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.24.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.北师大版数学八下第四章分解因式---解答题参考答案与试题解析一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy(x﹣5)2.2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.【分析】直接找出公因式﹣8x,进而提取公因式得出答案.【解答】解:原式=﹣8x(3m2+2n2).3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay2【分析】(1)直接提取公因式x,进而分解因式即可;(2)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可.【解答】解:(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.4.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)【分析】根据分解因式的方法﹣提公因式法分解因式即可.【解答】解:(1)2a(x﹣y)﹣6b(y﹣x)=2(x﹣y)(a+3b);(2)(a2﹣2a+1)﹣b(a﹣1)=(a﹣1)(a﹣b﹣1);(3)2x(y﹣x)+(x+y)(x﹣y)=(y﹣x)(2x﹣x﹣y)=﹣(x﹣y)2.5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=a2﹣b2,S②=(a+b)(a﹣b);(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20182﹣20172=(2018+2017)(2018﹣2017)=4035×1=4035.6.(2018秋•松江区期中)因式分解:x4﹣16y4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a【分析】先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a ±b)2.【解答】解:原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2.9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.【解答】解:(1)原式=m(n2﹣2n+1)=m(n﹣1)2;(2)原式=x(x﹣2)+(x﹣2)=(x﹣2)(x+1).10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣a(25x2﹣10x+1)=﹣a(5x﹣1)2;(2)原式=4x2(a﹣b)﹣y2(a﹣b)=(a﹣b)(2x+y)(2x﹣y).11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.【分析】(1)提公因式分解因式即可;(2)先根据多项式乘法法则将式子展开,再根据完全平方公式分解因式即可.【解答】解:(1)﹣4a3b3+6a2b﹣2ab=﹣2ab(2a2b2﹣3a+1)(2)(x+1)(x+2)+=x2+3x+2+=x2+3x+=(x+)2.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.【分析】(1)利用平方差公式分解因式;(2)利用(1)中分解的结果得到c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0,再提公因式得到(a+b)(a﹣b)(c2﹣a2﹣b2)=0,于是a﹣b=0或c2﹣a2﹣b2=0,然后判断三角形的形状.【解答】解:(1)a2c2﹣b2c2=c2(a2﹣b2)=c2(a+b)(a﹣b);a4﹣b4=(a2﹣b2)(a2+b2)=(a﹣b)(a+b)(a2+b2);(2)∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a﹣b)(a+b)(a2+b2);∴c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0;∴(a+b)(a﹣b)(c2﹣a2﹣b2)=0,∵a、b、c分别是△ABC的三边.∴a﹣b=0或c2﹣a2﹣b2=0,∴a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.【分析】(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4=﹣(m﹣2)2≤0.【解答】解:(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4,=﹣(m﹣2)2≤0,即:c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.【分析】先将已知化简得:a﹣2b=1,再把所求的式子进行因式分解,最后代入计算.【解答】解:a(a+1)﹣(a2+2b)=1,a2+a﹣a2﹣2b﹣1=0,a﹣2b=1,a2﹣4ab+4b2﹣2a+4b,=(a﹣2b)2﹣2(a﹣2b),=12﹣2×1,=﹣1.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.【分析】(1)应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.(2)先根据a+b=7,ab=10求出a2+b2的值,即可求出a2+b2+ab的值.【解答】解:(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=39.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.【分析】用6张卡片(边长为a的正方形卡片1张,边长为b的正方形卡片2张,边长为a、b的矩形卡片3张)拼成一个大长方形,可判断矩形ABCD的面积为a2+3ab+2b2,从而得到因式分解得结果.【解答】解:如图,矩形ABCD的面积为a2+3ab+2b2,a2+3ab+2b2可分解为(a+b)(a+2b).18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?【分析】(1)根据“神秘数”定义可判断;(2)把2019写成平方差的形式,解方程即可判断是否是神秘数;(3)由(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),可判断构造的“神秘数”是4的倍数;(4)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)∵28=82﹣62=64﹣36∴28是“神秘数”(2)2019不是“神秘数”设2 019是由y和y﹣2两数的平方差得到的,则y2﹣(y﹣2)2=2 019,解得:y=505.75,不是偶数,∴2 019不是“神秘数”.(3)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的“神秘数”是4的倍数,且是奇数倍(4)(2k+1)2﹣(2k﹣1)2=8k,是8的倍数,但不是4的倍数,根据定义得出结论,不是“神秘数”.19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?【分析】(1)根据题意和a、b的值可以求得“机智数”c;(2)根据题意,可以求得a=m2+2m+1,b=m2+m时的“机智数”c;(3)根据(2)中的结论和分式有意义的条件可以求得m的值.【解答】解:(1)∵a=1,b=2,c=,∴c==,即a,b的“机智数”c是;(2)∵a=m2+2m+1,b=m2+m,c=,∴c=﹣(m2+2m+1)+(m2+m)=﹣m;(3)∵c=﹣(m2+2m+1)+(m2+m)=﹣m,c=﹣m为一个整数,∴m=1或m=﹣1(舍去),即m的整数值是1.20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.【分析】(1)根据题意可以判断52478和9115是否能被19整除,从而判断是否为灵异数;(2)根据题意.写出相应的式子,从而可以解答本题.【解答】解:(1)∵478﹣7×52=114,114÷19=6,∴52478能被19整除,是“灵异数”;∵115﹣7×9=52,52÷19=2…14,∴9115不能被19整除,不是“灵异数”;(2)设这个五位数的千位为a,则个位为2a,十位为b,则百位为8﹣b,∵[100(8﹣b)+10b+2a]﹣7×(10×1+a)=730﹣90b﹣5a,这个数恰好是灵异数,即能被19整除,a为正整数、b为非负整数,∴730﹣90b﹣5a能被19整除,解得,,,∴这个数为:11172或12084.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片2张,B类卡片3张,C类卡片1张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.(2)由图形可得;(3)由图形面积的两种表达形式可把多项式2a2+3ab+b2分解因式.【解答】解:(1)∵面积等于2a2+3ab+b2∴需要A类卡片2张,B类卡片3张,C类卡片1张;故答案为:2,3,1(2)如图:图形的面积=(2a+b)(a+b)(3)2a2+3ab+b2=(2a+b)(a+b)22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.【分析】(1)根据题意可判断;(2)利用平方差公式可证;(3)将“奇妙数”从小到大排列后,可求第12个奇妙数.【解答】解:(1)15和40是奇妙数,理由:15=42﹣12,40=72﹣32.(2)设这两个数为2n﹣1,2n+1∵(2n+1)2﹣(2n﹣1)2=8n∴是8的倍数.(3)“奇妙数”从小到大排列为:3,5,7,8,9,11,12,13,15,16,17,19∴第12个奇妙数为1923.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.(2)通过完全平方公式可求平方和,即可证平方和是5的倍数;延伸:通过完全平方公式可求平方和,即可判断平方和是否被3整除.【解答】解:(1)∵(﹣1)2+02+12+22+32=1+0+1+4+9=15=5×3∴结果是5的3倍.(2)设五个连续整数的中间一个为n,则另四个整数为:n﹣2,n﹣1,n+1,n+2∴它们的平方和为(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2∵(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=5n2+10=5(n2+2)∴它们的平方和是5的倍数延伸:不能被3整除,余数为2设中间的整数为n,∵(n﹣1)2+n2+(n+1)2=3n2+2∴不能被3整除,余数为224.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【分析】按照新概念的定义,进行验证即可.【解答】解:(1)∵28=82﹣62,2020=5062﹣5042,∴28和2020是“和谐数”;(2)∵(2k+2)2﹣(2k)2=4(2k+1),∴两个连续偶数构成的“和谐数”是4的倍数.25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.【分析】(1)写出最小的五位“轴对称数”,即首位数字和个位数字为1,其它为0的数;(2)先表示这个任意的n(n≥3)位“轴对称数”:=A×10n+B×10+A,再表示“轴对称数”与它个位数字的11倍的差,合并同类项并提公因式,可得结论;(3)设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),根据与k的和能同时被5和9整除,即能被45整除,设100a+10b+a+k=45c,化为90a+11a+10b+k=45c,所以11a+10b+k能同时被45整除,分情况计算可得结论.【解答】(1)解:最小的五位“轴对称数”是10001;(2)证明:由题意得:A×10n+B×10+A﹣11A=A×10n+10B﹣10A=10(A×10n﹣1+B﹣A),∴该“轴对称数”与它个位数字的11倍的差能被10整除;(3)解:设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),∵与整数k(0≤k≤5)的和能同时被5和9整除,∴设100a+10b+a+k=45c,101a+10b+k=45c,90a+11a+10b+k=45c,∴因为101a+10b+k能同时被5和9整除,所以11a+10b+k能同时被5和9整除,即11a+10b+k的值为0或45或90或135,又1≤a≤4,0≤b≤9,∴当a=1,b=3,k=4时,这个三位“轴对称数”是131.当a=1,b=8,k=4时,这个三位“轴对称数”是131.当a=2,b=2,k=3时,这个三位“轴对称数”是222.当a=3,b=1,k=2时,这个三位“轴对称数”是313.当a=4,b=0,k=1时,这个三位“轴对称数”是404.当a=4,b=9,k=1时,这个三位“轴对称数”是494.所有满足条件的三位“轴对称数”为:131,222,313,404,494.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.【分析】(1)把18因式分解为1×18,2×9,3×6,再由定义即可得F(18),把24因式分解为1×24,2×12,3×8,4×6,再由定义即可得F(24);(2)根据吉祥数的定义,求出两位数的吉祥数,再根据F(t)的概念计算即可.【解答】解:(1)∵18=1×18=2×9=3×6,其中3与6的差的绝对值最小;∴F(18)=3+6+18=27;∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=4+6+24=34;(2)设t=10x+y,则新的两位是10y+x,∴(10y+x)﹣(10x+y)=27,即y﹣x=3,∵1≤x≤y≤9,x,y是自然数,∴t的值为14,25,36,47,58,69,∵F(14)=2+7+14=23,F(25)=5+5+25=35,F(36)=6+6+36=48,F(47)=1+47+47=95,F(58)=2+29+58=81,F(69)=3+23+69=94,∴吉祥数中F(t)的最大的值为95.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568是(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.。

北师大版八年级数学下《第4章因式分解》单元测试含答案解析

北师大版八年级数学下《第4章因式分解》单元测试含答案解析

《第 4 章 因式分解》一、选择题1.下列各式从左到右的变形,正确的是()A .﹣x ﹣y=﹣(x ﹣y )B .﹣a +b=﹣(a +b )C .(y ﹣x ) =(x ﹣y )D .(a ﹣b ) =(b ﹣a )32.把多项式(m +1)(m ﹣1)+(m ﹣1)提取公因式(m ﹣1)后,余下的部分是( )A .m +1B .2mC .2D .m +23.把 10a (x +y ) ﹣5a (x +y ) 因式分解时,应提取的公因式是( )A .5aB .(x +y )2C .5(x +y )2D .5a (x +y )24.将多项式 a (b ﹣2)﹣a (2﹣b )因式分解的结果是( )A .(b ﹣2)(a +a )B .(b ﹣2)(a ﹣a )C .a (b ﹣2)(a +1)D .a (b ﹣2 )(a ﹣1)5.下列因式分解正确的是()A .mn (m ﹣n )﹣m (n ﹣m )=﹣m (n ﹣m )(n +1)B .6(p +q ) ﹣2(p +q )=2(p +q ) (3p +q ﹣1)C .3(y ﹣x )2+2(x ﹣y )=(y ﹣x )(3y ﹣3x +2)D .3x (x +y )﹣(x +y )=(x +y )(2x +y )二、填空题6.把多项式(x ﹣2) ﹣4x +8 因式分解开始出现错误的一步是 解:原式=(x ﹣2) ﹣(4x ﹣8)…A=(x ﹣2) 2﹣4(x ﹣2)…B=(x ﹣2)(x ﹣2+4)…C=(x ﹣2)(x +2)…D .7.﹣xy (x +y ) +x (x +y ) 的公因式是 ;(2)4x (m ﹣n )+8y (n ﹣m ) 2的公因式是.8.分解因式:(x +3)﹣(x +3)=.9.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=.10.已知(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13)可分解因式为(3x +a )(x +b ),2 23 2 2 3 2 2 2 22 22 23 2 2其中 a 、b 均为整数,则 a +3b=.三、解答题11.将下列各式因式分解:(1)5a b (a ﹣b ) ﹣10a b (b ﹣a ) ;(2)(b ﹣a )+a (a ﹣b )+b (b ﹣a );(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a );(4)x (b +c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b +d .12.若 x ,y 满足,求 7y (x ﹣3y ) ﹣2(3y ﹣x ) 的值.13.先阅读下面的材料,再因式分解:要把多项式 am +an +bm +bn 因式分解,可以先把它的前两项分成一组,并提出 a ;把它 的后两项分成一组,并提出 b ,从而得至 a (m +n )+b (m +n ).这时,由于 a (m +n ) +b (m +n ),又有因式(m +n ),于是可提公因式(m +n ),从而得到(m +n )(a +b ).因 此有 am +an +bm +bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b ).这 种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们 的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了. 请用上面材料中提供的方法因式分解:(1)ab ﹣ac +bc ﹣b :(2)m ﹣mn +mx ﹣nx ;(3)xy ﹣2xy +2y ﹣4.14.求使不等式成立的 x 的取值范围:(x ﹣1) 3﹣(x ﹣1)(x ﹣2x +3)≥0. 15.阅读题:因式分解:1+x +x (x +1)+x (x +1)2 解:原式=(1+x )+x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )[(1+x )+x (1+x )] =(1+x ) (1+x )=(1+x ) .(1)本题提取公因式几次?3 34 3 2 2 2 3 2 2 2 2 2 3(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y 的值.《第 4 章 因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A .﹣x ﹣y=﹣(x ﹣y )B .﹣a+b=﹣(a+b )C .(y ﹣x ) =(x ﹣y )D .(a ﹣b ) =(b ﹣a )3【考点】完全平方公式;去括号与添括号.【分析】A 、B 都是利用添括号法则进行变形,C 、利用完全平方公式计算即可;D 、利用立方差公式计算即可.【解答】解:A 、∵﹣x ﹣y=﹣(x+y ),故此选项错误;B 、∵﹣a+b=﹣(a ﹣b ),故此选项错误;C 、∵(y ﹣x ) =y ﹣2xy+x =(x ﹣y ) ,故此选项正确;D 、∵(a ﹣b )3 =a ﹣3ab+3a b2﹣b3 , (b ﹣a ) =b ﹣3ab +3a b ﹣a ,∴(a ﹣b ) ≠(b ﹣a ) ,故此选项错误.故选 C .【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全 平方公式:(a±b ) =a ±2ab+b .括号前是“﹣”号,括到括号里各项都变号,括号前 是“+”号,括到括号里各项不变号.2.把多项式(m +1)(m ﹣1)+(m ﹣1)提取公因式(m ﹣1)后,余下的部分是()A .m +1B .2mC .2D .m +2【考点】因式分解﹣提公因式法.【专题】压轴题.2 23 2 2 2 2 3 2 33223332 2 2【分析】先提取公因式(m ﹣1)后,得出余下的部分.【解答】解:(m +1)(m ﹣1)+(m ﹣1),=(m ﹣1)(m +1+1),=(m ﹣1)(m +2).故选 D .【点评】先提取公因式,进行因式分解,要注意 m ﹣1 提取公因式后还剩 1.3.把 10a (x +y ) ﹣5a (x +y ) 因式分解时,应提取的公因式是( )A .5aB .(x +y )2C .5(x +y )2D .5a (x +y )2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a (x +y ) ﹣5a (x +y )因式分解时,公因式是 5a (x +y )2故选 D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式 a (b ﹣2)﹣a (2﹣b )因式分解的结果是( )A .(b ﹣2)(a +a2)B .(b ﹣2)(a ﹣a 2) C .a (b ﹣2)(a +1) D .a (b ﹣2 )(a ﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取 a (b ﹣2)进而得出即可.【解答】解:a (b ﹣2)﹣a(2﹣b )=a (b ﹣2)(1+a ).故选:C .【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A .mn (m ﹣n )﹣m (n ﹣m )=﹣m (n ﹣m )(n +1)B .6(p +q ) ﹣2(p +q )=2(p +q ) (3p +q ﹣1)C .3(y ﹣x ) +2(x ﹣y )=(y ﹣x )(3y ﹣3x +2)D .3x (x +y )﹣(x +y )=(x +y )(2x +y ) 2 2 3 2 2 3 2 2 22 2【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A 、mn (m ﹣n )﹣m (n ﹣m )=m (m ﹣n )(n +1)=﹣m (n ﹣m )(n +1), 故原选项正确;B 、6(p +q )﹣2(p +q )=2(p +q )(3p +3q ﹣1),故原选项错误;C 、3(y ﹣x )+2(x ﹣y )=(y ﹣x )(3y ﹣3x ﹣2),故原选项错误;D 、3x (x +y )﹣(x +y )=(x +y )(2x ﹣y ),故原选项错误.故选:A .【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x ﹣2)﹣4x +8 因式分解开始出现错误的一步是C解:原式=(x ﹣2)﹣(4x ﹣8)…A=(x ﹣2) ﹣4(x ﹣2)…B=(x ﹣2)(x ﹣2+4)…C=(x ﹣2)(x +2)…D .【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可. 【解答】解:原式═(x ﹣2) ﹣(4x ﹣8)…A=(x ﹣2) ﹣4(x ﹣2)…B=(x ﹣2)(x ﹣2﹣4)…C=(x ﹣2)(x ﹣6)…D .通过对比可以发现因式分解开始出现错误的一步是 C .故答案为:C .【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy (x +y ) +x (x +y ) 的公因式是x (x +y )2;(2)4x (m ﹣n )+8y (n ﹣m ) 的公因式是 4(m ﹣n ) . 【考点】公因式.2 2 2 2 22 2 2 23 2 2【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式. 【解答】解:(1)﹣xy (x +y ) +x (x +y ) 的公因式是 x (x +y ) ;(2)4x (m ﹣n )+8y (n ﹣m )的公因式是 4(m ﹣n ). 故答案为:4(m ﹣n )x (x +y )2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x +3)﹣(x +3)=(x +2)(x +3) .【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x ﹣3)提出即可得出答案. 【解答】解:(x +3) ﹣(x +3),=(x +3)(x +3﹣1),=(x +2)(x +3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )= 2n (m ﹣n )(p ﹣q ) . 【考点】因式分解﹣提公因式法.【分析】首先得出公因式为 n (m ﹣n )(p ﹣q ),进而提取公因式得出即可.【解答】解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=n (m ﹣n )(p ﹣q )+n (m ﹣n )(p ﹣q )=2n (m ﹣n )(p ﹣q ).故答案为:2n (m ﹣n )(p ﹣q ).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13)可分解因式为(3x +a )(x +b ),其中 a 、b 均为整数,则 a +3b=﹣31 . 【考点】因式分解﹣提公因式法. 【专题】压轴题.【分析】首先提取公因式 3x ﹣7,再合并同类项即可得到 a 、b 的值,进而可算出 a +3b2 3 2 2 2 2 2的值.【解答】解:(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13), =(3x ﹣7)(2x ﹣21﹣x +13),=(3x ﹣7)(x ﹣8)=(3x +a )(x +b ),则 a=﹣7,b=﹣8,故 a +3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b (a ﹣b )﹣10a b 3(b ﹣a ) 2;(2)(b ﹣a )+a (a ﹣b )+b (b ﹣a );(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a ); (4)x (b +c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b +d .【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a b (a ﹣b ) ﹣10a b (b ﹣a )2=5a b (a ﹣b ) (a ﹣b ﹣2ab )(2)(b ﹣a )+a (a ﹣b )+b (b ﹣a )=(a ﹣b )(a ﹣b +a ﹣b )=2(a ﹣b ) ;(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a )=(7a ﹣8b )(3a ﹣4b ﹣11a +12b )=8(7a ﹣8b )(b ﹣a )(4)x (b +c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b +d=(b +c ﹣d )(x +y ﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.3 4 2 3 3 4 3 3 2 2 2 212.若 x ,y 满足,求 7y (x ﹣3y ) ﹣2(3y ﹣x ) 的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可. 【解答】解:7y (x ﹣3y ) 2﹣2(3y ﹣x )3 ,=7y (x ﹣3y ) +2(x ﹣3y ) , =(x ﹣3y ) [7y +2(x ﹣3y )], =(x ﹣3y ) (2x +y ),当时,原式=1 ×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式 am +an +bm +bn 因式分解,可以先把它的前两项分成一组,并提出 a ;把它 的后两项分成一组,并提出 b ,从而得至 a (m +n )+b (m +n ).这时,由于 a (m +n ) +b (m +n ),又有因式(m +n ),于是可提公因式(m +n ),从而得到(m +n )(a +b ).因 此有 am +an +bm +bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b ).这 种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们 的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了. 请用上面材料中提供的方法因式分解:(1)ab ﹣ac +bc ﹣b : (2)m2﹣mn +mx ﹣nx ;(3)xy ﹣2xy +2y ﹣4.【考点】因式分解﹣分组分解法. 【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可; (2)首先将前两项与后两项分组,进而提取公因式,分解因式即可; (3)首先将前两项与后两项分组,进而提取公因式,分解因式即可. 【解答】解:(1)ab ﹣ac +bc ﹣b =a (b ﹣c )+b (c ﹣b )=(a ﹣b )(b ﹣c ); 2 3 2 322 2 2 2 2(2)m ﹣mn +mx ﹣nx=m (m ﹣n )+x (m ﹣n )=(m ﹣n )(m ﹣x );(3)xy ﹣2xy +2y ﹣4=xy (y ﹣2)+2(y ﹣2)=(y ﹣2)(xy +2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的 x 的取值范围:(x ﹣1) ﹣(x ﹣1)(x ﹣2x +3)≥0. 【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把 x ﹣2x +3 因式分解为(x ﹣1)(x ﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x ﹣1)﹣(x ﹣1)(x ﹣2x +3)=(x ﹣1) ﹣(x ﹣1) (x ﹣2)=(x ﹣1) (x +1);因(x ﹣1) 是非负数,要使(x ﹣1) ﹣(x ﹣1)(x ﹣2x +3)≥0,只要 x +1≥0 即可,即 x ≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x +x (x +1)+x (x +1)2解:原式=(1+x )+x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )[(1+x )+x (1+x )] =(1+x ) (1+x )=(1+x ) 3.(1)本题提取公因式几次?(2)若将题目改为 1+x +x (x +1)+…+x (x +1) ,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.2 23 2 232 3 2 2 2 3 2 2 n【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1),需提公因式n 次,结果是(x+1)+.n n 1【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y 的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y 的整式的乘法算式,对应12 的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。

第四章 因式分解复习题---填空题(含解析)

第四章 因式分解复习题---填空题(含解析)

北师大版数学八下第四章因式分解---填空题一.填空题1.(2018春•泗县期中)多项式15m3n2+5m2n﹣20m2n的公因式是.2.(2018秋•道外区期末)把多项式3mx﹣6my分解因式的结果是.3.(2018秋•松江区校级月考)分解因式:3x2yz+15xz2﹣9xy2z=.4.(2018秋•闵行区期末)因式分解:9a2﹣12a+4=.5.(2018秋•昆明期末)因式分解:1﹣4a2=.6.(2018秋•如皋市期中)把a2﹣16分解因式,结果为.7.(2017秋•雨花区校级期末)因式分解:(a+b)2﹣64=.8.(2018•义乌市模拟)多项式x2+1加上一个单项式后,可以分解因式,那么加上的单项式可以是(只需填写二个).9.(2018•沈河区二模)分解因式:x4﹣2x2y2+y4=.10.(2018•苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.11.(2018•株洲)因式分解:a2(a﹣b)﹣4(a﹣b)=.12.(2018•井研县模拟)分解因式:(y+2x)2﹣(x+2y)2=.13.(2017秋•新津县期末)若2a=3b﹣1,则4a2﹣12ab+9b2﹣1的值为.14.(2018秋•宁城县期末)因式分解:4x2y﹣9y3=.15.(2018秋•松北区期末)代数式a2b﹣2ab+b分解因式为.16.(2018秋•鸡东县期末)分解因式:4m2﹣16n2=.17.(2018•武威模拟)分解因式:﹣3x2+6x﹣3=.18.(2018•祁县模拟)因式分解:3x2﹣18xy+27y2=.19.(2018•葫芦岛一模)分解因式:a2b﹣8ab+16b=.20.(2018春•宿豫区期末)已知xy=,x+y=5,则2x3y+4x2y2+2xy3=.21.(2017秋•宜春期末)计算50×1252﹣50×252的结果是.22.(2018春•郯城县期中)分解因式:a2+2ab+b2﹣4=.23.(2017秋•松滋市期末)y2﹣x2﹣x+y分解因式:.24.(2018秋•靖远县期末)如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是.25.(2017秋•昌江区校级期末)若ab+bc+ca=﹣3,且a+b+c=0,则a4+b4+c4=.26.(2018春•高密市期末)已知a﹣b=3,a+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为.27.(2018秋•金牛区校级月考)若3x3﹣x=1,则9x4+12x3﹣3x2﹣7x+2001=.28.(2018秋•汉阳区校级期中)已知a2+a﹣1=0,则a3+2a2+2018=.29.(2018秋•文登区期中)已知a,b,c为三角形ABC的三边,且a4﹣b4=c2(a2+b2),则三角形ABC为三角形30.(2018春•雨城区校级期中)已知△ABC的三边长分别为a、b、c,且a、b、c满足等式3(a2+b2+c2)=(a+b+c)2,则该三角形是三角形.31.(2018春•宿豫区期中)已知a、b、c为△ABC的三边长,且a、b满足a2﹣6a+b2﹣4b+13=0,c为奇数,则△ABC的周长为.32.(2018•建湖县二模)若a+b=﹣5,ab=6,则a2b+ab2的值为.33.(2018春•常州期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为.北师大版数学八下第四章因式分解---填空题参考答案与试题解析一.填空题1.(2018春•泗县期中)多项式15m3n2+5m2n﹣20m2n的公因式是5m2n.【分析】根据确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂进行解答即可.【解答】解:多项式15m3n2+5m2n﹣20m2n的公因式是:5m2n,故答案为:5m2n.2.(2018秋•道外区期末)把多项式3mx﹣6my分解因式的结果是3m(x﹣2y).【分析】直接提取公因式3m,进而分解因式即可.【解答】解:3mx﹣6my=3m(x﹣2y).故答案为:3m(x﹣2y).3.(2018秋•松江区校级月考)分解因式:3x2yz+15xz2﹣9xy2z=3xz(xy+5z﹣3y2).【分析】直接找出公因式3xz,进而提取3xz分解因式得出答案.【解答】解:3x2yz+15xz2﹣9xy2z=3xz(xy+5z﹣3y2).故答案为:3xz(xy+5z﹣3y2).4.(2018秋•闵行区期末)因式分解:9a2﹣12a+4=(3a﹣2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:9a2﹣12a+4=(3a﹣2)2.5.(2018秋•昆明期末)因式分解:1﹣4a2=(1﹣2a)(1+2a).【分析】直接利用平方差分解因式进而得出答案.【解答】解:1﹣4a2=(1﹣2a)(1+2a).故答案为:(1﹣2a)(1+2a).6.(2018秋•如皋市期中)把a2﹣16分解因式,结果为(a+4)(a﹣4).【分析】利用平方差公式进行因式分解.【解答】解:a2﹣16=(a+4)(a﹣4).故答案是:(a+4)(a﹣4).7.(2017秋•雨花区校级期末)因式分解:(a+b)2﹣64=(a+b﹣8)(a+b+8).【分析】直接利用平方差公式分解因式得出答案.【解答】解:(a+b)2﹣64=(a+b﹣8)(a+b+8).故答案为:(a+b﹣8)(a+b+8).8.(2018•义乌市模拟)多项式x2+1加上一个单项式后,可以分解因式,那么加上的单项式可以是2x或﹣2x(只需填写二个).【分析】直接利用完全平方公式分解因式得出答案.【解答】解:多项式x2+1加上一个单项式后,可以分解因式,加上的单项式可以是:±2x,则x2±2x+1=(x±1)2.故答案为:2x或﹣2x.9.(2018•沈河区二模)分解因式:x4﹣2x2y2+y4=(x+y)2(x﹣y)2.【分析】直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x+y)2(x﹣y)2.故答案为:(x+y)2(x﹣y)2.10.(2018•苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.11.(2018•株洲)因式分解:a2(a﹣b)﹣4(a﹣b)=(a﹣b)(a﹣2)(a+2).【分析】先提公因式,再利用平方差公式因式分解即可.【解答】解:a2(a﹣b)﹣4(a﹣b)=(a﹣b)(a2﹣4)=(a﹣b)(a﹣2)(a+2),故答案为:(a﹣b)(a﹣2)(a+2).12.(2018•井研县模拟)分解因式:(y+2x)2﹣(x+2y)2=3(x+y)(x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(y+2x+x+2y)(y+2x﹣x﹣2y)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)13.(2017秋•新津县期末)若2a=3b﹣1,则4a2﹣12ab+9b2﹣1的值为0.【分析】把式子4a2﹣12ab+9b2﹣1运用完全平方公式整理,整体代入求得数值即可.【解答】解:∵2a=3b﹣1,∴2a﹣3b=﹣1,∴4a2﹣12ab+9b2﹣1=(2a﹣3b)2﹣1=(﹣1)2﹣1=0.故答案是:0.14.(2018秋•宁城县期末)因式分解:4x2y﹣9y3=y(2x+3y)(2x﹣3y).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)15.(2018秋•松北区期末)代数式a2b﹣2ab+b分解因式为b(a﹣1)2.【分析】先提取公因式b,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故答案为:b(a﹣1)2.16.(2018秋•鸡东县期末)分解因式:4m2﹣16n2=4(m+2n)(m﹣2n).【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)17.(2018•武威模拟)分解因式:﹣3x2+6x﹣3=﹣3(x﹣1)2.【分析】直接提取公因式﹣3,再利用完全平方公式分解因式得出答案.【解答】解:﹣3x2+6x﹣3=﹣3(x2﹣2x+1)=﹣3(x﹣1)2.故答案为:﹣3(x﹣1)2.18.(2018•祁县模拟)因式分解:3x2﹣18xy+27y2=3(x﹣3y)2.【分析】直接提取公因式3,再利用完全平方公式分解因式得出答案.【解答】解:3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.故答案为:3(x﹣3y)2.19.(2018•葫芦岛一模)分解因式:a2b﹣8ab+16b=b(a﹣4)2..【分析】先提公因式,再用完全平方公式进行因式分解.【解答】解:a2b﹣8ab+16b=b(a2﹣8a+16)=b(a﹣4)2.20.(2018春•宿豫区期末)已知xy=,x+y=5,则2x3y+4x2y2+2xy3=﹣25.【分析】因式分解后,整体代入计算即可;【解答】解:2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2,∵xy=,x+y=5,∴原式=﹣25.故答案为﹣25.21.(2017秋•宜春期末)计算50×1252﹣50×252的结果是750000.【分析】直接提取公因式50,再利用平方差公式分解因式进而得出答案.【解答】解:原式=50×(125+25)×(125﹣25)=50×150×100=750000.故答案为:750000.22.(2018春•郯城县期中)分解因式:a2+2ab+b2﹣4=(a+b+2)(a+b﹣2).【分析】前三项利用完全平方公式分解,再进一步利用平方差公式分解可得.【解答】解:原式=(a+b)2﹣22=(a+b+2)(a+b﹣2),故答案为:(a+b+2)(a+b﹣2).23.(2017秋•松滋市期末)y2﹣x2﹣x+y分解因式:(y﹣x)(y+x+1).【分析】将y2﹣x2、﹣x+y各为一组,利用平方差公式分解后,再提取公因式y﹣x可得.【解答】解:原式=(y+x)(y﹣x)+(y﹣x)=(y﹣x)(y+x+1),故答案为:(y﹣x)(y+x+1).24.(2018秋•靖远县期末)如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是直角三角形.【分析】已知等式变形后,利用非负数的性质求出a,b及c的值,即可对于三角形形状进行判断.【解答】解:∵a2+b2+c2+50=6a+8b+10c,∴(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∵32+42=52,∴三角形为直角三角形.故答案是:直角三角形.25.(2017秋•昌江区校级期末)若ab+bc+ca=﹣3,且a+b+c=0,则a4+b4+c4=18.【分析】由a+b+c=0,利用平方公式结合ab+bc+ca=﹣3可得出a2+b2+c2=6,由ab+bc+ca=﹣3,利用平方公式结合a+b+c=0可得出a2b2+b2c2+c2a2=9,再由a2+b2+c2=6,利用平方公式结合a2b2+b2c2+c2a2=9即可求出a4+b4+c4=18,此题得解.【解答】解:a+b+c=0,两边平方得:a2+b2+c2+2ab+2bc+2ca=0,∵ab+bc+ca=﹣3,∴a2+b2+c2+2×(﹣3)=0,∴a2+b2+c2=6.ab+bc+ca=﹣3,两边平方得:a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=9,即a2b2+b2c2+c2a2+2abc(a+b+c)=9,∴a2b2+b2c2+c2a2=9.a2+b2+c2=6,两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=36,∴a4+b4+c4=36﹣2(a2b2+b2c2+c2a2)=18.故答案为:18.26.(2018春•高密市期末)已知a﹣b=3,a+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为﹣12.【分析】先利用分组分解的方法把ac﹣bc+a2﹣ab因式分解为(a﹣b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b)=(a﹣b)(c+a),∵a﹣b=3,a+c=﹣4,∴ac﹣bc+a2﹣ab=3×(﹣4)=﹣12;故答案为:﹣12.27.(2018秋•金牛区校级月考)若3x3﹣x=1,则9x4+12x3﹣3x2﹣7x+2001=2005.【分析】利用提公因式法将多项式分解为3x(3x3﹣x)+4(3x3﹣x)﹣3x+2001,将3x3﹣x=1代入可求其值.【解答】解:∵9x4+12x3﹣3x2﹣7x+2001=3x(3x3﹣x)+4(3x3﹣x)﹣3x+2001,且3x3﹣x=1,∴9x4+12x3﹣3x2﹣7x+2001=3x+4﹣3x+2001=2005故答案为200528.(2018秋•汉阳区校级期中)已知a2+a﹣1=0,则a3+2a2+2018=2019.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.29.(2018秋•文登区期中)已知a,b,c为三角形ABC的三边,且a4﹣b4=c2(a2+b2),则三角形ABC为直角三角形【分析】首先将等式的左边利用公式法因式分解,然后移项后提取公因式,根据乘积为0的条件确定三边的关系,从而可以确定三角形的形状.【解答】解:等式左边因式分解得:(a2﹣b2)(a2+b2)=c2(a2+b2),移项得:(a2﹣b2)(a2+b2)﹣c2(a2+b2)=0,所以三角形是直角三角形,提取公因式得:(a2+b2)(a2﹣b2﹣c2)=0,得:a2+b2=0或(a2﹣b2﹣c2)=0,所以,a2=b2+c2所以三角形是直角三角形,故答案为:直角.30.(2018春•雨城区校级期中)已知△ABC的三边长分别为a、b、c,且a、b、c满足等式3(a2+b2+c2)=(a+b+c)2,则该三角形是等边三角形.【分析】根据题目中的式子进行变形,然后因式分解,由非负数的性质可以求得a、b、c之间的关系,从而可以判断△ABC的形状,本题得以解决.【解答】解:∵3(a2+b2+c2)=(a+b+c)2,∴3a2+3b2+3c2=a2+b2+c2+2ab+2bc+2ac∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0∴(a﹣b)2+(a﹣c)2+(b﹣c)2=0∴a﹣b=0,a﹣c=0,b﹣c=0,解得,a=b,a=c,b=c,∴a=b=c,∴△ABC是等边三角形,故答案为:等边.31.(2018春•宿豫区期中)已知a、b、c为△ABC的三边长,且a、b满足a2﹣6a+b2﹣4b+13=0,c为奇数,则△ABC的周长为8.【分析】利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可.【解答】∵a2+b2﹣4a﹣6b+13=0,∴(a2﹣4a+4)+(b2﹣6b+9)=0,∴(a﹣2)2+(b﹣3)2=0,∴a=2,b=3,∴边长c的范围为1<c<5.∵边长c的值为奇数,∴c=3,∴△ABC的周长为2+3+3=8.故答案为:8.32.(2018•建湖县二模)若a+b=﹣5,ab=6,则a2b+ab2的值为﹣30.【分析】根据因式分解得出a2b+ab2=ab(a+b),进而解答即可.【解答】解:∵a+b=﹣5,ab=6,∴a2b+ab2=ab(a+b)=6×(﹣5)=﹣30,故答案为:﹣3033.(2018春•常州期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为48.【分析】根据长方形周长与面积公式求出mn与m+n的值,原式提取公因式后,代入计算即可求出值.【解答】解:∵一个长、宽分别为m、n的长方形的周长为16,面积为6,∴2(m+n)=16,mn=6,即m+n=8,mn=6,则原式=mn(m+n)=48,故答案为:48。

第四章 因式分解 单元测试(含答案)

第四章 因式分解 单元测试(含答案)

单元测试(四) 因式分解(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列从左边到右边的变形,是因式分解的是( )A .(3-x )(3+x )=9-x 2B .m 4-n 4=(m 2+n 2)(m +n )(m -n )C .(y +1)(y -3)=-(3-y )(y +1)D .4yz -2y 2z +z =2y (2z -yz )+z2.下列多项式中,能用公式法因式分解的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 23.下列多项式中,含有因式(y +1)的多项式是( )A .y 2-2xy -3x 2B .(y +1)2-(y -1)2C .(y +1)2-(y 2-1)D .(y +1)2+2(y +1)+14.下列多项式中不能用平方差公式分解的是( )A .-a 2+b 2B .-x 2-y 2C .49x 2y 2-z 2D .16m 4-25n 2p 25.下列各式因式分解正确的是( )A .-a 2+ab -ac =-a (a +b -c )B .9xyz -6x 2y 2=3xyz (3-2xy )C .3a 2x -6bx +3x =3x (a 2-2b )D .12xy 2+12x 2y =12xy (x +y ) 6.多项式x 3-4x 2y +4xy 2因式分解的结果是( )A .x 3-4xy (x -y )B .x (x -2y )2C .x (4xy -4y 2-x 2)D .x (x 2-4xy +4y 2)7.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A .4x 2-4x +1=(2x -1)2B .x 3-x =x (x 2-1)C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x +y )(x -y )8.若x 2+ax -24=(x +2)(x -12),则a 的值为( )A .±10B .-10C .14D .-149.多项式4x 2+1加上一个单项式后,使它能成为一个完全平方式,则加上的单项式不可以是( )A .4xB .-4xC .4x 4D .-4x 410.观察下列各式:①2a +b 和a +b ;②5m (a -b )和-a +b ;③3(a +b )和-a +b ;④2x 2+2y 2和x 2+y 2.其中有公因式的是( )A .①②B .②③C .③④D .②④11.若x -y =5,xy =6,则x 2y -xy 2的值为( )A .(a 2-1)(a 2+1)B .(a +1)2(a -1)2C .(a -1)(a +1)(a 2+1)D .(a -1)(a +1)313.八年级(1)班实行高效课堂教学,四人为一组,每做对一道题得0.5分,“奋斗组”的四个同学做了四道因式分解题,甲:x 2-4x +4=(x -2)2,乙:x 2-9=(x -3)2,丙:2x 3-8x =2x (x 2-4),丁:(x +1)2-2(x +1)+1=x 2,则“奋斗组”得( )A .0.5分B .1分C .1.5分D .2分14.对于任何整数m ,多项式(4m +5)2-9都能( )A .被8整除B .被m 整除C .被(m -1)整除D .被(2m -1)整除15.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A .8,1B .16,2C .24,3D .64,8二、填空题(本大题共5小题,每小题5分,共25分)16.因式分解:x 3-2x 2y =_____________________.17.(巴彦淖尔中考)因式分解:-2xy 2+8x =__________________________.18.多项式x 2+mx +5因式分解得(x +5)(x +n ),则m = ,n = .19.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是 .20.若x +y =2,则代数式14x 2+12xy +14y 2= .三、解答题(本大题共7小题,共80分)21.(8分)因式分解:(1)-9x 3y 2-6x 2y 2+3xy ; (2)4x 2-25y 2.22.(8分)因式分解:(1)3m 2n -12mn +12n . (2)(a +b )3-4(a +b ).23.(10分)对于任意整数n ,(n +11)2-n 2是否能被11整除,为什么?24.(12分)不解方程组⎩⎪⎨⎪⎧2x +y =6,x -3y =1,求7y (x -3y )2-2(3y -x )3的值.25.(12分)商贸大楼共有四层,第一层有商品(a +b )2种,第二层有商品a (a +b )种,第三层有商品b (a +b )种,第四层有商品(b +a )2种,若a +b =10,则这座商贸大楼共有商品多少种?26.(14分)阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号;(2)写出该步正确的写法;(3)本题正确的结论应是_________________________________________________________.27.(16分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2 012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?参考答案一、选择题(本大题共15小题,每小题3分,共45分)1.下列从左边到右边的变形,是因式分解的是(B )A .(3-x )(3+x )=9-x 2B .m 4-n 4=(m 2+n 2)(m +n )(m -n )C .(y +1)(y -3)=-(3-y )(y +1)D .4yz -2y 2z +z =2y (2z -yz )+z2.下列多项式中,能用公式法因式分解的是(C )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 23.下列多项式中,含有因式(y +1)的多项式是(C )A .y 2-2xy -3x 2B .(y +1)2-(y -1)2C .(y +1)2-(y 2-1)D .(y +1)2+2(y +1)+14.下列多项式中不能用平方差公式分解的是(B )A .-a 2+b 2B .-x 2-y 2C .49x 2y 2-z 2D .16m 4-25n 2p 25.下列各式因式分解正确的是(D )A .-a 2+ab -ac =-a (a +b -c )B .9xyz -6x 2y 2=3xyz (3-2xy )C .3a 2x -6bx +3x =3x (a 2-2b )D .12xy 2+12x 2y =12xy (x +y ) 6.多项式x 3-4x 2y +4xy 2因式分解的结果是(B )A .x 3-4xy (x -y )B .x (x -2y )2C .x (4xy -4y 2-x 2)D .x (x 2-4xy +4y 2)7.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是(B )A .4x 2-4x +1=(2x -1)2B .x 3-x =x (x 2-1)C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x +y )(x -y )8.若x 2+ax -24=(x +2)(x -12),则a 的值为(B )A .±10B .-10C .14D .-149.多项式4x 2+1加上一个单项式后,使它能成为一个完全平方式,则加上的单项式不可以是(D )A .4xB .-4xC .4x 4D .-4x 410.观察下列各式:①2a +b 和a +b ;②5m (a -b )和-a +b ;③3(a +b )和-a +b ;④2x 2+2y 2和x 2+y 2.其中有公因式的是(D )A .①②B .②③C .③④D .②④11.若x -y =5,xy =6,则x 2y -xy 2的值为(A )A .30B .35C .1D .以上都不对4C .(a -1)(a +1)(a 2+1)D .(a -1)(a +1)313.八年级(1)班实行高效课堂教学,四人为一组,每做对一道题得0.5分,“奋斗组”的四个同学做了四道因式分解题,甲:x 2-4x +4=(x -2)2,乙:x 2-9=(x -3)2,丙:2x 3-8x =2x (x 2-4),丁:(x +1)2-2(x +1)+1=x 2,则“奋斗组”得(B )A .0.5分B .1分C .1.5分D .2分14.对于任何整数m ,多项式(4m +5)2-9都能(A )A .被8整除B .被m 整除C .被(m -1)整除D .被(2m -1)整除15.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是(B )A .8,1B .16,2C .24,3D .64,8二、填空题(本大题共5小题,每小题5分,共25分)16.因式分解:x 3-2x 2y =x 2(x -2y ).17.(巴彦淖尔中考)因式分解:-2xy 2+8x =-2x (y +2)(y -2).18.多项式x 2+mx +5因式分解得(x +5)(x +n ),则m =6,n =1.19.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是±6.20.若x +y =2,则代数式14x 2+12xy +14y 2=1.三、解答题(本大题共7小题,共80分)21.(8分)因式分解:(1)-9x 3y 2-6x 2y 2+3xy ; (2)4x 2-25y 2.解:原式=-3xy (3x 2y +2xy -1). 解:原式=(2x +5y )(2x -5y ).22.(8分)因式分解:(1)3m 2n -12mn +12n . (2)(a +b )3-4(a +b ).解:原式=3n (m 2-4m +4)=3n (m -2)2. 解:原式=(a +b )[(a +b )2-4]=(a +b )(a +b +2)(a +b -2).23.(10分)对于任意整数n ,(n +11)2-n 2是否能被11整除,为什么?∴对于任意整数n ,(n +11)2-n 2能被11整除.24.(12分)不解方程组⎩⎪⎨⎪⎧2x +y =6,x -3y =1,求7y (x -3y )2-2(3y -x )3的值. 解:原式=(x -3y )2[7y +2(x -3y )]=(x -3y )2(2x +y ).∵⎩⎪⎨⎪⎧2x +y =6,x -3y =1, ∴原式=12×6=6.25.(12分)商贸大楼共有四层,第一层有商品(a +b )2种,第二层有商品a (a +b )种,第三层有商品b (a +b )种,第四层有商品(b +a )2种,若a +b =10,则这座商贸大楼共有商品多少种?解:(a +b )2+a (a +b )+b (a +b )+(b +a )2=2(a +b )2+(a +b )(a +b )=2(a +b )2+(a +b )2=3(a +b )2.因为a +b =10,所以3(a +b )2=300.答:这座商贸大楼共有商品300种.26.(14分)阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).②∴c 2=a 2+b 2.③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该步正确的写法;(3)本题正确的结论应是△ABC 为直角三角形或等腰三角形或等腰直角三角形.解:正确的写法为c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).移项,得c 2(a 2-b 2)-(a 2+b 2)(a 2-b 2)=0.因式分解,得(a 2-b 2)[c 2-(a 2+b 2)]=0.则当a 2-b 2=0时,a =b ;当a 2-b 2≠0时,a 2+b 2=c 2.27.(16分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2 012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?解:(1)因为28=4×7=82-62,2 012=4×503=5042-5022,所以28和2 012是“神秘数”.(2)(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的“神秘数”是4的倍数.(3)由(2)知“神秘数”可表示为4的倍数但一定不是8的倍数.因为两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k,所以两个连续奇数的平方差不是“神秘数”.。

八年级数学下册《第四章 因式分解》单元测试卷(附答案)

八年级数学下册《第四章 因式分解》单元测试卷(附答案)

八年级数学下册《第四章 因式分解》单元测试卷(附答案)一、单选题(本大题共12小题,每小题3分,共36分)1.多项式32328124a b a bc a b +-中,各项的公因式是( )A .2a bB .224a b -C .24a bD .2a b -2.下列各多项式中,能运用公式法分解因式的有()①2m 4-+②22x y --③22x y 1-④()()22m a m a --+⑤222x 8y -⑥22x 2xy y ---⑦229a b 3ab 1-+A .4个B .5个C .6个D .7个 3.下列四个式子从左到右的变形是因式分解的为( )A .()()22x y x y y x --=--B .23231226a b a b ⋅=C .()()()442281933x y x y x y x y -++-=D .()()()()222222821222812a a a a a a a a +-++++-+=4.下面各式从左到右的变形,属于因式分解的是( )A .21(1)1x x x x --=--B .221(1)x x -=-C .26(3)(2)x x x x --=-+D .2(1)x x x x -=- 5.若多项式28x mx +-因式分解的结果为()()42x x +-,则常数m 的值为( )A .2-B .2C .6-D .66.数学兴趣小组开展活动:把多项式2114x x ++分解因式,组长小明发现小组里有以下四种结果与自己的结果2112x ⎛⎫+ ⎪⎝⎭不同,他认真思考后,发现其中还有一种结果是正确的,你认为正确的是( )A .21(1)2x + B .21(1)4x + C .21(2)2x + D .21(2)4x + 7.已知M =3x 2-x +3,N =2x 2+3x -1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M ≤ND .M <N8.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘,积为249x -,乙与丙相乘,积为2914x x -+,则甲与丙相加的结果是( )A .25x +B .25x -C .29x +D .29x -9.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-10.关于x y 、的多项式2245815x xy y y -+++的最小值为( )A .1-B .0C .1D .211.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为() A .1 B .-5 C .-6 D .-712.多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( )A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1二、填空题13.分解因式:2m n mn -=_________________.14.因式分解:()()269m n m n +-++=________.15.已知221062m n m n ++=-,则m n -=______.16.已知x y ≠,满足等式222222021,22021x y y x -=-=,则222x xy y ++的值为___.17.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__. 18.分解因式:2(1)(2)(2)xy x y xy x y --+---的结果为___________________________.19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x 4﹣y 4,因式分解的结果是(x ﹣y )(x +y )(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x +y )=18,(x ﹣y )=0,(x 2+y 2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x 3﹣xy 2,取x =10,y =10时,用上述方法产生的密码是_____(写出一个即可).20.多项式2222627a ab b b -+-+的最小值为________.三、解答题(本大题共5小题,每小题8分,共40分)21.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--22.分解因式:(1)322363x x y xy -+. (2)221122x y -+.23.阅读材料:利用公式法,可以将一些形如()20ax bx c a ++≠的多项式变形为()2a x m n ++的形式,我们把这样的变形方法叫做多项式()20ax bx c a ++≠的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如()222224445452922x x x x x ⎛⎫⎛⎫+-=++--=+- ⎪ ⎪⎝⎭⎝⎭ ()()()()232351x x x x =+++-=+-根据以上材料,解答下列问题.(1)分解因式:228x x +-;(2)求多项式243+-x x 的最小值;(3)已知a ,b ,c 是ABC 的三边长,且满足222506810a b c a b c +++=++,求ABC 的周长.24.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:269x x ++=__________;244x x -+=________;242025x x -+=________;(2)探究发现:观察以上三个多项式的系数,我们发现:26419=⨯⨯;2(4)414-=⨯⨯;2(20)4425-=⨯⨯; 归纳猜想:若多项式2(0,0)ax bx c a c ++>>是完全平方式,猜想:系数a ,b ,c 之间存在的关系式为_____________________.(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论.(4)解决问题:若多项式2(1)(26)(6)n x n x n +-+++是一个完全平方式,利用你猜想的结论求出n 的值.25.如图,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)上述操作能验迁的等式是 (请选择正确的选项)A .a 2-ab =a (a -b )B .a 2-2ab +b 2=(a -b )2C .a 2+ab =a (a +b )D .a 2-b 2=(a +b )(a -b )(2)请利用你从(1)选出的等式,完成下列各题:①已知9a 2-b 2=36,3a +b =9则3a -b = ②计算:22222111111111123452022⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭参考答案:1.C 2.B 3.C 4.C 5.B 6.D7.A 8.A 9.C 10.A 11.A 12.C13.()1mn m -14.()23m n +-15.416.417.218.()()2211x y --19.10402020.18.21.(1)5b (a -2b )2(2)20(x -2)(x +2)22.(1)23()x x y - (2)1()()2y x y x -+23.(1)()()24x x -+ (2)7- (3)12.24.(1)()23x +;()22x -;()225x -(2)24b ac =(3)1(4)3n =25.(1)D(2)①4;②20234044。

八年级数学下册《第四章因式分解》单元检测试题(含答案)

八年级数学下册《第四章因式分解》单元检测试题(含答案)

八年级数学下册第四章因式分解单元检测试题姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是()A. a2+(-b)2B. 5m2-20mnC. -x2-y2D. -x2+92.下列多项式能因式分解的是()A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是()A. (2x+4)(x-4)B. (x+2)(x-2)C. 2 (x+2)(x-2)D. 2(x+4)(x-4)4.下列因式分解中正确的是()A. ﹣+16=B.C. x(a﹣b)﹣y(b﹣a)=(a﹣b)(x﹣y)D.5.把代数式分解因式,下列结果中正确的是A. B. C. D.6.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④-m2+m-;⑤4x4-x2+.A. 1个B. 2个C. 3个D. 4个7.若,则mn的值为( )A. 5B. -5C. 10D. -108.若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能9.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x10.已知:a=2014x+2015,b=2014x+2016,c=2014x+2017,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:=________12.已知x﹣2y=﹣5,xy=﹣2,则2x2y﹣4xy2=________ .13.分解因式:a3﹣4a2+4a=________.14.若,那么________.15.如果x+y=5,xy=2,则x2y+xy2=________.16.已知,求的值为________.17.多项式2ax2﹣12axy中,应提取的公因式是________18.若x+y= —1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于________。

北师大版数学八年级下册第四章因式分解综合测试(含答案)

北师大版数学八年级下册第四章因式分解综合测试(含答案)

北师大版数学八年级下册第四章因式分解综合测试(含答案)一、选择题(每题3分,共30分)1.下列由左边到右边的变形,属于因式分解的是( )A.(a+5)(a—5)= a2—25B.mx+ my+ 2= m(x+y)+ 2C.x2—9=(x+ 3)(x-3)D.2x2+ 1 = 2x2 1 + 2x22. (3a —y)(3a + y)是下列哪一个多项式因式分解的结果( )A. 9a2 + y2B. — 9a2+y2C. 9a2-y2D. -9a2-y23.下列各组式子中,没有公因式的是()A.4a2bc与 8abc2B.a3b2+1 与 a2b3-1C.b(a— 2b)2与 a(2b—a)2D.x+ 1 与 x2— 14.分解因式4x2—y2的结果是()A. (4x+ y)(4x-y)B. 4(x+ y)(x-y)C. (2x+ y)(2x —y)D. 2(x+y)(x—y)5.把8a3—8a2 + 2a进行因式分解,结果正确的是( )A. 2a(4a2-4a+1)B. 8a2(a—1)C. 2a(2a—1)2D. 2a(2a+1)26.已知a+b=2,则a2—b2+4b的值是( )A. 2B. 3C. 4D. 67.已知9BC的三边长分别为a, b,c,且满足a2 + b2+c2=ab+ ac+ bc, WJz^BC的形状是()A.直角三角形C.等腰直角三角形8.利用因式分解可以知道,B.等腰三角形D.等边三角形174— 154能够被()整除.A.18B.28C.36D.649 .不论x, y 为什么实数,代数式x2+y2+2x —4y+7的伯:()A .总不小于2B .总不小于7 10 .如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分 沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等12 . 一个正方形的面积为x 2+4x+4(x>0),则它的边长为13 .下面是莉莉对多项式3(x-2)2-(2-x)3进行因式分解的过程:解:原式=3(x —2)2—(x —2)3①= (x —2)2[3 —(x —2)]②=(x —2)2(5 —x).③ 止旦少 TH .m 2+n 2八…口—2 --mn 的值是 15 .如果x 2+ kx+ 64是一个完全平方式,那么k 的值是16 .如图,根据图形把多项式 a 2 + 5ab+ 4b 2因式分解为C.可为任何实数 D.可能为负数 A. (a-b)C. (a —b)2=a 2 —b 2 二、填空题(每题3分,共24分)11.因式分解:x 2—49=B. D.a(a —b)=a 2 —ab a 2— b 2=(a+b)(a —b) 开始出现错误的 式是(17.甲、乙两农户各有两块土地,如图所示.今年,这两个农户决定共同投资饲养业,为此,他们准备将这4块土地换成一块土地,所换的那块土地的长为 (a+b)米,为了使所换土地的面积与原来 4块土地的总面积相等,交换之后的土地的宽应该是 _______________ 米.18.如图是两邻边长分别为a, b的长方形,它的周长为14,面积为10,则a2b + ab2的值为.三、解答题(20〜23题每题8分,24题10分,19, 25题每题12分,共66分)19.分解因式:(1)a2b —abc;(2)3x2 — 27 ;⑶(2a -b)2+ 8ab; (4)(m2— m)2 + 1(m2 - m) + 专20.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中 a= —5, x= 3;(2)(2x— 3y)2-(2x+3y)2,其中 x= 6, y=1.21.利用因式分解证明:257—512能被120整除.22.已知 a2+b2+2a —4b+5 = 0,求 2a2+4b —3 的值.23.已知a, b, c为从BC的三边长,利用因式分解求 b2—a2+2ac—c2的符号.24.如图,在一个边长为 a m 的正方形广场的四个角上分别留出一个边长为 b m 的正方形花坛(a>2b),其余的地方种草坪.(1)求种草坪的面积是多少平方米;(2)当a=84, b=8,且种每平方米草坪的成本为5元时,种这块草坪共需投资多少元?25.观察猜想:如图,大长方形是由三个小长方形和一个正方形拼成的,请根据此图填空:x2 + (p + q)x+ pq = x2+ px+ qx+ pq =( )( )说理验证:事实上,我们也可以用如下方法进行变形:x2 + (p + q)x + pq = x2 + px + qx + pq = (x2 + px) + (qx + pq)=___________________ = ( _______ )( _______ ).于是,我们可以利用上面的方法继续进行多项式的因式分解.尝试运用:例题:把x2+ 3x+ 2 因式分解.解:x2+3x+2 = x2+(2+ 1)x+ 2Xl = (x+ 2)(x+ 1).请利用上述方法将下列多项式因式分解:(1)x2- 7x+ 12;(2)(y2+ y)2+ 7(y2+ y)- 18.答案一、1.C 2,C 3.B 4.C 5.C 6. C 7. D 8. D 9. A 10.D二、11.(x+ 7)(x-7) 12.x+2 13.①14. 2 15. ±6 16. (a+b)(a+4b) 17. (a + c) 18. 70三、19.解:(1)原式=ab(a —c).⑵原式=3(x2—9)=3(x+3)(x—3).⑶原式=4a2-4ab+b2+8ab= 4a2+ 4ab+ b2=(2a+ b)2.⑷原式:(m2— m)2 + 2 (m2—m) 4+ 4 =(m2—m+:)2= m-1 =(m-|)4.20.解:(1)原式=(x+7)(4a2—3).当 a= —5, x=3 时,(x+7)(4a2—3) = (3+7) *4 5)2—3] = 970. ⑵原式=[(2x-3y) + (2x+3y)] [(2x —3y) —(2x + 3y)] = — 24xy.当 x=\, 丫=8时,—24xy= - 24*>8=-221.证明:257_512=(52)7_512 = 514_512=512X52_ 1) = 512>24= 511^5>24 = 511X120,故 257—512能被 120 整除.22.解:「a2+b2+2a —4b+5=0,. .(a2+2a+1) + (b2—4b+4)=0,即(a+1)2+(b— 2)2= 0.; a+1 = 0 且 b-2 =0. . .a= - 1, b = 2.• .2a2 + 4b—3= 2X— 1)2+4>2 —3= 7.23.解:原式=b2-(a2-2ac+ c2)= b2— (a—c)2= (b+ a-c)(b—a+c).,. a, b, c为AABC的三边长,. ・a+b>c, b+c>a.a+b — c> 0, —a+b+c>0.(b+ a — c)(b— a+ c) >0.故原式的符号为正.24.解:(1)种草坪的面积是(a2—4b2) m2.⑵当 a=84, b = 8 时,种草坪的面积是 a2—4b2=(a + 2b)(a —2b) = (84 +2X8)(84-2X8)=100 >68 = 6 800(m2),所以种这块草坪共需投资5X6 800= 34 000(元).25. 解:x+ p; x+q; x(x+p)+q(x+ p); x+ p; x+ q (1)原式=(x-3)(x-4).(2)原式=(y2+ y + 9)(y2 + y — 2) = (y2+ y + 9)(y + 2)(y-1).。

八年级数学第四章因式分解测试题

八年级数学第四章因式分解测试题

八年级数学第四章因式分解测试题班级 姓名 座号一、选择题:(每小题4分,共24分)1.下列各多项式中,不能用平方差公式分解的是( )A.a 2b 2-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+12.如果多项式x 2-mx+9是一个完全平方式,那么m 的值为( )A .-3B .-6C .±3D .±63.下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xyB .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2D .x 2-9-6x=(x+3)(x -3)-6x4.下列多项式的因式分解,正确的是( )A .)34(391222xyz xyz y x xyz -=- B.)2(363322+-=+-a a y y ay y aC.)(22z y x x xz xy x -+-=-+-D.)5(522a a b b ab b a +=-+5.若n 为任意整数,()n n +-1122的值总可以被k 整除,则k 等于( )A. 11B. 22C. 11或22D.336.把多项式)2()2(2a m a m -+-分解因式等于( )A ))(2(2m m a +-B ))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)二、填空题:(每小题4分,共24分)9.多项式-2x 2-12xy 2+8xy 3的公因式是_____________.10.因式分解:2183x x -=__________11.完全平方式49222x y -+=()12.利用分解因式计算:32003+6×32002-32004=_____________.13.若)4)(2(2-+=++x x q px x ,则p = ,q = 。

14.已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。

第四章 因式分解单元测试卷(下)单元测试卷第四章《因式分解》(解析卷)

第四章 因式分解单元测试卷(下)单元测试卷第四章《因式分解》(解析卷)

【新北师大版八年级数学(下)单元测试卷】第四章《因式分解》(解析卷)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 下列从左到右的变形是因式分解的是()A. (﹣a+b)2=a2﹣2ab+b2B. m2﹣4m+3=(m﹣2)2﹣1C. ﹣a2+9b2=﹣(a+3b)(a﹣3b)D. (x﹣y)2=(x+y)2﹣4xy【答案】C【解析】解:A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积乘积的形式,故B错误;C.把一个多项式转化成几个整式积乘积的形式,故C正确;D.没把一个多项式转化成几个整式积乘积的形式,故D错误;故选C.2.多项式﹣2a(x+y)3+6a2(x+y)的公因式是()A. ﹣2a2(x+y)2B. 6a(x+y)C. ﹣2a(x+y)D. ﹣2a 【答案】C【解析】试题解析:的公因式是故选C.3.下列因式分解正确的是()A. a4b-6a3b+9a3b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】D【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B4.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a2-1B. a2+aC. a2+a-2D. (a+2)2-2(a+2)+1 【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.5.下列因式分解错误的是()A. 2a﹣2b=2(a﹣b)B. x2﹣9=(x+3)(x﹣3)C. a2+4a﹣4=(a+2)2D. ﹣x2﹣x+2=﹣(x﹣1)(x+2)【答案】C【解析】试题解析:A. 2a−2b=2(a−b),正确;B.,正确;C. 不能因式分解,错误;D. 正确;故选C.6.若x2+ax-24=(x+2)(x-12),则a的值为( )A. -10B. ±10C. 14D. -14【答案】A【解析】因为(x+2)(x-12)=x2-12x+2x-24=x2-10x-24,x2+ax-24=(x+2)(x-12),所以a=-10.故选A.7.若△ABC的三条边a,b,c满足a2+2ab=c2+2bc,则△ABC的形状是()A. 直角三角形B. 等腰直角三角形C. 等边三角形D. 等腰三角形【答案】D【解析】试题分析:∵a2+2ab=c2+2bc,∴a2-2bc-c2+2ab=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+c+2b)=0,∵a、b、c是三角形的三边,∴a+c+2b>0,∴a-c=0,∴a=c.∴△ABC是等腰三角形.故选:D.8.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是( )A. x2+2x=x(x+2)B. x2-2x+1=(x-1)2C. x2+2x+1=(x+1)2D. x2+3x+2=(x+2)(x+1)【答案】D【解析】小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为(x+1)(x+2),即x2+3x+2=(x+2)(x+1).故选D.9.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A. m+1B. 2mC. 2D. m+2【答案】D【解析】解:原式=(m﹣1)(m+1+1)=(m﹣1)(m+2).故选D.10.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A. (b﹣2)(a+a2)B. (b﹣2)(a﹣a2)C. a(b﹣2)(a+1)D. a(b﹣2)(a﹣1)【答案】C【解析】a(b﹣2)﹣a2(2﹣b)=a(b﹣2)+a2(b﹣2)=a(b-2)(1+a).故选C.11.下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B.x2-2x-1C. x2+xy+y2D. x2+4【答案】A【解析】试题分析:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.故选:A.12.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A. 8,1B. 16,2C. 24,3D. 64,8【答案】B【解析】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-16,则■=16.故选B.二.填空题(每题3分,共12分)13. 单项式8x2y2、12xy3、6x2y2的公因式是________.【答案】2xy2【解析】试题解析:单项式的公因式是故答案为:14.分解因式(a-b)(a-4b)+ab的结果是__________________.【答案】(x+2)(x+3)【解析】试题分析:===.故答案为:.15.若二次三项式x2-kx+9是一个完全平方式,则k的值是________.【答案】±6【解析】试题分析:由于x2﹣kx+9是一个完全平方式,则x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,根据完全平方公式即可得到k的值.∵x2﹣kx+9是一个完全平方式,∴x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,∴k=±6.16.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=__.【答案】﹣31【解析】(2x-21)(3x-7)-(3x-7)(x-13)=(3x-7)[(2x-21)-(x-13)]=(3x-7)(x-8),因为(3x+a)(x+b)=(3x-7)(x-8),所以a=-7,b=-8,则a+3b=-7+3×(-8)=-31.故答案为-31.三.解答题(共52分)17. 将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【答案】(1)5a3b(a﹣b)2(a﹣b﹣2ab2);(2)2(a﹣b)2;(3)8(7a﹣8b)(b﹣a)(4)(b+c﹣d)(x+y﹣1).【解析】试题分析:利用直接提公因式法分解因式即可.试题解析:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).18.已知△ABC的三边长a,b,c满足a2-bc-ab+ac=0求证△ABC为等腰三角形.【答案】见解析【解析】试题分析:本题考查了分组分解法分解因式,先将所给等式的左边分组,然后因式分解,从而得到a=b,问题即可解决.证明:∵a2-bc-ab+ac=0∴ (a-b)(a+c)=0∵a,b为△ABC三边∴a+c>0,则a-b=0,即a=b∴△ABC为等腰三角形19.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【答案】x≥﹣1.【解析】试题分析:将(x﹣1)3﹣(x﹣1)(x2﹣2x+3)因式分解化为(x﹣1)2(x+1),根据因(x ﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,必须x+1≥0,解不等式即可求得x的取值范围.试题解析:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.20.如图,求圆环形绿化区的面积.【答案】1000π(m2)【解析】试题分析:绿化面积是一个环形,环形面积=大圆的面积-小圆的面积.试题解析:21.如果a+b=﹣4,ab=2,求式子4a2b+4ab2﹣4a﹣4b的值.【答案】﹣16【解析】试题分析:已知给出了要求式子的值,只要对要求的式子进行转化,用与表示,代入数值可得答案.试题解析:∵a+b=−4,ab=2,答:式子的值为−16.22.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.【答案】见解析【解析】:(ⅰ)③;(ⅱ)忽略了a2- b2=0的可能;(ⅲ)接第③步:∵c2(a2- b2)=(a2- b2)(a2+ b2),∴c2(a2- b2)-(a2- b2)(a2+ b2)=0,∴(a2- b2)[c2-(a2+ b2)]=0,∴a2- b2=0或c2-(a2+ b2)=0.故a=b或c2= a2+ b2,∴△ABC是等腰三角形或直角三角形或等腰直角三角形23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2 020这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?【答案】(1)是,理由见解析;(2)是,理由见解析;(3)不是,理由见解析【解析】试题分析:(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.试题解析:(1)因为28=82-62,2 020=5062-5042,所以28和2 020都是“神秘数”.(2)(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的“神秘数”是4的倍数.(3)由(2)知“神秘数”可表示为4的倍数但一定不是8的倍数.设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k,所以两个连续奇数的平方差不是“神秘数”.。

第四章 因式分解 单元测试卷

第四章 因式分解 单元测试卷

第四章因式分解单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.下列式子是因式分解的是()A.x(x-1)=x2-1B.x2错误!未找到引用源。

=x2+xC.x2+x=x(x+1)D.x2-x=(x+1)(x-1)2.把a2-2a分解因式,正确的是()A.a(a-2)B.a(a+2)C.a(a2-2)D.a(2-a)3.简便计算57×99+44×99-99,正确的是()A.原式=99×(57+44)=99×101=9 999B.原式=99×(57+44-1)=99×100=9 900C.原式=99×(57+44+1)=99×102=10 098D.原式=99×(57+44-99)=99×2=1984.若代数式x2+a在实数范围内可以进行因式分解,则常数a不可以取()A.-1B.2C.-4D.-95.因式分解x3-2x2+x正确的是()A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)26.如果x2+kx+64是一个整式的平方,那么k的值是()A.8B.-8C.8或-8D.16或-167.已知a+b=2,则a2-b2+4b的值是()A.2B.3C.4D.68.214+213不能被()整除.A.3B.4C.5D.69.若多项式mx2-错误!未找到引用源。

可分解因式得错误!未找到引用源。

,则m,n的值为()A.m=4,n=5B.m=-4,n=5C.m=16,n=25D.m=-16,n=2510.如图,边长为m+3的正方形纸片,剪下一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则与其相邻的一边长是()A.m+3B.m+6C.2m+3D.2m+6二、填空题(每题3分,共24分)11.分解因式:m3n-4mn=___________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为__________.13.若多项式mx2+ny2只能分解为2x+3y与2x-3y的积,则m·n=__________.14.当a=错误!未找到引用源。

北师大版八年级数学下册第四章因式分解复习练习题(有答案)

北师大版八年级数学下册第四章因式分解复习练习题(有答案)

3/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
23.已知 A=a+10,B=a2﹣a+7,其中 a>3,指出 A 与 B 哪个大,并说明理由.
24.阅读下列题目的解题过程:
已知 a、b、c 为△ABC 的三边,且满足 a2c2﹣b2c2=a4﹣b4,试判断△ABC 的形状. 解:∵a2c2﹣b2c2=a4﹣b4 (A)
A.a﹣1
B.a2+1
C.x2﹣4y
D.x2﹣6x+9
3.已知,多项式 x2﹣mx﹣12 可因式分解为(x+3)(x﹣4),则 m 的值为( )
A.﹣1
B.1
C.﹣7
D.7
4.若 a+b=3,a﹣b=7,则 b2﹣a2 的值为( )
A.﹣21
B.21
C.﹣10
D.10
5.将下列多项式因式分解,结果中不含有因式 a+1 的是( )
写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数.如图所示.这种
分解二次三项式的方法叫“十字相乘法”,请同学们认真观察,分析理解后,解答下列问题.
(1)分解因式:x2+7x﹣18.
(2)填空:若 x2+px﹣8 可分解为两个一次因式的积,则整数 p 的所有可能值是

4/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
5/5
三.解答题
19.(1) ab(a − c) (2) (m +1)2 (m −1)2
(3) (2a − b)2
(4) (a + b − 2)2
(5) (x − 3y)2m−1(x − 3y + 3)(x − 3y − 3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014八年级下册数学第四章因式分解
一、选择题
1.下列从左到右的变形属于因式分解的是( )
( A )(x+3)(x-3)=x 2-9 ( B ) x 2-4x+3=x(x-4)+3 ( C )(x+3)(x-2)= x 2-5x+6 ( D ) a 2+3a=a(a+3)
2.下列因式分解错误的是( )
A .22()()x y x y x y -=+-
B .2269(3)x x x ++=+
C .2()x xy x x y +=+
D .222()x y x y +=+
3.利用分解因式计算22011-22010,则结果是( )( A )2 ( B ) 1 ( C )22010 ( D ) 22011
4.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ),
A.-8a 2bc
B. 2a 2b 2c 3
C.-4abc
D. 24a 3b 3c 3
6.把-6(x -y)2-3y(y -x)2分解因式,结果是( ).
A.-3(x -y)2(2+y)
B. -(x -y)2(6-3y)
C. 3(x -y)2(y +2)
D. 3(x -y)2(y -2)
7能用平方差公式分解因式的是( )A.22)(b a -+;B.mn m 2052-; C.22y x --; D.92+-x ;
8.分解因式a a -3的结果是( )A .)1(2-a a B .2)1(-a a C .)1)(1(-+a a a D .)1)((2-+a a a
9.边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图). 通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A.))((22b a b a b a -+=-
B.2222)(b ab a b a ++=+
C.2222)(b ab a b a +-=-
D.)(2b a a ab a -=-
10.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a>b ),把剩下的部分剪拼成一个
梯形,
分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )
( A )a 2-b 2=(a+b )(a-b ) ( B )(a+b )2=a 2+2ab+b 2
( C )(a-b )2=a 2-2ab+b 2 (D ) a 2-ab=a (
11.A.))((22b a b a b a -+=- B.2222)(b ab a b a ++=+
C.2222)(b ab a b a +-=-
D.)(2b a a ab a -=-
12.如果2592++kx x 是一个完全平方式,那么k=( )A.15 B.±5 C.30 D.±30;
13.下列各式中,能用完全平方公式分解因式的是( ).
A.4x
2-2x +1 B.4x 2
+4x -1 C.x 2-xy +y 2 D .x 2-x +12
14已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )
A.1,3-==c b ;
B.2,6=-=c b ;
C.4,6-=-=c b ;
D.6,4-=-=c b D 、错误!未找到引用源。

15.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4
二、填空题
1.a+b=2,ab=1,则a 2b+ab 2的值为 .
2.化简:()()=-+-10010122_____
3. 若m 2﹣n 2=6,且m ﹣n=2,则m+n= .
4.分解因式:2m 3﹣8m= .
5.分解因式:a 2b ﹣4b 3=
6.因式分解2x 4﹣2=
7.分解因式:2a 2﹣4a+2= __________ 8.分解因式:a ab ab 442+-=__________
9.分解因式:x 2-4(x -1)=_______ .10.分解因式:
()()=+-+a a a 322_________________. 11.ax 2+2ax ﹣3a= .12.多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= . 16甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了a ,
分解结果为()()19x x ++,则a b +=________,
13.c b a 、、是△ABC 的三边的长且满足0)(22222=+-++c a b c b a 则△ABC 是_________三角形 .
14观察下列各式:12+(1×2)2+22=9=32 22+(2×3)2+32=49=72 32+(3×4)2+42=169=132……
你发现了什么规律?请用含有n (n 为正整数)的等式表示出来_________________
15.观察下列各式: )1)(1(12+-=-x x x )1)(1(123++-=-x x x x
)1)(1(1234+++-=-x x x x x ……
(1)根据前面的规律可得)1(1-=-x x n 。

(2)请按以上规律分解因式:20081x - 。

16.将x n -y n 分解因式的结果为(x 2+y 2)(x +y )(x -y ),则n 的值为 .
17.分解因式:m 3-4m = .
18.将x n -y n 分解因式的结果为(x 2+y 2)(x +y )(x -y ),则n 的值为 .
19.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = .
20.已知x 2﹣x ﹣1=0,那么代数式x 3﹣2x+1的值是 .
三.解答题
1、写一个多项式,再把它分解因式(要求:多项式含有字母m 和n ,系数、次数不限,并能先用提取公因式法再用公式法分解).
2.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍。

3..阅读下列因式分解的过程,再回答所提出的问题:
1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]
=(1+x )2(1+x )
=(1+x )3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,
结果是 .
(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).
4.已知(4x -2y -1)2+2 xy =0,求4x 2y -4x 2y 2+xy 2的值.
5.证明58-1解被20∽30之间的两个整数整除
6.如图,在一块边长为a 厘米的正方形纸板四角,各剪去一个边长为 b(b<
a )厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积。

7.若a 、b 、c 为△ABC 的三边,且满足a 2+b 2+c 2-ab -bc -
8.观察下列各式:
12+(1×2)2+22=9=32
22+(2×3)2+32=49=72
32+(3×4)2+42=169=132
……
你发现了什么规律?请用含有n (n 为正整数)的等式表示出来,并说明其中的道理.
9..已知x=y+4,求代数式2x2﹣4xy+2y2﹣25的值.
10.不解方程组,求代数式7y(x﹣3y)2﹣2(3y﹣x)3的值.
11.题目:“分解因式:x2﹣120x+3456.”
分析:由于常数项数值较大,则常采用将x2﹣120x变形为差的平方的形式进行分解,这样简便易行.
解:x2﹣120x+3456=x2﹣2×60x+602﹣602+3456
=(x﹣60)2﹣144=(x﹣60)2﹣122=(x﹣60+12)(x﹣60﹣12)
=(x﹣48)(x﹣72).
通过阅读上述题目,请你按照上面的方法分解因式:x2﹣140x+4875.
12.阅读下列因式分解的过程,再回答所提出的问题:
(1)上述因式分解的方法是_________ ,共应用了_________ 次.
(2)将下列多项式因式分解:1+x+x(x+1)+x(x+1)2+x(x+1)3.
(3)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2013,则需应用上述方法_________ 次,结果是_________ .。

相关文档
最新文档