8轮系习题答案

合集下载

机械原理轮系习题参考答案

机械原理轮系习题参考答案

一、解:(1)判断方向,蜗杆左旋用左手右旋用右手,四指握向蜗杆转动方向,拇指指向的反方向即为涡轮转向。

由此逆向判断图中蜗杆、涡轮和齿轮旋转方向如图中箭头所示。

手柄转向如图所示。

4001
601836186056341265432116=××=••=••=z z z z z z w w w w w w i 二、解:该轮系为周转轮系,由反转法对整个轮系加一个反向旋转角速度H w −,
由于齿轮4为定齿轮,角速度为零,即04=w ,所以H H i i 14
11−=; 又有 2.2)1(3423123
14−=•••−=z z z z z z i H
所以 2.32.211=+=H i
三、解:此轮系中假设轮1的方向向下,则行星轮2、2'和太阳轮4的转向都是
向下。

行星轮2、2'和行星架的角速度相同 在左边行星轮系中,1
3
1H 130z z H H −=−−=ωωωω 在右边行星轮系中,'2
444'2z z H ==ωωωω ∴4114ωω=i ==+4'2131z z z z z 25416
四、解:该轮系可以分为两部分,如图中虚线所分的左右两部分,左边为周转轮系,右边为定轴轮系;
分别求出两个轮系的传动比如下:
周转轮系:=H i 1414
1556601441===++z z n n n n H H ; 定轴轮系:7
63530566556====z z n n i ; 两轮系的关系是:
45n n =; 联立方程组求得min 9.741r n ≈; 转向与齿轮6转向相反。

学习情境8 轮系

学习情境8 轮系

2.代入已知转速时,必须带入符号,一般先假设某一方向正, 相同以正值带入, 相反以负值带入,求得的转速与哪个已知量的符号相同就与谁的转向相同。 3. i H 不是周转轮系的传动比.
GK
圆锥齿轮组成的周转轮系
2 O 1
Z 2 Z3 W1 WH i W3 WH Z1Z 2
H 13
H
3
温故而知新
1.齿轮传动比; 2.齿轮啮合的转动方向。
学习情境8
轮系
在生产实践中,一对齿轮传动往往无法满足大的传动比、多种转速、 多种转向等的要求,于是就发展了轮系。
(何谓轮系?)定义: 由一系列齿轮组成的传动系统称为轮系。
知识目标:
1.了解轮系的功用,熟悉轮系的类型; 2.掌握轮系的传动比的计算; 3.掌握轮系的传动方向的判定。
5分 5分ห้องสมุดไป่ตู้5分 5分 5分 5分 10分 10分 10分 10分 15分 15分
积极【5】;一般【3】;不积极【0】 全部【5】;一半【3】;没有【1】 全勤【5】;缺两次【3】;30%【0】 强【5】;一般【3】;不强【1】 强【5】;一般【3】;不强【0】 强【5】;一般【3】;不强【1】 强【10】;一般【6】;不强【2】 强【10】;一般【6】;不强【2】 积极【10】;一般【6】;较差【2】 好【10】;一般【6】;较差【2】 好【15】;一般【10】;较差【5】 【0】-【15】
答案: 14.5
轮系在生产实践中应用广泛,如减速器中、手表中、机床中等。具体的应用种类也很多, 为了便于识别和应用,先熟悉各种轮系。
1、按照各个齿轮的轴线是否全部平行分为:平行轴轮系和 非平行轴轮系。
3 1 2 4 2 5 (a) (b) 1 右旋蜗杆 3

轮系习题答案1详解

轮系习题答案1详解

n2 nH nM
n1 nH Z 2 n2 nH Z1
(1)
n2 nH nM 12r / min,又n1 0
( 1 5) z 2 15 由( 1 )得: 12 z1 z1 1512 z1 120 1 5
b
2、如图所示为一手摇提升装置,其中各轮齿数均为已知,试 求传动比i15 ,并指出当提升重物时手柄的转向.
1.5 mz 2 1.5 0.11 29 23.925 R 100 2 h 100 2 0.001
B19
题11-13、如图所示为绕线机的计数器。图中1为单头蜗杆,其一 端装手吧,另一端装被绕制线圈。2、3为两个窄蜗轮,Z2=99 , Z3=100。在计数器中有两个刻度盘,在固定刻度盘的一周上有 100个刻度,在与蜗轮2固联的活动刻度盘的一周上有99个刻度, 指针与蜗轮3固联。问指针在固定刻度盘上和活动刻度盘上的每一 格读数各代表绕制线圈的匝数是多少?又在图示情况下,线圈已 绕了多少匝? 解: (1)、活动刻度盘上 每一格代表绕制100匝 线圈;固定刻度盘上 每一格代表绕制1匝线 圈。 (2)、设指针回到零 位,此时活动盘刻度16 与固定刻度盘刻度0重 合,所以线圈已绕了 1600+5=1605匝
3 H 旋钮
n2 nH z1 100 n1 nH z2 99
2 1
绳轮
n2 2 100 1 1 nH H 99 99
1 40 2 360 3.63 99 11
作业、在图示的复合轮系中,设已知n1=3549r/min, z1=36, z2=60, z3=23, z4=49,z4′=69, z5=31, z6=131, z7=94, z8=36, z9=167 ,求nH等于多少? 解:在定轴轮系1-2-3-4中

机械原理第八版答案与解析

机械原理第八版答案与解析

机械原理第八版答案与解析Prepared on 22 November 2020机械原理第八版 西北工业大学平面机构的结构分析1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。

试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图并提出修改方案。

解 1)取比例尺l μ绘制其机构运动简图(图b )。

2)分析其是否能实现设计意图。

图 a )由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F 故:00)0142(33)2(3=--+⨯-⨯='-'-+-=F p p p n F h l因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。

图 b )3)提出修改方案(图c )。

为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案)。

图 c1) 图 c2)2、试画出图示平面机构的运动简图,并计算其自由度。

图a )解:3=n ,4=l p ,0=h p ,123=--=h l p p n F图 b )解:4=n ,5=l p ,1=h p ,123=--=h l p p n F3、计算图示平面机构的自由度。

将其中的高副化为低副。

机构中的原动件用圆弧箭头表示。

3-1解3-1:7=n ,10=l p ,0=h p ,123=--=h l p p n F ,C 、E 复合铰链。

3-2解3-2:8=n ,11=l p ,1=h p ,123=--=h l p p n F ,局部自由度 3-3解3-3:9=n ,12=l p ,2=h p ,123=--=h l p p n F 4、试计算图示精压机的自由度解:10=n ,15=l p ,0=h p 解:11=n ,17=l p ,0=h p (其中E 、D 及H 均为复合铰链) (其中C 、F 、K 均为复合铰链)5、图示为一内燃机的机构简图,试计算其自由度,并分析组成此机构的基本杆组。

轮系计算题专项训练附答案

轮系计算题专项训练附答案

第六章轮系计算题专项训练(答案)1、如图所示,已知:z i=16, z=32, Z2 =20, Z3=40,蜗杆z a =2,蜗轮乙=40, n i=800r/min 。

试求蜗轮的转速n4并确定各轮的回转方向。

i16=z2、在图示轮系中,已知 Z i、Z2、Z2、Z a、Z4、Z4'、Z5、Zs、Z6。

求传动比i件3、图示轮系中蜗杆1为双头左旋蜗杆乙=2,转向如图所示。

蜗轮的齿数为乙=50,蜗杆2为单头右旋蜗杆乙'=1,蜗轮3的齿数为乙=40,其余各轮齿数为Z3' =30, Z 4=20, 乙’=26, Z 5=18, Z 5 =46, Z s=16, Z7=22。

求 i 17。

i17=Z2Z3Z4Z5Z6Z7/Z1Z2,Z3,Z4,Z5,Z6=50*40*20*18*22/2*1*30*26*46= 220.7 4、在习题图8 所示的轮系中,已知z i=15 , z 2=25 , z 2' =15 , z 3=30 , z 3' =15 , z 4=30,Z4 =2 , z 5=60,若m=500 r/min,求齿轮5转速的大小和方向。

(隹=2.5 r/minn5 乙25 30 30 6015 15 15 2n5蔬20° 2.5(r/m);齿轮5的方向可以画箭头确定。

5、在图示轮系中,已知Z l、Z2、Z2'、Z3、Z4、Z 4'、Z5、Z5'、 Z6。

求传动比i 16。

ZJZ\7,6、如图所示轮系,已知Z i 24, Z2 46, Z223, Z3 48, Z4 35, Z4 20, Z5 48 , O i 为主动轴。

试计算轮系的传动比i i5并确定齿轮5的转动方向。

7、在如图所示的轮系中,已知乙=2 (右旋),乙=60,乙=15,乙=30, Z5= 15,30,求:(1)该轮系的传动比i i6=?(2)若n1 = 1200 r / min ,求轮6的转速大小和方向?32256]XSE 蝎杆3遍7右旋Tm耀轮2&图示为一蜗杆传动的定轴轮系,已知蜗杆转速 n 1= 750r/min , Z i = 3, Z2 = 60,乙=18,乙=27, Z5 = 20, Z6 = 50,试用画箭头的方法确定Z6的转向,并计算其转速。

轮系习题及答案(改)

轮系习题及答案(改)

11-1 在图示的轮系中,已知各轮齿数为z z z z z 1235620=====,已知齿轮1、4、5、7为同轴线,试求该轮系的传动比i 17。

11-2 在如图所示的电动三爪卡盘传动轮系中,已知各轮齿数为16z =,2225z z '==,357z =,456z =,试求传动比14i 。

11-3 在图示轮系中,已知各轮齿数为120z =,234z =,318z =,436z =,578z =,6726z z ==。

试求传动比1H i 。

11-6 在图示的轮系中,已知各轮齿数为122z =,388z =,46z z =,试求传动比16i 。

11-8 求图示卷扬机减速器的传动比1H i 。

若各轮的齿数为124z =,248z =,230z '=,360z =,320z '=,440z =,4100z '=。

11-10 在图示的轮系中,已知各轮齿数:11z =,240z =,224z '=,372z =,318z '=,4114z =,蜗杆左旋,转向如图示。

求轮系的传动比1H i ,并确定输出杆H 的转向。

11-11 在图示轮系中,各轮模数相同,均为标准齿轮,各轮齿数如下,z z 123050==,,z z z z 4678100303050====,,,,z z 10550120==,。

试求轴Ⅰ、Ⅱ之间的传动比I,IIi 。

第十一章 轮系习题答案11-1(1)z z z z z 41231225520100=++==⨯=z z z z 75612332060=+==⨯=(2)i z z z z z z z z z z 17323467123561=-()=-⨯⨯=-1006020201511-2(1)三爪卡盘传动轮系是一个行星轮系,它可以看作由两个简单的行星轮系组成。

第一个行星轮系由齿轮1、2、3和行星架H 所组成;第二个行星轮系由齿轮3、2、2'、4和行星架H 组成。

机械基础轮系试题及答案

机械基础轮系试题及答案

机械基础轮系试题及答案一、选择题(每题2分,共10分)1. 轮系中,若主动轮转速为n1,从动轮转速为n2,传动比i为:A. n1/n2B. n2/n1C. n1*n2D. n1-n2答案:B2. 轮系中,若主动轮齿数为Z1,从动轮齿数为Z2,传动比i为:A. Z1/Z2B. Z2/Z1C. Z1*Z2D. Z1-Z2答案:B3. 轮系中,若主动轮直径为D1,从动轮直径为D2,传动比i为:A. D1/D2B. D2/D1C. D1*D2D. D1-D2答案:B4. 轮系中,若主动轮扭矩为T1,从动轮扭矩为T2,传动比i为:A. T1/T2B. T2/T1C. T1*T2D. T1-T2答案:B5. 轮系中,若主动轮功率为P1,从动轮功率为P2,传动比i为:A. P1/P2B. P2/P1C. P1*P2D. P1-P2答案:B二、填空题(每题2分,共10分)1. 轮系中,传动比i的计算公式为_________。

答案:主动轮转速/从动轮转速或主动轮齿数/从动轮齿数或主动轮直径/从动轮直径2. 轮系中,若主动轮转速为n1,从动轮转速为n2,则传动比i=_________。

答案:n1/n23. 轮系中,若主动轮齿数为Z1,从动轮齿数为Z2,则传动比i=_________。

答案:Z1/Z24. 轮系中,若主动轮直径为D1,从动轮直径为D2,则传动比i=_________。

答案:D1/D25. 轮系中,若主动轮扭矩为T1,从动轮扭矩为T2,则传动比i=_________。

答案:T2/T1三、简答题(每题5分,共20分)1. 描述轮系中传动比的物理意义。

答案:传动比表示轮系中主动轮与从动轮转速或齿数或直径的比值,反映了轮系的减速或增速效果。

2. 轮系中,为什么主动轮与从动轮的转速比等于它们的齿数比?答案:因为轮系中齿轮的啮合关系使得主动轮与从动轮的齿数比决定了它们的转速比,即齿数多的轮转速慢,齿数少的轮转速快。

轮系习题答案

轮系习题答案

轮系习题答案一、填空题:1.轮系可以分为:定轴轮系和周转轮系。

2.定轴轮系是指:当轮系运动时,各轮轴线位置固定不动的轮系;周转轮系是指:轮系运动时,凡至少有一个齿轮的轴线是绕另一齿轮的轴线转动的轮系。

3.周转轮系的组成部分包括:太阳轮、行星轮和行星架。

4.行星轮系具有1个自由度,差动轮系有 2自由度。

5、行星轮系的同心条件是指:要使行星轮系能正常运转,其基本构件的回转线必须在同一直线上。

6、确定行星轮系中各轮齿数的条件包括:传动比条件、同心条件、均布条件、邻接条件。

7、正号机构和负号机构分别是指:转化轮系的传动比H 1n i 为正号或者负号的周转轮系。

动力传动中多采用负号机构。

二、分析计算题 1、在图示的车床变速箱中,移动三联齿轮a 使3’和4’啮合。

双移动双联齿轮b 使齿轮5’和6’啮合。

已知各轮的齿数为z 1=42,582=z ,38'3=z ,42'4=z ,48'5=z ,48'6=z 电动机的转速为n 1=1445r/min ,求带轮转速的大小和方向。

解:3858483842484258'5'31'6'426116-==-==z z z z z z n n i min /9466r n -=(与电动机转动方向相反)2、在图示的轮系中,已知各轮齿数为20z z z z z 65321=====,已知齿轮1、4、5、7为同轴线,试求该轮系的传动比17i 。

(1)z z z z z 41231225520100=++==?=z z z z 75612332060=+==?=(2)iz z z z zz z z z z17323467123561=-()=-=-100602020153、在图示轮系中,已知:蜗杆为单头且右旋,转速n11440= r/min,转动方向如图示,其余各轮齿数为:402=z,20'2=z,303=z,18'3=z,544=z,试:(1)说明轮系属于何种类型;(2)计算齿轮4得转速n4;(3)在图中标出齿轮4的转动方向。

轮系 试题

轮系 试题

轮系一、判断题(正确 T ,错误 F )1. 定轴轮系是指各个齿轮的轴是固定不动的。

( )2. 单一周转轮系具有一个转臂。

( )3. 单一周转轮系中心轮和转臂的轴线必须重合。

( )4. 周转轮系中的两个中心轮都是运动的。

( )5. 转化轮系的传动比可用定轴轮系求解,因此转化轮系中j g gj n n i =的数值为有齿轮g 到j 间所有 从动轮齿数相乘积与所有主动轮齿数相乘积的比值。

( )6. 行星轮系和差动轮系的自由度分别为1和2,所以只有差动轮系才能实现运动的合成或分解。

( )二、单项选择题1. 行星轮系的自由度为( )。

A 1B 2C 3D 1或22. ( )轮系中必须有一个中心轮是固定不动的。

A 定轴B 周转C 行星D 差动3. ( )轮系中两个中心轮都是运动的。

A 定轴B 周转C 行星D 差动4. ( )轮系不能用转化轮系传动比公式求解。

A 定轴B 混合C 行星D 差动5. 每个单一周转轮系具有( )个转臂。

A 0B 1C 2D 36. 每个单一周转轮系中心轮的数目应为( )。

A 3B 2C 1D 1或27. 每个单一周转轮系中,转臂与中心轮的几何轴线必须( )。

A 交错B 相交C 重合D 平行8. 两轴之间要求多级变速传动,选用( )轮系合适。

A 定轴B 行星C 差动D B 和C9. 三轴之间要求实现运动的合成或分解,应选用( )。

A 定轴轮系B 行星轮系C 差动轮系D A 和B三、填空题1. 轮系的主要功用是 、 、 、 。

2. 定轴轮系是指 。

3. 周转轮系是指 。

4. 求解混合轮系的传动比,首先必须正确地把混合轮系划分为 和各 个 ,并分别列出它们的 计算公式,找出其相互联系, 然后 。

四、计算题1. 在图示轮系中,设已知双头右旋蜗杆的转速r/m in 9001=n ,602=z ,252='z ,203=z ,253='z ,204=z ,304='z ,355=z ,285='z ,1356=z ,求6n 的大小和方向。

轮系题型归纳及参考答案(希望能帮到大家)

轮系题型归纳及参考答案(希望能帮到大家)

1. Z1=15,Z2=25,Z3=20,Z4=60。

n1=200r/min(顺时针)n4=50r/min(顺时针)试求H的转速。

(200-n H)/(50-n H)=-25*60/15*20 n H=755.图示轮系,已知Z1=18、Z2=20、Z2'=25、Z3=25、Z3'=2(右),当a轴旋转100圈时,b轴转4.5圈,求Z4=?i16=(20*25*z4)/(18*25*2)=100/4.5 z4=406图示轮系,已知各轮齿数Z1=Z2'=41,Z2=Z3=39,求手柄H与轮1的传动比i1H。

(n1-nH)/(0-nH)=z2z3/z1z2'(-n1/nH)+1=z2z3/z1z2'i1H=1-(39*39/41*41)=0.0957在图示轮系中,已知z1、z2、z2'、z3、z4、z4'、z5、z5'、z6。

求传动比i16。

i 16=z 2z 4z 5z 6/z 1z 2'z 4'z 5'8.图示轮系,已知Z 1=20、 Z 1'=24、 Z 2=30、Z 2'=Z 3 = Z 4=25、Z 5=74,且已知n H1=100转/分。

求n H2。

(n 2-n H1)/(n 5-n H1)=-Z 1Z 5/Z 2Z 1' n 5=0 n 2/n H1=1+Z 1Z 5/Z 2Z 1' n H1=100 求出n 2=305.6(n 2-n H2)/(n 4-n H2)=-Z 4/Z 2' n 2/n H2=1+Z 4/Z 2' 305.6/n H2=1+25/25 n H2=152.89.已知轮系中各齿轮的齿数分别为Z 1=20、Z 2=18、 Z 3=56。

求传动比i 1H 。

(n1-nH)/(n3-nH)=-Z3/Z1n3=0i1H=1+Z3/Z1=1+56/20=3.810 图示轮系中蜗杆1为双头左旋蜗杆Z1=2,转向如图所示。

轮系总复习题及解答

轮系总复习题及解答

第五章 轮系一.考点提要:1.定轴轮系的传动比传动时每个齿轮的几何轴线都是固定的,这种轮系称为定轴轮系。

如果若干个齿轮排成一列,即除第一个主动轮和最后一个从动轮外,其他中间的齿轮即是上一对齿轮的从动轮又是下一对齿轮的主动轮,就称为单式轮系。

如图5.1a) 所示,就是一个单式轮系.单式轮系的传动比为第一个主动轮和最后一个从动轮直接啮合的传动比,与中间齿轮的齿数无关,在计算中都会被约去,这样的齿轮称介轮或惰轮,只对转向起作用。

以图5.1a)的轮系为例:齿轮1、2的传动比和齿轮2,3的传动比分别为:122112z z n n i; 233223z zn n i 齿轮1,3的 传动比为:13231232213113))((z zz z z z n n n n n n i齿轮2是惰轮,惰轮的个数多少只改变转向,惰轮的齿数不改变传动比的值.图5.1 定轴轮系如果在一个轮系中,有的轴上有不止一个齿轮,即动力从同一根轴上的一个齿轮输入,从另一个齿轮上输出,则称之为复式轮系.复式轮系的传动比为组成该轮系的所有单式轮系的传动比之乘积.以图5.1b)的轮系为例:))(('23123'2213'21213z z z z n n n n i i i 以上结论可推广到一般情况。

设轮I 为起始主动轮,轮K 为最末从动轮,则定轴轮系始末两轮传动比数值计算的一般公式为所有主动轮齿数的乘积到从所有从动轮齿数的乘积到从)(k k n n i n k k 11111(5.1)式中:n 轮系中从轮1到轮k 之间经过外啮合的次数上式所求为传动比数值的大小,当起始主动轮I 和最末从动轮K 的轴线相平行时,两轮转向的同异可用传动比的正负表达。

两轮转向相同(1n 和k n 同号)时,传动比为“+”;两轮转向相反(1n 和k n 异号)时,传动比为“—”。

在两轮的传动中,如果经过偶数次的外啮合,则传动比为正;如果经过奇数次外啮合,则传动比为负.如果在轮系中要求某两个齿轮的传动比,而其间传动要经过圆锥齿轮或蜗轮蜗杆,则两轮转向的异同一般采用画箭头的方法确定。

机械原理+阶段练习四及答案(8-10-11)

机械原理+阶段练习四及答案(8-10-11)

华东理工大学网络教育学院机械原理课程阶段练习四(第8章—第10章—第11章)第八章 齿轮系及其设计一、填空题1、周转轮系根据自由度不同可分为 差动轮系 和 行星轮系 ,其自由度分别为 2 和 1 。

2、组成周转轮系的基本构件有: 太阳轮 ; 行星轮 , 系杆 。

3、K i 1与H K i 1不同,K i 1是 构件1和K 的传动比 ;HK i 1是 构件1和K 相对系杆H 的传动比 。

二、简答题1、什么是复合轮系?写出计算复合轮系传动比的步骤。

复合轮系:由定轴轮系和周转轮系或者由两个以上的周转轮系组成的轮系。

步骤:(1)划清组成复合轮系中的定轴轮系和周转轮系;(2)分别采用定轴轮系和周转轮系传动比的计算公式列出计算方程式; (3)根据这些轮系的组合方式联立解出所求的传动比。

2、在图示轮系中,根据齿轮1的转动方向,在图上标出蜗轮4的转动方向,并指出蜗轮4的旋向。

答:蜗轮4为顺时针转动,蜗轮4的旋向为左旋。

3 在图示的手摇提升装置中,已知各轮齿数为:z 1=20,z 2=50,z 3=15,z 4=30,z 6=40,z 7=18,z 8=51,蜗杆z 5=1,且为右旋,试求传动比i 18;并指出提升重物时手柄的转向。

答:所示轮系为定轴轮系;各轮转向为:8-逆时针、7-顺时针、4-箭头向左、3-箭头向上、2-箭头向上、1-箭头向上;传动比:67.56618=i4 在图示的蜗杆传动中,试分别在左右两图上标出蜗杆1的旋向和转向。

答:左图为右旋蜗杆;右图蜗杆逆时针转动。

三 计算题1 在图示的轮系中,已知z 1=20,z 2=30,z 3=18,z 6=48,齿轮1的转速n 1=150 r/min ,试求系杆 H 的转速n H 的大小和方向。

1.667.534124114-=⨯-=--=Z Z Z Z i H H Hωωωω因为:04=ω所以:667.511+=Hωω m in/5.22r H =ω2、在图中,已知:Z 1=20 ,Z 2=30 ,Z 2’=25,Z 3=75,Z 4=30,Z5=25,。

机械设计基础-第8章-轮系

机械设计基础-第8章-轮系

构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
n1
n1H n1 nH
n2
n2H n2 nH
n3
n3H n3 nH
nH
nHH nH nH 0
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
n1H n3H
n1 nH n3 nH
[解]
该齿轮系为一平面定轴齿轮系,齿轮 2和4为惰轮,齿轮系中有两对外啮合齿 轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
在机床、计算机构和补偿装置等得到广泛应用。
滚齿机中的差动齿轮系(下图)
如图所示为滚齿机中的差动
齿轮系。滚切斜齿轮时,由齿轮4
传递来的运动传给中心轮1,转速
为n1;由蜗轮5传递来的运动传给 H,使其转速为nH。这两个运动 经齿轮系合成后变成齿轮3的转速
n3输出。
因 Z1 Z3

i1H3
n1 nH n3 nH
i 12
z 1 2
2
z1
z 3' i 3'4
4;3
'
2 3
3
Z
' 2
i 45
z 4 5
5

机械基础(刘永霞4-8)

机械基础(刘永霞4-8)

《机械基础》题库第四章轮系§4---1 轮系的应用与分类一、选择题试题:当两轴相距较远,且要求瞬时传动比准确,应采用()传动。

A.带 B.链 C.轮系答案:C试题解析:解析试题:轮系()A.不能获得很大的传动比 B.不适宜作较远距离的传动C.可以实现运动的合成但不能分解运动 D可以实现变向和变速要求答案:D试题解析:解析试题:既可以实现变向又可实现变速要求,可以采用()A.带传动 B.链传动C.轮系 D.螺旋传动答案:C试题解析:解析试题:轮系中有一个齿轮的几何轴线不是固定的轮系称为()A.定轴轮系 B.周转轮系 C.轮系答案:B试题解析:解析试题:可以将主动轴的一种转速变换为从动轴的多种转速,可以通过()实现A.带传动 B.链传动C. 轮系D. 螺旋传动答案:C试题解析:解析试题:由一系列相互啮合的齿轮组成的传动系统称为()A轮系B齿轮传动C机械传动答案:A试题解析:解析试题:轮系中所有齿轮的几何轴线位置都固定的轮系称为()A轮系B定轴轮系C周转轮系答案:B试题解析:解析试题:需改变从动轴的回转方向,可以采用()A轮系B螺旋传动C带传动答案:C试题解析:解析试题:轮系能在一定范围内实现()变速A有级B无级C有级和无级答案:A试题解析:解析试题:采用()轮系能把一个运动分解为两个独立的回转运动。

A轮系B定轴轮系C周转轮系答案:C试题解析:解析二、判断题(对的打√错的打×)试题:轮系既可以传递相距较远的两轴之间的运动,又可以获得很大的传动比。

()答案:√试题解析:解析试题:轮系可以方便地实现变速要求,但不能实现变向的要求。

()答案:×试题解析:解析试题:采用轮系传动可以获得很大的传动比。

()答案:√试题解析:解析试题:由一系列相互啮合的齿轮所构成的传动系统称为轮系。

()答案:√试题解析:解析试题:按照轮系传动时各齿轮的轴线位置是否固定,轮系分为定轴轮系和周转轮系两大类。

轮系-习题及答案

轮系-习题及答案

轮系一、复习思考题1.为什么要应用轮系?试举出几个应用轮系的实例?2.何谓定轴轮系?何谓周转轮系?行星轮系与差动轮系有何区别? 3.什么叫惰轮?它在轮系中有什么作用?4.定轴轮系的传动比如何计算?式中(-1)m有什么意义? 5.定轴轮系末端的转向怎样判别?6.如果轮系的末端轴是螺旋传动,应如何计算螺母的移动量?二、填空题1.由若干对齿轮组成的齿轮机构称为 。

2.根据轮系中齿轮的几何轴线是否固定,可将轮系分 轮系、 轮系和 轮系三种。

3.对平面定轴轮系,始末两齿轮转向关系可用传动比计算公式中 的符号来判定。

4.行星轮系由 、 和 三种基本构件组成。

5.在定轴轮系中,每一个齿轮的回转轴线都是 的。

6.惰轮对 并无映响,但却能改变从动轮的 方向。

7.如果在齿轮传动中,其中有一个齿轮和它的 绕另一个 旋转,则这轮系就叫周转轮系。

8.旋转齿轮的几何轴线位置均 的轮系,称为定轴轮系。

9.轮系中 两轮 之比,称为轮系的传动比。

10.加惰轮的轮系只能改变 的旋转方向,不能改变轮系的 。

11.一对齿轮的传动比,若考虑两轮旋转方向的同异,可写成±==21n n i ——。

12.定轴轮系的传动比,等于组成该轮系的所有 轮齿数连乘积与所有 轮齿数连乘积之比。

13.在周转转系中,凡具有 几何轴线的齿轮,称中心轮,凡具有 几何轴线的齿轮,称为行星轮,支持行星轮并和它一起绕固定几何轴线旋转的构件,称为 。

14.周转轮系中,只有一个 时的轮系称为行星轮系。

15.转系可获得 的传动比,并可作 距离的传动。

16.转系可以实现 要求和 要求。

17.转系可以 运动,也可以 运动。

18.采用周转轮系可将两个独立运动 为一个运动,或将一个独立的运动 成两个独立的运动。

19.差动轮系的主要结构特点,是有两个。

20.周转轮系结构尺寸,重量较。

21.周转轮系可获得的传动比和的功率传递。

三、判断题1.转系可分为定轴轮系和周转轮系两种。

机械原理第八版答案与解析

机械原理第八版答案与解析

机械原理 第八版 西北工业大学 平面机构的结构分析1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。

试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。

解 1)取比例尺l μ绘制其机构运动简图(图b )。

2)分析其是否能实现设计意图。

图 a ) 由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F 故:00)0142(33)2(3=--+⨯-⨯='-'-+-=F p p p n F h l因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。

图 b )3)提出修改方案(图c )。

为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案)。

图 c1) 图 c2)2、试画出图示平面机构的运动简图,并计算其自由度。

图a )解:3=n ,4=l p ,0=h p ,123=--=h l p p n F图 b )解:4=n ,5=l p ,1=h p ,123=--=h l p p n F3、计算图示平面机构的自由度。

将其中的高副化为低副。

机构中的原动件用圆弧箭头表示。

3-1解3-1:7=n ,10=l p ,0=h p ,123=--=h l p p n F ,C 、E 复合铰链。

3-2解3-2:8=n ,11=l p ,1=h p ,123=--=h l p p n F ,局部自由度3-3 解3-3:9=n ,12=l p ,2=h p ,123=--=h l p p n F4、试计算图示精压机的自由度解:10=n ,15=l p ,0=h p 解:11=n ,17=l p ,0=h p13305232=⨯-+⨯='-'+'='n p p p h l 26310232=⨯-⨯='-'+'='n p p p h l0='F 0='FF p p p n F h l '-'-+-=)2(3 F p p p n F h l '-'-+-=)2(310)10152(103=--+⨯-⨯= 10)20172(113=--+⨯-⨯=(其中E 、D 及H 均为复合铰链) (其中C 、F 、K 均为复合铰链)5、图示为一内燃机的机构简图,试计算其自由度,并分析组成此机构的基本杆组。

轮系答案

轮系答案

轮系习题答案一、填空1. 各齿轮的轴线相对机架都是固定的。

至少一个齿轮的几何轴线相对机架不是固定的。

2.中心轮 行星轮 行星架(系杆、转臂)3.中心轮,行星轮,行星架(系杆〕实际轮系的传动比,转化轮系(转化机构)的传动比4.惰轮5.2 16.转化轮系二、判断题1.Y 2.N 3.N 4.N三、计算题1.解:(1)5、6定轴轮系。

1、2、3、4 、H (5)行星轮系,构件5是系杆。

(2)2516252520201314215514=⨯⨯=⋅⋅=-=z z z z i i 2592516115=-=i (3〕5110020566556-=-=-==z z n n i (4)1259)51(259561516-=-⋅=⋅=i i i 2.解:(1) 1-2组成定轴轮系。

n n A 1= i n n z z 12122140202==-=-=- (2) 2′-3-3′- 4 - B 周转轮系,B 为系杆H 。

9.120503030111 3 2434 2 2=⨯⨯+=+=-=z z z z i i H H (3) 混合轮系8.3)9.1()2( 21211-=⨯-====H HH AB i i n n i i n B 和n A 转向相反。

3.解:.(1) 1-2组成定轴轮系n z z n 212120801000250=-=-⨯=-r/min 32n n =(2) 3-4-4′-5-B 组成周转轮系32020602010 43543335-=⨯⨯-=-=-=--=z z z z n n n n n i H H H H (3) 43=Hn n 5.62)250(41413-=-⨯===n n n H B r/min 4.解: (1) 1、2、2'、3、H 为行星轮系。

B 为系杆,4n n A =。

21323113z z z z n n n n i B B B -=--= B n z z z z n )1(32 213+= (2) 3'、4为定轴轮系。

8 轮系 习题答案

8 轮系 习题答案

习 题 答 案8-1 如图,已知轮系中各轮齿数, Z 1=20, Z 2=50, Z 2‘= 15, Z 3=30 ,Z 3‘=1 , Z 4= 40, Z 4’= 18 , Z 5= 54 ,求i 15和提起重物时手轮转向?解:600181152054403050''3'215432154=⨯⨯⨯⨯⨯⨯==Z Z Z Z Z Z Z Z i转向如图所示。

题8-1图8-2已知轮系中各轮齿数, Z 1=27,Z 2=17,Z 3=99,n 1=6000r/min,求i 1H 和n H 。

解: 0-313313113==--==n z z n n n n n n i H H H HH26.311311=+==Z Z n n i H H 设n 1转向为正,则111,min /184026.36000n n r i n n H H H ===8-3如图所示的外啮合周转轮系中,已知Z 1=100, Z 2=101, Z 2'=100, Z 3=99,求系杆H 与齿轮1之间的传动比i H 1。

解:213223113)1(Z Z Z Z i H H H -=--=ωωωω 代入上式03=ω100100991011'21321⨯⨯=⨯⨯=-Z Z Z Z H ωω 100001100009999111=-==H H i ωω 1000011==∴ωωH H i 8-4 图示圆锥齿轮组成的周转轮系中,已知Z 1=20, Z 2=30, Z 2‘=50, Z 3=80,n 1=50r/min. 求系杆H 转速。

题8-4图解: '213231Z Z Z Z n n n n H H ⨯⨯-=-- 等式右边的符号是在转化轮系中确定的。

设n1转向为正,则50208030050⨯⨯-=--H H n n min /7.14r n H =∴ 与n1转向相同,方向的判定如图所示。

8-5 如图为标准圆柱直齿轮传动系统,已知Z 1=60, Z 2=20, Z 2‘=25,各轮模数相等,求:1)Z 3;2)若已知n 3=200r/min, n 1=50r/min, n 3,n 1转向如图,求系杆H 转速大小和方向;3)若n 1方向与图中相反时,则系杆H 转速大小和方向如何?解:1)首先根据同心条件求出Z 3)(21)(213'221Z Z m Z Z m +=- 153=Z 2)'21323113Z Z Z Z n n n n i H H H ⨯⨯-=--= 2560152020050⨯⨯-=--H H n n min /75r n H =∴ 转向与n1一致 3)当n1方向相反时,以-50r/min 代入,则2560152020050⨯⨯-=---H H n n min /33.8r n H -=∴ m i n /33.8r n H -=∴转向与n1一致8-6 图示轮系中,已知各轮齿数为Z 1=60,Z 2=20,Z 2‘=20,Z 3=20,Z 4=20,Z 5=100,试求传动比i 41。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 答 案
8-1 如图,已知轮系中各轮齿数, Z 1=20, Z 2=50, Z 2‘= 15, Z 3=30 ,Z 3‘=1 , Z 4= 40, Z 4’= 18 , Z 5= 54 ,求i 15和提起重物时手轮转向
解:
600181152054403050''3'215
432154=⨯⨯⨯⨯⨯⨯==Z Z Z Z Z Z Z Z i
转向如图所示。

题8-1图
8-2已知轮系中各轮齿数, Z 1=27,Z 2=17,Z 3=99,n 1=6000r/min,求i 1H 和n H 。

解: 0
-313313113==--==n z z n n n n n n i H H H H
H
26.311
311=+==Z Z n n i H H 设n 1转向为正,则
1
11,min /184026.36000n n r i n n H H H ===
8-3如图所示的外啮合周转轮系中,已知Z 1=100, Z 2=101, Z 2'=100, Z 3=99,求系杆H 与齿轮1之间的传动比i H 1。

解:
213223113)1(Z Z Z Z i H H H -=--=ωωωω
代入上式03=ω 100100991011'21321⨯⨯=⨯⨯=-Z Z Z Z H ωω 10000
1100009999111=-==H H i ωω 1000011==
∴ωωH H i 8-4 图示圆锥齿轮组成的周转轮系中,已知Z 1=20, Z 2=30, Z 2‘=50, Z 3=80,n 1=50r/min. 求系杆H 转速。

题8-4图
解: '
213231Z Z Z Z n n n n H H ⨯⨯-=-- 等式右边的符号是在转化轮系中确定的。

设n1转向为正,则
50
208030050⨯⨯-=--H H n n min /7.14r n H =∴ 与n1转向相同,方向的判定如图所示。

8-5 如图为标准圆柱直齿轮传动系统,已知Z 1=60, Z 2=20, Z 2‘=25,各轮模数相等,求:
1)Z 3;
2)若已知n 3=200r/min, n 1=50r/min, n 3,n 1转向如图,求系杆H 转速大小和方向;
3)若n 1方向与图中相反时,则系杆H 转速大小和方向如何
解:
1)首先根据同心条件求出Z 3
)(2
1)(213'221Z Z m Z Z m +=- 153=Z
2)'
21323113Z Z Z Z n n n n i H H H ⨯⨯-=--= 25
60152020050⨯⨯-=--H H n n min /75r n H =∴ 转向与n1一致 3)当n1方向相反时,以-50r/min 代入,则
25
60152020050⨯⨯-=---H H n n min /33.8r n H -=∴ min /33.8r n H -=∴转向与n1一致
8-6 图示轮系中,已知各轮齿数为Z 1=60,Z 2=20,Z 2‘=20,Z 3=20,Z 4=20,Z 5=100,试求传动比i 41。

解:为求解传动比,可以将该轮系划分为由齿轮1、2、2′、5和行星架H 所组成的行星轮
系,得: 3
5206010020'21525115-=⨯⨯-=-=--=z z z z i H H H ωωωω 由 ,05=ω 得
3
81=H ωω 8
31ωω=H (1) 由齿轮2′,3,4,5和行星架H 所组成得行星轮系,得
520
100455445===--=z z i H H H ωωωω 4514-=-=H ωω 所以:148
341ωω=- 传动比为:2
31441-==ωωi 8-7如图所示为用于自动化照明灯具上的周转轮系,已知输入轴转速n 1=min ,各轮齿数Z 1=60, Z 2= Z 2‘= 30, Z 3=40, Z 4= 40, Z 5= 120,试求箱体转速
解: n 5=0
4
'21532
35115)1(Z Z Z Z Z Z n n n n i H H H -=--= min /5.6r n H =∴ 转向与n1一致
8-8 已知图示轮系中各轮齿数,Z 1=30,Z 4= Z 5=21,Z 2=24,Z 3=Z 6=40,Z 7=30,Z 8=90,n 1=960r/min ,方向如图示,求n H 的大小和方向。

解:
6340)1(42
.096042.042.040
2130248467865186681434124114==-=-=--===∴====n n n z z z z n n n n i n n z z z z n n i H H H
由于其中 min /888r n H = n H 转向的箭头向上。

8-9已知 Z 1=30, Z 2=30, Z 2‘=20, Z 3=90,Z 3’=40, Z 4=30, Z 4’=30, Z 5=15 ,Z 1‘=40,求i ⅠⅡ。

解:i ⅠⅡ= i 4H
在周转轮系中:
1
331Z Z n n n n H H -=-- 31
3'3'1-=-=--Z Z n n n n H H
在定轴轮系中:
4'1'144'
14
3n n Z Z n n =⇒= 4'3'
344'343n n Z Z n n -=⇒-= 3
844-===I I I H H n n i i 8-10 已知 Z 1=12, Z 2=51, Z 3=76, Z 4=49, Z 5=12 ,Z 6=73,求此混合轮系传动比i 1H 。

解:在周转轮系中:
4
66446Z Z n n n n i H H H -=--= 在定轴轮系中:
1221Z Z n n -= 所以:14217
4n n n -== 1331Z Z n n = 所以:16319
3n n n == 3940611-==H
H n n i 8-11 如图所示轮系,已知锥齿轮齿数Z 1=Z 4=55, Z 5=50,其余各圆柱直齿轮齿数 Z 1‘=100,
Z 2= Z 2’= Z 3= Z 4‘ =20, n 6=3000r/min ,转向如图,求n 4、 n 1大小和方向。

解:在周转轮系中:
5
13'2'1432'4'141'''==--=Z Z Z Z Z Z n n n n i H H H 在定轴轮系中:
11
4514514-=-=-=Z Z Z Z Z Z i 得:反向与同向
与6'446'11min,/2000min,/2000n r n n n r n n -====
8-12如图所示的轮系中,各齿轮均为标准齿轮,已知各齿轮齿数为z 1=18,z 1’=80,z 2=20,z 3=36,z 3’=24,z 4’=80,z 5=50,z 6=2(左旋),z 7=58,试求:
(1) 齿数z 4;
(2) 传动比17i ;
(3) 已知轮1转向如图所示,试确定轮7的转向。

解:(1) 根据同轴条件
433212r r r r r +=++
4'33212
222z m z m z m mz z m +=++ 702436202182'33244=-+⨯+=-++=z z z z z
(2) 划分轮系
1、2、3-3’、4、6组成周转轮系;
1’、5、4’组成定轴轮系;
6、7组成定轴轮系,于是有 6
3524187036'31436461614-=⨯⨯-=-=--=z z z z n n n n i (1) 180
80'1'441'4'1-=-=-==z z n n i (2) 29258677667====
z z n n i (3) 由式(2)得14n n -=,将其带入式(1)
6356161-=---n n n n 6
351/1/6161-=---n n n n
得 294161-=n n ,负号说明轮6与轮1方向相反,取其绝对值并将其与式(3)相乘得 412929
4176617117=⨯-=⨯==n n n n n n i (3) 1n 与6n 方向相反,在根据左手定则可确定蜗轮7顺时针方向回转。

相关文档
最新文档