江西省中考数学试卷版
2023年江西省中考数学真题(无答案)
江西省2023年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间为120分钟。
2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。
一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.下列各数中,正整数...是( ) A .3 B .2.1 C .0 D .2−2.下列图形中,是中心对称图形的是( )A .B .C .D .3有意义,则a 的值可以是( )A .1−B .0C .2D .64.计算()322m 的结果为( ) A .68m B .66m C .62m D .52m5.如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=°,则OBD ∠的度数为( )A .35°B .45°C .55°D .65°6.如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)7.单顶式5ab −的系数为_________.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_________.9.化简:22(1)a a +−=________. 10.将含30°角的直角三角板和直尺按如图所示的方式放乳,已60α∠=°,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_________cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP∠均为直角,AP 与BC 相交于点D .测得40cm20cm 12m AB BD AQ ===,,,则树高PQ =_________m .12.如图,在ABCD 中,602B BC AB ∠=°=,,将AB 绕点A 逆时针旋转角α(0360α°<<°)得到AP ,连接PC ,PD .当PCD △为直角三角形时,旋转角α的度数为_________.三、解答题(本大题共5小题,每小题6分,共30分)13.(1tan 453°−°(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC ≌△△.14.如图是44×的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC △,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.15.化简2111x x x x x x − +⋅ +−.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是_________,乙同学解法的依据是_________;(填序号) ①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动根据活动要求,每班需要2名宣传员某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_________事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,己知直线y x b =+与反比例函数(0)k yx x =>的图象交于点(2,3)A ,与y 轴交于点B , 过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC △的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1是某红色文化主题公园内的雕塑,将其抽象成加图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得5518m2m B BC DE ∠=°==,.,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 55082cos55057tan 55143°≈°≈°≈.,.,.)20.如图,在ABC △中,464AB C =∠=°,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=°.(1)求 BE的长; (2)若76EAD ∠=°,求证:CB 为O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力 人数 百分比 0.6及以下8 4% 0.716 8% 0.8 28 14%0.934 17% 1.0m 34% 1.1及以上46 n 合计 200 100%高中学生视力情况统计图(1)m =_________,n =_________;(2)被调查的高中学生视力情况的样本容量为_________;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量...说明理由: ②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.课本再现定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程. 己知:在ABCD 中,对角线BD AC ⊥,垂足为O .求证:ABCD 是菱形.知识应用(2)如图2,在ABCD 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=°,D 为AC 上一点,CD =P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为1s ,正方形DPEF 的而积为S ,探究S 与t 的关系初步感知(1)如图1,当点P 由点C B 时,①当1t =时,S =____________.②S 关于t 的函数解析式为__________.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=___________; ②当314t t =时,求正方形DPEF 的面积.。
2022年江西省中考数学真题(解析版)
(2)知识应用:如图4,若 的半径为2, 分别与 相切于点A,B, ,求 的长.
14.以下是某同学化筒分式 的部分运算过程:
解:原式 ①
②
③
…
解:
(1)上面的运算过程中第__________步出现了错误;
(2)请你写出完整的解答过程.
【答案】(1)③(2)见解析
【解析】(1)第③步出现错误,原因是分子相减时未变号,
故答案为:③;
(2)解:原式=
【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.
(2)如图2,连接 、 、 、 ,直线经过点 和点 ,设小正方形的边长为1个单位,
∴ , ,
, ,
∴ ,
∴
∴ ,
∵ ,
∴ ,
∴ ,
∴四边形 是正方形,
∴ , ,且 ,
∴直线即为所作.
【点睛】本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.
【答案】1
【解析】解:一元二次方程有两个相等的实数根,
可得判别式 ,
∴ ,
解得: .
故答案为:
【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.
10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.
精品解析:2022年江西省中考数学真题(解析版)
【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键.
2.实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】根据数轴上点的特点,进行判断即可.
【详解】ABC.根据数轴上点a、b的位置可知, , ,
∴ ,故AB错误,C正确;
12.已知点A在反比例函数 的图象上,点B在x轴正半轴上,若 为等腰三角形,且腰长为5,则 的长为__________.
【答案】5或 或
【解析】
【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.
【详解】解:①当AO=AB时,AB=5;
②当AB=BO时,AB=5;
③当OA=OB时,则OB=5,B(5,0),
B、 ,故此选项符合题意;
C、 ,故此选项不符合题意;
D、 ,故此选项不符合题意.
故选:B.
【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和 的应用是解题的关键.
4.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是( )
根据数轴上点a、b的位置可知, ,故D错误.
故选:C.
【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.
3.下列计算正确的是()
A. B.
C. D.
【答案】B
【解析】
【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.
【详解】解:A、 ,故此选项不符合题意;
2022年江西省中考数学真题(含解析)
z2022年江西省中考数学试题卷说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分)1. 下列各数中,负数是( ) A.B. 0C. 2D.2.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A.B.C.D.3. 下列计算正确的是( ) AB.C. D.4. 将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A. 9B. 10C. 11D. 125. 如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )1-a b >a b =a b <a b =-236m m m ×=()m n m n --=-+2()m m n m n +=+222()m n m n +=+zA. B.C. D.6. 甲、乙两种物质的溶解度与温度之间的对应关系如图所示,则下列说法中,错误的是( )A. 甲、乙两种物质的溶解度均随着温度的升高而增大B. 当温度升高至时,甲的溶解度比乙的溶解度大C. 当温度为时,甲、乙的溶解度都小于D. 当温度为时,甲、乙的溶解度相等二、填空题(本大题共6小题,每小题3分,共18分)7. 因式分解:__________.8. 正五边形的外角和等于 _______◦. 9. 已知关于方程有两个相等的实数根,则的值是______.10. 甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________.11. 沐沐用七巧板拼了一个对角线长为2正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.(g)y ()t℃2t ℃0℃20g 30℃23a a -=x的220x x k ++=k 的z.12. 已知点A 在反比例函数的图象上,点B 在x 轴正半轴上,若为等腰三角形,且腰长为5,则的长为__________.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:; (2)解不等式组:14. 以下是某同学化筒分式的部分运算过程:(1)上面的运算过程中第__________步出现了错误; (2)请你写出完整的解答过程.15. 某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团12(0)y x x=>OAB !AB 0|2|2-26325x x x <ìí>-+î2113422x x x x +æö-÷ç÷-+-èøz员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选. (1)“随机抽取1人,甲恰好被抽中”是__________事件; A .不可能 B .必然 C .随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作的角平分线;(2)在图2中过点作一条直线,使点,到直线的距离相等.17. 如图,四边形为菱形,点E 在的延长线上,.(1)求证:;(2)当时,求的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,点在反比例函数图象上,点B 在y 轴上,,将线段向右下方平移,得到线段,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且.44´ABC ÐC l A B l ABCD AC ACD ABE Ð=ÐABC AEB !!∽6,4AB AC ==AE (,4)A m (0)ky x x=>的2OB =AB CD 1OD =z(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线的表达式.19. (1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明; (2)知识应用:如图4,若的半径为2,分别与相切于点A ,B ,,求的长.20. 图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A ,D ,H ,G 四点在同一直线上,测得.(结果保留小数点后一位)AC O !AOB ÐAB C ÐAB C Ð12Ð=ÐC AOB O !,PA PB O !60C Ð=°PA AB CD FG ∥∥72.9, 1.6m, 6.2m FEC A AD EFÐ=Ð=°==z(1)求证:四边形为平行四边形; (2)求雕塑的高(即点G 到的距离).(参考数据:)五、解答题(本大题共2小题,每小题9分,共18分)21. 在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1: 整理描述表1:“双减”前后报班情况统计表(第一组) 报班数 人数 类别 0 1 2 3 4及以上 合计“双减”前 102 48 75 51 24 m “双减”后 2551524nm(1)根据表1,m 的值为__________,的值为__________; (2)分析处理:请你汇总表1和图1中数据,求出“双减”后报班数为3的学生人数所占的百分比; (3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:DEFG AB sin72.90.96,cos72.90.29,tan72.9 3.25°»°»°»nm的z①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).22. 跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K 到起跳台的水平距离为,高度为(h 为定值).设运动员从起跳点A 起跳后的高度与水平距离之间的函数关系为.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时,求基准点K 的高度h ; ②若时,运动员落地点要超过K 点,则b 的取值范围为__________; (3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K 点,并说明理由.六、解答题(本大题共12分)23. 问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2). OA 66m 75m m h (m)y (m)x 2(0)y ax bx c a =++¹19,5010a b =-=150a =-25m 76m ()90,60PEF P F Ð=°Ð=°PEF ABCDz(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积与S 的关系为__________;(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,分别与正方形的边相交于点M ,N .①如图2,当时,试判断重叠部分的形状,并说明理由; ②如图3,当时,求重叠部分四边形的面积(结果保留根号); (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为(设),将绕点O 逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),(参考数据:OF OB OF BC 1S ,OE OP BM CN =OMN !CM CN =OMCN GOH ÐGOH a Ð=GOH ÐGOH ÐABCD 2S 2S a sin15tan152°=°=°=z2022年江西省中考数学试题卷说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分)1. 下列各数中,负数是( ) A. B. 0C. 2D.【答案】A 【解析】【分析】根据负数的定义即可得出答案. 【详解】解:-1是负数,20既不是正数也不是负数,故选:A .【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键. 2. 实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A.B.C.D.【答案】C【解析】【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,,, ∴,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,,故D 错误. 故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.3. 下列计算正确的是( ) A. B. C. D.【答案】B 【解析】1-a b >a b =a b <a b =-0a <0b >a b <a b -<236m m m ×=()m n m n --=-+2()m m n m n +=+222()m n m n +=+z【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、,故此选项不符合题意; B 、,故此选项符合题意;C 、,故此选项不符合题意;D 、,故此选项不符合题意. 故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.4. 将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A. 9B. 10C. 11D. 12【答案】B 【解析】【分析】列举每个图形中H 个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4, 第2个图中H 的个数为4+2, 第3个图中H 的个数为4+2×2, 第4个图中H 的个数为4+2×3=10, 故选:B .【点睛】本题考查了规律型:图形变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.5. 如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )2356m m m m ×=¹()m n m n --=-+22()m m n m mn m n +=+¹+22222()2m m n m n m n n +=++¹+222()2a b a ab b +=++的的zA. B.C. D.【答案】A【解析】【分析】从上面观察该几何体得到一个“T ”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A .【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.6. 甲、乙两种物质的溶解度与温度之间的对应关系如图所示,则下列说法中,错误的是( ) (g)y ()t ℃zA. 甲、乙两种物质的溶解度均随着温度的升高而增大B. 当温度升高至时,甲的溶解度比乙的溶解度大C. 当温度为时,甲、乙的溶解度都小于D. 当温度为时,甲、乙的溶解度相等【答案】D【解析】【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A 、B 、C 都正确,当温度为t 1时,甲、乙的溶解度都为30g ,故D 错误,故选:D .【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 因式分解:__________.【答案】【解析】【分析】直接提公因式a 即可.【详解】解:原式=.故答案为:.【点睛】此题主要考查了提公因式法分解因式,关键是正确确定公因式.8. 正五边形的外角和等于 _______◦.【答案】360【解析】【详解】试题分析:任何n 边形的外角和都等于360度.考点:多边形的外角和.9. 已知关于的方程有两个相等的实数根,则的值是______. 2t ℃0℃20g 30℃23a a -=(3)a a -(3)a a -(3)a a -x 220x x k ++=k【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式,∴,解得:.故答案为:【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键. 10. 甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________.【答案】 【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得. 故答案为:. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 11. 沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.【答【解析】【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题. 0=!440k -=1k =1.16014010x x =-16014010x x =-16014010x x =-z 【详解】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,∴根据勾股定理故答案【点睛】本题主要考查了正方形的性质,七巧板,矩形的性质,勾股定理,解决本题的关键是所拼成的正方形的特点确定长方形的长与宽.12. 已知点A 在反比例函数的图象上,点B 在x 轴正半轴上,若为等腰三角形,且腰长为5,则的长为__________.【答案】5或【解析】【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:①当AO=AB 时,AB =5; ②当AB =BO 时,AB =5;③当OA =OB 时,则OB =5,B (5,0), 设A (a ,)(a >0), ∵OA=5, , 解得:,, ∴A (3,4)或(4,3), ∴AB AB 综上所述,AB 的长为5或故答案为:5或=12(0)y x x=>OAB !AB 12a 5=13a =24a ===z 【点睛】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的思想,当时,求出点的坐标是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:;(2)解不等式组: 【答案】(1)3;(2)1<x <3【解析】【分析】(1)根据绝对值的性质,算术平方根的意义,零指数幂的意义解答即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)原式=2+2-1,=3.(2) 解不等式①得:x <3,解不等式②得:x >1,∴不等式组的解集为:1<x <3.【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14. 以下是某同学化筒分式的部分运算过程:(1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 0|2|2-26325x x x <ìí>-+î26325x x x ìí-+î<①>②2113422x x x x +æö-÷ç÷-+-èø【答案】(1)③ (2)见解析【解析】【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可.【小问1详解】第③步出现错误,原因是分子相减时未变号,故答案:③;【小问2详解】解:原式= 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 15. 某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是__________事件;A .不可能B .必然C .随机 (2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.【答案】(1)C (2)【解析】【分析】(1)根据随机事件的定义即可解决问题;(2)从甲、乙、丙、丁名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示,从这4名护士中随机抽取2人,所有可能出现的结果共有12种,然后利用树状图即可解决问题.【小问1详解】解:“随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C ; 为112(2)(2)23x x x x x éù+--´êú+-+ëû122(2)(2)(2)(2)3x x x x x x x éù+--=-´êú+-+-ëû122(2)(2)3x x x x x +-+-=´+-32(2)(2)3x x x -=´+-12x =+12z【小问2详解】从甲、乙、丙、丁4名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示.从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:它们出现的可能性相同,所有的结果中,被抽到的两名护士都是共产党员的(记为事件A )的结果有6 种,则, 则被抽到的两名护士都是共产党员的概率为.【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率所求情况数与总情况数之比.16. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作的角平分线;(2)在图2中过点作一条直线,使点,到直线的距离相等.【答案】(1)作图见解析部分(2)作图见解析部分【解析】【分析】(1)连接,,与交于点,作射线即可;(2)取格点,过点和点作直线即可.【小问1详解】解:如图1,连接、,与交于点,设小正方形的边长为1个单位, ∵线段和是矩形的两条对角线且交于点,∴, ()61122P A ==1244´ABC ÐC l A B l AC HG AC HG P BP D C D l AC HG AC HG P AC HG P AP CP =z又∵∴,∴平分,∴射线即为所作;【小问2详解】如图2,连接、、、,直线经过点和点,设小正方形的边长为1个单位,∴∴,∴四边形是菱形, 又∵,,,在和中,∴,∴,∵,∴,∴,∴四边形是正方形,∴,,且, AB ==BC ==AB BC =BP ABC ÐBP AD AB BC CD l C D AB ==AD ==BC ==CD ==AB AD CD BC ===ABCD 1AE DF ==2BE AF ==90AEB DFA Ð=Ð=°AEB △DFA !AE DF AEB DFA BE AF =ìïÐ=Ðíï=î()AEB DFA SAS △≌△ABE DAF Ð=Ð90ABE BAE Ð+Ð=°90DAF BAE Ð+Ð=°90BAD Ð=°ABCD AD l ^BC l ^AD BC =z∴直线即为所作.【点睛】本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.17. 如图,四边形为菱形,点E 在的延长线上,.(1)求证:;(2)当时,求的长. 【答案】(1)见解析 (2)AE =9【解析】【分析】(1)根据四边形ABCD 是菱形,得出,,根据平行线的性质和等边对等角,结合,得出,即可证明结论;(2)根据,得出,代入数据进行计算,即可得出AE 的值. 【小问1详解】证明:∵四边形ABCD 为菱形,∴,,,,l ABCD AC ACD ABE Ð=ÐABC AEB !!∽6,4AB AC ==AE CD AB ∥AB CB =ACD ABE Ð=ÐACD ABE CAB ACB Ð=Ð=Ð=ÐABC AEB D D ∽AB AC AE AB =CD AB ∥AB CB =ACD CAB \Ð=ÐCAB ACB Ð=Ðz ∵,∴,∴.小问2详解】∵,∴, 即, 解得:.【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出,是解题关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,点在反比例函数的图象上,点B 在y 轴上,,将线段向右下方平移,得到线段,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且.(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线的表达式.【答案】(1)(0,2),(1,0),(m +1,2)(2)1;y =-2x +6【解析】【分析】(1)根据OB =2可得点B 的坐标,根据OD =1可得点D 的坐标为(1,0),由平移规律可得点C 的坐标;(2)根据点C 和D 的坐标列方程可得m 的值,从而得k 的值,再利用待定系数法可得直线AC 的解析式. ACD ABE Ð=ÐACD ABE CAB ACB Ð=Ð=Ð=ÐABC AEB D D ∽【ABC AEB D D ∽AB AC AE AB =646AE =9AE =ACD ABE CAB ACB Ð=Ð=Ð=Ð(,4)A m (0)k y x x=>2OB =AB CD 1OD=AC【小问1详解】∵点B 在y 轴上,, ∴B (0,2),∵点D 落在x 轴正半轴上,且 ∴D (1,0),∴线段AB 向下平移2个单位,再向右平移1个单位,得到线段CD , ∵点A (m ,4), ∴C (m +1,2),故答案为:(0,2),(1,0),(m +1,2); 【小问2详解】∵点A 和点C 在反比例函数的图象上, ∴k =4m =2(m +1), ∴m =1,∴A (1,4),C (2,2), ∴k =1×4=4,设直线AC 的表达式为:,∴ 解得,∴直线AC 的表达式为:y =-2x +6.【点睛】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB 和OD 的长得出平移的规律是解题关键.19. (1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明; (2)知识应用:如图4,若的半径为2,分别与相切于点A ,B ,,求的长. 2OB =1OD =(0)ky x x=>y sx t =+422s t s t +=ìí+=î26s t =-ìí=îO !AOB ÐAB C ÐAB C Ð12Ð=ÐC AOB O !,PA PB O !60C Ð=°PAz【答案】(1)见解析;(2)【解析】【分析】(1)①如图2,当点O 在∠ACB 的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;②如图3,当O 在∠ACB 的外部时,作直径CD ,同理可理结论;(2)如图4,先根据(1)中的结论可得∠AOB =120°,由切线的性质可得∠OAP =∠OBP =90°,可得∠OP A =30°,从而得P A 的长.【详解】解:(1)①如图2,连接CO ,并延长CO 交⊙O 于点D ,∵OA =OC =OB ,∴∠A =∠ACO ,∠B =∠BCO ,∵∠AOD =∠A +∠ACO =2∠ACO ,∠BOD =∠B +∠BCO =2∠BCO , ∴∠AOB =∠AOD +∠BOD =2∠ACO +2∠BCO =2∠ACB , ∴∠ACB =∠AOB ;如图3,连接CO ,并延长CO 交⊙O 于点D ,12z∵OA =OC =OB ,∴∠A =∠ACO ,∠B =∠BCO ,∵∠AOD =∠A +∠ACO =2∠ACO ,∠BOD =∠B +∠BCO =2∠BCO , ∴∠AOB =∠AOD -∠BOD =2∠ACO -2∠BCO =2∠ACB , ∴∠ACB=∠AOB ;(2)如图4,连接OA ,OB,OP ,∵∠C =60°,∴∠AOB =2∠C =120°,∵P A ,PB 分别与⊙O 相切于点A ,B ,∴∠OAP =∠OBP =90°,∠APO =∠BPO =∠APB =(180°-120°)=30°, ∵OA =2, ∴OP =2OA =4, ∴P A =【点睛】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键.20. 图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A ,D ,H ,G 四点在同一直线上,测得121212=AB CD FG ∥∥z.(结果保留小数点后一位)(1)求证:四边形为平行四边形; (2)求雕塑的高(即点G 到的距离).(参考数据:) 【答案】(1)见解析 (2)雕塑的高为7.5m ,详见解析 【解析】【分析】(1)根据平行四边形的定义可得结论;(2)过点G 作GP ⊥AB 于P ,计算AG 的长,利用 ∠A 的正弦可得结论. 【小问1详解】证明:∵, ∴∠CDG =∠A , ∵∠FEC =∠A , ∴ ∠FEC =∠CDG , ∴EF ∥DG , ∵FG ∥CD ,∴四边形DEFG 为平行四边形; 【小问2详解】如图,过点G 作GP ⊥AB 于P , ∵四边形DEFG 为平行四边形, ∴DG =EF =6.2, ∵AD =1.6,∴AG =DG +AD =6.2+1.6=7.8, 在Rt △APG 中,sin A =, ∴=0.96, ∴PG =7.8×0.96=7.488≈7.5.72.9, 1.6m, 6.2m FEC A AD EF Ð=Ð=°==DEFG AB sin72.90.96,cos72.90.29,tan72.9 3.25°»°»°»AB CD FG ∥∥PGAG7.8PG答:雕塑的高为7.5m.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.五、解答题(本大题共2小题,每小题9分,共18分)21. 在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)(1)根据表1,m 的值为__________,的值为__________; (2)分析处理:请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括). 【答案】(1)300;(2)见解析; (3)①1;0;②见解析 【解析】【分析】(1)将表1中“双减前”各个数据求和确定m 的值,然后再计算求得n 值,从而求解;(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比; (3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明. 【小问1详解】解:由题意得,,解得,∴, 故答案为:300; 【小问2详解】汇总表1和图1可得:0 1 2 3 4及以上 总数 “双减”前 172 82 118 82 46 500 “双减”后4232440121500∴“双减”后报班数为3的学生人数所占的百分比为; nm1502.4%1024875512425515240m n m =++++ìí++++=î3006m n =ìí=î6130050n m ==15012100% 2.4%500´=z【小问3详解】“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1, ∴“双减”前学生报班个数的中位数为1, “双减”后学生报班个数出现次数最多的是0, ∴“双减”后学生报班个数的众数为0, 故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【点睛】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.22. 跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K 到起跳台的水平距离为,高度为(h 为定值).设运动员从起跳点A 起跳后的高度与水平距离之间的函数关系为.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时,求基准点K 的高度h ; ②若时,运动员落地点要超过K 点,则b 的取值范围为__________; (3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K 点,并说明理由.【答案】(1)66 (2)①基准点K 的高度h 为21m ;②b >; (3)他的落地点能超过K 点,理由见解析.OA 66m 75m m h (m)y (m)x 2(0)y ax bx c a =++¹19,5010a b =-=150a =-25m 76m 910【解析】【分析】(1)根据起跳台的高度OA 为66m ,即可得c =66; (2)①由a =﹣,b =,知y =﹣x 2+x +66,根据基准点K 到起跳台的水平距离为75m ,即得基准点K 的高度h 为21m ;②运动员落地点要超过K 点,即是x =75时,y >21,故﹣×752+75b +66>21,即可解得答案;(3)运动员飞行水平距离为25m 时,恰好达到最大高度76m ,即是抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,可得抛物线解析式为y =﹣(x ﹣25)2+76,当x =75时,y =36,从而可知他的落地点能超过K 点. 【小问1详解】解:∵起跳台的高度OA 为66m , ∴A (0,66),把A (0,66)代入y =ax 2+bx +c 得: c =66, 故答案为:66; 【小问2详解】 解:①∵a =﹣,b =, ∴y =﹣x 2+x +66, ∵基准点K 到起跳台的水平距离为75m , ∴y =﹣×752+×75+66=21, ∴基准点K 的高度h 为21m ; ②∵a =﹣, ∴y =﹣x 2+bx +66, ∵运动员落地点要超过K 点, ∴当x =75时,y >21, 即﹣×752+75b +66>21, 150910150910150的2125150910150910150910150150150解得b >, 故答案为:b >; 【小问3详解】解:他的落地点能超过K 点,理由如下:∵运动员飞行的水平距离为25m 时,恰好达到最大高度76m , ∴抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76, 把(0,66)代入得: 66=a (0﹣25)2+76, 解得a =﹣, ∴抛物线解析式为y =﹣(x ﹣25)2+76, 当x =75时,y =﹣×(75﹣25)2+76=36, ∵36>21,∴他的落地点能超过K 点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.六、解答题(本大题共12分)23. 问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).910910212521252125()90,60PEF P F Ð=°Ð=°PEF ABCD。
2023年江西省中考数学试卷及答案解析
2023年江西省中考数学试卷及答案解析一、选择题1. 小华骑自行车从家到学校需要20分钟,而他骑电动车只需要10分钟。
假设他骑电动车的速度是自行车的3倍,那么从家到学校的距离是多少?A) 2公里B) 3公里C) 4公里D) 5公里答案:A) 2公里解析:设自行车的速度为v,从题意可知用自行车骑到学校需要20分钟,即距离为20v。
而用电动车骑到学校只需要10分钟,即距离为10(3v)。
根据题意可得20v = 10(3v),解得v = 2。
因此,从家到学校的距离为20v = 20 × 2 = 40分钟。
2. 下列哪个数是3的倍数?A) 186B) 245C) 312D) 419解析:判断一个数是否是3的倍数有一个小技巧,即将该数的各个位数相加,如果和能被3整除,那么该数也能被3整除。
例如,312的个位数、十位数和百位数之和为3+1+2=6,6能被3整除,故312也能被3整除。
3. 若一辆汽车以每小时60公里的速度行驶,行驶8小时后所走的距离是多少?A) 400公里B) 480公里C) 520公里D) 560公里答案:D) 560公里解析:题目已给出汽车的速度是每小时60公里,而行驶的时间是8小时,因此,所走的距离为60 × 8 = 480公里。
4. 某数的2倍减去5等于8,那么这个数是多少?A) 6B) 7C) 8D) 9解析:设这个数为x,根据题意可以得到2x - 5 = 8,解得2x = 13,x = 6。
5. 某数的5倍减去32等于38,那么这个数是多少?A) 4B) 5C) 6D) 7答案:D) 7解析:设这个数为x,根据题意可以得到5x - 32 = 38,解得5x = 70,x = 7。
二、填空题6. 已知两个数相加是48,其中一个数是3/4,求另一个数。
答案:16解析:设另一个数为x,由题意可得 x + 3/4x = 48,解得 x = 16。
7. 若3/4 ÷ x = 12,则x的值为多少?答案:1/48解析:根据题意可得 3/4 ÷ x = 12,解得 x = 1/48。
2022年江西省中考数学真题(解析版)
【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
16.如图是 的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).
【答案】
【解析】
【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.
【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得
.
故答案为: .
【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.
11.沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.
(2)根据点C和D的坐标列方程可得m的值,从而得k的值,再利用待定系数法可得直线AC的解析式.
【小问1详解】
∵点B在y轴上, ,
∴B(0,2),
∵点D落在x轴正半轴上,且
∴D(1,0),
∴线段AB向下平移2个单位,再向右平移1个单位,得到线段CD,
∵点A(m,4),
∴C(m+1,2),
故答案为:(0,2),(1,0),(m+1,2);
6.甲、乙两种物质的溶解度 与温度 之间的对应关系如图所示,则下列说法中,错误的是( )
A. 甲、乙两种物质的溶解度均随着温度的升高而增大
B. 当温度升高至 时,甲的溶解度比乙的溶解度大
C. 当温度为 时,甲、乙的溶解度都小于
D. 当温度为 时,甲、乙 溶解度相等
【答案】D
【解析】
2022年江西省中考数学真题(解析版)
160 140
故答案为: x
x
.
10
【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.
11. 沐沐用七巧板拼了一个对角线长为 2 的正方形,再用这副七巧板拼成一个长方形(如图
所示),则长方形的对角线长为__________.
【答案】 5
【解析】 【分析】根据图形可得长方形的长是正方形的对角线为 2,长方形的宽是正方形对角线的一 半为 1,然后利用勾股定理即可解决问题. 【详解】解:根据图形可知:长方形的长是正方形的对角线为 2,长方形的宽是正方形对角 线的一半为 1,
它们出现的可能性相同,所有的结果中,被抽到的 两名护士都是共产党员的(记为事件 A)
的结果有 6 种,则 P A 6 1 ,
12 2
则被抽到的两名护士都是共产党员的概率为 1 .
2
【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列 表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到 的知识点为:概率所求情况数与总情况数之比.
∵OA=5,
∴
a2
12 a
2
5,
解得: a1 3, a2 4 ,
∴A(3,4)或(4,3),
∴AB= 3 52 42 2 5 或 AB= 4 52 32 10 ;
综上所述,AB 的长为 5 或 2 5 或 10 . 故答案为:5 或 2 5 或 10 .
【点睛】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的 思想,当时,求出点的坐标是解题的关键.
三、解答题(本大题共 5 小题,每小题 6 分,共 30 分) 13. (1)计算: | 2 | 4 20 ;
2024年江西省中考数学试卷(附答案解析)
2024年江西省中考数学试卷(附答案解析)一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.(3分)﹣5的相反数是()A.﹣5B.5C.D.﹣【解答】解:﹣5的相反数是5.故选:B.2.(3分)“长征是宣言书,长征是宣传队,长征是播种机”.二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹.将25000用科学记数法可表示为()A.0.25×106B.2.5×105C.2.5×104D.25×103【答案】C.3.(3分)如图所示的几何体,其主视图为()A.B.C.D.【分析】结合图形,根据主视图的定义即可求得答案.【解答】解:由题干中的几何体可得其主视图为,故选:B.【点评】本题考查简单组合体的三视图,此为基础且重要知识点,必须熟练掌握.4.(3分)将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数y(℃)与时间x(min)的关系用图象可近似表示为()A.B.C.D.【解答】C.5.(3分)如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是()A.五月份空气质量为优的天数是16天B.这组数据的众数是15天C.这组数据的中位数是15天D.这组数据的平均数是15天【答案】D.6.(3分)如图是4×3的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【分析】依据正方体的展开图的结构特征进行判断,即可得出结论.【解答】解:如图所示:选择标有1或2的位置的空白小正方形,能与阴影部分组成正方体展开图,所以能与阴影部分组成正方体展开图的方法有2种.故选:B.【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(﹣1)2=.【分析】利用有理数的乘方法则计算即可.【解答】解:(﹣1)2=(﹣1)×(﹣1)=1,故答案为:1.【点评】本题考查有理数的乘方,熟练掌握其运算法则是解题的关键.8.(3分)因式分解:a2+2a=.【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故答案为:a(a+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.(3分)在平面直角坐标系中,将点A(1,1)向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为.【分析】根据向右平移横坐标加,向上平移纵坐标加计算即可.【解答】解:将点A(1,1)向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为(1+2,1+3),即(3,4).故答案为:(3,4).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(3分)观察a,a2,a3,a4,…,根据这些式子的变化规律,可得第100个式子为.【解答】解:根据题意可知,有一列按照一定规律排列的单项式:a,a2,a3,a4,…,∴第100个式子为:a100,故答案为:a100.11.(3分)将图1所示的七巧板,拼成图2所示的四边形ABCD,连接AC,则tan∠CAB=.【解答】解:令AC与BD的交点为O,∵∠ABD=∠CDB=90°,∴CD∥AB,又∵AB=CD,∴四边形ABCD是平行四边形,∴AC与BD互相平分,∴OB=.∵AB=BD,∴OB=.在Rt△AOB中,tan∠CAB=.故答案为:.12.(3分)如图,AB是⊙O的直径,AB=2,点C在线段AB上运动,过点C的弦DE⊥AB,将沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为.【分析】根据DE≤AB,可得DE=1或2,利用勾股定理进行解答即可.【解答】解:∵AB为直径,DE为弦,∴DE≤AB,∴当DE的长为正整数时,DE=1或2,当DE=2时,即DE为直径,∴DE⊥AB,∴将DBE沿DE翻折交直线AB于点F,此时F与点A重合,故FB=2;当DE=1时,且在点C在线段OB之间,如图,连接OD,此时,∵DE⊥AB,∴,∴,∴,∴;当DE=1时,且点C在线段OA之间,连接OD,同理可得,∴;综上,可得线段FB的长为或或2,故答案为:或或2.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:π0+|﹣5|;(2)化简:.【分析】(1)利用零指数幂及绝对值的性质计算即可;(2)利用分式的加减法则计算即可.【解答】解:(1)原式=1+5=6;(2)原式==1.【点评】本题考查零指数幂,绝对值,分式的加减,熟练掌握相关运算法则是解题的关键.14.(6分)如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)如图1,过点B作AC的垂线;(2)如图2,点E为线段AB的中点,过点B作AC的平行线.【分析】(1)连接BD,根据菱形的性质可知,直线BD即为所求.(2)结合菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,连接CE并延长,交DA 的延长线于点F,作直线BF,则直线BF即为所求.【解答】解:(1)如图1,连接BD,∵四边形ABCD为菱形,∴BD⊥AC,则直线BD即为所求.(2)如图2,连接CE并延长,交DA的延长线于点F,作直线BF,∵四边形ABCD为菱形,∴DF∥BC,∴∠AFE=∠BCE,∠FAE=∠CBE,∵点E为线段AB的中点,∴AE=BE,∴△AEF≌△BEC(AAS),∴AF=BC,∴四边形ACBF为平行四边形,∴BF∥AC,则直线BF即为所求.【点评】本题考查作图—复杂作图、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题.15.(6分)某校一年级开设人数相同的A,B,C三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A班”的概率是;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.【分析】(1)由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及甲、乙两位新生分到同一个班的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,∴“学生甲分到A班”的概率是.故答案为:.(2)列表如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)共有9种等可能的结果,其中甲、乙两位新生分到同一个班的结果有3种,∴甲、乙两位新生分到同一个班的概率为=.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.(6分)如图,△AOB是等腰直角三角形,∠ABO=90°,双曲线经过点B,过点A(4,0)作x轴的垂线交双曲线于点C,连接BC.(1)点B的坐标为;(2)求BC所在直线的解析式.【分析】(1)过点B作x轴的垂线,根据等腰直角三角形的性质即可解决问题.(2)求出点C的坐标,再利用待定系数法即可解决问题.【解答】解:(1)过点B作x轴的垂线,垂足为M,∵点A坐标为(4,0),∴OA=4.又∵△OAB是等腰直角三角形,∴BM=OM=AM=,∴点B的坐标为(2,2).故答案为:(2,2).(2)将点B坐标代入反比例函数解析式得,k=2×2=4,∴反比例函数解析式为y=.∵AC⊥x轴,∴x C=x A=4.将x=4代入反比例函数解析式得,y=1,∴点C的坐标为(4,1).令直线BC的函数解析式为y=mx+n,将点B和点C的坐标代入函数解析式得,,解得,所以直线BC的函数解析式为y=.17.(6分)如图,AB是半圆O的直径,点D是弦AC延长线上一点,连接BD,BC,∠D=∠ABC=60°.(1)求证:BD是半圆O的切线;(2)当BC=3时,求的长.【分析】(1)根据圆周角定理得到∠ACB=90°,得到∠D+∠A=90°,求得∠ABD=90°,根据切线的判定定理即可得到结论;(2)连接OC,根据圆周角定理得到∠AOC=2∠ABC=120°,根据等边三角形的性质得到OC=BC =3,根据弧长公式即可得到的长==2π.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠D=∠ABC,∴∠D+∠A=90°,∴∠ABD=90°,∵AB是半圆O的直径,∴BD是半圆O的切线;(2)解:连接OC,∵∠ABC=60°,∴∠AOC=2∠ABC=120°,∵OC=OB,∴△BOC是等边三角形,∴OC=BC=3,∴的长==2π.【点评】本题考查了切线的判定和性质,弧长的计算,圆周角定理,正确地作出辅助线是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)如图,书架宽84cm,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm,每本语文书厚1.2cm.(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【分析】(1)根据数学本和语文本的厚度,结合数学书和语文书的本书即可解决问题.(2)用书架宽减去10本语文书的厚度,再利用数学书的本书即可解决问题.【解答】解:(1)设书架上数学书x本,则语文书(90﹣x)本,根据题意得,0.8x+1.2(90﹣x)=84,解得x=60,所以90﹣x=30,答:书架上数学书60本,语文书30本.(2)设数学书还可以摆m本,则10×1.2+0.8m≤84,解得m≤90,所以数学书最多还可以摆90本.【点评】本题考查二元一次方程组的应用及一元一次不等式的应用,能根据题意找出题中的等量关系并建立方程及不等式是解题的关键.19.(8分)图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”.如图2,“大碗”的主视图由“大碗”主体ABCD和矩形碗底BEFC 组成,已知AD∥EF,AM,DN是太阳光线,AM⊥MN,DN⊥MN,点M,E,F,N在同一条直线上.经测量ME=FN=20.0m,EF=40.0m,BE=2.4m,∠ABE=152°.(结果精确到0.1m)(1)求“大碗”的口径AD的长;(2)求“大碗”的高度AM的长.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)【分析】(1)根据垂直定义可得∠AMN=∠DNM=90°,再利用平行线的性质可得∠DAM=90°,从而可得四边形AMND是矩形,然后利用矩形的性质可得AD=MN,从而利用线段的和差关系进行计算即可解答;(2)延长CB交AM于点G,根据题意可得:BE=GM=2.4m,BG=ME=20.0m,BG⊥AM,∠EBG=90°,从而可得∠ABG=62°,然后在Rt△ABG中,利用锐角三角函数的定义求出AG的长,从而利用线段的和差关系进行计算,即可解答.【解答】解:(1)∵AM⊥MN,DN⊥MN,∴∠AMN=∠DNM=90°,∵AD∥MN,∴∠DAM=180°﹣∠AMN=90°,∴四边形AMND是矩形,∴AD=MN=ME+EF+FN=20.0+40.0+20.0=80.0(m),∴“大碗”的口径AD的长为80.0m;(2)延长CB交AM于点G,由题意得:BE=GM=2.4m,BG=ME=20.0m,BG⊥AM,∠EBG=90°,∵∠ABE=152°,∴∠ABG=∠ABE﹣∠EBG=62°,在Rt△ABG中,AG=BG•tan62°≈20.0×1.88=37.6(m),∴AM=AG+MG=37.6+2.4=40.0(m),∴“大碗”的高度AM的长约为40.0m.【点评】本题考查了解直角三角形的应用,矩形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(8分)追本溯源题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在△ABC中,BD平分∠ABC,交AC于点D,过点D作BC的平行线,交AB于点E,请判断△BDE的形状,并说明理由.方法应用(2)如图2,在▱ABCD中,BE平分∠ABC,交边AD于点E,过点A作AF⊥BE交DC的延长线于点F,交BC于点G.①图中一定是等腰三角形的有.A.3个B.4个C.5个D.6个②已知AB=3,BC=5,求CF的长.【分析】(1)由角平分线的定义得出∠ABD=∠CBD.由平行线的性质得出∠EDB=∠CBD,证出∠EDB =∠ABD,则可得出结论;(2)①由等腰三角形的判定可得出结论;②由(1)可知,∠ABE=∠EBG=∠AEB.AB=AE=3,证出CG=CF,则可得出答案.【解答】解:(1)△BDE的形状是等腰三角形,理由如下:∵BD平分∠ABC,∴∠ABD=∠CBD.∵BC∥ED,∴∠EDB=∠CBD,∴∠EDB=∠ABD,∴EB=ED,∴△BDE是等腰三角形.(2)①共有四个等腰三角形.分别是:△ABE,△ABG,△AFD,△CGF,故答案为:B;②由(1)可知,∠ABE=∠EBG=∠AEB.AB=AE=3,∵AF⊥BE,∴∠BAF=∠EAF.∵BC∥AD,∴∠EAG=∠AGB,∴∠BAF=∠AGB,∴AB=AG=3,∵AB∥FD,∴∠BAF=∠CFG,∵∠AGB=∠CGF,∴∠CGF=∠CFG,∴CG=CF,∵CG=BC﹣BG=5﹣3=2,∴CF=2.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)近年来,我国肥胖人群的规模快速增长.目前,国际上常用身体质量指数(Body Mass Index,缩写BMI)来衡量人体胖瘦程度,其计算公式是.中国人的BMI数值标准为:BMl<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI数值,再参照BMI数值标准分成四组:A.16≤BMI<20;B.20≤BMI<24;C.24≤BMI<28;D.28≤BMI<32.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m) 1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg)52.549.545.640.355.256.148.542.867.290.5 BMI21.6s16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m) 1.46 1.62 1.55 1.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg)46.449.061.556.552.975.550.347.652.446.8 BMI21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI频数分布表组别BMI男生频数女生频数A16≤BMI<2032B20≤BMI<2446C24≤BMI<28t2D28≤BMI<3210应用数据(1)s=,t=,α=;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生BMI≥24的人数.(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.【分析】(1)根据公式计算可得s;用10分别减去其它组男生的频数可得t的值;用360°乘C组人数所占比例可得α的值;(2)利用样本估计总体即可;(3)根据七年级20名学生BMI频数分布表数据解答即可(答案不唯一).【解答】解:(1)由题意得,s==22,t=10﹣3﹣4﹣1=2,α=360°×=72°,故答案为:22,2,72°;(2)①估计该校七年级男生偏胖的人数有:260×=52(人);②估计该校七年级学生BMI≥24的人数有:260×+240×=126(人);(3)由统计表可知,该校七年级学生的偏瘦、偏胖或肥胖的人数约半数,建议该校加强学生的体育锻炼,加强科学饮食习惯的宣传.(答案不唯一).【点评】本题考查了频数分布表和用样本估计总体,熟练掌握用样本估计总体的方法是解题的关键.22.(9分)如图,一小球从斜坡O点以一定的方向弹出,球的飞行路线可以用二次函数y=ax2+bx(a<0)刻画,斜坡可以用一次函数刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如表:x012m4567…y068n…(1)①m=,n=;②小球的落点是A,求点A的坐标.(2)小球飞行高度y(米)与飞行时间t(秒)满足关系:y=﹣5t2+vt.①小球飞行的最大高度为米;②求v的值.【分析】(1)①由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;②联立两函数解析式求解,可求出交点A的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v值.【解答】解:(1)①根据小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律表可知,抛物线顶点坐标为(4,8),,解得:,∴二次函数解析式为y=x2+4x,当y=时,﹣x2+4x=,解得:x=3或x=5(舍去),∴m=3,当x=6时,n=y=﹣62+4×6=6,故答案为:3,6.②联立得:,解得:或,∴点A的坐标是(,).(2)①由题干可知小球飞行最大高度为8米,故答案为:8.②y=﹣5t2+vt=﹣5(t﹣)2+,则=8,解得v=4(负值舍去).【点评】本题主要考查二次函数的应用,从图象和表格中获取数据是解题的关键.六、解答题(本大题共12分)23.(12分)综合与实践如图,在Rt△ABC中,点D是斜边AB上的动点(点D与点A不重合),连接CD,以CD为直角边在CD的右侧构造Rt△CDE,∠DCE=90°,连接BE,=m.特例感知(1)如图1,当m=1时,BE与AD之间的位置关系是,数量关系是.类比迁移(2)如图2,当m≠1时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知AC=6,设AD =x,四边形CDFE的面积为y.①求y与x的函数表达式,并求出y的最小值;②当BF=2时,请直接写出AD的长度.【分析】(1)由=1,得到CE=CD,CB=CA,根据等腰直角三角形的性质得到∠A=∠ABC =45°,∠ACD=∠BAE,根据全等三角形的性质得到AD=BE,∠A=∠CBE=45°,根据垂直的定义得到AD⊥BE;(2)根据相似三角形的判定定理得到△ADC∽△BEC,求得=m,∠CBE=∠A,得到BE=mAD,根据垂直的定义得到AD⊥BE;﹣x,根据勾股定理得到DE2=BD2+BE2=(6﹣x)2+x2,根据线段垂直平分线的性质得到CE=EF,CD=DF,推出四边形CDFE是正方形,根据正方形的面积公式即可得到y=DE2=[(6﹣x)2+x2],根据二次函数的性质即可得到结论;②过D作DH⊥AC于H,根据等腰直角三角形到现在得到AH=DH=AD=x,求得CH=6﹣x,连接OB,推出OB=,得到∠CBF=90°,根据勾股定理得到结论.【解答】解:(1)AD⊥BE,AD=BE,理由:∵=1,∴CE=CD,CB=CA,∵∠ACB=∠DCE=90°,∴∠A=∠ABC=45°,∠ACD=∠BAE,∴△ACD≌△BCE(SAS),∴AD=BE,∠A=∠CBE=45°,∴∠ABE=90°,∴AD⊥BE;故答案为:AD⊥BE,AD=BE;(2)BE=mAD,AD⊥BE,证明:∵∠ACB=∠DCE=90°,∴∠ACD=∠BAE,∵=m,∴△ADC∽△BEC,∴=m,∠CBE=∠A,∴BE=mAD,∵∠A+∠ABC=90°,∴∠CBE+∠ABC=90°,∴∠ABE=90°,∴AD⊥BE;(3)①连接CF交DE于O,由(1)知,AC=BC=6,∠ACB=90°,∴AB=6,∴BD=6﹣x,∵AD=BE=x,∠DBE=90°,∴DE2=BD2+BE2=(6﹣x)2+x2,∵点F与点C关于DE对称,∴DE垂直平分CF,∴CE=EF,CD=DF,∵CD=CE,∴CD=DF=EF=CE,∵∠DCE=90°,∴四边形CDFE是正方形,∴y=DE2=[(6﹣x)2+x2],∴y与x的函数表达式为y=x2﹣6+36(0<x≤6),∵y=x2﹣6+36=(x﹣3)2+18,∴y的最小值为18;②过D作DH⊥AC于H,则△ADH是等腰直角三角形,∴AH=DH=AD=x,∴CH=6﹣x,连接OB,∴OB=OE=OD=OC=OF,∴OB=,∴∠CBF=90°,∵BC=6,BF=2,∴CF==2∴CD=CF=2,∵CH2+DH2=CD2,∴(6﹣x)2+(x)2=(2)2,解得x=4或x=2,∴AD=4或2.。
江西省中考数学真题(解析版)
江西省中考数学真题(解析版)江西省中考数学真题(解析版)一、选择题1. 下列四个数中,哪一个是质数?A) 18 B) 19 C) 20 D) 21解析:质数指除了1和本身外没有其他因数的数,所以选项B) 19是质数。
2. 30%用分数表示是?A) 1/3 B) 3/10 C) 1/10 D) 10/3解析:30%即30/100,可以约分为3/10,所以选项B) 3/10是正确答案。
3. 若a:b=3:4,b:c=5:2,求a:c的值。
A) 15:8 B) 3:10 C) 8:15 D) 10:3解析:根据题意,我们可以得到a:b:c=3:4:2,将比例中的a:b:c代入a:c,得到3:2,因此a:c的值是15:8,选项A) 15:8。
二、解答题1. 计算下列等式的值:7×8÷4-3+5×2÷5解析:7×8÷4-3+5×2÷5 = 56÷4-3+10÷5= 14-3+2= 16所以该等式的值是16。
2. 已知△ABC中,∠ABC=90°,BC=6cm,AC=8cm,求△ABC的面积。
解析:由勾股定理得AB的长度为√(BC^2 + AC^2) = √(6^2 + 8^2) = √100 = 10所以△ABC的面积为(1/2) × BC × AC = (1/2) × 6 × 8 = 24平方厘米。
三、应用题某商店原价出售一种电器每台800元,若打7折,则一台电器的售价是多少?解析:打7折即原价的70%,所以一台电器的售价为800元 × 70% = 560元。
四、综合题一桶装满的水果干重6kg,若每天吃掉这桶水果干的2/3,3天后还剩下多少千克?解析:每天吃掉的水果干重量为(2/3) × 6kg = 4kg,3天后吃掉的总重量为3 × 4kg = 12kg。
2023年江西省中考数学试卷含答案解析
绝密★启用前2023年江西省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共6小题,共18.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. −22. 下列图形中,是中心对称图形的是( )A. B. C. D.3. 若√ a−4有意义,则a的值可以是( )A. −1B. 0C. 2D. 64. 计算(2m2)3的结果为( )A. 8m6B. 6m6C. 2m6D. 2m55.如图,平面镜MN放置在水平地面CD上,墙面PD⊥CD于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上,若∠AOC=35°,则∠OBD的度数为( )A. 35°B. 45°C. 55°D. 65°6. 如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共6小题,共18.0分)7. 单顶式−5ab的系数为______ .8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为______ .9. 化简:(a+1)2−a2=______ .10. 将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B,C表示的刻度分别为1cm,3cm,则线段AB的长为______ cm.11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=______ m.12.如图,在▱ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______ .三、解答题(本大题共11小题,共84.0分。
江西省2022年中考数学真题(附解析)
2
(5,0),设 A(a,12),根据 OA=5,可得 2 + ( 12 ) = 5,求出 a 的值,再利用两点之间的距离公式可得
AB 的长,从而得解。
三、解答题
+ 1− + 2 −2
( + 2)(−2) × 3
3
−2
×
( + 2)(−2) 3
1
=
+2
【知识点】分式的混合运算
②当 AB=BO 时,AB=5;
故答案为:1
③当 OA=OB 时,则 OB=5,B(5,0),
【分析】由一元二次方程根的判别式列方程可得答案.
设 A(a,12)(a>0),
9.已知关于 的方程 2 +2 + = 0 有两个相等的实数根,则 k 的值是
.
10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样 10 人,甲采样 160 人所用时间与乙采样
6.甲、乙两种物质的溶解度()与温度(℃)之间的对应关系如图所示,则下列说法中,错误的是(
D、( + )2 = 2 +2 + 2 ≠ 2 + 2,故此选项不符合题意.
A.甲、乙两种物质的溶解度均随着温度的升高而增大
故答案为:B.
B.当温度升高至2℃时,甲的溶解度比乙的溶解度大
A.不可能
【知识点】实数的运算;解一元一次不等式组
(2)若需从这 4 名护士中随机抽取 2 人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的
【解析】
【分析】
(1)先化简,再计算即可;
概率.
(2)利用不等式的性质及不等式组的解法求解即可。
2023年江西省中考数学试卷(含答案)
机密★启用前江西省2023年初中学业水平考试数学试题卷准考证号____________________姓名____________说明:1.本试题卷满分120分,考试时间为120分钟。
2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。
一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.下列各数中,正整数···是A.3B.2.1C.0D.-22.下列图形中,是中心对称图形的是A B C D3.若a-4有意义,则a的值可以是A.-1B.0C.2D.64.计算(2m2)3的结果为A.8m6B.6m6C.2m6D.2m55.如图,平面镜MN放置在水平地面CD上,墙面PD⊥CD于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上,若∠AOC=35°,则∠OBD的度数为A.35°B.45°C.55°D.65°(第5题)(第6题)6.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为A.3个B.4个C.5个D.6个B C DPl二、填空题(本大题共6小题,每小题3分,共18分)7.单项式-5ab 的系数为______.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为______.9.化简:(a +1)2-a 2=______.10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B ,C 表示的刻度分别为1cm ,3cm ,则线段AB 的长为______cm .(第11题)B QCD PAC B P AD (第12题)B Cα(第10题)A023451cm 11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =______m.12.如图,在□ABCD 中,∠B =60°,BC =2AB ,将AB 绕点A 逆时针旋转角α(0°<α<360°)得到AP ,连接PC ,PD .当△PCD 为直角三角形时,旋转角α的度数为______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:83+tan45°-30;(2)如图,AB =AD ,AC 平分∠BAD .求证:△ABC△ADC .14.如图是4×4的正方形网格,请仅用无刻度的直尺······按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角△ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.图1图2ABC DA B15.化简(x x +1+x x -1)·x 2-1x .下面是甲、乙两同学的部分运算过程:甲同学乙同学(1)甲同学解法的依据是______,乙同学解法的依据是______;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是______事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线y =x +b 与反比例函数y =k x (x >0)的图象交于点A (2,3),与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数y =kx(x >0)的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求△ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB =AC =AD ,测得∠B =55°,BC =1.8m ,DE =2m.(结果保留小数点后一位)(1)连接CD ,求证:DC ⊥BC ;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)图2ED ABC图120.如图,在△ABC 中,AB =4,∠C =64°,以AB 为直径的⊙O 与AC 相交于点D ,E 为ABD 上一点,且∠ADE =40°.(1)求 BE 的长;(2)若∠EAD =76°,求证:CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述高中学生视力情况统计图以下以上初中学生视力情况统计表视力0.6及以下0.70.80.91.01.1及以上合计人数8162834m 46200百分比4%8%14%17%34%n 100%(1)m =______,n =______;(2)被调查的高中学生视力情况的样本容量为______;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量···说明理由;②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.课本再现定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在□ABCD 中,对角线BD ⊥AC ,垂足为O .求证:□ABCD 是菱形.图1图2知识应用(2)如图2,在□ABCD 中,对角线AC 和BD 相交于点O ,AD =5,AC =8,BD =6.①求证:□ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若∠E =12∠ACD ,求OF EF 的值.思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理:对角线互相垂直的平行四边形是菱形.AC BDOAC BDOF E六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,D 为AC 上一点,CD =2.动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C →B →A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为t s ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当t =1时,S =______;②S 关于t 的函数解析式为______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等.①t 1+t 2=______;②当t 3=4t 1时,求正方形DPEF 的面积.图2图1AF EBP CD一、单项选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.A2.B3.D4.A5.C6.D 二、填空题(本大题共6小题,每小题3分,共18分)7.-58.1.8×1079.2a +110.211.612.90°或180°或270°三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式=2+1-1=2.(2)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC .在△ABC 和△ADC 中,∴△ABC △ADC (SAS ).14.解:(1)如下左图(右图中的C 1~C 5亦可):ABC12C C 答:△ABC 即为所求.(2)如下图:(方法一)(方法二)(方法三)答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式=éëêùûúx (x -1)(x +1)(x -1)+x (x +1)(x -1)(x +1)·x 2-1xA B CDìíîïïAB =AD ,∠BAC =∠DAC ,AC =AC ,江西省2023年初中学业水平考试数学试题参考答案=x (x -1)+x (x +1)(x +1)(x -1)·(x +1)(x -1)x =2x 2(x +1)(x -1)·(x +1)(x -1)x =2x .按乙同学的解法化简:原式=x x +1·x 2-1x +x x -1·x 2-1x=x x +1·(x +1)(x -1)x +x x -1·(x +1)(x -1)x =x -1+x +1=2x .16.解:(1)随机.(2)解法一列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)同学1同学2由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.解法二画树状图如下:甲乙丙丁乙甲丙丁丙甲乙丁丁甲乙丙由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.17.解:(1)∵直线y =x +b 与反比例函数y =kx(x >0)的图象交于点A (2,3),∴2+b =3,3=k2.∴b =1,k =6.∴直线AB 的表达式为y =x +1,反比例函数图象的表达式为y =6x(x >0).(2)过点A作AD⊥BC,垂足为D.∵直线y=x+1与y轴交点B的坐标为(0,1),BC∥x轴,∴C点的纵坐标为1.∴6x=1,x=6,即BC=6.由BC∥x轴,得BC与x轴的距离为1.∴AD=2.∴S△ABC=12BC·AD=12×6×2=6.四、解答题(本大题共3小题,每小题8分,共24分)18.解:(1)设该班的学生人数为x人.依题意,得3x+20=4x-25.解得x=45.答:该班的学生人数为45人.(2)由(1)可知,树苗总数为3x+20=155.设购买甲种树苗y棵,则购买乙种树苗(155-y)棵.依题意,得30y+40(155-y)≤5400.解得y≥80.答:至少购买了甲种树苗80棵.19.(1)证法一证明:∵AB=AC,∴∠B=∠ACB.∵AC=AD,∴∠ADC=∠ACD.∴∠BCD=∠ACB+∠ACD=12(∠ACB+∠B+∠ACD+∠ADC)=12×180°=90°.∴DC⊥BC.证法二证明:∵AB=AC=AD,∴点B,C,D在以点A为圆心,BD为直径的圆上.∴∠BCD=90°,即DC⊥BC.(2)解:过点E作EF⊥BC,垂足为F.在Rt△BCD中,cos B=BCBD,BC=1.8,∴BD=BCcos B=1.8cos55°≈3.16.∴BE=BD+DE=3.16+2=5.16.在Rt△EBF中,sin B=EF BE,∴EF=BE·sin B=5.16×sin55°≈4.2.因此,雕塑的高约为4.2m.EDAB C F20.解:(1)连接OE .∵∠ADE =40°,∴∠AOE =2∠ADE =80°.∴∠BOE =180°-∠AOE =100°.∴ BE 的长l =100∙π∙2180=109π.(2)证明:∵OA =OE ,∠AOE =80°,∴∠OAE =180°-∠AOE2=50°.∵∠EAD =76°,∴∠BAC =∠EAD -∠OAE =26°.又∠C =64°,∴∠ABC =180°-∠BAC -∠C =90°.即AB ⊥BC .又OB 是⊙O 的半径,∴CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,所以初中生的视力水平好于高中生.理由二:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,所以初中生的视力水平好于高中生.②方法一:26000×8+16+28+34+14+44+60+82200+320=14300(名).方法二:26000×(1-68+46+65+55200+320)=14300(名).所以,估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证法一证明:∵四边形ABCD 是平行四边形,∴OA =OC .又BD ⊥AC ,∴BD 垂直平分AC .∴BA =BC .∴□ABCD 是菱形.证法二证明:∵四边形ABCD 是平行四边形,∴OA =OC .A BCD OE A CBD O图1∵BD⊥AC,∴∠AOB=∠COB.又OB=OB,∴△AOB△COB(SAS).∴BA=BC.∴□ABCD是菱形.(2)①证明:∵四边形ABCD为平行四边形,AC=8,BD=6,∴OA=12AC=4,OD=12BD=3.∴OA2+OD2=42+32=25.又AD2=52=25,∴OA2+OD2=AD2.∴∠AOD=90°.即BD⊥AC.∴□ABCD是菱形.②方法一解:如图2,取CD的中点G,连接OG.∵□ABCD是菱形,∴BC=AD=5,OB=OD,∠ACB=∠ACD.∵∠E=12∠ACD,∴∠E=12∠ACB.即∠ACB=2∠E.又∠ACB=∠E+∠COE,∴∠E=∠COE.∴CE=CO=4.∵OB=OD,GC=GD,∴OG为△DBC的中位线.∴OG//BC,且OG=12BC=52.∴OG//CE.∴△OGF△ECF.∴OFEF=OGCE=58.方法二解:如图3,延长FO交AB于点H.同方法一可得CE=CO=4.∵□ABCD是菱形,∴BH//CF.∴HFFE=BCCE=54,HOOF=BOOD=1.∴HF=2OF.∴OFFE=58.ACBDOFEG图2ACBDO FEH图3六、解答题(本大题共12分)23.解:(1)①3.②S=t2+2.(2)方法一由图象可知,当点P运动到点B时,S=6.将S=6代入S=t2+2,得6=t2+2,解得t=2或t=-2(舍去).当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.方法二由图象可知,当点P运动到点B时,S=6,即BD2=6.∴BD=6.在Rt△DBC中,由勾股定理,得BC=BD2-CD2=2.∴点P由C运动到B的时间为2÷1=2s.当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.(3)①4.由(1)(2)可得S={t2+2,0≤t<2,(t-4)2+2,2≤t≤8.在图2中补全0≤t<2内的图象.根据图象可知0≤t≤2内的图象与2≤t≤4内的图象关于直线x=2对称.因此t1+t2=4.②方法一函数S=t2+2的图象向右平移4个单位与函数S=(t-4)2+2的图象重合.∵当t=t1和t=t3时,S的值相等,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.图1AFEB P CD图2方法二根据二次函数的对称性,可知t2+t3=8.由①可知t1+t2=4,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.。
江西中考初三数学试题及答案
江西中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个多项式f(x) = 3x^2 - 2x + 1,它的顶点坐标是多少?A. (1, 0)B. (1, 1)C. (0, 1)D. (-1, 2)答案:A4. 圆的周长是C,圆的半径是r,下列哪个公式是正确的?A. C = 2πrB. C = πrC. C = 4πrD. C = π/2r答案:A5. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A6. 一个正数的倒数是1/5,这个数是多少?A. 5B. 1/5C. 1/3D. 3答案:A7. 一个等差数列的首项是3,公差是2,第10项是多少?A. 23B. 25C. 27D. 29答案:A8. 一个长方体的长、宽、高分别是3cm、4cm和5cm,它的体积是多少?A. 60cm³B. 48cm³C. 36cm³D. 24cm³答案:A9. 一个分数的分子是7,分母是8,它的最简形式是什么?A. 7/8B. 1/2C. 7/4D. 1/8答案:A10. 一个圆的直径是14cm,它的面积是多少?A. 153.94cm²B. 100cm²C. 78.5cm²D. 50cm²答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是3,这个数是______。
答案:2712. 如果一个数的绝对值是5,那么这个数可能是______或-5。
答案:513. 一个二次方程x² - 5x + 6 = 0的解是______。
答案:2和314. 一个直角三角形的两条直角边分别是6和8,它的面积是______。
2023年江西省中考数学真题试卷(解析版)
2023年江西省中考数学真题试卷及答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是()A. B. C. D.【答案】A【解析】根据有理数的分类即可求解.解:是正整数,是小数,不是整数,不是正数,不是正数,故选:A.【点拨】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是()A. B. C.D.【答案】B【解析】根据中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:选项A.C.D均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形;故选:B.【点拨】本题主要考查了中心对称图形,关键找出对称中心.3. 若有意义,则的值可以是( )A. B.C.D.【答案】D 【解析】根据二次根式有意义的条件即可求解.解:∵有意义,∴,解得:,则的值可以是故选:D .【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 4. 计算的结果为( )A. B.C.D.【答案】A 【解析】根据积的乘方计算法则求解即可.解:,故选A .【点拨】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜放置在水平地面上,墙面于点,一束光线照射到镜面上,反射光线为,点在上,若,则的度数为( )A. B. C. D.【答案】C 【解析】根据题意可得,进而根据直角三角形的两个锐角互余即可求解.解:依题意,,∴,∵,∴,故选:C.【点拨】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键.6. 如图,点,,,均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】根据不共线三点确定一个圆可得,直线上任意2个点加上点可以画出一个圆,据此列举所有可能即可求解.解:依题意,;;;;,加上点可以画出一个圆,∴共有6个,故选:D.【点拨】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式的系数为______.【答案】【解析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.解:单项式的系数是.故答案是:.【点拨】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】【解析】根据科学记数法的表示形式进行解答即可.解:,故答案为:.【点拨】本题考查科学记数法,熟练掌握科学记数法的表示形式为(,a为整数)的形式,n的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】原式利用完全平方公式展开,然后合并同类项即可得到结果.(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为2a+1.【点拨】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含角的直角三角板和直尺按如图所示的方式放置,已,点,表示的刻度分别为,则线段的长为_______cm.【答案】【解析】根据平行线的性质得出,进而可得是等边三角形,根据等边三角形的性质即可求解.解:∵直尺的两边平行,∴,又,∴是等边三角形,∵点,表示的刻度分别为,∴,∴∴线段的长为,故答案为:.【点拨】本题考查了平行线的性质,等边三角形的性质与判定,得出是解题的关键.11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点,,在同一水平线上,和均为直角,与相交于点.测得,则树高______m.【答案】【解析】根据题意可得,然后相似三角形的性质,即可求解.解:∵和均为直角∴,∴,∴∵,∴,故答案为:.【点拨】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______.【答案】或或【解析】连接,根据已知条件可得,进而分类讨论即可求解.解:连接,取的中点,连接,如图所示,∵在中,,∴,∴是等边三角形,∴,,∴∴,∴∴,如图所示,当点在上时,此时,则旋转角的度数为,当点在的延长线上时,如图所示,则当在的延长线上时,则旋转角的度数为,如图所示,∵,,∴四边形是平行四边形,∵∴四边形是矩形,∴即是直角三角形,综上所述,旋转角的度数为或或故答案为:或或.【点拨】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:(2)如图,,平分.求证:.【答案】(1)2;(2)证明见解析【解析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到,再利用证明即可.解:(1)原式;(2)∵平分,∴,在和中,,∴.【点拨】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角,使点C在格点上;(2)在图2中的线段上作点Q,使最短.【答案】(1)作图见解析(2)作图见解析【解析】(1)如图,取格点,使,在的左上方的格点满足条件,再画三角形即可;(2)利用小正方形的性质取格点,连接交于,从而可得答案.【小问1详解】解:如图,即为所求作的三角形;【小问2详解】如图,即为所求作的点;【点拨】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简.下面是甲、乙两同学的部分运算过程:解:原式……解:原式……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③ (2)见解析【解析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式;乙同学的解法:原式.【点拨】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机(2)【解析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率.【点拨】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B 作x轴的平行线交反比例函数的图象于点C.(1)求直线和反比例函数图象的表达式;(2)求的面积.【答案】(1)直线的表达式为,反比例函数的表达式为(2)6【解析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B的坐标,再根据轴,可得点C的纵坐标为1,再利用反比例函数表达式求得点C坐标,即可求得结果.【小问1详解】解:∵直线与反比例函数的图象交于点,∴,,即,∴直线的表达式为,反比例函数的表达式为.【小问2详解】解:∵直线的图象与y轴交于点B,∴当时,,∴,∵轴,直线与反比例函数的图象交于点C,∴点C纵坐标为1,∴,即,∴,∴,∴.【点拨】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】(1)设该班的学生人数为x人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m棵,则购买了乙树苗棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x人,由题意得,,解得,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了棵树苗,设购买了甲树苗m棵,则购买了乙树苗棵树苗,由题意得,,解得,∴m得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点拨】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点,,,均在同一直线上,,测得.(结果保小数点后一位)(1)连接,求证:;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:)【答案】(1)见解析(2)雕塑的高约为米【解析】(1)根据等边对等角得出,根据三角形内角和定理得出,进而得出,即可得证;(2)过点作,交的延长线于点,在中,得出,则,在中,根据,即可求解.(1)解:∵,∴∵即∴即∴;(2)如图所示,过点作,交的延长线于点,在中,∴,∴∴在中,,∴(米).答:雕塑的高约为米.【点拨】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在中,,以为直径的与相交于点D,E为上一点,且.(1)求长;(2)若,求证:为的切线.【答案】(1)(2)证明见解析【解析】(1)如图所示,连接,先求出,再由圆周角定理得到,进而求出,再根据弧长公式进行求解即可;(2)如图所示,连接,先由三角形内角和定理得到,则由圆周角定理可得,再由是的直径,得到,进而求出,进一步推出,由此即可证明是的切线.(1)解:如图所示,连接,∵是的直径,且,∴,∵E为上一点,且,∴,∴,∴的长;(2)证明:如图所示,连接,∵,,∴,∴,∵是的直径,∴,∴,∵,∴,即,∵是的半径,∴是的切线.【点拨】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下80.7160.8280.934m及以上46n合计200高中学生视力情况统计图(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1);;(2);(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】(1)由总人数乘以视力为的百分比可得的值,再由视力1.1及以上的人数除以总人数可得的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.(1)解:由题意可得:初中样本总人数:人,∴(人),;(2)由题意可得:,∴被调查的高中学生视力情况的样本容量为;(3)①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为的这一组,而,∴小胡的说法合理.②由题意可得:(人),∴该区有26000名中学生,估计该区有名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点拨】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在中,对角线,垂足为.求证:是菱形.(2)知识应用:如图,在中,对角线和相交于点,.①求证:是菱形;②延长至点,连接交于点,若,求的值.【答案】(1)见解析(2)①见解析;②【解析】(1)根据平行四边形的性质证明得出,同理可得,则,,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明是直角三角形,且,得出,即可得证;②根据菱形的性质结合已知条件得出,则,过点作交于点,根据平行线分线段成比例求得,然后根据平行线分线段成比例即可求解.(1)证明:∵四边形是平行四边形,∴,,∵∴,在中,∴∴,同理可得,则,又∵∴∴四边形是菱形;(2)①证明:∵四边形是平行四边形,.∴在中,,,∴,∴是直角三角形,且,∴,∴四边形是菱形;②∵四边形是菱形;∴∵,∴,∵,∴,∴,如图所示,过点作交于点,∴,∴,∴.【点拨】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.【答案】(1)①3;②(2),(3)①4;②【解析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P运动到B点时,,由此求出当时,,可设S关于t的函数解析式为,利用待定系数法求出,进而求出当时,求得t的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.(1)解:∵动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,∴当时,点P在上,且,∵,,∴,∴,故答案为:3;②∵动点P以每秒1个单位的速度从C点出发,在匀速运动,∴,∵,,∴,∴;(2)解:由图2可知当点P运动到B点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S关于t的函数解析式为,把代入中得:,解得,∴S关于t的函数解析式为,在中,当时,解得或,∴;(3)解:①∵点P在上运动时,,点P在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴..【点拨】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.。
2023年江西省中考数学真题(原卷版和解析版)
江西省2023年初中学业水平考试数学试题卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1.下列各数中,正整数...是()A.3 B.2.1 C.0D.2-2.下列图形中,是中心对称图形的是()A. B. C.D.3.有意义,则a 的值可以是()A.1- B.0 C.2 D.64.计算()322m 的结果为()A.68m B.66m C.62m D.52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为()A.35︒B.45︒C.55︒D.65︒6.如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式5ab -的系数为______.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.9.计算:(a+1)2﹣a 2=_____.10.将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .12.如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:038tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.14.如图是44⨯的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.15.化简2111x x x x x x -⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)20.如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长;(2)若76EAD ∠=︒,求证:CB 为O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n 合计200100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.22.课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值.六、解答题(本大题共12分)23.综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,2CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.江西省2023年初中学业水平考试数学试题卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1.下列各数中,正整数...是()A.3B.2.1C.0D.2-【答案】A【解析】【分析】根据有理数的分类即可求解.-不是正数,【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2故选:A.【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2.下列图形中,是中心对称图形的是()A. B. C.D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形;故选:B.【点睛】本题主要考查了中心对称图形,关键是找出对称中心.3.有意义,则a 的值可以是()A.1- B.0 C.2 D.6【答案】D【解析】【分析】根据二次根式有意义的条件即可求解.有意义,∴40a -≥,解得:4a ≥,则a 的值可以是6故选:D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.4.计算()322m 的结果为()A.68m B.66m C.62m D.52m 【答案】A【解析】【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选A .【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5.如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为()A.35︒B.45︒C.55︒D.65︒【答案】C【解析】【分析】根据题意可得AOC BOD ∠=∠,进而根据直角三角形的两个锐角互余即可求解.【详解】解:依题意,AOC BOD ∠=∠,35AOC ∠=︒∴35BOD ∠=︒,∵PD CD ⊥,∴9055OBD BOD ∠=︒-∠=︒,故选:C .【点睛】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键.6.如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个【答案】D【解析】【分析】根据不共线三点确定一个圆可得,直线上任意2个点加上点P 可以画出一个圆,据此列举所有可能即可求解.【详解】解:依题意,,A B ;,A C ;,A D ;,B C ;,B D ,,C D 加上点P 可以画出一个圆,∴共有6个,故选:D .【点睛】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.单项式5ab -的系数为______.【答案】5-【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.【详解】解:单项式5ab -的系数是5-.故答案是:5-.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】71.810⨯【解析】【分析】根据科学记数法的表示形式进行解答即可.【详解】解:718000000=1.810⨯,故答案为:71.810⨯.【点睛】本题考查科学记数法,熟练掌握科学记数法的表示形式为10n a ⨯(110a ≤<,a 为整数)的形式,n 的绝对值与小数点移动的位数相同是解题的关键.9.计算:(a+1)2﹣a 2=_____.【答案】2a+1【解析】【详解】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.【详解】(a+1)2﹣a 2=a 2+2a+1﹣a 2=2a+1,故答案为2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10.将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .【答案】2【解析】【分析】根据平行线的性质得出60ACB ∠=︒,进而可得ABC 是等边三角形,根据等边三角形的性质即可求解.【详解】解:∵直尺的两边平行,∴60ACB α∠=∠=︒,又60A ∠=︒,∴ABC 是等边三角形,∵点B ,C 表示的刻度分别为1cm,3cm ,∴2cm BC =,∴2cmAB BC ==∴线段AB 的长为2cm ,故答案为:2.【点睛】本题考查了平行线的性质,等边三角形的性质与判定,得出60ACB ∠=︒是解题的关键.11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .【答案】6【解析】【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽,∴BD AB PQ AQ=∵40cm 20cm 12m AB BD AQ ===,,,∴2m 120640AQ BD PQ AB ⨯⨯===,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12.如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.【答案】90︒或270︒或180︒【解析】【分析】连接AC ,根据已知条件可得90BAC ∠=︒,进而分类讨论即可求解.【详解】解:连接AC ,取BC 的中点E ,连接AE ,如图所示,∵在ABCD Y 中,602B BC AB ∠=︒=,,∴12BE CE BC AB ===,∴ABE 是等边三角形,∴60BAE AEB ∠=∠=︒,AE BE =,∴AE EC=∴1302EAC ECA AEB ∠=∠=∠=︒,∴90BAC ∠=︒∴AC CD ⊥,如图所示,当点P 在AC 上时,此时90BAP BAC ∠=∠=︒,则旋转角α的度数为90︒,当点P 在CA 的延长线上时,如图所示,则36090270α=︒-︒=︒当P 在BA 的延长线上时,则旋转角α的度数为180︒,如图所示,∵PA PB CD ==,PB CD ∥,∴四边形PACD 是平行四边形,∵AC AB⊥∴四边形PACD 是矩形,∴90PDC ∠=︒即PDC △是直角三角形,综上所述,旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:038tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2;(2)证明见解析【解析】【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.【点睛】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14.如图是44⨯的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)如图,取格点K ,使90AKB ∠=︒,在K 的左上方的格点C 满足条件,再画三角形即可;(2)利用小正方形的性质取格点M ,连接PM 交AB 于Q ,从而可得答案.【小问1详解】解:如图,ABC 即为所求作的三角形;【小问2详解】如图,Q 即为所求作的点;【点睛】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15.化简2111x x x x x x-⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③(2)见解析【分析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦()()()()221111x x x x x x x x x =⋅+++---+()()()()211112x x x x x x =⋅+-+-2x =;乙同学的解法:原式221111x x x x x x x x--=⋅+⋅+-()()()()111111x x x x x x x x x x=⋅+⋅+-+--+11x x =-++2x =.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机(2)16【分析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率21126==.【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17.如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.【答案】(1)直线AB 的表达式为1y x =+,反比例函数的表达式为6y x=(2)6【解析】【分析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B 的坐标,再根据BC x ∥轴,可得点C 的纵坐标为1,再利用反比例函数表达式求得点C 坐标,即可求得结果.【小问1详解】解:∵直线y x b =+与反比例函数(0)k y x x=>的图象交于点(2,3)A ,∴236k =⨯=,23b +=,即1b =,∴直线AB 的表达式为1y x =+,反比例函数的表达式为6y x =.【小问2详解】解:∵直线1y x =+的图象与y 轴交于点B ,∴当0x =时,1y =,∴()0,1B ,∵BC x ∥轴,直线BC 与反比例函数(0)k y x x =>的图象交于点C ,∴点C 的纵坐标为1,∴61x=,即6x =,∴()6,1C ,∴6BC =,∴12662ABC S =⨯⨯= .【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y 轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x 人,由题意得,320425x x +=-,解得45x =,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,由题意得,()30401555400m m +-≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19.如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)【答案】(1)见解析(2)雕塑的高约为4.2米【解析】【分析】(1)根据等边对等角得出,B ACB ACD ADC ∠=∠∠=∠,根据三角形内角和定理得出()2180B ADC ∠+∠=︒,进而得出90BCD ∠=︒,即可得证;(2)过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,得出 1.8cos cos55BC AD B ==︒,则1.82cos55BE AD DE =+=+︒,在Rt EBF △中,根据sin EF BE B =⋅,即可求解.【小问1详解】解:∵AB AC AD ==,∴,B ACB ACD ADC∠=∠∠=∠∵180B ADC BCD ∠+∠+∠=︒即()2180B ADC ∠+∠=︒∴90B ADC ∠+∠=︒即90BCD ∠=︒∴DC BC ⊥;【小问2详解】如图所示,过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,55 1.8m 2mB BC DE ∠=︒==,,∴cos BC B AD=,∴ 1.8cos cos55BC AD B ==︒∴ 1.82cos55BE AD DE =+=+︒在Rt EBF △中,sin EFB BE =,∴sin EF BE B=⋅1.82sin 55cos55⎛⎫=+⨯︒⎪︒⎝⎭1.820.820.57⎛⎫≈+⨯ ⎪⎝⎭4.2≈(米).答:雕塑的高约为4.2米.【点睛】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20.如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长;(2)若76EAD ∠=︒,求证:CB 为O 的切线.【答案】(1)109π(2)证明见解析【解析】【分析】(1)如图所示,连接OE ,先求出2OE OB OA ===,再由圆周角定理得到280AOE ADE ==︒∠∠,进而求出100∠=︒BOE ,再根据弧长公式进行求解即可;(2)如图所示,连接BD ,先由三角形内角和定理得到64AED ∠=︒,则由圆周角定理可得64ABD AED ==︒∠∠,再由AB 是O 的直径,得到90ADB ∠=︒,进而求出26BAC ∠=︒,进一步推出90ABC ∠=︒,由此即可证明BC 是O 的切线.【小问1详解】解:如图所示,连接OE ,∵AB 是O 的直径,且4AB =,∴2OE OB OA ===,∵E 为 ABD 上一点,且40ADE ∠=︒,∴280AOE ADE ==︒∠∠,∴180100BOE AOE ∠=︒-=︒∠,∴ BE 的长1002101809ππ⨯⨯==;【小问2详解】证明:如图所示,连接BD ,∵76EAD ∠=︒,40ADE ∠=︒,∴18064AED EAD ADE =︒--=︒∠∠∠,∴64ABD AED ==︒∠∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴9026BAC ABD =︒-=︒∠∠,∵64C ∠=︒,∴18090ABC C BAC =︒--=︒∠∠∠,即AB BC ⊥,∵OB 是O 的半径,∴BC 是O 的切线.【点睛】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%高中学生视力情况统计图(1)m=_______,n=_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1)68;23%;(2)320;(3)①小胡的说法合理,选择中位数,理由见解析;②11180人,合理化建议见解析,合理即可.【解析】【分析】(1)由总人数乘以视力为1.0的百分比可得m的值,再由视力1.1及以上的人数除以总人数可得n 的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由初中生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.【小问1详解】解:由题意可得:初中样本总人数为:200人,∴34%20068m =⨯=(人),4620023%n =÷=;【小问2详解】由题意可得:144460826555320+++++=,∴被调查的高中学生视力情况的样本容量为320;【小问3详解】①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为1.0这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为0.9的这一组,而1.0>0.9,∴小胡的说法合理.②由题意可得:()26000134%23%=11180⨯--(人),∴该区有26000名中学生,估计该区有11180名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点睛】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22.课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值.【答案】(1)见解析(2)①见解析;②58【解析】【分析】(1)根据平行四边形的性质证明AOB COB ≌得出AB CB =,同理可得DOA ODC ≌,则DA DC =,AB CD =,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明AOD △是直角三角形,且90AOD ∠=︒,得出AC BD ⊥,即可得证;②根据菱形的性质结合已知条件得出E COE ∠=∠,则142OC OE AC ===,过点O 作OG CD ∥交BC 于点G ,根据平行线分线段成比例求得1522CG CB ==,然后根据平行线分线段成比例即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AO CO =,AB DC =,∵BD AC⊥∴90AOB COB ∠=∠=︒,在,AOB COB 中,AO CO AOB COB BO BO =⎧⎪∠=∠⎨⎪=⎩∴AOB COB≌∴AB CB =,同理可得DOA ODC ≌,则DA DC =,又∵AB CD=∴AB BC CD DA===∴四边形ABCD 是菱形;【小问2详解】①证明:∵四边形ABCD 是平行四边形,586AD AC BD ===,,.∴113,422DO BO BD AO CO AC ======在AOD △中,225AD =,22223425AO OD +=+=,∴222AD AO OD =+,∴AOD △是直角三角形,且90AOD ∠=︒,∴AC BD ⊥,∴四边形ABCD 是菱形;②∵四边形ABCD 是菱形;∴ACB ACD∠=∠∵12E ACD ∠=∠,∴12E ACB ∠=∠,∵ACB E COE ∠=∠+∠,∴E COE ∠=∠,∴142OC OE AC ===,如图所示,过点O 作OG CD ∥交BC 于点G ,∴1BG BO GC OD==,∴115222CG BC AD ===,∴55248OF GC EF CE ===.【点睛】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23.综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.【答案】(1)①3;②24S t =+(2)()281828S t t t =-+≤≤,6AB =(3)①4;②349【解析】【分析】(1)①先求出1CP =,再利用勾股定理求出DP =,最后根据正方形面积公式求解即可;②仿照(1)①先求出CP t =,进而求出222DP t =+,则222S DP t ==+;(2)先由函数图象可得当点P 运动到B 点时,26S DP ==,由此求出当2t =时,6S =,可设S 关于t 的函数解析式为()242S a t =-+,利用待定系数法求出2818S t t =-+,进而求出当281818S t t =-+=时,求得t 的值即可得答案;(3)①根据题意可得可知函数()242S t =-+可以看作是由函数22S t =+向右平移四个单位得到的,设()()()1221P m n Q m n m m >,,,是函数22S t =+上的两点,则()14m n +,,()24m n +,是函数()242S t =-+上的两点,由此可得121212044m m m m m m +=<<+<+,,则2144m m ++=,根据题意可以看作21321244m m t t m t ==+=+,,,则124t t +=;②由(3)①可得134t t =+,再由314t t =,得到143t =,继而得答案.【小问1详解】解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,∴当1t =时,点P 在BC 上,且1CP =,∵90C ∠=︒,CD =,∴DP ==∴23S DP ==,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在BC 匀速运动,∴CP t =,∵90C ∠=︒,CD =,∴22222DP CP CD t =+=+,∴222S DP t ==+;【小问2详解】解:由图2可知当点P 运动到B 点时,26S DP ==,∴246t +=,。
江西中考数学试题及答案doc
江西中考数学试题及答案doc 江西省2023年初中毕业生学业水平考试数学试卷一、选择题(本题共8小题,每小题3分,共24分)1. 下列各数中,是无理数的是()A. 0.3B. 0.33333…C. √2D. 3.142. 某商品打“八折”出售,现价是原价的()A. 80%B. 20%C. 120%D. 125%3. 一个数的相反数是-3,则这个数是()A. 3B. -3C. 0D. 24. 已知a=2,b=-1,则a+b的值是()A. 1B. 3C. -3D. -15. 一元二次方程x²-4x+4=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根 D. 无法确定6. 下列命题中,是真命题的是()A. 两直线平行,同位角相等B. 相等的两个角是对顶角C. 内错角相等,两直线平行D. 同旁内角互补,两直线平行7. 已知函数y=2x+3,当x=1时,y的值是()A. 5B. 4C. 3D. 28. 一个等腰三角形的两边长分别为3和6,它的周长是()A. 9B. 12C. 15D. 18二、填空题(本题共6小题,每小题3分,共18分)9. 计算:(-2)³=______。
10. 一个角的补角比它的余角大90°,则这个角的度数是______。
11. 已知a=2b,则a:b=______。
12. 已知等腰三角形的周长为18cm,底边长为6cm,则腰长为______。
13. 已知函数y=-2x+1,当y=3时,x的值是______。
14. 某商品的进价为100元,标价为150元,若打“九折”出售,则利润为______元。
三、解答题(本题共5小题,共58分)15. (本题满分8分)解方程:3x-5=2x+8。
16. (本题满分10分)如图,直线AB与CD相交于点O,∠AOC=130°,求∠BOD的度数。
17. (本题满分12分)某工厂生产一种零件,每件的成本为40元,销售价为60元。
2022年江西省中考数学真题试卷(Word版,含答案)
2022年江西省中考数学试卷一、单项选择题(本大题共6小题,每小题3分,共18分)1. (3分)下列各数中,负数是()A. -1B. 0C. 2D.V22. (3分)实数。
,人在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )0 bA. a>bB. a — bC. a<bD.3. (3分)下列计算正确的是( )A. nr 'nt = ntB.--n) = -m + nC. m{in + n) = nr +n D . (m + n)2 =nr +n4. (3分)将字母“C ”,“H"按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A. 910 C. 11B. D. 125. (3分)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )—HB.D.6. (3分)甲、乙两种物质的溶解度),(g )与温度F ( C )之间的对应关系如图所示,则下列说法中,错误的是(5040302010甲,乙弓 t/°CA. 甲、乙两种物质的溶解度均随着温度的升高而增大B. 当温度升高至时,甲的溶解度比乙的溶解度大C. 当温度为0 C 时,甲、乙的溶解度都小于20gD. 当温度为30°C 时,甲、乙的溶解度相等二、填空题(本大题共6小题,每小题3分,共18分)7. (3分)因式分解:疽一3〃=.8. (3分)正五边形的外角和为 度.9. (3分)关于*的方程^+2x+k = 0有两个相等的实数根,则R 的值是 —.10. (3分)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为 —.11. (3分)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为—.①②12. (3分)已知点A 在反比例函数y = — (x>0)的图象上,点3在]轴正半轴上,若△048x为等腰三角形,且腰长为5,则旭的长为三、解答题(本大题共5小题,每小题6分,共30分)13. (6 分)(1)计算:|-2|+>/J-2°;(2)解不等式组:2x<63x > -2x + 514. (6分)以下是某同学化简分式(话-土),己的部分运算过程:解:原式=[--------------①(x + 2)(x-2) x + 2 3=[—---------------—]x# ②(x + 2)(x-2) (X4- 2)(x-2) 3x +\ — x — 2 x — 2=------------------x -------(3)(x + 2)(x-2) 3解:(1) 上面的运算过程中第—步出现了错误;(2) 请你写出完整的解答过程.15. (6分)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁 4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1) “随机抽取I 人,甲恰好被抽中”是—事件;A . 不可能B. 必然C. 随机(2) 若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16. (6分)如图是4x4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作NABC 的角平分线;(2 )在图2中过点C 作一条直线使点A, B 到直线/的距离相17.(6分)如图,四边形ABCD为菱形,点E在AC的延长线上,ZACD=ZABE.(1)求证:AABCs^AEB;(2)当AB=6,AC=4时,求位的长.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)如图,点A(mA)在反比例函数y=-(x>0)的图象上,点8在),轴上,OB=2,x将线段M向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点。
江西省中考数学真题试题(含解析)
江西省中考数学真题试题说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. ﹣2的绝对值是A. B. C. D.【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】 B ★2.计算的结果为A. B. C. D.【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】 A★3.如图所示的几何体的左视图为第3题A B C D【解析】本题考察三视图,容易,但注意错误的选项B和C.【答案】 D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】 C ★频数(人数)2084612(第4题)乓球径毛球球球252015105D5.小同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A. 3个B. 4个C. 5个D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【答案】 C ★★6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线的关系,下列结论中错误..的是A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确;当时,在轴的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距离是 ,当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.【答案】 D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以.【答案】★8.5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为 .【解析】 本题考察科学记数法,把60000写成的形式,注意【答案】★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省中考数学试卷版 It was last revised on January 2, 2021
2小时以上
30分钟至1小时20%1至2小时10%30分钟以下 40%2019江西省中考数学试卷
一.选择题(每小题3分,共18分)
1. 2的相反数是 ( )
A. 2
C.1
2
D.12 2.计算1a ÷(−1a
)的结果为 ( ) A.a B.a - C.21a D.21a
3.如图是手提水果篮的几何体,以箭头所指方向为主视图方向,则它的俯视图为( )
4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计
图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
5.已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,下列
说法正确的是( )
A.反比例函数2y 的解析式是28y x =-
B.两个函数图象的另一交点坐标为(2,4)-
C.当2x <-或02x <<时,12y y <
D.正比例函数1y 与反比例函数2y 都随x 的增大而增大
6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同
的小棒,拼接后的图形恰好有3个菱形的方法共有( )
A. 3种
B. 4种
C. 5种
D. 6种
二.填空题(每小题3分,共18分)
7.因式分解:21x .
8.我国古代数学名着《孙子算经》有估算方法:“方五,邪(通
“斜”)七。
见方求斜,七之,五而一”译文为:如果正方形的边长为
五,则它的对角线长为七。
已知正方形的边长,求对角线长,则先将边长乘以七再除以五。
若正方形的边长为1
,依据《孙子算经》的方法,则它的对角线的长是________.
9.设1x ,2x 是一元二次方程2x -x -1=0两根,则
1x +2x +1x .2x =__________.
10.如图,在ABC ∆中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD ∆沿
着AD 翻折得到AED ∆,则CDE ∠= ︒.
11.斑马线前“车让人”,不仅体现着一座城市对
生命的尊重,也直接反映着城市的文明程度.如
图,在某路口的斑马线路段A -B -C 横穿双向行驶车
道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程
得: .
12.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0),(4,
4),(0,4),点P 在x 轴上,点D 在直线AB 上,DA =1,CP ⊥DP 于点P ,则点P 的坐标为_______.
三.解答题(每小题6分,共30分)
13.(1)计算:(
))0
122--+-+; (2)如图,四边形ABCD 中,AB =CD ,AD =BC ,对角线AC ,BD 相交于点
O ,且OA =OD .
(第10题)B
C
求证:四边形ABCD 是矩形.
14.解不等式组:2(1),
712.2
x x x x +⎧⎪⎨+-⎪⎩>≥并在数表示它的解集. 15.在△ABC 中,AB=AC ,点A 在以BC 为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).
在图1中作弦EF ,使EF 16.为纪念建国70周年,某校举行班级歌咏比
赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》.
(分别用字母A ,B ,C 一致表示,这三首歌曲).比赛时,将A ,B ,C 这
三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八
(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是_______。
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率。
17、如图,在平面直角坐标系中,点A 、B
的坐标分别为
(),连接AB ,以AB 为边向上作等边三角形ABC. (1)求点C 的坐标;(2)求线段BC 所在直线的解析式。
(答题图1) (答题图2)
四.解答题(每小题8分,共24分)
18. 某校为了解七、八年级学生英语听力训练情况(七八年级学生人数
相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他
们周一至周五的听力训练情况,根据调查情况得到如下统计图表:
周一至周五英语听力训练人数训练表
参加英语听力训练学生的平均训练时间折线统计图
(1)填空α=
(2)根据上述统计图表完成下表中的相关统计量:
(3)请你利用上述统计图表,对七八年级英语训练情况写出两条合理的评价:
(4)请你结合周一至周五英语听力训练人数统计表,估计该校七八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练。
19.如图1,A,B为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC 绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=,CD=8cm,AB=30cm,BC=35cm.(结果精确到)
(1)如图2,∠ABC=70°,BC∥OE。
①填空:∠BAO=_________°;
②求投影探头的端点D到桌面OE的距离。
(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE 的距离为6cm时,求∠ABC的大小。
(参考数据:sin70°≈,cos20°≈,°≈,°≈)
五.解答题(每小题9分,共18分)
21、数学活动课上,张老师引导同学进行如下研究:
如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图
活动一
如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时铅笔AB的中点C与点O重合。
数学思考;
(1)设CD=xcm,点B到OF的距离GB=ycm ;
①用含x的代数式表示:AD的长是cm ,BD的是
cm
②y与x的函数关系式是自变量x的取值范围是活动二
(2)①列表,根据(1)的所求函数关系式讲算并补全表格
②描点:根据表格中数值,继续描出中剩余的两点(x,y)
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象 数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论。
22. 在图1,2,3中,已知□ABCD ,∠
ABC =120°,点E 为线段BC 上的动点,连接
AE ,以AE 为边向上作菱形AEFG ,且∠
EAG =120°.
(1)如图1,当点E 与点B 重合时,∠
CEF =______°;
(2)如图2,连接AF .
①填空:∠FAD _______∠EAB (填“>”,
“=”,“<”);
②求证:点F 在∠ABC 的平分线上;
(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BC AB
的值. 六、(本大题共12分)
23.特例感知
(1)如图1,对于抛物线21y 1x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是_________;
①抛物线1y ,2y ,3y 都经过点(0,1)C ;
②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12
个单位
得到;
③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等。
形成概念
(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的
代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系
式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理
由.。