《遥感复习知识点》word版
遥感复习知识点
1: 遥感的定义:遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。
:遥感的基础:遥感的基础是地物发射或反射电磁波的性质不同。
根据地物的发射或反射电磁波特性的不同,可以传感器成像获取图像,利用遥感图像来进行地物分类、识别、变化检测等。
2: 遥感的特点:大面积同步观测;时效性…数据的综合性;经济性;局限性3 : 遥感分类:根据工作平台层面区分:地面遥感、航空遥感、航天遥感根据工作波段层面区分:可见光遥感、红外遥感、微波遥感、(多波段遥感、紫外遥感、)根据传感器类型层面区分:主动遥感、被动遥感根据应用领域区分:环境遥感、大气遥感、资源遥感、海洋遥感、农业遥感等4 : 太阳常数:指不受大气影响,在距太阳一个单位内,垂直于太阳光辐射的方向上,单位面积单位时间黑体所接收的太阳辐射能量5 :地物反射光谱:地物反射率随入射波长变化的规律特性:地物反射电磁辐射的能力,随所反射的电磁波波长而变化的特性地物发射光谱:地物发射率随波长变化的规律特性:地物自身发射电磁波的能力,随其波长变化的特性6:黑体辐射的特征:(1)、与曲线下的面积成正比的总辐射通量密度W是随温度T的增加而迅速增加。
(2)、分谱辐射能量密度的峰值波长λmax随温度的增加向短波方向移动。
(3)每根曲线彼此不相交,故温度T越高所有波长上的波谱辐射通量密度也越大7:大气对太阳辐射的作用大气削弱作用的结果:使到达地面的太阳辐射减少吸收作用具有选择性,氧原子,臭氧吸收紫外线,水气,二氧化碳吸收红外线,可见光被吸收很少反射作用无选择性,云层越厚,尘埃越多,反射越强散射作用具有选择性,波长较短的蓝紫光易被散射8:大气窗口:通过大气层较少被反射、吸收和散射的那些透射率高的波段成为大气窗口9: 遥感常用波段:紫外遥感,其探测波段在0.3~0.38um之间可见光,其探测波段在0.38~0.76um之间红外遥感,其探测波段在0.76~14um之间;微波遥感,其探测波段在1mm~1m之间;10:瑞利散射与米氏散射:前者是指当大气中的粒子直径比波长小得多的时候所发生的大气散射现象。
《遥感复习知识点》word版
《遥感复习知识点》word版第一章:绪论1.遥感概念:遥远的感知广义:遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。
狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感系统:目标物的电磁波谱特性:信息源信息的获取:传感器、遥感平台信息的接收:传输与记录信息的处理:信息恢复、辐射校正、图像变换信息的应用:信息获取的目的3.遥感分类按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感按传感器的探测波段分:紫外遥感(0.05-0.38)可见光遥感(0.38-0.76)红外遥感(0.76-1000)微波遥感(1mm-10m)多波段遥感(波段在可见光和红外波段内的窄波段)按工作方式分:主动遥感和被动遥感、成像遥感和非成像遥感按遥感的应用领域分:外层空间遥感、大气层遥感、陆地遥感、海洋遥感等资源遥感、环境遥感、气象遥感、农业、林业、渔业、水质、水文遥感···4.遥感的特点大面积的同步观测:遥感平台越高,视角越宽广,观测范围越广;不受地形阻隔时效性:短时间内对同一地区进行重复探测、对天气预报、水灾火灾、军事作用数据的综合性和可比性:红外遥感昼夜均可探测、微波遥感全天探测,由于探测波段、成像方式、成像时间、数据记录可按照要求设计,使其获得的数据具有同一性、相似性,加上传感器都可兼容,所以数据具有可比性经济性:与传统方法相比,大大减少人力、物力、财力和时间局限性:目前遥感技术所利用的电磁波还有限,仅是其中几个波段范围;对许多地物的某些特征不能准确反映;信息的提取方法、挖掘技术不够完善第二章:电磁辐射基础1.电磁波谱与电磁辐射电磁波谱:电磁波在真空中传播的波长或频率按递增或递减排列波谱以频率从高到低排列可划分为γ射线、X射线、紫外线、可见光、红外线、无线电波。
紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。
遥感导论复习资料(全)
填空1.微波是指波长在1mm-1m之间的电磁波。
2.就遥感而言,被动遥感主要利用可见光、红外等稳定辐射,使太阳活动对遥感的影响减至最小。
3.1999年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原发射成功。
ndsat和SPOT的传感器都是光电成像型,具体是光机扫描仪、CCD阵列。
5.SPOT1、2、3卫星上有HRV高分辨率可见光扫描仪,可以用作两种观测垂直观测、倾斜观测也是SPOT卫星的优势所在。
6.美国高分民用卫星有IKONOS、QUICK BIRD。
7.灰度重采样的方法有:最邻近法、双线性内插法、三次卷积内插法。
8.四种分辨率来衡量传感器的性能:空间分辨率、时间分辨率、光谱分辨率、辐射分辨率9.数字图像增强的主要方法有:对比度变换、空间滤波、彩色变换、图像运算、多光谱变换。
10.常用的彩色变换方法有:单波段彩色变换、多波段彩色变换、HLS变换。
11.遥感系统包括五种:目标物的电磁波特性、信息的获取、信息的传输、信息的处理、信息的运用。
12.遥感传感器的探测波段分为:紫外遥感、可见光波段、红外遥感、微波遥感、多波段遥感。
13.常用的锐化方法有:罗伯特梯度、索伯尔梯度、拉普拉斯算法、定向检测。
14.目标地物识别特征包括:色调、颜色、阴影、形状、大小、纹理、图形、位置、拓扑结构。
15.地物的空间关系主要表现为:方位、包含、相邻、相交、相贯。
16.地质遥感包括:岩性识别、地质构造的识别、构造运动的分析。
17.试举三个陆地卫星:Landsat、SPOT、CBERS。
18.遥感影像变形的原因有:遥感平台位置和运动状态变化的影响、地形起伏的影响、地球曲率的影响、地球自转的影响、大气折射。
19.平滑是为了达到什么目的:去除噪声。
20.热红外影像的阴影是:目标地物与背景之间辐射差异造成的。
21.遥感扫描影像的特征有:综合概括性强、信息量大、动态观测。
22.微波影像的阴影是:与目标地物之间存在障碍物阻挡了雷达波的传播。
(完整版)遥感导论重点
第一章绪论一、遥感的概念广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
遥感定义:遥感是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性的综合性技术。
遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用三、遥感分类1、按遥感平台分:地面遥感:传感器设置在地面平台上航空遥感:传感器设置在航空器上航天遥感:传感器设置在环地球的航天器上航宇遥感:传感器设置在星际飞船上2、按传感器的探测波段分:紫外遥感:探测波段在0.05~0.38um可见光遥感:探测波段在0.38~0.76um红外遥感:探测波段在0.76~1000um微波遥感:探测波段在1mm~10m多波段遥感:探测波段在可见光波段和红外波段范围内,分成若干窄波段来探测目标。
3、按工作方式分a、主动遥感:不依靠太阳,由探测器主动发射一定电磁波能量并接受目标的后向散射信号被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量b、成像方式、非成像方式4、按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等四、遥感的特点(简答)1、遥感范围大,可实施大面积的同步观测遥感观测为地面探测提供了最佳获取信息的方式,并且不受地物阻隔的影响。
遥感平台的范围越大,视角越大,可以同步观测的地面信息就越多。
2、时效性:获取信息快、更新周期短,具有动态监测的特点对于天气预报、火灾和水灾等灾情检测,以及军事行动等具有重要作用。
3、数据的综合性和可比性,具有手段多、技术先进的特点能够反映许多自然人文信息,能较大程度排除人为干扰。
4、经济性:经济效益高、用途十分广泛5、局限性:遥感技术所利用的电磁波还很有限,仅是其中的几个波段范围;已被利用的电磁波谱段,对许多地物某些特征不能准确反映。
遥感复习重点
遥感复习重点(仅供参考)(一)名词解释:1.电磁波谱:电磁波是振荡的电磁场在空间的传播。
电磁波传播是以场的形式表现出来,因此其在空间中的传播是不需要媒介的,即在真空中也能传播。
电磁波是横波。
γ射线,x射线,紫外线,可见光,红外线,微波,无线电波等都是电磁波,这些电磁波按波长或频率的大小顺序排列起来制成的图表叫电磁波谱。
(电磁波谱按照波长由短至长可依次分为:γ射线,x射线,紫外线,可见光,红外线,微波,无线电波。
)2.光谱曲线;在遥感系统中,光谱总是与太阳光相联系,光谱总是通过光谱曲线进行可视化表达,光谱曲线与传感器感知的波段相关,且与每个波段形成一一对应的关系(也叫映射关系),同时光谱曲线总是在一定的参照下形成的曲线,实测光谱过程中的白版定标(测量)就是相当于把太阳辐射作为参照目标。
3.黑体:1860年,基尔霍夫就提出用黑体一词来说明能够全部吸收入射辐射能量的地物。
黑体是一个理想的辐射体,也是一个可以与任何地物进行比较的最佳辐射体。
所谓黑体是绝对黑体的简称,指在任何温度下对各种波长的电磁辐射的吸收系数恒等于1的物体。
黑体的热辐射称为黑体辐射。
4.大气窗口:太阳辐射经过大气时,要发生反射,吸收和散射,从而衰减了辐射强度。
我们就把受到大气衰减作用较轻,透射率较高的波段叫做大气窗口。
对遥感传感器而言,只能选择透射率高的波段,才能形成质量好的遥感观测图像。
5.反射光谱曲线:地物反射率随波长变化,以波长为横坐标,反射率作为纵坐标,将地物反射率随波长的变化绘制成曲线,即地物的反射率随波长变化的曲线,叫地物的反射光谱曲线。
(二)简答题;1.辐射定律:1)普朗克辐射定律;普朗克定义了一个常数(h)给出了黑体辐射的能量(Q)与频率(v)之间的关系:Q=h×v.(式中h为普朗克常量,6.626·J·s);普朗克的关系式把电磁辐射的波模式与量子模式联系起来。
电磁波的关系式为c=v·入。
遥感复习要点
1黑体辐射遵循哪些规律?
(1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。
(2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。
(3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。
(4 好的辐射体一定是好的吸收体。
第二章 遥感平台及运行特点
名词解释:
1遥感平台:遥感中搭载传感器的工具统称遥感平台。
2遥感传感器:测量和记录被探测物体的电磁波特性的工具,是遥感技术的重要组成部分。
3卫星轨道参数:确定卫星轨道在空间的具体位置。由升交点,近地点角距,轨道倾角,卫星轨道长半轴,卫星轨道偏心率,卫星近地点时刻组成。
TM:是MSS的改进,是一个高级的多光段扫描型的地球资源敏感仪。
7 传感器从大气层外探测地面物体时,接收到哪些电磁波能量?
答:(1)太阳辐射透过大气并被地表反射进入传感器的能量(2)太阳辐射被大气散射后被地表反射进入传感器的能量(3)太阳辐射被大气散射后直接进入传感器的能量(4)太阳辐射被大气反射后进入传感器的能量(5)被视场以外地物反射进入视场的交叉辐射项(6)目标自身辐射的能量。
(2)近极地轨道:有利于增大卫星对地面总的观测范围。(3)与太阳同步轨道:有利于卫星在相近的光照条件下对地面进行观测;有利于卫星在固定的时间飞临地面接收站上空,使卫星上的太阳电池得到稳定的太阳照度。
(4)可重复轨道:有利于对地面地物或自然现象的文化动态监测。
第三章 遥感传感器
遥感传感器:获取遥感数据的关键设备。
(1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。
(2. b为常数2897.8
遥感概论复习重点
第一章一、遥感:一种远离目标,不与探测目标相接触,通过某种平台上装载的传感器获取其特征信息,然后对所获取的信息进行提取、判定、加工处理及应用分析的综合性技术二、遥感技术系统是一个地面到空中,乃至空间,从信息收集、存储、处理到判读分析和应用的完整技术体系三、遥感技术系统的组成信息源;信息的获取;传感器;遥感平台;信息的记录和传输四、遥感的分类①按遥感平台分类:航天、航空、地面遥感②按传感器探测波段分类:紫外遥感(0.05-0.38μm)可见光遥感(0.38-0.76μm)红外遥感(0.76-1000μm)微波遥感(1mm-1m)③按传感器的工作原理分:主动遥感,被动遥感④按数据获取方式:成像遥感;非成像遥感五、遥感的特点宏观性;动态性;技术手段多,信息海量六、当前遥感发展的主要特点和趋势高分遥感发展迅速,多种传感器并存:高空间分辨率、高光谱分辨率、高时间分辨遥感从定性到定量分析:遥感从“定性”向“定量”转变,定量遥感成为遥感应用的发展热点遥感信息提取逐步自动化:建立适用于遥感图像自动解释的专家系统,逐步实现遥感图像专题信息提取自动化遥感商业化第二章一、电磁波的性质波动性:①是横波②在真空以光速传播③满足C=λ*ƒ粒子性:光电效应波粒二象性:E= h*ƒ;P=h/λ波粒二象性的程度与电磁波的波长有关:波长愈短,辐射的粒子性愈明显;波长愈长,辐射的波动特性愈明显。
二、电磁波与物体相互作用过程中,会出现三种情况:反射、吸收、透射,遵守能量守恒定律(如果是不透明的物体,物体的反射率大,发射率就小)四、电磁辐射定义①反射:电磁辐射与物体作用后产生的次级波返回原来的介质,这种现象称反射。
该次级波便称之为反射波(辐射)。
反射率:物体的反射辐射通量与入射辐射通量之比。
②透射:电磁辐射与介质作用后,穿过该介质到达另一种介质的现象或过程。
透射率:透射能量与入射总能量之比。
五、电磁波谱:按照电磁波的波长(频率的大小)长短,依次排列成的图表,称为电磁波谱。
遥感导论复习重点
一.遥感的基本概念是什么?狭义理解:遥感是指从不同高度的平台(Platform)上,使用各种传感器(Sensor),接收来自地球表层的各种电磁波信息,并对这些信息进行加工处理,从而对不同的地物及其特性进行远距离探测和识别的综合技术。
广义理解:遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
只有电磁波探测属于遥感的范畴。
遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。
二.遥感探测系统包括哪几个部分?包括五个部分:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。
三.作为对地观测系统,遥感与常规手段相比有什么特点?1.大面积同步观测覆盖范围大、信息丰富。
2时效性重复探测,有利于进行动态分析。
3.多波段性波段的延长使对地球的观测走向了全天候。
4.数据的综合性和可比性综合反映地质、地貌、土壤、植被、水文等自然信息和人文信息。
不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性。
5.经济性从投入的费用与所获取的效益看,遥感与传统的方法相比,可以大大地节省人力、物力、财力和时间,具有很高的经济效益和社会效益。
6.局限性:信息的提取方法不能满足遥感快速发展的要求。
数据的挖掘技术不完善,使得大量的遥感数据无法有效利用。
7.大气窗口:由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不同,因而各波段的透射率也各不相同。
我们就把受到大气衰减作用较轻、透射率较高的波段称作大气窗口。
8.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾能力而可见光不能?瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
遥感概论期末复习知识点(完整)
遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。
二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。
三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。
1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。
3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。
遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。
由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。
由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。
可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。
微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。
②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。
微波越长,穿透能力越强。
4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。
黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。
遥感导论复习重点
遥感复习重点第一章绪论1.遥感的根本概念〔广义与狭义〕广义遥感:泛指一切无接触的远距离探测,包括电磁场、力场、机械波(声波、地震波)等探测。
狭义遥感:仅指应用探测仪器,不与探测目标接触,从远处将目标电磁波特性纪录下来,通过分析,解释物体特征性质及其变化的综合性探测技术。
补充层面:因此,又可以说:遥感是以电磁波与地表物质相互作用为根底,探测、分析和研究地球资源与环境,提醒地球外表各种要素的空间分布特征和时空变化规律的一门科学技术。
2.遥感、遥测、遥控的区别遥感区别于遥测(Telemetry)和遥控(Remote Control)。
遥测指对被测物体*些运动参数和性质进展远距离测量技术。
遥控指远距离控制运动物体的运动状态和运动过程技术。
完成空间遥感过程往往需要综合运用遥测技术和遥控技术。
例如,卫星遥感必须测定卫星运行参数\控制卫星运行姿态等。
3遥感系统组成遥感系统包括:被探测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用5大组成局部。
4.遥感类型的划分〔1〕按遥感平台分,包括:A、地面遥感→指遥感器安放在地面平台上,如车载平台、船载平台、手提平台等。
B、航空遥感→指遥感器安放在航空器上,如飞机、气球等,一般高度小于80千米。
C、航天遥感→指遥感器安放在航天器上,如人造地球卫星、航天飞机、空间站、火箭等,一般高度大于80千米。
D、航宇遥感→指遥感器安放在星际飞船上,主要用于对地月系统以外目标进展探测。
〔2〕按遥感器的探测波段分,包括:A、紫外遥感→指利用0.05-0.38微米间紫外辐射波段进展探测。
B、可见光遥感→指利用0.38-0.76微米间可见光辐射波段进展探测。
C、红外遥感→指利用0.76-1000微米间红外辐射波段进展探测。
D、微波遥感→指利用1毫米-10米间微波辐射进展探测。
E、多波段遥感→指探测波段在可见光和红外波段范围内,再被分成假设干狭窄波段进展遥感探测。
〔3〕按工作方式分,包括:A、主动遥感→指利用遥感器主动发射一定电磁波能量并接收目标地物后向散射信号进展探测。
(完整版)遥感原理与应用知识点
第一章电磁波及遥感物理基础一、名词解释:1、遥感:(1)广义的概念:无接触远距离探测(磁场、力场、机械波);(2)狭义的概念:在遥感平台的支持下,不与目标地物相接触,利用传感器从远处将目标地物的地磁波信息记录下来,通过处理和分析,揭示出地物性质及其变化的综合性探测技术。
2、电磁波:变化的电场和磁场的交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。
3、电磁波谱:将电磁波在真空中传播的波长或频率递增或递减依次排列为一个序谱,将此序谱称为电磁波谱。
4、绝对黑体:对于任何波长的电磁辐射都全部吸收的物体称为绝对黑体。
5、绝对白体:反射所有波长的电磁辐射。
6、光谱辐射通量密度:单位时间内通过单位面积的辐射能量。
8、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的电磁辐射波段。
11、光谱反射率:ρ=Pρ/P0 X 100%,即物体反射的辐射能量Pρ占总入射能量P0 的百分比,称为反射率ρ。
12、光谱反射特性曲线:按照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线。
二、填空题:1、电磁波谱按频率由高到低排列主要由γ射线、X射线、紫外线、可见光、红外线、微波、无线电波等组成。
2、绝对黑体辐射通量密度是温度T和波长λ的函数。
(19页公式)3、一般物体的总辐射通量密度与绝对温度和发射率成正比关系。
4、维恩位移定律表明绝对黑体的最强辐射波长λ乘绝对温度T 是常数2897.8。
当绝对黑体的温度增高时,它的辐射峰值波长向短波方向移动。
5、大气层顶上太阳的辐射峰值波长为 0.47 μm。
三、选择题:(单项或多项选择)1、绝对黑体的(②③)①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。
2、物体的总辐射功率与以下那几项成正比关系(⑥)①反射率②发射率③物体温度一次方④物体温度二次方⑤物体温度三次方⑥物体温度四次方。
3、大气窗口是指(③)①没有云的天空区域②电磁波能穿过大气层的局部天空区域③电磁波能穿过大气的电磁波谱段④没有障碍物阻挡的天空区域。
遥感科学与应用复习重点整理
遥感科学与应用复习重点整理
一、遥感科学基础知识
1. 遥感的定义和概念
2. 遥感的分类和原理
3. 遥感数据的获取与传感器类型
4. 遥感数据的解译与分析方法
二、遥感数据处理与分析
1. 遥感数据预处理
- 图像预处理方法和步骤
- 辐射定标和大气校正
- 遥感数据的几何校正
2. 遥感数据分类与识别
- 监督分类和非监督分类方法
- 基于特征的分类方法
- 遥感数据的对象识别与提取
3. 遥感数据的信息提取与分析
- 光谱信息提取方法
- 空间信息提取方法
- 时间信息提取方法
三、遥感应用领域
1. 农业遥感应用
- 农作物遥感监测与估产
- 土地利用与土地覆盖变化
2. 环境遥感应用
- 水资源与水环境遥感监测
- 空气质量与气候遥感监测
3. 城市与区域遥感应用
- 城市扩张与土地利用变化
- 城市生态环境遥感监测
四、遥感技术发展趋势
1. 高分辨率遥感技术
- 高光谱遥感
- 雷达遥感
2. 遥感与地理信息系统(GIS)的融合- 遥感数据在GIS中的应用
- GIS数据在遥感中的应用
以上为《遥感科学与应用复习重点整理》的大纲,希望能够帮助您复习遥感科学与应用的相关知识。
如有任何问题请随时向我提问,我将竭诚为您解答。
遥感复习要点
遥感复习要点(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--遥感复习要点第一章:绪论1、遥感的概念:即不直接接触物体本身,从远处通过仪器(传感器)探测和接收来自目标物体的信息(如电场、磁场;电磁波、地震波等),经过信息的传输及其处理分析,来识别物体的属性及其分布等特征。
2、遥感技术的特点:从不同高度的平台上,使用各种传感器,接收来自地球表层各类地物的各种电磁波信息,并对这些信息进行加工(分析)处理,从而对不同的地物及其特(征)性进行远距离的探测和识别的综合技术。
宏观性、综合性:覆盖范围大、信息丰富。
一景TM影像为185×185平方公里;影像包含各种地表景观信息,有可见的,也有潜在的;多波段性:波段的延长使对地球的观测走向了全天候;多时相性:重复探测,有利于进行动态分析。
3、遥感技术组成遥感平台:装载传感器的运载工具:近地面平台、航空平台、航天平台;传感器:传感器是遥感技术系统的核心部分,记录地物电磁波能量的装置。
地面控制系统:地面指挥和控制传感器与平台,并接收信息的系统4、遥感过程:遥感实验、信息的获取、信息的接收、信息的处理、信息的应用。
5、遥感发展史:初级阶段:完成了地面到空中获取像片的手段;对象片的几何特性、物理特性尚未深入研究。
发展阶段:成像技术成熟(彩色、雷达、多光谱);平台多样(气球、飞机、火箭);出现判读仪器(放大、缩小等);对象片的几何特性、物理特性有一定的认识;主要用于军事侦察、地形测图。
飞跃阶段:成像覆盖面积大,基本全球成像,获取速度快,传感器技术成熟,应用范围广,实现五个W,即:Whoever, Wherever, Whenever, Whomever, Whatever航天遥感技术成熟标志:1972年美国发射ERTS—1(Earth Remote Technology Satellite,后改为Landsat系列卫星);法国SPOT系列卫星;欧空局ERS系列卫星;印度IRS卫星;日本、巴西等6、遥感技术发展趋势进行地面遥感、航空遥感、航天遥感的多层次遥感试验,系统地获取地球表面不同比例尺,不同地面分辨力的影像数据。
(完整word版)遥感重点
一、填空题微波是指波长在1mm—1m之间的电磁波。
就遥感而言,被动遥感主要利用可见光、红外等稳定辐射,使太阳活动对遥感的影响减至最小。
1999 年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原卫星发射中心发射成功。
Landsat和SPOT的传感器都是光电成像类的,具体是光机扫描仪、 CCD阵列(列出具体传感器类型) SPOT-1、2、3卫星上携带的HRV——高分辨率可见光扫描仪,可以作两种观测:垂直观测、倾斜观测SPOT 卫星的优势所在。
美国高分辨率民用卫星有IKONOS、Quick birdSAR的中文名称是合成孔径雷达,它属于主动(主动/被动)遥感技术.雷达的空间分辨率可以分为两种:空间分辨率、距离分辨率灰度重采样的方法有:最近邻法、双线性内插法、三次卷积法我们使用四种分辨率来衡量传感器的性能,具体是:空间分辨率、光谱分辨率、时间分辨率、温度分辨率数字图像增强的主要方法有:对比度变换;空间滤波;彩色变换;图像运算;多光谱变换。
地物的空间关系主要表现为:方位,包含,相邻,相交,相贯.地质遥感包括:岩性识别,地质构造的识别,构造运动的分析遥感系统包括:目标物的电磁波特性,信息的获取,信息的接收,信息的处理,信息的应用.按遥感传感器的探测波段分为:紫外遥感,可见光遥感,红外遥感,微波遥感,多波段遥感。
大气散射分为:米氏散射,瑞利散射,无选择性散射。
常用的锐化方法有:罗伯特梯度,索伯尔梯度,拉普拉斯算法,定向检测。
目标地物识别特征包括:色调,颜色,阴影,形状,大小,纹理,图型,空间位置,相关布局。
高光谱遥感应用于植被研究的主要技术方法有:多元统计分析技术,基于光谱波长位置变量的分析技术,光学分析模型,参数成图技术.遥感影像变形的原因有:遥感平台位置和运动状态变化的影响、地形起伏的影响、地球表面曲率的影响、大气折射的影响、地球自转的影响。
平滑是为了达到:去除噪声热红外影像上的阴影是:目标地物与背景之间辐射差异造成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:绪论1.遥感概念:遥远的感知广义:遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。
狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感系统:目标物的电磁波谱特性:信息源信息的获取:传感器、遥感平台信息的接收:传输与记录信息的处理:信息恢复、辐射校正、图像变换信息的应用:信息获取的目的3.遥感分类按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感按传感器的探测波段分:紫外遥感(0.05-0.38)可见光遥感(0.38-0.76)红外遥感(0.76-1000)微波遥感(1mm-10m)多波段遥感(波段在可见光和红外波段内的窄波段)按工作方式分:主动遥感和被动遥感、成像遥感和非成像遥感按遥感的应用领域分:外层空间遥感、大气层遥感、陆地遥感、海洋遥感等资源遥感、环境遥感、气象遥感、农业、林业、渔业、水质、水文遥感···4.遥感的特点大面积的同步观测:遥感平台越高,视角越宽广,观测范围越广;不受地形阻隔时效性:短时间内对同一地区进行重复探测、对天气预报、水灾火灾、军事作用数据的综合性和可比性:红外遥感昼夜均可探测、微波遥感全天探测,由于探测波段、成像方式、成像时间、数据记录可按照要求设计,使其获得的数据具有同一性、相似性,加上传感器都可兼容,所以数据具有可比性经济性:与传统方法相比,大大减少人力、物力、财力和时间局限性:目前遥感技术所利用的电磁波还有限,仅是其中几个波段范围;对许多地物的某些特征不能准确反映;信息的提取方法、挖掘技术不够完善第二章:电磁辐射基础1.电磁波谱与电磁辐射电磁波谱:电磁波在真空中传播的波长或频率按递增或递减排列波谱以频率从高到低排列可划分为γ射线、X射线、紫外线、可见光、红外线、无线电波。
紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。
可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。
红外线:波长范围为0.76~1000μm,根据性质分为近红外、中红外、远红外和超远红外。
近红外:0.76~3.0µm,与可见光相似。
中红外:3.0~6.0µm,地面常温下的辐射波长,有热感,又叫热红外。
远红外:6.0~15.0µm,地面常温下的辐射波长,有热感,又叫热红外。
超远红外:15.0~1000µm,多被大气吸收,遥感探测器一般无法探测。
微波:波长范围为1 mm~1 m,穿透性好,不受云雾的影响。
无线电波:波长范围10-3 ~ 104m之间,主要用于广播、通信等方面。
黑体辐射:黑体是绝对黑体的简称,指在任何温度下,对各种波长的电磁辐射的吸收系数恒等于1(100%)的物体。
黑体的热辐射称为黑体辐射。
普朗克辐射定律:普朗克定义了一个常数(h),给出了黑体辐射的能量(Q)与频率(υ)之间的关系: Q=h·υ斯特潘-玻尔兹曼定律:对普朗克定律在全波段内积分,得到斯蒂芬-玻尔兹曼定律。
辐射通量密度随温度增加而迅速增加,与温度的4次方成正比。
W=σT^4维恩位移定律:黑体辐射的峰值波长λmax与绝对温度T的乘积是常量,即:λ·T=b基尔霍夫定律:给定温度下,任何地物的辐射通量密度W与吸收率α之比是常数,即等于同温度下黑体的辐射通量密度。
ε=α(λ,T)=M(λ,T)/Mb(λ,T)太阳辐射:太阳光谱相当于6000 K的黑体辐射;太阳辐射的能量主要集中在可见光,其中0.38 ~0.76 µm的可见光能量占太阳辐射总能量的46%,最大辐射强度位于波长0.47µm左右;到达地面的太阳辐射主要集中在0.3 ~ 3.0 µm波段,包括近紫外、可见光、近红外和中红外;经过大气层的太阳辐射有很大的衰减;各波段的衰减是不均衡的。
大气概况:从地面大气上界,大气的结构分为对流层、平流层、电离层、大气外层大气的吸收作用:大气中的各种成分对太阳辐射选择性吸收,形成太阳辐射的大气吸收带大气的散射作用:大气散射主要有三种瑞利散射:d <<λ米氏散射:d ≈λ非选择性散射:d >>λ,散射主要发生在可见光区大气窗口:由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不同,因而各波段的透射率也各不相同。
我们就把受到大气衰减作用较轻、透射率较高的波段叫大气窗口主要大气窗口与遥感应用:三种基本遥感模式:可见光/近红外遥感:传感器记录地球表面反射太阳辐射的能量,此类遥感主要集中在可见光和近红外波段热红外遥感:传感器记录地表自身所发射的辐射能量,此类遥感主要集中在热红外波段主动遥感:传感器自身发射出能量,然后探测并记录地表对该能量的反射(被动遥感:探测仪直接接收外界辐射源的辐射信息)太阳辐射与地表的相互作用:到达地面的太阳辐射能量=反射能量+吸收能量+透射能量地表反射的太阳辐射成为遥感记录的主要辐射能量。
一般而言,绝大多数物体对可见光都不具备透射能力,而有些物体如水,对一定波长的电磁波则透射能力较强,特别是0. 45~ 0.56μm的蓝绿光波段。
一般水体的透射深度可达10~20 m,清澈水体可达100 m的深度。
地表吸收太阳辐射后具有约300 K的温度,从而形成自身的热辐射,其峰值波长为9.66 μm,主要集中在长波,即6μm以上的热红外区段。
地表自身热辐射:温度一定时,物体的热辐射遵循基尔霍夫定律。
地物的发射率与地表的粗糙度、颜色和温度有关。
表面粗糙、颜色暗,发射率高,反之发射率低。
地物的辐射能量与温度的四次方成正比,比热、热惯性大的地物,发射率大。
如水体夜晚发射率大,白天就小。
探测地物的热辐射特性的热红外遥感在夜间和白天进行的结果是不同的。
热红外遥感探测的地物热辐射量用亮度温度表示,它不同于地面温度,是接收的热辐射能量的转换值,图像上表示为亮度。
地物反射波谱特征:物体的反射有镜面反射、漫反射、实际物体反射地物反射波谱曲线:反射率随波长变化的曲线--植被、土壤、水体、岩石第三章:遥感成像原理与遥感图像特征遥感图像三方面特征,几何、物理和时间特征,分别对应空间、光谱、辐射和时间分辨率空间分辨率:图像的空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。
波谱分辨率:是指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。
间隔愈小,分辨率愈高。
不同波谱分辨率的传感器对同一地物探测效果有很大区别。
成像光谱仪在可见光至红外波段范围内,被分割成几百个窄波段,具有很高的光谱分辨率,从其近乎连续的光谱曲线上,可以分辨出不同物体光谱特征的微小差异,有利于识别更多的目标,甚至有些矿物成分也可被分辨。
传感器的波段选择必须考虑目标的光谱特征值,才能取得好效果。
辐射分辨率:传感器接收波谱信号时,能分辨的最小辐射度差。
在遥感图像上表现为每一像元的辐射量化级。
某个波段遥感图像的总信息量Im由空间分辨率(以像元数n表示)与辐射分辨率(以灰度量化级D表示)有关,以bit为单位,可表达为I m= n·log2D在多波段遥感中,遥感图像总信息量还取决于波段数k。
k个波段的遥感图像的总信息量为A:图像对应的地面面积;P:图像的空间分辨率时间分辨率:指对同一地点进行遥感来样的时间间隔,即采样的时间频率,也称重访周期。
遥感的时间分辨率范围较大。
以卫星遥感来说,静止气象卫星(地球同步气象卫星)的时间分辨率为 1次/0.5小时;太阳同步气象卫星的时间分辨率 2次/天;Landsat为1次/16天;中巴(西)合作的CBERS为1次/26天等。
还有更长周期甚至不定周期的。
传感器:是收集、探测、记录地物电磁波辐射信息的工具。
它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。
传感器组成:基本上都由收集器、探测器、处理器、输出器等4部分组成,收集器:收集来自目标地物的电磁波能量。
探测器:将收集的辐射能转变成化学能或电能。
处理器:将探测后的化学能或电能等信号进行处理。
输出器:输出获得的图像、数据。
传感器的分类:工作方式分为主动式和被动式传感器;记录方式分为成像方式和非成像方式传感器;成像原理分为摄影方式、扫描方式传感器和雷达。
主动方式传感器:侧视雷达、激光雷达、微波辐射计。
被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM、 HRV、红外扫描仪等遥感平台:是搭载传感器的工具。
根据运载工具的类型,可分为航天平台、航空平台和地面平台。
航天遥感平台目前发展最快,应用最广。
根据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。
虽然不同的卫星系列所获得的遥感信息常常对应于不同的应用领域,但在进行监测研究时,常常根据不同卫星资料的特点,选择多种平台资料。
气象卫星:1低轨为太阳同步轨道,一日两次扫描同一地点数据;高轨为地球同步轨道,静止卫星,每半小时获取一次数据。
2短周期重复观测,0.5h/次和0.5-1天/次。
3成像面积大,有利于获得宏观同步信息,减少数据处理容量。
4资料来源连续、实时性强、成本低。
运用于天气分析和预报、气候研究和气候变迁的研究、资源环境等领域。
陆地卫星:landsat、SPOT、中国资源一号卫星-中巴地球资源卫星CBERS、其他(HCMM```)海洋卫星:海洋具有面积大、反射性强、透明性差异···海洋遥感特点:需要高空和空间的平台,已进行大面积同步覆盖的观测、以微波为主、电磁波与激光声波的结合是扩大海洋遥感探测手段的一条新路、海面实测资料的校正。
海洋卫星主要有:seasat1、雨云七号卫星、日本海洋观测卫星MOS1、欧空局ERS、加拿大雷达卫星RADARSAT高光谱遥感:指利用很多很窄的电磁波波段获得观测目标的相关信息。
高光谱遥感基于许多很窄的光谱通道进行对地观测微波遥感与成像:在电磁波谱中,波长在1mm~1m的波段范围称微波。
该范围内又可再分为毫米波、厘米波和分米波。
在微波技术上,还可将厘米波分成更窄的波段范围,并用特定的字母表示微波遥感是指通过微波传感器获取从目标地物发射或反射的微波辐射,经过判读处理来识别地物的技术。
微波遥感的特点:1、能全天候、全天时工作:可见光遥感只能在白天工作,红外遥感虽可克服夜障,但不能穿透云雾。
2、对某些地物具有特殊的波谱特征:许多地物间,微波辐射能力差别较大,因而可以较容易地分辨出可见光和红外遥感所不能区别的某些目标物的特性。