第8章 z变换离散时间系统的z变换分析

合集下载

离散时间信号及其Z变换

离散时间信号及其Z变换

离散时间信号及其Z变换离散时间信号是信号与时间变量在一系列离散时间点上取值的函数,它在数字信号处理中有着重要的应用。

离散时间信号与连续时间信号类似,也可以通过不同的数学工具进行分析和处理。

其中,Z变换是离散时间信号的重要工具之一。

离散时间信号是在一系列离散时间点上取值的函数,这些离散时间点可以是整数、实数或复数。

离散时间信号通常用序列表示,即按一定顺序排列的值的集合。

离散时间信号可以是有限长度的,也可以是无限长度的。

离散时间信号在很多领域都有广泛的应用,包括通信、控制系统、数字图像处理等。

在通信系统中,信号可以是传输数据的形式,例如音频信号、视频信号等。

在控制系统中,离散时间信号可以作为控制信号,用于调整系统的状态和输出。

在数字图像处理中,图像可以被表示为二维离散时间信号,通过对其进行处理,可以实现图像的增强、压缩等功能。

Z变换是一种重要的工具,能够将离散时间信号从时域转换到复频域。

Z变换本质上是一种数学变换,它将离散时间信号转换为复平面上的函数。

Z变换的定义是通过对离散时间信号的每个样本点进行加权求和得到。

离散时间信号的Z变换可以表示为:X(z) = ∑[x(n) * z^(-n)] (n从负无穷到正无穷)其中,X(z)是离散时间信号X(n)的Z变换,x(n)是离散时间信号X(n)在时间点n上的取值,z是复平面上的变量。

通过Z变换,我们可以将离散时间信号转换到复频域,从而可以进行频域分析和处理。

在Z平面上,可以通过观察X(z)的性质来分析离散时间信号的频域特性,例如振幅谱、相位谱等。

我们还可以通过对Z变换进行逆变换,将离散时间信号恢复到时域。

Z变换的性质包括线性性、平移性、时域乘法、频域卷积等。

这些性质使得Z变换在信号处理中有着广泛的应用。

通过Z变换,我们可以分析离散时间系统的稳定性、频率响应、脉冲响应等。

此外,Z变换还可以用来设计离散时间系统,例如数字滤波器的设计等。

总结来说,离散时间信号及其Z变换在数字信号处理中起着重要的作用。

信号与系统 z变换

信号与系统 z变换

信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。

本文将介绍信号与系统中的z变换原理及应用。

一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。

在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。

它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。

z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。

通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。

此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。

二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。

通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。

2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。

我们可以通过分析代数方程的根的位置,判断系统的稳定性。

如果差分方程的根都在单位圆内,说明系统是稳定的。

3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。

通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。

4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。

通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。

然后再通过z逆变换将离散时间信号重构为连续时间信号。

5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。

通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。

z变换是信号与系统分析中非常重要的工具。

离散时间系统与z变换简介

离散时间系统与z变换简介

离散时间系统与z变换简介离散时间系统是一种在时间轴上以离散方式运行的系统。

在这种系统中,信号的取样是在特定的时间间隔内进行的,而不是连续地采样。

离散时间系统可以用于模拟实际世界中的许多系统,如数字信号处理、数字滤波器和控制系统等。

离散时间系统的数学表达通常使用z变换。

z变换是一种将离散时间信号转换为复平面上的函数的变换。

它与连续时间系统中的拉普拉斯变换类似,但在z变换中,时间是用离散的步长表示的。

z变换将离散时间系统中的差分方程转换为复平面上的代数表达式,从而方便了对系统的分析和设计。

在离散时间系统中,信号和系统的运算通常使用差分方程进行描述。

差分方程是一种递推关系,它将当前时间步的输入和输出与其之前的时间步的输入和输出之间建立起关联。

z变换提供了一种将这些差分方程转换为代数方程的方法,从而可以更方便地分析系统的特性。

使用z变换,可以计算离散时间系统的频率响应、稳定性和传输函数等重要性质。

频率响应描述了系统对不同频率输入的响应。

稳定性判断了系统是否能够产生有界的输出,而传输函数则表示系统输入和输出之间的关系。

总结来说,离散时间系统是一种以离散方式运行的系统,可以使用z变换进行数学建模和分析。

z变换将离散时间信号和系统转换为复平面上的函数,方便了对系统的频率响应、稳定性和传输函数等特性进行研究。

离散时间系统和z变换在数字信号处理和控制系统等领域具有广泛的应用。

离散时间系统是现代通信、信号处理、控制系统等领域中的核心概念之一。

离散时间系统可以通过对输入信号进行离散采样,以特定的时间间隔获取信号的采样值,从而实现在离散时间点上对信号进行处理和操作。

与连续时间系统不同,离散时间系统的输入和输出信号在时间上都是离散的。

离散时间系统的分析和设计常常采用差分方程描述。

差分方程是一种递推关系,它表达了当前时间步的输入和输出与之前时间步的输入和输出之间的关系。

在离散时间系统中,z变换是一种非常重要的数学工具。

z变换将离散时间信号转换为复平面上的函数,从而方便了对离散时间系统进行数学建模和分析。

第八章-Z变换与离散系统z域分析

第八章-Z变换与离散系统z域分析

第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。

2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。

♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。

信号与系统_第八章 z变换、离散时间系统的z域分析

信号与系统_第八章 z变换、离散时间系统的z域分析

Re(z)
C是包围X(z)zn-1所有极点之逆时针闭合积分路线,通常选 择z平面收敛域内以原点为中心的圆。
➢ 求X(z)的反z变换的三种方法 ✓留数法 ✓幂级数展开和长除法 ✓部分分式展开法
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(1)
✓ 步骤 (1)将X(z)除以z,得到X(z)/z=X1(z); (2)将X1(z)按其极点展成部分分式(其方法与拉氏变换 的部分分式展开完全一致);
3.x(n)为左边序列
x(n)是无始有终的序列,即当n n2 时, x(n)=0 。
X (z)
n2
x(n)
z
n
x(n)z n
jIm(z)
n
n n2
✓若n20,0z RX2
0
RX2 Re(z)
✓若n20,0z RX2
中国民航大学 CAUC
8.2 z变换的收敛域
4.x(n)为双边序列
x(n)是从n =延伸到n = 的序列 。
(3)X(z)=zX1(z),得到X(z)的部分分式展开式;
(4)对X(z)的每一个部分分式进行反z变换,就得到X(z) 对应的序列x(n)。
[例]求 X (z)
z2
( z 1) 的逆z变换。
(z 1)( z 0.5)
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(2)
[例]求收敛域分别为z1和 z1 两种情况下, X (z) 1 2z 1
➢X(z)收敛域的确定必须同时依赖于 ✓ 序列的性质(有限长,右边,左边,双边) ✓ 是对x(n)进行单边还是双边z变换 ✓ X(z)的极点
中国民航大学 CAUC

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

Z变换及其在离散系统中的应用

Z变换及其在离散系统中的应用

Z变换及其在离散系统中的应用Z变换是一种在信号处理和控制系统中广泛应用的数学工具。

它可以将离散时间信号转换为连续复平面上的函数,从而方便进行系统分析和设计。

本文将介绍Z变换的定义及其在离散系统中的应用。

一、Z变换的定义Z变换是一种将离散时间信号转换为连续复平面上的函数的数学变换方法。

它可以将离散时间信号转换为Z域中的复函数,为信号处理和控制系统的研究提供了便利。

Z变换的定义如下:X(z) = ∑[x(n) * z^(-n)]其中,X(z)是Z变换的结果,x(n)是离散时间信号,z是复平面上的复数。

在Z变换中,z的取值是复平面上的任意一点。

通过改变z的取值,可以得到不同的频域特性。

常见的选取方式有单位圆上的点、单位圆内的点以及单位圆外的点等。

二、Z变换的性质Z变换具有许多有用的性质,这些性质对于分析和设计离散系统非常有帮助。

以下是Z变换的几个重要性质:1. 线性性质:Z变换是线性的,即对于信号的和或差的Z变换等于该信号的Z变换的和或差。

2. 移位定理:对于离散时间序列,将序列向右或向左移动n个单位时,其Z变换结果乘以z的-n次方。

3. 初值定理:序列的初始值等于其Z变换在z=1处的值。

4. 终值定理:序列的最终值等于其Z变换在z=0处的值。

5. 延时定理:将序列推迟n个单位时,其Z变换结果乘以z的n次方。

三、Z变换在离散系统中的应用Z变换在离散系统中有广泛的应用。

它可以用来描述系统的传递函数,进而进行系统的分析和设计。

以下是几个常见的应用场景:1. 系统稳定性分析:通过对系统的传递函数进行Z变换,可以得到系统在Z域中的极点分布。

通过判断极点的位置,可以判断系统的稳定性。

2. 频率响应分析:通过将频域信号进行Z变换,可以得到系统在Z 域中的频率响应。

通过分析频率响应,可以了解系统对不同频率信号的特性。

3. 离散滤波器设计:Z变换可以用来分析和设计离散滤波器。

通过对滤波器的输入输出进行Z变换,可以得到滤波器的传递函数,并基于传递函数进行进一步设计和优化。

Z域变换分析方法

Z域变换分析方法
[1 0.7 z 0.1z ]Y ( z) 0.7 y(1) 0.1z y(1) 0.1y(2)
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )

因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0

n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。

离散时间系统是指信号的取样点在时间上离散的系统。

而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。

Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。

Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。

通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。

系统的传递函数是指系统的输出与输入之间的关系。

在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。

通过Z变换可以对离散时间系统进行频域分析。

频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。

频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。

Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。

其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。

这个性质说明Z变换对线性系统是可加性的。

2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。

这个性质说明Z变换对系统的时移(时延)是敏感的。

3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第8章 z变换、离散时间系统的z域分

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第8章 z变换、离散时间系统的z域分

(7)
X
z
1 2
n
u
n
u
n
10
z
n
9 n0
1 2
n
z
n
9 n0
1 2z
n
1
1 2z
1 1
10
z 0
2z
X(z)的零、极点分布图如图 8-2-1(g)所示。
(8)
8 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平

X
z
n台
1 2
圣才电子书
十万种考研考证电子书、题库视频学习平


第 8 章 z 变换、离散时间系统的 z 域分析
8.1 复习笔记
从本章开始陆续讨论 Z 变换的定义、性质以及它与拉氏变换、傅氏变换的联系。在此 基础上研究离散时间系统的 z 域分析,给出离散系统的系统函数与频率响应的概念。通过 本章,读者应掌握对于离散时间信号与系统的研究,是先介绍 z 变换,然后引出序列的傅 里叶变换以及离散傅里叶变换(第九章)。
4 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平


于实轴的直线映射到 z 平面是负实轴;
(3)在 s 平面上沿虚轴移动对应于 z 平面上沿单位圆周期性旋转,每平移 ωs,则沿
单位圆转一圈。
2.z 变换与拉氏变换表达式
Z
x nT X z zesT X s Z
n
u
n
1 3
n
u
n
z
n
n
(3)
X
z
n
1 3
n
u
n
z
n
n0

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种将离散时间信号转换为复平面上的函数的数学工具。

它在离散时间系统的分析和设计中起着重要的作用。

本文将介绍Z变换的定义、性质,以及如何利用Z变换分析离散时间系统。

1.Z变换的定义:Z变换可以将离散时间信号转换为复平面上的函数。

假设有一个离散时间信号x[n],经过Z变换得到的函数为X(z)。

其定义为:X(z)=Z{x[n]}=∑(x[n]*z^(-n))其中,z是复变量,n为离散时间点。

2.Z变换的性质:Z变换具有许多重要的性质,其中一些性质与连续时间傅里叶变换类似,另一些则是离散时间系统的特有性质。

(1)线性性质:如果x1[n]和x2[n]是离散时间信号,a和b是常数,则有:Z{a*x1[n]+b*x2[n]}=a*X1(z)+b*X2(z)(2)平移性质:如果x[n]的Z变换是X(z),那么x[n-m]的Z变换是z^(-m)*X(z)。

这意味着在离散时间域上的平移,在Z变换域上相当于乘以z的负幂次。

(3)初值定理和终值定理:如果x[n]的Z变换是X(z),则有:x[0] = lim(z->∞) X(z)x[-1] = lim(z->0) X(z)(4)共轭对称性:如果x[n]的Z变换是X(z),那么x*[n](x[n]的共轭)的Z变换是X*(z)(X(z)的共轭)。

(5)频率抽样定理:如果x(t)是带限信号,那么它的频谱可以通过对x[n]进行离散化来获得,即X(jω)=X(e^(jωT)),其中T是采样间隔。

3.离散时间系统的分析:利用Z变换,可以对离散时间系统进行分析和设计。

通常,我们可以将离散时间系统看作是一个线性差分方程,通过对该差分方程进行Z变换,可以得到系统的传输函数H(z)。

离散时间系统的输入输出关系可以表示为:Y(z)=H(z)*X(z)其中,Y(z)为输出信号,X(z)为输入信号,H(z)为系统的传输函数。

通过分析传输函数H(z),我们可以确定系统的稳定性、频率响应、相位特性等。

z变换知识点总结

z变换知识点总结

z变换知识点总结一、引言在信号处理领域中,z变换(Z-transform)是一种重要的数学工具,用于分析和处理离散时间信号。

与连续时间信号相对应的拉普拉斯变换用于处理连续时间信号,而z变换则用于处理离散时间信号。

z变换可以将离散时间信号转换为复变量域中的复数函数,从而更容易地进行信号分析和处理。

本文将对z变换的基本概念、性质、逆z变换、收敛域、z变换与拉普拉斯变换的关系以及在数字滤波器设计中的应用等知识点进行总结和讨论。

二、z变换的基本概念1. 离散时间信号的z变换对于一个离散时间信号x[n],其z变换定义如下:X(z) = Z{x[n]} = ∑(n=-∞ to ∞) x[n] z^(-n)其中,z是一个复数变量,n为离散时间序列,x[n]是每个时间点上的信号值。

2. z变换的双边z变换和单边z变换双边z变换定义在整个序列上,包括负无穷到正无穷的所有时间点。

而单边z变换定义在0和正无穷之间的时间点上,通常用于信号的因果系统的分析。

3. z域表示z变换把离散时间信号的时域表示转换为z域表示。

z域是复平面上的一种表示,其中z = a + jb,其中a为实部,b为虚部。

z域表示包含了离散时间信号的频率、相位和幅值信息。

三、z变换的性质1. 线性性质类似于连续时间信号的拉普拉斯变换,z变换也具有线性性质,即对于任意常数a和b,有Z{a x1[n] + b x2[n]} = a X1(z) + b X2(z)。

这意味着z变换对于信号的线性组合保持封闭性。

2. 移位性质类似于连续时间信号的移位特性,z变换也具有移位性质,即Z{x[n-k]} = z^(-k) X(z),其中k是任意常数。

这意味着z变换对于离散时间信号的时移操作具有相应的变换规律。

3. 初值定理和终值定理z变换有类似于连续时间信号的初值定理和终值定理。

初值定理表示当n趋向负无穷时,z变换为Z{x[0]}。

终值定理表示当n趋向正无穷时,z变换为Z{x[∞]}。

离散系统的Z变换

离散系统的Z变换

4)
] z 1/
4
Re
s[
(4
z n1 z)(z 1/
4)
]z4
1 (4n 4n2 ), n 0 15
•当n 0时,围线的外部没有极点,留数为零。
28
如何选择围线内、围线外极点
• 根据收敛域确定序列的类型 • n的取值范围(分子的幂次) • 分子在z=0处是否产生高阶极点:
上例中n<0计算左边序列时,由于分子Zn产 生高阶极点,计算烦琐,可选择围线外极 点计算留数,但注意公式前面的符号。 • 一般可以直接用围线内极点计算右边序列; 用围线外极点计算左边序列。
x(n) 1
z2
z n1dz 1
z n1 dz
2j c(4 z)(z 1/ 4)
2j c(4 z)(z 1/ 4)
围线c为X (z)收敛域内的闭合曲线,包含了两个极点。
•当n (0 因果序列)时,在c内有z 1/ 4和z 4二个极点,
用内部极点求留数:
x(n)
Re
s[
(4
z n1 z)(z 1/
x(n)
Re
s[
(4
z
z n1 )(z
1
/
4)
]z
1/
4
[( z
1/
4)
(4
z n1 z)(z 1/
4) ]z1/ 4
1 15
(1/
4)n , n
1
1 (1/ 4)n u(n 1)
15
26
•当n 2时,在c外部只有z 4一个极点,
而在c内部,除z 1/ 4外,分子zn1
在z 0处产生高阶极点,用外部极点求留数:
因此收敛域是整个z平面。

z变换总结

z变换总结

z变换总结什么是z变换z变换是一种在信号处理和控制系统中广泛使用的数学工具,用于在z平面上对离散信号进行分析和处理。

它可以将一个离散时间序列转换为复平面上的函数,从而使得离散信号的频域特性能够被研究和分析。

z变换的公式表示如下:$$ X(z) = \\sum_{n=-\\infty}^{\\infty}{x(n) \\cdot z^{-n}} $$其中,X(z)是信号的z变换,x(n)是离散时间信号。

z变换的性质z变换具有一些重要的性质,这些性质有助于简化信号处理过程,并且在频域分析中提供了有用的工具。

线性性质z变换是线性的,即对于任意常数a和b,满足以下等式:$$ a \\cdot X_1(z) + b \\cdot X_2(z) = a \\cdot \\sum_{n=-\\infty}^{\\infty}{x_1(n) \\cdot z^{-n}} + b \\cdot \\sum_{n=-\\infty}^{\\infty}{x_2(n) \\cdot z^{-n}} $$移位性质当信号在时间域中发生平移时,其在z变换中的表示也会相应地发生平移。

假设信号x(n)的z变换为X(z),那么对于平移k个单位的信号x(n−k),其z变换为$z^{-k} \\cdot X(z)$。

延时性质信号在时间域中的延时操作可以通过z变换的乘法操作来表示。

假设信号x(n)的z变换为X(z),那么对于延时k个单位的信号x(n+k),其z变换为$z^{k}\\cdot X(z)$。

单位样本响应性质单位样本是一个离散时间信号,只在n=0处取值为1,其它时刻均为0。

单位样本的z变换表示为X(z)=1。

倒置性质信号在时间域中的倒置操作可以通过z变换的操作来表示。

假设信号x(n)的z变换为X(z),那么倒置后的信号x(−n)的z变换为X(z−1)。

z变换与傅里叶变换的关系z变换是傅里叶变换的离散形式,通过在z平面上进行积分,可以将离散信号转换为连续信号,从而进行频域分析。

第8章 z变换离散时间系统的z变换分析

第8章 z变换离散时间系统的z变换分析
1 z Z[u( n)] u( n)z z -1 1 z z 1 n 0 n 0
-n -n
收敛域 为 z >1
3. 斜变序列
间接求 解方法 已知 两边对(z -1)求导
两边乘(z -1)

同理,两边再求导,得

4. 指数序列
x(n) a n u(n)
运用留数定理来进行运算。又称为留数法,即
f (n) Res[F ( z )z n1 ]z pm
m
略!
二、幂级数展开法(长除法)
F ( z ) f (n)z n f (0) f (1)z 1 f ( 2)z -2
n 0


一般为变量z的有理分式,可用长除法,

s = 2,
例题 解
求x(n) = ?


见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性 若 x(n) ←→ X(z) y(n) ←→ Y(z)

Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
ax(n) + by(n) ←→ aX(z) + bY(z)
F ( z ) f (0) f (1) z 1 f (2) z 2
所以
f (0) 0, f (1) 1, f (2) 0, f (3) 3, f (4) 4,
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) (|z|>R) ← Z → x(n)
对于N阶LTI离散系统的差分方程:

第八章z变换

第八章z变换
收 敛 域 的 说 明 : 单 边 变 换 中 序 列 与 变 换 式 、 收 敛 域 唯 一 对 应 ; 双 边 变 换 中 序 列 与 变 换 式 、 收 敛 域 不 唯 一 对 应 。
Z变换的收敛域
级 数 收 敛 的 充 分 条 件 :
x(n)z-n
n=-
(1)比值判定法:设一个正项级数an , n=- 令其lni m aann+1 则当1时,级数收敛; 当1时,级数发散。
则 X ( z ) Z 1 x (n )=1 X ( z ) zn 1 d z 2j C
其 中 C是 包 围X(z)zn-1所 有 极 点 的 逆 时 针 闭 合 路 线
二、求逆Z变换方法
逆Z变换
1 ) 围 线 积 分 法 : 借 助 复 变 函 数 的 留 数 定 理
X ( z ) Z 1 x ( n ) =R e s X ( z ) z n 1
二、 典型序列的Z变换
(n)
1 单 位 样 值 序 列 ( n )Z 1
1
2 单 位 阶 跃 序 列 u (n )Z z , z1
z1
0
n
u (n)
1
3 斜 变 序 列 n u (n )Z zz12 , z1 0
n
典型序列的Z变换
4 单 边 指 数 序 列 a n u ( n ) Z z
则 该 级 数 收 敛 .其 中 R x10,R x2< . 可 见 ,
双 边 序 列 的 收 敛 域 是 以 半 径 为 R x 1 和 R x 2 之 间 的 圆 环 部 分 .
作业
P103 8-1,8-2,8-3,8-12
第四节 逆z变换
一、逆Z变换
逆Z变换定义:

第八章1Z变换

第八章1Z变换
第七章主要内容:
1.离散时间信号-序列 2.离散时间系统的数学模型 3.常系数线性差分方程的求解 4.离散时间系统的单位样值(冲激)响应 5.卷积 6.反卷积
差分方程与微分方程的转换
差分方程与微分方程:
对连续y(t ), 若在t nT 各点取样值y(nT ), 且T 足够小
y(nT ) n 1 T dy(t ) y 则 dt T
小结
j Im[z]
有限长序列
Re[z ]
1 例:已知 x(n) [u (n) u (n 8)] 3 求其Z变换,并作出极零点图 ,画出收敛域。
n
j Im[z]
右边序列
Rx1
Re[z ]
1 例:已知 x(n) u (n) 3 求其Z变换,并作出极零点图 ,画出收敛域。
例:RC低通滤波器
dy(t ) Rc y (t ) x (t ) dt y (n 1) y (n ) RC y (n) x(n) T T T y (n 1) (1 ) y (n ) x(n) RC RC
课后习题7-26
差分方程可以解决很多实际中的离散问题 习题7-27:海诺塔问题
y(10) 1023
N-1个移动 N-1个移动
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个 古老传说的益智玩具(也说起源于越南河內附近一個 不知名小村庄的寺庙)。
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北 部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天 在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的 64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣 在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针 上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿 好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭, 而梵塔、庙宇和众生也都将同归于尽。

第八章 Z变换与Z域分析

第八章 Z变换与Z域分析

z (k ) z 1 z k 3 ( k 1) z 3
由线性性质得
|z|>1 |z|<3
z z 2z 4z F ( z) z 1 z 3 ( z 1)( z 3)
2
1<|z|<3
2、移位特性 (1)双边z变换 若f (k )是双边序列,其双边z变换为 f (k ) F ( z )
3<|z|<∞
根据时域乘ak性质,得
1 k F ( z ) Z [ f(k) Z f1 (k ) F1 (2 z ) ] 2 3 (2 z )2 4z2 2z 3 2z 3
2 k 0 1 k 2
z
k
z
2
z a 2 a 1 z 1 za
或者
a 2 z za
|z|>|a|
a 2 z F ( z ) Z [a k 2 ] Z [a a
例 8.2-3 已知f(k)=3k[ε(k+1)-ε(k-2)],求f(k)的双边Z变换

ZT [ e
n
z e j 0 z n j 0 n ZT [ e ] z e j 0 ZT [ cos0 n] ZT [ (e
n n j 0 n
j 0 n
]
z
e
j 0 n
) / 2]
z ( )/2 j 0 j 0 z e z e z ( z cos0 ) 2 z 2 z cos0 2 ( z )
Rx 2
6、双边序列 F ( z)
k
f (k ) z

k
f (k ) z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

略!
二、幂级数展开法(长除法)
! 一般为变量z的有理分式,可用长除法,
将变换式展开为幂级数的形式。
略! 例
解 进行长除
用长除法可得z -1的幂级 数。但得不到解析式
根据Z变换定义有 所以
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) ← Z → x(n)
(|z|>R)
8.4 逆z变换
定义: 由已知F(z)求f(n)的运算,称为逆Z变换。
记为 求逆变换方法
1、留数法 2、长除法 3、部分分式展开法(重点)
略!
一、围线积分法(留数法)
据单边Z反变换的积分公式,有
式中,C是包围
所有极点的逆时针闭合积
分路线,常选择z平面收敛域以原点为中心的圆。
因围线C包围了所有孤立奇点(极点),故此积分式可运 用留数定理来进行运算。又称为留数法,即

s平面上的单极点映射到z平面上,并不一定是单 极点。这是因为在s平面上,具有同样实部而虚部
相差 的两个极点映射到z平面上的极点都是
相同的。反之,z平面到s平面的映射是多值的。
8.7 利用z变换解差分方程
对于N阶LTI离散系统的差分方程:
X(n)为因果序列

输入信号 输入信号
初始条件 (已知)
6.5.1 零输入响 应
二、 典型序列的z变换
1. 单位样值序列δ(n)
2. 单位阶跃序列u(n)
收敛域 为Z平面
收敛域 为 z >1
3. 斜变序列
间接求 解方法
已知 两边对(z -1)求导
两边乘(z -1)

同理,两边再求导,得 …
4. 指数序列 求导
收敛域为
z > a
5. 单边正、余弦序列 由

根据欧拉公式 -
零输入响应(x(n)=0),即仅由系统初始储能引起的 响应。有
零输入响应
反z变换

x(n)=0,y(-1)=-1/b,求y(n)
解 激励x(n)=0,是零输入响应。对方程两边取Z变换

代入初始条件,得:

进行Z反变换,得:
6.5.2 零状态响 应
零状态响应是仅由激励引起的响应。当激励x(n)是因 果序列时,且初始条件为零(y(l)=0),有
三、序列线性加权(z域微分) 若
四、序列指数加权(z域尺度变换) 若
五、初值定理 若
且x(n)为因果序列,则
六、终值定理 若
且x(n)为因果序列,则
七、时域卷积定理 若
8.6 z变换与拉氏变换的关系
由连续函数拉氏变换,求离散函数Z变换,可将s代换为 ,有
可应用留数定理来计算:
Z变换和拉氏变换间的关系,还可由两者在z平 面和s平面上的极点间的映射关系表示:

单边定义为: 重点
双边定义为:
其中: z — 复变量
∵ z = e sT , s = + jΩ(拉氏变换→z变换)
∴ z = e ( + jΩ)T = e T + jΩT = e T e jΩT 令 |z| = e T , ΩT = ω,则有z = |z| e jω 其中:Ω模拟角频率, ω数字频率, T抽样间隔
(因果序列)
为了保证z = ∞处收敛,要求k ≥ r
1、X(z)只含一阶极点 将X(z) / z展为

式中 反变换为
例题 解
∴ ∴
求x(n) = ? 极点:z1 = -1, z2 = -2
2、X(z)含有重阶极点 设X(z)有M个一阶极点,在z = zi处有一个s阶极点

其中 反变换为
分子,当j≥2,从最后一项(n-j+2)一直递增乘到n
若 x(n)u(n) ←→ X(z)
x(n - m)u(n) ←→ z –m [ X(z) + 则
x(n + m)u(n) ←→ z m [ X(z) -
② x(n m)u(n) ←→ z –m [ X(z) ] 则
x(n + m)u(n) ←→ z m [ X(z) -
理想抽样:
单边x(t) = x(t)u(t)
抽样间隔
对上式取双边拉氏变换,得到
交换运算次序, 并利用冲激函数的 抽样性,得到抽样信号的拉氏变换为
令e sT = z 或 则有
相函数
—— z为复数变量(∵s = + jΩ)
T=1(归一化)
原函数
单边z变换
8.2 z变换定义、典型序列的z变换
一、 Z变换的定
2. 双边Z变换
Z变换的收敛域为
分若
,则收敛域为Z平面内圆心在原点、
析 外半径为 、内半径为 的一个圆环区域;否
则无收敛域,Z变换不存在。
同一个双边Z变换的表达式,其收敛域不同,也可能
! 对应于两个不同的序列。双边Z变换式必须注明其收
敛域,否则可能无法确定其对应的时间序列。
自习:P49,(8-17)和(8-18)两式
自习P62,例8-6 相加后零极点抵消,收敛域扩大,由|z|>a→全平面收敛
二、移位性(重要!重点右移位) 1、双边z变换 若 x(n) ←→ X(z) x(n - m) ←→ z -mX(z) 则 x(n + m) ←→ z mX(z)
2、单边z变换
自习P64,例8-8
① x(n)为双边序列,其单边z变换为
第8章 z变换离散时间系 统的z变换分析
2020年4月22日星期三
8.1 引言
一、 离散时间信号与系统的变换域分析
z变换 X(z)
z = e jω 有条件
序列的傅里叶变换X(e jω)
利用z变换求解离散系统的响应 利用离散系统函数H(z)分析系统 分析序列的频率特性 分析离散系统的频率响应特性
二、 抽样信号xs(t)的拉氏变换→z变换
例 s = 2,
例题 解
求x(n) = ?

∴ 见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性
若 x(n) ←→ X(z) y(n) ←→ Y(z)
Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
则 ax(n) + by(n) ←→ aX(z) + bY(z) max(Rx1,Ry1) < |z| < min(Rx2,Ry2)
8.3 z变换的收敛域(ROC )
1. 单边z变换 其幂级数收敛的条件可表示为:
(绝对可和条件)

解 根据Z变换定义,有
z变换存在的充要条件
只有当
,即
(圆外区域)
该无穷级数绝对收敛。即级数收敛的充要条件:
收敛条件
根据等比级数的求和公式,有
! 单边z变换的收敛域总是z平面内以原点为圆心
的一个圆的圆外区域。一般不注其收敛域。
相关文档
最新文档