(完整版)小学奥数中的数论问题

合集下载

小学奥数讲解 关于数论的问题

小学奥数讲解 关于数论的问题

奥数题讲解数论问题所用知识不超过小学5年级,题目难度5颗星。

a,b,c,d都是个位数,由它们组成的四位数abcd和两位数ab、cd满.足(ab+cd) *(ab+cd)=abcd。

请问满.足条件的四位数abcd共有多少个?答案: 3个。

辅导办法:将题目写给小朋友,让他自行思考解答,若20分钟还不能解答,由家长进行讲解。

讲解思路:这种类型的题目,关键是要寻找ab和cd的关系,再根据关系寻找满足条件的数。

步骤1:先思考第一个问题,ab+cd的范围是什么?这个问题很简单, 由于ab+cd的平方是四位数,而32*32=1024 ,99*99=9801,因此ab+cd在32到99之间。

步骤2:再思考第二个问题,db和cd满足什么关系?由题意,(ab+cd) *(ab+cd) =100*ab+cd,化简有(ab+cd)*(ab+cd-l)=99*ab 因此,(ab+cd) *(ab+cd-1)是99的倍数。

步骤3:再思考第二个问题,ab+cd可能的取值是多少?由于99=3*3*11,而(ab+cd)和(ab+cd-1)不可能同时是9的倍数,因此只可能有3种情况,结合步骤1中ab+cd的范围讨论。

情况一:ab+cd是9的倍数,ab+cd-1是11的倍数,此时只有ab+cd 是45才满足条件;情况二:ab+cd是11的倍数,ab+cd-1是9的倍数,此时只有ab+cd是55才满足条件;情况三:ab+cd或ab+cd-1是99的倍数,此时只有xb+cd是99才满足条件。

步骤4:综合上述几个问题,代入验证,45*45=2025=(20+25)*(20+25)55*55=3025= (30+25)*(30+25)99*99=9801= (98+1) *(98+1),都满足条件,所以满足条件的数是3个。

小学五年级奥数题:数论问题

小学五年级奥数题:数论问题
若甲取走若干袋乙取走若干袋最后剩下一袋已知甲取走的球数总和是乙的两倍剩下一袋内装有个球
小学五年级奥数题:数论问题
小学五年级奥数题:数论问题
小学五年级奥数题及答案:数论问题(中等难度)
有9个袋子里分别装有9,12,14,16,18,21,24,25,28只球。若甲取走ቤተ መጻሕፍቲ ባይዱ干袋,乙取走若干袋,最后剩下一袋,已知甲取走的球数总和是乙的两倍,剩下一袋内装有( )个球。
数论答案:
数论中的整除问题:
9+12+14+16+18+21+24+25+28=167.
设乙取的数量是X,则甲的`数量是2X,剩下的为a,则有,2X+X+a=167即
3X+a=167.利用同余的知识,167÷3余2,所以a÷3也要余2.即a=14.
【小结】利用整除的性质,能够快速的找到突破口。
一键复制全文
下载全文

(完整版)小学奥数知识点大全数论

(完整版)小学奥数知识点大全数论

(完整版)学校奥数学问点大全数论学校奥数学问点大全:数论问题1.奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2.位值原则形如:abc=100a+10b+c3.数的整除特征:整除数特征2末尾是0、2、4、6、83各数位上数字的和是3的倍数5末尾是0或59各数位上数字的和是9的倍数 11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25末两位数是4(或25)的倍数8和125末三位数是8(或125)的倍数7、11、13末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①假如c|a、c|b,那么c|(ab)。

②假如bc|a,那么b|a,c|a。

③假如b|a,c|a,且(b,c)=1,那么bc|a。

④假如c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。

5.带余除法一般地,假如a是整数,b是整数(b≠0),那么肯定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a÷b=q……r,0≤r<ba=b×q+r6.唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n=p1×p2×...×pk7.约数个数与约数和定理设自然数n的质因子分解式如n=p1×p2×...×pk那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的全部约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)…(1+Pk+Pk+…pk)8.同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(modm)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差肯定能被c整除。

小学奥数数论问题50道详解(一)

小学奥数数论问题50道详解(一)

小学奥数数论问题50道详解(一)
1. 问题描述
这是一份详细解答小学奥数数论问题的文档,包含了50道数论问题的解答方法和策略。

2. 解答内容
以下是其中的一些问题的解答概要:
1. 问题1:某数的末两位数是7,这个数能否被3整除?
解答:对于一个数能否被3整除,可以通过判断其所有位上数字之和是否能被3整除。

这里,末两位为7,所以无法确定这个数能否被3整除。

2. 问题2:某数的末两位数是12,这个数能否被4整除?
解答:对于一个数能否被4整除,可以通过判断它的末两位是否能被4整除。

这里,末两位数为12,12不能被4整除,所以该数也不能被4整除。

3. 问题3:某数的个位是7,十位是4,这个数能否被9整除?
解答:对于一个数能否被9整除,可以通过判断其所有位上数
字之和是否能被9整除。

这里,个位为7,十位为4,所以7+4=11,11不能被9整除,所以该数也不能被9整除。

4. 问题4:某数的末两位数字是0,这个数能否被5整除?
解答:对于一个数能否被5整除,可以直接判断其末位是否是
0或者5。

这里,末两位数字是0,所以这个数可以被5整除。

3. 结论
这份文档提供了小学奥数数论问题的详细解答,其中包含了50道问题的解答概要。

通过阅读这份文档,学生可以深入了解解决数
论问题的方法和策略,提高他们的数论问题解决能力。

小学奥数关于数论知识点的总结

小学奥数关于数论知识点的总结

小学奥数关于数论知识点的总结数论是纯粹数学的分支之一,主要研究整数的性质。

整数可以是方程式的解(丢番图方程)。

有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。

透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

以下是无忧考网整理的相关资料,希望对您有所帮助。

【篇一】1. 奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质①如果c|a、c|b,那么c|(a b)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。

5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q 为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a ÷b=q……r, 0≤r【篇二】分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 ×p2 ×...×pk约数个数与约数和定理设自然数n的质因子分解式如n= p1 ×p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

小学奥数数论50题

小学奥数数论50题

数论50题1.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少【分析】各位数字和为1+3+4+5+7+8=28所以偶数位和奇数位上数字和均为14为了使得该数最大,首位必须是8,第2位是7,14-8=6<那么第3位一定是5,第5位为1该数最大为875413。

2.请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个【分析】75=3×25^若被3整除,则各位数字和是3的倍数,1+2+5+7+8+9=32所以应该去掉一个被3除余2的,因此要么去掉2要么去掉8先任给一个去掉8的,17925即满足要求1)若去掉8则末2位要么是25要么是75,前3位则任意排,有3!=6种排法~因此若去掉8则有2*6=12个满足要求的数2)若去掉2则末2位只能是75,前3位任意排,有6种排法所以有6个满足要求综上所述,满足要求的五位数有18个。

}3.已知道六位数20□279是13的倍数,求□中的数字是几【分析】根据被13整除的判别方法,用末三位减去前面的部分得到一个两位数,十位是7,个位是(9-□),它应该是13的倍数,因为13|78,所以9-□=8□中的数字是14.@5.某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是(2005全国小学数学奥赛)【分析】可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除因此该数是[9,5,11]=495,因此符合条件的最小自然数是495。

6.一次考试中,某班同学有13考了优秀,12考了良好,17考了及格,剩下的人不及格,已知该班同学的人数不超过50,求有多少人不及格【分析】乍一看这应该是一个分数应用题,但实际上用到的却是数论的知识,由于人数必须是整数,所以该班同学的人数必须同时是2,3,7的倍数,也就是42的倍数,又因为人数不超过50,所以只能是42人,因此不及格的人数为(1-12-13-17)×42=1人7.|8.(1)从1到3998这3998个自然数中,有多少个能被4整除(2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除(第14届迎春杯考题)【分析】(1)3998/4=999….6所以1-3998中有996个能被4整除的(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的$因此我们考虑分组的方法我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位然后对这4000个数做如下分组(0000,1000,2000,3000)(0001,1001,2001,3001)《(0002,1002,2002,3002)…….(0999,1999,2999,3999)共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数但注意到我们补充了一个0000进去。

(完整版)小学奥数数论问题余数问题练习题.doc

(完整版)小学奥数数论问题余数问题练习题.doc

小学奥数数论问题余数问题练习题【五篇】分析:这个题没有告诉我们 ,这三个数除以这个数的余数分别是多少 ,但是因为所得的余数相同 ,根据性质 2,我们能够得到:这个数一定能整除这三个数中的任意两数的差 ,也就是说它是任意两数差的公约数 .101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有 1,2,7,14,所以这个数可能为 2,7,14.2.已知三个数 127,99 和一个小于 30 的两位数 a 除以一个一位数 b 的余数都是 3,求 a 和 b 的值 .分析: 127-3=124,99-3=96,则 b 是 124 和 96 的公约数 .而(124,96)=4,所以 b=4. 那么 a 的可能取值是 11,15,19,23,27.3.除以 99,余数是 ______.分析:所求余数与 19×100,即与 1900 除以 99 所得的余数相同 ,所以所求余数是 19.4.求下列各式的余数:(1)2461 × 135× 6047 ÷ 11(2)19992000 ÷ 7分析: (1)5;(2)1999÷7的余数是4,19992000与42000除以7的余数相同.然后再找规律 ,发现 4 的各次方除以 7 的余数的排列规律是4,2,1,4,2,1......这么 3 个一循环 ,所以由 2000÷3 余 2 能够得到 42000 除以 7 的余数是 2,故 19992000÷7的余数是 2.【第二篇】(小学数学奥林匹克初赛 )有苹果 ,桔子各一筐 ,苹果有 240 个,桔子有 313 个,把这两筐水果分给一些小朋友 ,已知苹果等分到最后余 2 个不够分 ,桔子分到最后还余 7 个桔子不够再分 ,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说 ,已知一个数除 240 余 2,除 313 余7,求这个数为多少,我们能够根据带余除法的性质把它转化成整除的情况,从而使问题简化 ,因为 240 被这个数除余 2,意味着 240-2=238恰被这个数整除 ,而 313被这个数除余 7,意味着这 313—7=306 恰为这个数的倍数 ,我们只需求 238 和 306 的公约数便可求出小朋友最多有多少个了 .240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .【第三篇】有一个大于 1 的整数 ,除 45,59,101 所得的余数相同 ,求这个数 .分析:这个题没有告诉我们 ,这三个数除以这个数的余数分别是多少 ,但是因为所得的余数相同 , 根据性质 2,我们能够得到:这个数一定能整除这三个数中的任意两数的差 ,也就是说它是任意两数差的公约数 .101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为 2,7,14.【第四篇】1.已知三个数 127,99 和一个小于 30 的两位数 a 除以一个一位数 b 的余数都是 3,求 a 和 b 的值 .分析: 127-3=124,99-3=96,则 b 是 124 和 96 的公约数 .而(124,96)=4,所以 b=4. 那么 a 的可能取值是 11,15,19,23,27.2.除以 99 的余数是 ______.分析:所求余数与 19×100,即与 1900 除以 99 所得的余数相同 ,所以所求余数是 19.【第五篇】199419941994(1994个 1994)除以 15 的余数是 ______.分析:法 1:从简单情况入手找规律,发现 1994÷15余14,19941994 ÷ 15余 4,199419941994 ÷余15 9,1994199419941994 ÷ 15余 14,......,发现余数 3 个一循环,1994 ÷3=664...2,19941994 1994(1994个1994)除以 15 的余数是 4;法 2:我们利用最后一个例题的结论能够发现199419941994能被 3 整除 ,那么19941994199400 0能被 15 整除 ,1994 ÷3=664...2,19941994 1994(1994个1994)除以 15 的余数是4.。

数论问题(六年级奥数题)

数论问题(六年级奥数题)

(1)含有数字0的三位数共有多少个?
(2)各位数字乘积能被10整除的三位数共有多少个?
解答:
(1)十位上的数字是0的三位数有9×10=90个,各位上的数字是0的三位数也有9×10=90个,十位和个位上的数字都是0的三位数有9个。

90+90-9=171,所以含有数字0的三位数共有171个。

(2)各位数字乘积能被10整除,说明这个三位数含有数字0或者含有数字2的倍数和5。

由(1)可知,含有数字0的三位数共有171个。

然后计算含有数字2的倍数和5,但是不含0的三位数的个数。

百位数字是5时,这样的三位数有4×9×2-4×4=56个。

同理十位数字和个位数字是5时,这样的三位数也有56个。

而其中有两个数字都是5时,这样的三位数有4×3=12个。

所以,这样的三位数一共有56×3-12=156个。

171+156=327,所以各位数字乘积能被10整除的三位数共有327个。

【小结】此题是综合考察排列组合问题与容斥原理问题的题目。

需要同学有良好的分类讨论的习惯。

关于数论问题的小学奥数知识点及习题带解析

关于数论问题的小学奥数知识点及习题带解析
2如果能被整除,是整数,那么乘以也能被整除。
3如果能被整除,又能被整除,那么也能被整除。
4如果能被、整除,那么也能被和的最小公倍数整除。
例题
在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?
解如果56□2能被9整除,那么
5+6+□+2=13+□
应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;
3能被8、125整除末三位的数字所组成的数能被8、125整除。
4能被3、9整除各个数位上数字的和能被3、9整除。
5能被7整除
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6能被11整除
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
【篇一】
整除数论
一、基本概念和符号
1、整除如果一个整数,除以一个自然数,得到一个整数商,而且没有余数,那么叫做能被整除或能整除,记作|。
2、常用符号整除符号|,不能整除符号;因为符号∵,所以的符号∴;
二、整除判断方法
1能被2、5整除末位上的数字能被2、5整除。
2能被4、25整除末两位的数字所组成的数能被4、25整除。
则由原方程,得
•-+=2+,
∵≠0,
∴-+1=2+,
∴-2=3,
当=1时,=5,=5;
当=3时,=9,=3;
②当不是的倍数时,令=,=,,互质,则=,代入原式
得2-+=2+,即-1=-1+1
当=1时,+=2,可求得=1,=1,此时不满足条件;

小学奥数中的数论问题

小学奥数中的数论问题

小学奥数中的数论问题在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。

一、小学数论究包括的主要内容我们小学所学习到的数论内容主要包含以下几类:整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容)余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小)(2)同余的性质和运用奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理一、两个自然数分别除以它们的最大公约数,所得的商互质。

二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

(2)约数个数决定法则(小升初常考内容)整数及分数的分解与分拆:这一部分在难度较高竞赛中常出现,属于较难的题型。

二、数论部分在考试题型中的地位在整个数学领域,数论被当之无愧的誉为“数学皇后”。

翻开任何一本数学辅导书,数论的题型都占据了显著的位置。

在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。

出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。

三、孩子在学习数论部分常常会遇到的问题数学课本上的数论简单,竞赛和小升初考试的数论不简单。

有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数?这道题就经常在孩子们平时的作业里和单元测试里出现。

可是小升初考题里则是:例2:求3600有多少个约数?很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划算。

最新小学奥数 数论综合问题(绝对经典)

最新小学奥数 数论综合问题(绝对经典)

最新小学奥数 数论综合问题板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷= 这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】2008222008+除以7的余数是多少? 【解析】 328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数. 由于200954014÷=,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1. 另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。

小学奥数关于数论问题的练习题及答案

小学奥数关于数论问题的练习题及答案

【导语】数学是⼀切科学的基础,⼀切重⼤科技进展⽆不以数学息息相关。

没有了数学就没有电脑、电视、航天飞机,就没有今天这么丰富多彩的⽣活。

以下是整理的相关资料,希望对您有所帮助。

【篇⼀】 1.⼩华买了⼀本共有96张练习纸的练习本,并依次将它的各⾯编号(即由第1⾯⼀直编到第192⾯)。

⼩丽从该练习本中撕下其中25张纸,并将写在它们上⾯的50个编号相加。

试问,⼩丽所加得的和数能否为2000? 【分析】不可能。

因为25个奇数相加的和是奇数,25个偶数相加是偶数,奇数加偶数=奇数 2.有98个孩⼦,每⼈胸前有⼀个号码,号码从1到98各不相同。

试问:能否将这些孩⼦排成若⼲排,使每排中都有⼀个孩⼦的号码数等于同排中其余孩⼦号码数的和?并说明理由。

【分析】不可以。

⼀名为98个数中有49个奇数,奇数加偶数等于奇数,奇数不是⼆的倍数。

3.有20个1升的容器,分别盛有1,2,3,…,20⽴⽅厘⽶⽔。

允许由容器A向容器B倒进与B容器内相同的⽔(在A中的⽔不少于B中⽔的条件下)。

问:在若⼲次倒⽔以后能否使其中11个容器中各有11⽴⽅厘⽶的⽔? 【分析】不可能,因为两个奇数相加等于偶数,两个偶数相加等于偶数,11是奇数,B是偶数,偶数不等于奇数。

【篇⼆】 4.⼀个俱乐部⾥的成员只有两种⼈:⼀种是⽼实⼈,永远说真话;⼀种是骗⼦,永远说假话。

某天俱乐部的全体成员围坐成⼀圈,每个⽼实⼈两旁都是骗⼦,每个骗⼦两旁都是⽼实⼈。

外来⼀位记者问俱乐部的成员张三:“俱乐部⾥共有多少成员?”张三答:“共有45⼈。

”另⼀个成员李四说:“张三是⽼实⼈。

”请判断李四是⽼实⼈还是骗⼦? 【分析】李四是骗⼦,⽼实⼈和说谎的⼈的⼈数相等,可是45是个奇数,所以张三是骗⼦。

5.围棋盘上有19×19个交叉点,现在放满了⿊⼦与⽩⼦,且⿊⼦与⽩⼦相间地放,并使⿊⼦(或⽩⼦)的上、下、左、右的交叉点上放着⽩⼦(或⿊⼦)。

问:能否把⿊⼦全移到原来的⽩⼦的位置上,⽽⽩⼦也全移到原来⿊⼦的位置上? 【分析】不可以,因为不是⽩字多⿊字⼀个,就是⿊⼦多⽩字⼀个,不可能相等。

小学奥数中的数论问题

小学奥数中的数论问题

小学奥数中的数论问题一、分析因数1.如何求一个数的所有因数?把这个数分解质因数,把各个质因数分别写在一起,它们中任意几个的积都是这个数的因数。

例如:求 420 的所有因数420=2×2×3×5×7则 420 的所有因数为:1、2、3、4、5、6、7、10、12、14、15、20、21、28、30、35、42、60、70、84、140、210、4202. 如果知道一个数的几个因数,如何快速求出这个数?举例说明:若某个数是 $4$ 的倍数,$4$ 就是它的因数。

那么这个数可以写成 $4k$ 的形式,其中 $k$ 是一个整数。

同理如果这个数是 $3$ 的倍数,那么这个数可以写成 $3l$ 的形式,其中$l$ 是一个整数。

所以它可以写成 $12m$ 的形式,其中 $m$ 是一个整数。

因此,若某个数是 $3$ 和 $4$ 的倍数,那么它可以写成$12n$ 的形式,则此数即为 $12$ 的倍数。

二、最大公约数和最小公倍数1. 求最大公约数(简称 GCD)辗转相除法:把小的数不断地从大数中减,直到减不下为止。

用小数去减大数,然后用余数去除小的数。

如此反复,直到余数为零。

举例说明:求最大公约数 $84$ 和 $18$。

用 $84-18=66$,$18$ 去除 $66$(注意,是 $18$ 在除),余数为 $12$。

用 $18-12=6$,$12$ 去除 $6$,余数为 $0$。

由于余数为 $0$,所以 $6$ 就是最大公约数。

2. 求最小公倍数(简称 LCM)最小公倍数等于这两个数的乘积除以它们的最大公约数。

举例说明:求最小公倍数 $84$ 和 $18$。

先求出它们的最大公约数 $6$。

再将它们的乘积除以最大公约数,即 $\\frac{84\\times 18}{6}=504$。

所以 $84$ 和 $18$ 的最小公倍数为 $504$。

三、质数和合数1. 质数和合数分别是什么?质数是指在大于 $1$ 的自然数中,除了 $1$ 和本身,没有其他的因数的数,也就是只有 $1$ 和它本身两个约数的数。

关于数论问题的小学奥数知识点及习题带解析

关于数论问题的小学奥数知识点及习题带解析

【导语】数学作为⼀门基础学科,其⽬的是为了培养学⽣的理性思维,养成严谨的思考的习惯,对⼀个⼈的以后⼯作起到⾄关重要的作⽤,特别是在信息时代,可以说,数学与任何科学领域都是紧密结合起来的。

以下是整理的相关资料,希望对您有所帮助。

【篇⼀】 整除数论 ⼀、基本概念和符号: 1、整除:如果⼀个整数a,除以⼀个⾃然数b,得到⼀个整数商c,⽽且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常⽤符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”; ⼆、整除判断⽅法: 1.能被2、5整除:末位上的数字能被2、5整除。

2.能被4、25整除:末两位的数字所组成的数能被4、25整除。

3.能被8、125整除:末三位的数字所组成的数能被8、125整除。

4.能被3、9整除:各个数位上数字的和能被3、9整除。

5.能被7整除: ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后⼀位数字并减去末位数字的2倍后能被7整除。

6.能被11整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后⼀位数字并减去末位数字后能被11整除。

7.能被13整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后⼀位数字并减去末位数字的9倍后能被13整除。

三、整除的性质: 1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3.如果a能被b整除,b⼜能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最⼩公倍数整除。

例题: 在四位数56□2中,被盖住的⼗位数分别等于⼏时,这个四位数分别能被9,8,4整除? 解:如果56□2能被9整除,那么 5+6+□+2=13+□ 应能被9整除,所以当⼗位数是5,即四位数是5652时能被9整除; 如果56□2能被8整除,那么6□2应能被8整除,所以当⼗位数是3或7,即四位数是5632或5672时能被8整除; 如果56□2能被4整除,那么□2应能被4整除,所以当⼗位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

奥数专题:数论

奥数专题:数论

数论小学数论问题,起因于除法算式:被除数÷除数=商……余数1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等;2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。

一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。

定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b的倍数。

注意:倍数与因数是相互依存关系,缺一不可。

(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

(2)一个数的因数的特点:①最小的因数是1,第二小的因数一定是质数;②最大的因数是它本身,第二大的因数是:原数÷第二小的因数(3)完全平方数的因数特征:①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。

②完全平方数的质因数出现次数都是偶数次;③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完全平方数的个数是54个。

(312=961,442=1936,542=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。

定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

(a≥b)(2)整除的性质:如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

如果a能被b整除,c是整数,那么a×c也能被b整除。

如果a能被b整除,b又能被c整除,那么a也能被c整除。

如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数中的数论问题
在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。

一、小学数论究包括的主要内容
我们小学所学习到的数论内容主要包含以下几类:
整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容)
余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小)
(2)同余的性质和运用
奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理
一、两个自然数分别除以它们的最大公约数,所得的商互质。

二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

(2)约数个数决定法则(小升初常考内容)
整数及分数的分解与分拆:这一部分在难度较高竞赛中常
出现,属于较难的题型。

二、数论部分在考试题型中的地位
在整个数学领域,数论被当之无愧的誉为“数学皇后”。

翻开任何一本数学辅导书,数论的题型都占据了显著的位置。

在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。

出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。

三、孩子在学习数论部分常常会遇到的问题
数学课本上的数论简单,竞赛和小升初考试的数论不简单。

有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数?
这道题就经常在孩子们平时的作业里和单元测试里出现。

可是小升初考题里则是:例2:求3600有多少个约数?
很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划
算。

这道题其实用约数个数决定法则非常好求,而且省时省力!可是我们的出题老师却振振有词道:“这道题不超纲,也符合教委的精神,因为你就是用普通数学的方法也能做出来,无非多花一些时间而已!”殊不知考试的时间何其宝贵,这道题的解法其实已经将孩子的数学水平分出了高下!
数论的定理背起来简单,但真正理解和掌握却很难。

数论的定理在很多好的奥数辅导书中都有概括,于是有些孩子拿起来蒙头就开始背,终于花了不少时间硬啃下来,却不食其中“滋味”,遇上数论的题目只能一条一条定理的硬套,结果很多题目还是不会做。

这里的原因在于缺乏老师正确的引导,很多定理细心领会比死记更重要!孩子自身的领悟能力有限,站在老师的肩膀上才能看得更远!
单个数论的知识点掌握起来较简单,但综合运用却很难。

数论的题有的时候会和其它知识点综合起来考察,比如和分数,和计数综合等等。

这样的题学生往往感觉无从下手,也有一定难度,因此得分率很低。

比如,例3:一个学校参加某项兴趣活动的学生不到100人,其中男同学人数超过总数的4/7,女同学的人数超过总数的2/5。

问男女生各多少人?(某中学入学测试压轴题)
这道题兼顾分数主要从数论中的整除特性考查学生。

例4:有一个四位数分别除以它的各位数字得到四个整数商,这四个商的和还是这个四位数,求满足要求的四位数共有多少个?
这道题同样从数论入手考察学生多个知识点的综合运用,题目较难。

四、该如何学习数论知识
数论的知识点较多,在考试中占的比重较大,学生在学习的过程中,熟记定理是必要的,除了熟记以外,更应该知其然,知其所以然。

如果时间允许,可以动手将所有定理和公式一一推导一遍。

比如:为什么能被4(或25)整除的数只需要看末尾两位是否能被4(或25)整除?原来一个数可以分成两部分的和,最后2位和前面若干位的100倍,前一部分能被100整除(当然也肯定能被4或25整除),所以只需看后两位即可。

理解了这个也就不难理解:为什么能被8(或125)整除的数只需要看末三位是否能被其整除即可(想一想?)
这样做的益处是一方面让孩子更深刻的理解了定理和公式来源,举一反三,而不是死记硬背;另一方面当作习题来熟练解题套路,实践证明对于孩子的思维发散是很有帮助的。

要想深刻掌握数论题的解题要领,还需要多做些数论的综合题。

有些解题的常用套路是可以归纳总结的,比如整数表示法,枚举法,反证法,构造法等等在这里不一一
叙述,需要由老师帮助引领完成。

五、哪些参考书数论部分编写的较好
对于数论常用知识点不了解的学生可参看:
《华校课本五年级》上册1~5讲,下册第4讲;《华校课本六年级》上册第8讲,下册第7讲。

(讲解知识点较为详细)六、小学奥数的几大重点
包括:行程问题,数论问题和几何问题。

几道小学数学数论题
1.在43的右边补上三个数字,组成一个五位数,使它能被3,4,5整除,求这样的最小五位数.
2.两个整数A,B的最大公约数是C,最小公倍数是D.已知C不等于1,也不等于A或B,并且C+D=187.求A+B 是多少?
3.某个自然数是3和4的倍数,包括1和它本身在内共有10个约数,那么这个自然数是几?
(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3
整除。

(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的末位是0或5,则这个数能被5整除。

(6)若一个整数能被2和3整除,则这个数能被6整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,
就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;
又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(9)若一个整数的数字和能被9整除,则这个整数能被9整除。

(10)若一个整数的末位是0,则这个数能被10整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可
用上述检查7的「割尾法」处理!
过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。

(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。

如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断
为止。

(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

相关文档
最新文档