0工程流体力学 绪论
工程流体力学
dρ
a. 压缩系数
k =
ρ
dp
= −
dV dp
V
dp 1 = ρ b. 体积模量 E = k dρ
c. 声速
c= E/ρ
第1章 绪论
热胀性: 温度升高,流体体积膨胀的性质。
dρ V = − dp
热胀系数
α =
dV dT
ρ
一般情况下,水的压缩性和热胀性可以忽略不计。
第1章 绪论
质量力 —— 作用在单位质量上的力 1. 重力 2. 惯性力
δFb δFb f = lim = lim δV →0 δm δV →0 ρδV
直角坐标系中分量式为: 同加速 f = f i + f j + f k 度量纲
x y z
单位:m/s2
第1章 绪论
表面力 —— 作用在单位面积上的力 1. 压力 2. 黏性力
第1章 绪论
跨海隧道
第1章 绪论
最早的高尔夫球
表面为什么 有很多小凹 坑?
现在的高尔夫球
第1章 绪论
高尔夫球表面的小凹坑可以减少减小尾流的范 围,从而减少空气的阻力; 高尔夫球的自旋大约提供了一半的升力。另外一 半则是来自小凹坑,它可以提供最佳的升力; 阻力及升力对凹坑的深度很敏感。
第1章 绪论
第1章 绪论
汽车阻力来自前部还是后部?
90年代后,科研人员研制开发的未来型汽车,阻 力系数仅为0.137。
经过近80年的研究改进,汽车阻力系数从0.8降至 0.137,阻力减小为原来的1/5 。 目前,在汽车外形设计中流体力学性能研究已占 主导地位,合理的外形使汽车具有更好的动力学 性能和更低的耗油率。
(完整版)工程流体力学习题及答案
(完整版)工程流体力学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d )【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。
(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
工程流体力学 绪论 华中科技大学 莫乃榕主编
第一章绪论1、什么叫流体?流体与固体的区别?流体是指可以流动的物质,包括气体和液体。
与固体相比,流体分子间引力较小,分子运动剧烈,分子排列松散,这就决定了流体不能保持一定的形状,具有较大流动性。
2、流体中气体和液体的主要区别有哪些?(1)气体有很大的压缩性,而液体的压缩性非常小;(2)容器内的气体将充满整个容器,而液体则有可能存在自由液面。
3、什么是连续介质假设?引入的意义是什么?流体充满着一个空间时是不留任何空隙的,即把流体看作是自由介质。
意义:不必研究大量分子的瞬间运动状态,而只要描述流体宏观状态物理量,如密度、质量等。
4、何谓流体的压缩性和膨胀性?如何度量?压缩性:温度不变的条件下,流体体积随压力变化而变化的性质。
用体积压缩系数βp表示,单位Pa-1。
膨胀性:压力不变的条件下,流体体积随温度变化而变化的性质。
用体积膨胀系数βt表示,单位K-1。
5、何谓流体的粘性,如何度量粘性大小,与温度关系?流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。
用粘度µ来表示,单位N·S/m2或Pa·S。
液体粘度随温度的升高而减小,气体粘度随温度升高而增大。
6、作用在流体上的力怎样分类,如何表示?(1)质量力:采用单位流体质量所受到的质量力f表示;(2)表面力:常用单位面积上的表面力Pn表示,单位Pa。
7、什么情况下粘性应力为零?(1)静止流体(2)理想流体第二章流体静力学1、流体静压力有哪些特性?怎样证明?(1)静压力沿作用面内法线方向,即垂直指向作用面。
证明:○1流体静止时只有法向力没有切向力,静压力只能沿法线方向;○2流体不能承受拉力,只能承受压力;所以,静压力唯一可能的方向就是内法线方向。
(2)静止流体中任何一点上各个方向静压力大小相等,与作用方向无关。
证明:2、静力学基本方程式的意义和使用范围?静力学基本方程式:Z+gP=C 或 Z1+gP1=Z2+gP 2(1)几何意义:静止流体中测压管水头为常数物理意义:静止流体中总比能为常数(2)使用范围:重力作用下静止的均质流体 3、等压面及其特性如何?在充满平衡流体的空间里,静压力相等的各点组成的平面称为等压面。
工程流体力学教学作者闻建龙工程流体力学习题+答案
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质就是按什么原则分为固体与液体两大类的?解:从物质受力与运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管就是液体还就是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的就是什么?在解决流动问题时,应用连续介质模型的条件就是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体瞧成就是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设就是流体力学中第一个根本性假设,将真实流体瞧成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可瞧成时间与空间位置的连续函数,使我们有可能用数学分析来讨论与解决流体力学问题。
在一些特定情况下,连续介质假设就是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm)内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水与C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水:233/410416101m N u=⨯⨯=⋅=--δμτ N A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律就是直线。
工程流体力学(水力学)-第1章绪论
§1.4
流体的主要物理性质
y
F’
x
牛顿发现:
F U F A 1 F h
AU h y F T h
F
U x
o
并且F与流体的种类有关 即:
U F A h
式中,μ为流体的动力粘度,与流体的种类、温度、压强有关,在一定 的温度压强下为常数,单位Pa· S;
U/h为速度梯度,表示在速度的垂直方向上单位长度的速度增量,单位 S-1;
§1.4
2. 流体的压缩性 体积压缩率
流体的主要物理性质
流体在一定温度下,压强增高,体积缩小。
在一定温度下单位压强增量引起的体积变化率,单位Pa-1。
V V V p Vp
为了保证压缩率为正, 故加上负号“-”
式中,δp为压强增量,δV为体积的变化量。 可见,对于同样的压强增量,κ值大的流体体积变化率大,容易压 缩; κ值小的流体体积变化率小,不容易压缩。 体积弹性模量 为压缩率的倒数,单位为Pa。
都江堰
流体力学的发展
• 古代流体力学
– 16世纪以后,西方资本主义处于上升阶段,工农业生 产有了很大的发展,对于液体平衡和运动规律的认识 才随之有所提高 – 18至19世纪,沿着两条途径建立了液体运动的系统理 论
流体力学的发展
• 途径一 –一些数学家和力学家,以牛顿力学理论和数学分析为基本 方法,建立了理想液体运动的系统理论,称为“水动力学 ”或古典流体力学 – 代表人物有伯努利(D.I.Bernouli)、欧拉(L.Euler)等
0 C,1mm3 水含3.4×1019个分子 如此大量的分子, 容易取得它们共同 作用的有代表性的 统计平均值
气体含2.7×1016个分子
工程流体力学绪论..
工程力学 流体力学
结构力学 流体力学
绪 论
一、工程流体力学的研究对象
流体力学是研究流体的平衡和运动的规律、流体与固体相互作用 的力学规律、以及这些规律在实际工程中的应用的一门科学。
第一章 流体及其物理性质 流体平衡和运动的内因 流 体 平 衡 规 律
1847年~1921年:茹可夫斯基(Joukowski)是实验和理论空气 动力学的创始人,提出了著名的环量升力定理。 1868年~1945年:兰彻斯特(Lanchester)研究了升力原因的 环量概念。 绪 论
1875年~1953年:普朗特(Prandtl)在1904年提出 边界层理论,从而使粘性流体和无粘性流体的概念 协调起来。 1881年~1963年:冯·卡门(Von Karman),超声 速时代之父,师从普朗特教授。提出卡门涡街理 论、边界层控制理论以及超声速相似律等。是我国 著名学者钱学森教授的导师。
第三阶段 20世纪初至中叶,流体力学理论、实验全面展开,航空航天迅速 发展,湍流理论、稳定性理论逐渐完善。
绪 论
Hale Waihona Puke 周培源( 1902 ~ 1993):1902年8月28日出生,
江苏宜兴人。理论学家、流体力学家主要从事
物理学的基础理论中难度最大的两个方面即爱因 斯坦广义相对论引力论和流体力学中的湍流理论
建于公元前256年,是战国时 期秦国蜀郡太守李冰及其子率 众修建的一座大型水利工程。 都江堰不仅是中国古代水利工 程技术的伟大奇迹,也是世界 水利工程的璀璨明珠。最伟大 之处是建堰2260多年来经久 不衰,而且发挥着愈来愈大的 效益。工程主要有鱼嘴分水堤、 飞沙堰溢洪道、宝瓶口进水口 三大部分,科学地解决了江水 自动分流、自动排沙、控制进 水流量等问题,消除了水患, 使川西平原成为“水旱从人” 的“天府之国”。 都江堰工程
工程流体力学课后习题答案(第二版)
第一章 绪论1-1.20℃的水2。
5m3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3.5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0.5m,y=0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。
620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
工程流体力学(杜广生主编)电子教案第一章绪论
将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)
在流体静力学中应用了虚位移原理,并首先提出,运动物 体的阻力随着流体介celli,1608-1647)
论证了孔口出流的基本规律。
西汉武帝时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创 造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止 了黄土的塌方。
水利风力机械
在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水, 或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元 37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制 鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。
流体力学在中国
• 真州船闸 • 北宋(960-1126)时期,在运河上修建的真州船闸与十
四世纪末荷兰的同类船闸相比,约早三百多年。
• 潘季顺 明朝的水利家潘季顺(1521-1595)提出了“筑堤防溢,
建坝减水,以堤束水,以水攻沙”和“借清刷黄”的治黄 原则,并著有《两河管见》、《两河经略》和《河防一 揽》。
• 达朗伯(J.le R.d‘Alembert,1717-1783) 1744年提出了达朗伯疑题(又称达朗伯佯谬),即在理想 流体中运动的物体既没有升力也没有阻力。从反面说明了 理想流体假定的局限性。
• 拉格朗日(grange,1736 -1813) 提出了新的流体动力学微分方程, 使流体动力学的解析方法有了进一 步发展。严格地论证了速度势的存 在,并提出了流函数的概念,为应 用复变函数去解析流体定常的和非 定常的平面无旋运动开辟了道路。
流体力学的西方史
• 阿基米德(Archimedes,公元前287-212) • 欧美诸国历史上有记载的最早从事流体力学
(完整版)流体力学 第一章 流体力学绪论
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
工程流体力学第三版绪论
杨浦大桥
总之,没有流体力学的发展,现代 工业和高新技术的发展是不可能的。 流体力学在推动社会发展方面做 出过很大贡献,今后仍将在科学与技 术各个领域发挥更大的作用。
公元前3世纪,中国四川都江堰水利工程
公元前3世纪,中国四川都江堰水利工程
鱼嘴
宝瓶 口
飞沙 堰
公元前3世纪,阿基米德浮力定律
第一章
绪
流体力学的研究内容 流体力学的研究方法
第一章 绪 论
流 体 力 学 初 识
流体力学与物体的运动
流体力学与工程技术
流体力学发展简史
虽然生活在流体环境中,人们对一些 流体运动却缺乏认识,比如:
1. 高尔夫球 :表面光滑还是粗糙? 2. 汽车阻力: 来自前部还是后部? 3. 机翼升力 :来自下部还是上部?
达朗伯(J.le R.d‘Alembert,1717-1783)
1744年提出了达朗伯疑题(又称达朗伯佯谬), 即在理想流体中运动的物体既没有升力也没有阻力。 从反面说明了理想流体假定的局限性。
拉格朗日(grange,1736- 1813)
提出了新的流体动力学微 分方程,使流体动力学的解析 方法有了进一步发展。严格地 论证了速度势的存在,并提出 了流函数的概念,为应用复变 函数去解析流体定常的和非定 常的平面无旋运动开辟了道路。
目前在汽车外形设计中,流体力学性能研究已 占主导地位,合理的外形使汽车具有更好的动 力学性能和更低的耗油率。
机翼升力 人们的直观印象是空气从下面冲击着 鸟的翅膀,把鸟托在空中。
19世纪初流体力学环流理论彻底改变了人们的传 统观念。
脱体涡量与机翼环量大小相等方向相反
足球运动的香蕉球现象可以帮助理解环流理论:
• 阿基米德(Archimedes,公元前 287-212) • 欧美诸国历史上有记载的最早从事 流体力学现象研究的是古希腊学者 阿基米德在公元前250年发表学术 论文《论浮体》,第一个阐明了相 对密度的概念,发现了物体在流体 中所受浮力的基本原理──阿基米 德原理。
工程流体力学 第一章 绪论
小湾水电站:最大坝高294.5米
目前世界已经蓄水的最高拱坝
位于云南省南涧县与凤庆县交界的澜沧江中游河段,是国家 重点工程和实施西部大开发、“西电东送”战略的标志性工 程,该电站总装机容量420万千瓦,总库容约149亿立方米。
三峡大坝:世界上最大的混凝土重力坝
三峡大坝坝顶高程185米,最大坝高181米;坝顶宽度15米;底 部宽度一般为126米;大坝轴线全长2309米。混凝土浇筑量达1600 多万立方米,1米见方的体积排列,可绕地球赤道三圈。 最大113m的水位落差 。五级船闸每次历时超过2.5-3小时 。
流体:几乎不能承受拉力,处于静止状态下的流体还不能抵抗 剪力,即流体在很小剪力作用下将发生连续不断的变形,流体的这 种特性称为 易流动性。
§1—2 液体的主要物理性质
1 连续介质模型(假说)
在水力学中,把液体作为连续介质看待,即假设液体是一种充 满其所占据空间毫无空隙的连续体。(瑞士学者欧拉,1753年)
2 发电,
3 改善通航条件。
弊: 1 淹没文物, 2 改变生态环境甚至滑坡, 3 移民安置社会问题,
世界十大水坝
混凝土重力坝 目前世界已建最高的是瑞士的大狄克逊,高285m, 中国最大的三峡,坝高181m。
混凝土拱坝: 已建最高的为前苏联的英古里双曲拱坝,坝高271.5m, 在建的是中国的小湾,坝高294.5m;
1917年,孙中山先生在《建国方略》中最早提出建设三峡(瞿塘 峡、巫峡和西陵峡)工程的设想,称改良此上游一段,当以水闸 堰其水,使舟得溯流以行,而又可资其水力。
1932年,国民政府建设委员会派出勘测队在三峡进行为期约两个 月的勘查和测量,编写了《扬子江上游水力发电测勘报告》,拟 定了葛洲坝、黄陵庙两处低坝方案。这是我国专为开发三峡水力 资源进行的第一次勘测和设计工作。
工程流体力学 教学课件作者 闻建龙 工程流体力学习题 答案(部分)
1-7 存放 4m3 液体的储液罐,当压强增加 0.5MPa 时,液体体积减少1L ,求该液体的
体积模量。
解:
1 V
dV dp
1 1103 4 0.5 106
0.5 109 Pa 1
k 1/ 2 109 Pa
1-8 压缩机向气罐充气,绝对压强从 0.1MPa 升到 0.6MPa ,温度从 200C 升到 780C ,
1-3 底面积为1.5m2 的薄板在液面上水平移动(图 1-3),其移动速度为16 m s ,液层
厚度为 4mm ,当液体分别为 200C 的水和 200C 时密度为 856 kg m3 的原油时,移动平板
所需的力各为多大?
解:20℃ 水: 1103 Pa s
题 1-3 图
20℃, 856kg / m3 , 原油: 7.2 103 Pa s
又 p x0 p0 , c p0
z0
p p0 ax gz
2-19 如图所示矩形闸门 AB 宽 b 3m ,门重 G 9800N , 600 , h1 1m ,
h2 1.73m 。试求: 1)下游无水时的启门力 T 。 2)下游有水时,即 h3 h2 2 时的启门力 T 。
9
题 2-9 图
( u /2
u) /2
0.7(
20
15 10 3
20
15 10 3
)
1050N
/ m2
F A 1050 (60 103 )2 3.78N
1-5 直 径 d 400mm , 长 l 2000m 输 水 管 作 水 压 试 验 , 管 内 水 的 压 强 加 至 7.5 106 Pa 时封闭,经1h 后由于泄漏压强降至 7.0 106 Pa ,不计水管变形,水的压缩率 为 0.5 109 Pa 1 ,求水的泄漏量。 解: 1 dV
工程流体力学
工程流体力学(水力学)第一章 绪论学习重点:流体的粘性及牛顿内摩擦定律。
尤其是牛顿内摩擦定律应熟练掌握。
了解工程的发展及在工程中的应用。
§1—1 工程流体力学简介1. 工程流体力学——是利用实验和理论分析的方法研究流体的平衡和运动规律及其在工程中的应用的一门学科。
2. 自然界中物质的存在形式有:(1)固体 ← 相应的研究学科有材料力学、弹性力学 等。
(2)液体(3)气体← 统称流体 。
相应的研究学科即流体力学。
3.流体与固体的比较:(1)从微观上说,流体分子之间的距离相对较大,分子运动丰富(振动、转动、移动)。
(2)从宏观上说,流体没有固定的形状,易流动、变形,静止的流体不能承受剪力及拉力。
4.发展史(随着生产的发展,继固体力学之后发展起来的一门学科):论浮体 (建立在实验、直观基础上)古典水力学(纯理论分析、理论模型) 计算流体力学5.意义:流体力学已经发展成一门涉及多专业的基础性学科。
工程流体力学在工程中的应用也越来越广泛。
例如:给排水、农田灌溉、道路、桥涵、港口设计等等。
§1—2 连续介质假设 流体的主要物理性质 一. 连续介质假设1. 流体的组成:由大量不断运动的分子组成,分子之间有间隙,不连续。
2. 假设:假设将流体看作是由无数质点组成的连续的介质。
因为我们研究的是流体的宏观机械运动而不是微观运动,这样的假设可以满足工程需要。
3. 连续介质:假定流体在充满一个体积空间时,不留任何空隙,整个空间均被流体质点所占据。
4. 质点——宏观体积足够小(可以忽略线性尺寸),但又包含大量分子的集合体。
5. 注:流体的分子运动是客观存在的,在一般的工程计算中可以把流体看成连续的介质,但在特殊情况下还是应加以考虑的。
二. 流体的主要物理性质1.易流动性——是指流体在静止时不能承受切力及不能抵抗剪切变形的性质。
一般的,固体可承受一定的拉力、压力及剪力;而静止的流体只能承受一定的压力。
0绪论
西气东输输气管线西起新疆塔里木轮南油田,经甘肃、宁夏、 陕西、山西、河南、安徽、江苏,最后抵达上海。沿途将穿越戈壁 沙漠、黄土高原,以及吕梁山、太行山、太岳山,并跨越黄河、长 江、淮河等江河,全长4000多公里。预计工程总投资1500亿元,输 量最终达到200亿立方米/年。 西气东输要解决的关键问题是:管网设计、防腐、安全、环保 等,与流体力学紧密相关。
5.
南水北调:
南水北调总体规划推荐东线、中线和西线三条调水线路。通过 三条调水线路与长江、黄河、淮河和海河四大江河的联系,构成以 “四横三纵”为主体的总体布局。 南水北调需要穿越隧道、黄河、倒吸虹、暗渠、桥等,输水河 道、泵站枢纽的设计、工程布置等都要用到流体力学的知识。
16
16
工程流体力学
绪论
6. 石油工业
• 十七世纪前,主要是人们在与大自然斗 争中的经验总结。例如,我国秦代李冰父 子设计建造的四川都江堰工程,隋代大运 河,水车,汉代张衡发明的水力浑天仪, 古代铜壶滴漏计时等。
11
11
工程流体力学
绪论
(2)第二阶段——理论阶段:
十七世纪~十九世纪一些水力原理论著出现,标志着 流体力学的发展进入了理论阶段。
13
13
工程流体力学
绪论
(4)第四阶段——多学科互相渗透。
19世纪末以来,流体力学飞跃发展,流体力学 与相关的邻近学科相互渗透,形成很多新分支和 交叉学科,出现工业流体力学,实验流体力学,地 球流体力学,非牛顿流体力学,多相流体力学, 生物流体力学,物理—化学流体力学,渗流力学 等. 特点: 理论分析与试验研究相结合 量纲分析和相似性原理起重要作用
工程流体力学 第1章 绪论
∂u y
1 ∂p + ux + uy + uz + ν∇ 2 u y =Y − ∂t ∂x ∂y ρ ∂y ∂z
∂u y
∂u y
∂u y
du ∂u 1 = + ( u ⋅ ∇ ) u = f − ∇p + ν∇ 2 u dt ∂t ρ
中国海洋大学 高等流体力学 王树青
三、流体力学的发展概括
流和紊流。
9 秦朝在公元前256—公元前210年修建了我国
历史上的三大水利工程(都江堰、郑国渠、灵 渠)——明渠水流、堰流。
中国海洋大学
高等流体力学
王树青
三、流体力学的发展概括
9 古代的计时工具“铜壶滴漏”——孔口出流。
中国海洋大学
高等流体力学
王树青
三、流体力学的发展概括
9 隋朝(公元587—610年)完成的南北大运河。
b. 温度:主要影响因素。当温度升高时,液体的粘度 温度:
减小,气体的粘度增大。
c. 压强:对常见流体,如水、气体等,影响不大,一 压强:
中国海洋大学
般可忽略不计。
高等流体力学
王树青
二、流体的粘性 二、
流体分类
du τ =µ dy
(a)无粘性流体(理想流体)与粘性流体 (b)粘性流体分为牛顿流体与非牛顿流体
9 1904年普朗特提出了边界层理论。
中国海洋大学
高等流体力学
王树青
不同雷诺数条件下绕圆柱的流动图谱
中国海洋大学
高等流体力学
王树青
三、流体力学的发展概括
在我国,水利事业的历史十分悠久:
9 4000多年前的 “大禹治水”的故事——顺水之
性,治水须引导和疏通。
《流体力学》课件-(第1章 绪论)
流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学
水
力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形
•
流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论
流体力学概念总结
流体力学概念总结第一章绪论工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。
第二章流体的主要物理性质流体的概念:凡是没有固定的形状,易于流动的物质就叫流体流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。
连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是1)由无数连续分布、彼此无间隙地2)占有整个流体空间的流体质点所组成的介质密度:单位体积的流体所具有的质量称为密度,以ρ表示重度:单位体积的流体所受的重力称为重度,以γ表示比体积:密度的倒数称为比体积,以υ表示。
它表示单位质量流体所占有的体积流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用d表示。
流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。
流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性可压缩流体:ρ随T和p变化量很大,不可视为常量不可压缩流体:ρ随T和p变化量很小,可视为常量。
流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。
牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。
这个关系式称为牛顿内摩擦非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随d/dn而变化,否则称为非牛顿流体。
动力粘度μ:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的大小运动粘度ν:在流体力学中,动力粘度与流体密度的比值称为运动粘度,以ν表示。
实际流体:具有粘性的流体叫实际流体(也叫粘性流体),理想流体:就是假想的没有粘性(μ=0)的流体第三章流体静力学流体的平衡:(或者说静止)是指流体宏观质点之间没有相对运动,达到了相对的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引 言(续9)
50~60年代又改进为船型,阻力系数为0.45。
引 言(续10)
80年代经风洞实验系统研究后,进一步改 进为鱼型,阻力系数为0.3。
引 言(续11)
后来又出现楔型,阻力系数为0.2。
引 言(续12)
90年代以后,科研人员研制开发了气动性 能更优良的未来型汽车,阻力系数仅为0.137。
六、关于考勤要求
1. 迟到2次,第3次又迟到,平 时成绩为零。
2. 旷课1次,第2次又旷课,平 时成绩为零。
引 言(续17)
高尔夫球和汽车的阻力、机翼的升力均与 尾部的漩涡有关。
具有高度智慧的人类为了揭开流动奥秘, 建立了流体力学学科。
引 言(续18)
航空、航天、造船、机械、动力、冶金、化 工、石油、建筑等部门设备中的工作介质都是流 体,改进流程,提高效率,需要流体力学知识。
一、课程研究对象
研究流体运动所遵循的基本 规律,即研究流体的宏观平衡和 运动规律的一门学科。
引 言(续5)
汽车高速前进 时的阻力:
前方? 后方?
当时人们认为汽车高速前进时的阻力主要 来自车前部对空气的撞击。
引 言(续6)
因此早期的汽车后部是陡峭的,称为箱型 车,阻力系数CD很大,约0.8。
引 言(续7)
实际上,汽车阻力主要取决于后部形成的尾流。
引 言(续8)
20世纪30年代起,人们开始运用流体力学 原理,改进了汽车的尾部形状,出现了甲壳虫 型,阻力系数下降至0.6。
一、课程研究对象(续1)
1.学科分类
理论流体力学: 用数学分析方法进行理论探讨;
水力学: 用物理分析和实验方法进行实用计算;
工程流体力学: 趋向两者结合,从实用角度对工程实际
中涉及的问题建立相应的理论基础。
一、课程研究对象(续2)
2.流体力学发展简况
17 世纪前: 主要靠经验,理论少; 都江堰,清朝揭喧提出旋涡概念。
5.为学习有关的专业课程打好理 论基础。
三、教材和主要参考书
1.《流体力学》,景思睿、张 鸣远编著, 西安交通大学出版社,
2001 ; 2.《流体力学》,吴望一编著,
北京大学出版社,1995; 3.《流体力学》,周光坰编著,
高等教育出版社,1992。
三、教材和主要参考书(续)
4.《工程流体力学》,杨树人 编, 石油工业出版社, 2006, “十 一五”国家级规划教材 ;
起初,人们认为表面光滑的球飞行阻力小, 因此当时用皮革制球。
表面有很多划痕的旧球反而飞得更远。
引 言(续2)
现在的高尔夫球表面有许多窝,在同样大 小和重量下,飞行距离为光滑球的5倍。
引 言(续3)
这个谜直到20世纪建立流体力学边界层理论 后才解开。
引 言(续4)
汽车阻力 : 汽车发明于19世纪末。
3.研究对象
按压缩性 气体:可压缩流体 液体:不可压缩流体
按变形特点 牛顿流体:应力和变形率成正比 非牛顿流体:
二、课程基本目的
1.获得流体力学的基本理论知 识;
2.获得流体运动状态和运动规 律的计算能力。
3.掌握分析工程流体流动问题 的基本技巧和方法;
二、课程基本目的(续)
4.掌握计算工程流体流动问题的 基本方法和技能;
17 世纪: 简单的理论; 帕斯卡(1650)提出压强传递定律; 牛顿(1686)提出牛顿内摩擦定律;
一、课程研究对象(续3)
18世纪: 伯努利方程、欧拉平衡运动微分方程;
19世纪: 纳维-斯托克斯方程、旋涡理论;
20世纪至今: 空气动力学、非牛顿流体力学。 流体力学分类更细,如生物流体力学。
一、课程研究对象(续4)
5.《工程流体力学》,贺礼清 编,石油工业出版社, 2006;
6.《流体力学》,汪志明编,石 油工业出版社, 2006 。
四、课程主要内容及进程安排
第一章 静力学基础
6
第三章 流体运动学基础
4
第四章 流体动力学基础
8
第五章 相似原理与量纲分析 4
四、课程主要内容(续)
工程流体力学A
讲课教师:戴 静 君 授课班级:储11-1,2 授课时间:2013.9.9开始
几个问题
(1) 高尔夫球:球表面是光滑还是粗糙? (2) 汽车阻力:来自前部还是后部? (3) 机翼升力:来自下部还是上部?
引言
高尔夫球:该运动起源于15世纪的苏格兰。 高尔夫球表面是光滑还是粗糙的?
引 言(续1)
引 言(续13)
目前在汽车外形设计中,流体力学性能研 究已占主导地位,合理的外形使汽车具有更好 的动力学性能和更低的耗油率。
机翼升力:人们的直观印象是空气从下面冲击 着鸟的翅膀,把鸟托在空中。
19世纪初流体力学环流理论彻底改变了人 们的传统观念。
引 言(续14)
引 言(续15)
引 言(续16)
第六章 理想不可压缩流体的定常流动 6
第七章 通道内的粘性流动
12
第八章 粘性不可压缩流体绕物体的流动 8
第九章 一元气体动力学基础
4
合计本课程总学时为56学时,在各章学 时分配中还包括了课堂讨论和习题课内容。
五、成绩评定方法
1.平时成绩占20% 包括 (1)作业;
(2)上课讨论、提问; (3)考勤; 2.期末闭卷考试占80%