2018年高考数学(理科)模拟试卷(二)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学(理科)模拟试卷(二) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)
第Ⅰ卷(选择题满分60分)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()
A.{0,1} B.{0,1,2}
C.{-1,0,1} D.{-1,0,1,2}
2.已知z为纯虚数,且z(2+i)=1+a i3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为()
A.第一象限B.第二象限
C.第三象限D.第四象限
3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M2-1.图中A点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()
A.各月的平均最低气温都在0 ℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均气温高于20 ℃的月份有5个
图M2-1 图M2-2
4.已知平面向量a =(1,2),b =(-2,k ),若a 与b 共线,则||3a +b =( ) A .3 B .4 C.5 D .5 5.函数y =1
2x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)
6.阅读如图M2-2所示的程序框图,运行相应的程序,则输出的结果为( ) A .2 B .1 C .0 D .-1
7.(2014年新课标Ⅱ)如图M2-3,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
图M2-3
A.1727
B.59
C.1027
D.13
8.已知F 1,F 2分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,离心率为5
3,过原点的直线l 交双曲线左、右两支分别于A ,B ,若|BF 1|-|AF 1|=6,则该双曲线的标准方程为( )
A.x 29-y 216=1
B.x 218-y 2
32=1 C.x 29-y 225=1 D.x 236-y 2
64=1
9.若函数f (x )=⎩⎪⎨⎪
⎧
x -a 2x ≤0,x +1x +a x >0的最小值为f (0),则实数a 的取值范围是( )
A .[-1,2]
B .[-1,0]
C .[1,2]
D .[0,2]
10.已知变量x ,y 满足⎩⎪⎨⎪⎧
x -2y +4≥0,x ≤2,x +y -2≥0,
则x +y +3
x +2
的取值范围是( )
A.⎣⎡⎦⎤2,52
B.⎣⎡⎦
⎤54,52
C.⎣⎡⎦⎤45,52
D.⎣⎡⎦
⎤54,2 11.在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为( )
A.13
B.2π
C.12
D.2
3
12.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数:
(ⅰ)对任意的x ∈[0,1],恒有f (x )≥0;(ⅱ)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立.则下列四个函数中不是M 函数的个数是( )
①f (x )=x 2;②f (x )=x 2+1;③f (x )=ln(x 2+1);④f (x )=2x -1. A .1 B .2 C .3 D .4
第Ⅱ卷(非选择题 满分90分)
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分.
13.椭圆Γ:x 2a 2+y 2
b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2
c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于__________.
14.(2016年天津)⎝⎛⎭
⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答)
15.已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.
16.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)(2016年浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .
(1)证明:A =2B ;
(2)若cos B =2
3,求cos C 的值.
18.(本小题满分12分)(2016年云南统测)某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.
(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率P (A );
(2)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.
19.(本小题满分12分)(2016年浙江)如图M2-4,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.
(1)求证:BF ⊥平面ACFD ;
(2)求二面角B -AD -F 的平面角的余弦值.
图M2-4