遗传学概率计算

合集下载

两种遗传病概率计算

两种遗传病概率计算
遗传学中的概率计算问题
1.有关一对基因的概率是解答基因自由 组合定律相关问题的根底. 例:P: Aa X Aa
配子:A a A a
F1 AA Aa Aa aa
概率:1/4AA 1/2Aa 1/4aa
2.快速准确地计算基因自由组合
中的遗传概率问题
规律一:首先要将各对基因分开,单独计算每对基 因杂交后产生的子代基因型或表现型的概率,最 终将各数值相乘。
解: AaBbCc X AaBBCc
• :Aa X Aa
Bb X BB
• 1/4AA 1/2Aa 1/4aa 短毛 短毛 长毛
1/2BB 1/2Bb 直毛 直毛
ห้องสมุดไป่ตู้
即;〔1〕子代某基因型消失的概率=亲本中每对基 因杂交产生对应的子代基因型概率的乘积。 〔2〕子代某表现型消失的概率=亲本中每对基 因杂交产生对应的子代表现型概率的乘积。
例.某种哺乳动物的短毛〔A〕、直毛〔B〕、 黑色〔C〕为显性,基因型为AaBbCc和 AaBBCc的个体杂交,产生的子代中基因型为 AaBBcc的个体和黑色长直毛个体的概率分别 为多少?

高中生物遗传概率的计算技巧

高中生物遗传概率的计算技巧

高中生物遗传概率的计算技巧遗传概率是描述某个性状在后代中出现的可能性的统计学方法。

在高中生物中,遗传概率的计算涉及到基因型和表型的概率计算。

下面将介绍一些高中生物遗传概率计算的基本技巧。

一、基因型的概率计算基因型是指个体的基因组成,由基因座上的等位基因决定。

一般情况下,基因座上有两种等位基因,分别用大写和小写字母表示。

1. 单基因的遗传概率计算对于单基因的遗传,可以通过用P和Q表示等位基因的频率来计算基因型的概率。

假设红花是完全显性的,白花是纯合隐性的,红花和白花的基因频率分别为p和q,那么红花的基因型可能为PP或Pp,白花的基因型为pp。

红花的基因型为PP的概率为p × p = p²(红花基因型为PP的概率为红花基因频率的平方);红花的基因型为Pp的概率为2 × p × q(红花基因型为Pp的概率为红花基因频率与白花基因频率的乘积的2倍);白花的基因型为pp的概率为q × q = q²(白花基因型为pp的概率为白花基因频率的平方)。

2. 多基因的遗传概率计算对于多基因的遗传,基本原理仍然适用,只是需要将每个基因座上的概率相乘。

假设一个基因座上有AB两个等位基因,且它们的频率分别为p和q,另一个基因座上有CD两个等位基因,它们的频率分别为m和n。

那么,个体的基因型可能有AC、AD、BC 和BD四种。

个体的基因型为AC的概率为p × m;个体的基因型为AD的概率为p × n;个体的基因型为BC的概率为q × m;个体的基因型为BD的概率为q × n。

二、表型的概率计算表型是指个体在外表上观察到的性状。

表型的概率计算涉及到基因型和显性-隐性关系的统计学计算。

1. 完全显性的表型计算对于完全显性的表型,只有在个体的基因型中至少有一个显性等位基因才会表现出显性性状。

高中生物遗传概率的计算技巧主要包括基因型的计算和表型的计算。

最全的遗传概率计算方法

最全的遗传概率计算方法

最全的遗传概率计算方法遗传概率计算是遗传学研究中的重要内容之一,通过计算遗传概率,可以预测后代可能具有的性状、疾病等。

下面将介绍一些常见的遗传概率计算方法。

1.裂基因法裂基因法是最简单、最常用的遗传概率计算方法之一、该方法基于孟德尔遗传定律,计算杂合子(Aa)通过自交或与同种杂合子(Aa)的交配获得纯合子(AA、aa)的概率。

例如,考虑一个恢复基因a和其等位基因B之间的遗传关系。

对于两个纯合子AA和aa的交配,其子代为杂合子Aa的概率为1,子代为纯合子AA或aa的概率分别为0.52.分离法分离法是一种根据基因座上的连锁不平衡程度来计算遗传概率的方法。

该方法通过计算不连锁基因座上基因频率的分离系数和联合系数,预测不连锁基因座上联合遗传概率。

3.卡方检验法卡方检验法是一种用于检验实测值与理论值是否存在显著差异的方法。

在遗传概率计算中,卡方检验可用于确定基因型分布是否符合硬性遗传比例。

例如,对于基因型比例的计算,可以通过实际观察到的基因型比例与理论遗传比例进行卡方检验,来判断两者是否一致。

4.贝叶斯统计法贝叶斯统计法是一种基于贝叶斯定理和统计学原理的遗传概率计算方法。

该方法通过先验概率和似然概率来计算后验概率。

贝叶斯统计法在遗传疾病预测中应用较多。

通过已知的先验概率和观察到的病发率、传染率等统计数据,结合贝叶斯公式进行计算,可以得出患病的后验概率。

5.模拟法模拟法是一种通过数学模型和计算机模拟来计算遗传概率的方法。

该方法通过随机模拟大量的遗传事件,来预测后代具有其中一性状或疾病的概率。

使用模拟法时,可以根据所研究的遗传因素设定相应的模型参数和初始条件,利用计算机程序进行模拟计算,得到结果的频率分布。

总结起来,遗传概率计算方法多种多样,根据具体情况选择合适的方法非常重要。

裂基因法适用于简单的孟德尔遗传情况,分离法适用于复杂的连锁遗传情况,卡方检验法适用于遗传学研究中的假设检验,贝叶斯统计法适用于患病风险预测,模拟法适用于复杂系统的预测和分析。

最全的遗传概率计算方法

最全的遗传概率计算方法

最全的遗传概率计算方法遗传概率计算是基于遗传学原理的数学计算,用于预测下一代个体的遗传特征的概率。

在高中生物中,我们主要关注两个重要的遗传概念:基因型和表现型。

基因型是个体在基因水平上的遗传组合,由从父母亲处遗传而来的等位基因决定。

表现型是由基因型和环境因素共同决定的个体的特征表现。

下面将介绍几种最常用的遗传概率计算方法。

1.孟德尔遗传定律:孟德尔遗传定律是遗传学研究的基石。

它提出了两种基本的遗传因素:显性性状和隐性性状。

对于显性性状,两个等位基因中只要有一个是显性,个体就会表现这一特征;对于隐性性状,个体只有在两个等位基因都是隐性的时候才会表现。

根据这些规律,可以通过已知基因型推算后代的基因型和表现型。

2.叉乘法则:叉乘法则用于计算两个基因座的不同等位基因的组合可能性。

例如,一个混合杂交的父本一般有两个基因座ABC,其中A基因有两个等位基因A1、A2,B基因有两个等位基因B1、B2,C基因有两个等位基因C1、C2、父本的基因型为A1A1B1B2C1C1、而母本基因型A2A2B1B1C2C2、那么他们后代的基因型组合可能有(A1A1B1B1C1C2和A2A2B1B2C1C1)、(A1A2B1B1C1C2和A2A2B1B2C2C2)、(A1A1B2B2C1C2和A2A2B1B2C1C1)、(A1A2B2B2C1C2和A2A2B1B2C2C2)四种。

通过列举和计算,我们可以得到后代基因型出现的概率。

3.基因频率计算:基因频率是指一个群体中一些等位基因的出现频率。

在一个群体中,如果基因座上有两个等位基因A和a,A等位基因的频率为p,a等位基因的频率为q,那么p+q=1、根据这个公式,我们可以根据已知的基因型和表现型推算出等位基因的频率。

4.古尔德定律:古尔德定律是用于计算隐性性状在人口中的频率的方法。

根据古尔德定律,人口如果满足五个前提条件,那么我们就可以通过人口中隐性性状表现的人数来推算出该性状的频率。

bayes法计算遗传例子(一)

bayes法计算遗传例子(一)

bayes法计算遗传例子(一)Bayes法计算遗传Bayes法是一种常用的概率统计方法,用于计算遗传学中的各种概率问题。

下面列举了一些应用Bayes法计算遗传的例子,并详细讲解每个例子的计算步骤。

例子1: 遗传病携带者概率假设某种遗传病是由一对隐性基因引起的,该基因阻碍了患者体内产生特定的酶。

现在有一对夫妇,二者都没有表现出遗传病的症状,但知道自己的父母中有人患有该病。

他们打算要一个孩子,现在想知道他们的孩子患有该病的概率。

计算步骤: 1. 假设该夫妇都是基因携带者的概率为P(A) = 1/4,其中A代表该夫妇都是基因携带者。

2. 由于该病是由隐性基因引起的,在一对隐性基因携带者夫妇的子女中,每个子女的患病概率为1/4。

3. 因此,该夫妇的孩子患有该病的概率为P(B|A) = 1/4。

例子2: 遗传病与基因检测某种遗传病的表现型只有基因型为Aa或AA的个体才会患病。

现有一家三口,父亲和母亲的基因型均为Aa,他们的孩子患病的概率是多少?计算步骤: 1. 父亲和母亲的基因型为Aa,即每个人都有一个A基因和一个a基因。

2. 孩子患病的概率可以通过计算父亲和母亲之间产生不同基因型子代的概率来得到。

在这种情况下,父亲和母亲之间共有以下四种基因组合:AA、Aa、aA、aa,每种组合的概率均为1/4。

3. 只有基因型为Aa或AA的个体才会患病,因此只有前三种基因组合的孩子有可能患病。

这三种组合中,有两种携带基因A的组合(AA和Aa),因此孩子患病的概率为P(B) = 2/4 = 1/2。

例子3: 利用先验概率计算遗传性状某种遗传性状受一个隐性基因和一个显性基因共同决定。

现有一对夫妇,其中丈夫是显性基因型,妻子是隐性基因型。

他们的孩子有多大概率是显性基因型?计算步骤: 1. 根据题目所给的信息,丈夫的基因型是显性,即AA或Aa;妻子的基因型是隐性,即aa。

2. 在这种情况下,通过计算丈夫和妻子之间产生不同基因型子代的概率,来确定孩子是显性基因型的概率。

初二生物遗传概率计算

初二生物遗传概率计算

初二生物遗传概率计算本文将介绍初二生物课程中的遗传概率计算知识。

随着基因技术和遗传改良技术的发展,遗传学在生物学中扮演着极为重要的角色。

而遗传概率计算是遗传学中不可或缺的一部分,通过此计算方法可以预测后代的基因型、表现型及在群体内的频率等。

(一)基本概念1. 遗传单元:指人体中可以遗传给后代的基本单位,通常分为等位基因和基因座两个层面。

2. 等位基因:在同一个基因座上有两种或多种不同的基因。

3. 基因型:指一个个体拥有的等位基因组合,通常用大写字母表示。

4. 表现型:指基因型组成决定的表现方式,包括外貌、性状、功能等。

5. 显性基因:表现型与此基因相关的基因,即掩盖了其它等位基因的作用。

6. 隐性基因:表现型与此基因相关的基因,即被掩盖了其它等位基因的作用。

(二)遗传概率计算公式在计算遗传概率时,有几个常用的概率公式。

1. 联合概率:指两个或多个事件同时发生的概率,计算公式为P(A ∩ B) = P(A) × P(B|A)。

2. 条件概率:指在已知某一条件下,另一个事件发生的概率,计算公式为P(B|A) = P(A ∩ B) / P(A)。

3. 加法原理:指两个或多个互斥事件的概率和,计算公式为 P(A U B) = P(A) + P(B)。

(三)遗传概率计算实例以人类血型遗传为例,人类血型主要分为 A、B、AB 和 O 四种。

其等位基因包括 A、B 和 O 三种,AB 血型是由 A、B 基因共同表达而来。

那么,如果父亲和母亲均为ABO 血型,那么他们生育出 A 血型的概率是多少呢?1. 确定父亲和母亲的基因型:由于父亲和母亲均为ABO 血型,故可以确定它们的基因型分别为 IAi 和 IBi。

其中,i 表示隐性基因 O。

2. 确定父亲和母亲生成的配子:由于父亲和母亲均为 IAi 和 IBi,其可以生成如下四种不同的配子:IA、IB、iA、iB。

3. 计算配子的概率:根据加法原理可知,每个配子的概率均为 1/2。

高考生物:遗传学中概率的计算问题怎么算?

高考生物:遗传学中概率的计算问题怎么算?

高考生物:遗传学中概率的计算问题怎么算?遗传学中概率的计算问题怎么算?在遗传学的学习过程中,概率问题是一个颇为棘手的问题,而在解决类似“患病男孩”与“男孩患病”的概率问题时,何时乘以1/2?何时不乘1/2?为什么?多数学生并不了解。

现在我们从遗传规律人手,详细推导了“患病男孩”与“男孩患病”的这类问题的概率,并对这类问题做了适当的延伸。

具体如下:常染色体上的基因控制的性状【例1】:肤色正常的夫妇生了一个白化女儿,他们再生一个白化男孩的概率是多少?生一个男孩白化的概率是多少?☞ 1.1 分析白化病为常染色体隐性遗传病,此题易知双亲均为杂合体(Aa × Aa)。

这里实际涉及到两种性状:一是肤色,它由常染色体基因决定;一是性别,它由性染色体决定。

由此可知夫妇双方分别为:AaXY ,AaXX ,其后代性状情况如下表:表中雌雄配子结合方式共8种,其中既符合“白化”性状,又符合“男孩”性状的只有aaXY,它占的比例为1/8,即“白化男孩”的概率为1/8;而表中男孩分别为AAXY,AaXY,AaXY ,aaXY ,其中aaXY为白化,占1/4,即“男孩白化”的概率为1/4。

同样的道理我们也可以求得“白化女孩”概率为1/8,“女孩白化”的概率为1/4。

此题若不考虑性别,则Aa × Aa婚配方式,其后代基因型分别为:AA,2Aa,aa,其中aa占1/4,即“白化孩子”的概率为1/4。

根据以上可知:男孩白化概率=女孩白化概率=白化孩子概率=1/4;白化男孩概率=白化女孩概率=白化孩子概率×1/2=1/4×1/2=1/8.☞ 1.2 结论据上述推导,可以将结论推而广之。

即:常染色体上的基因控制的遗传病,男孩患病概率=女孩患病概率=患病孩子概率(结论1);患病男孩概率=患病女孩概率=患病孩子概率× l/2(结论2)。

☞ 1.3 讨论"1/2"的生物学意义(实质)是什么?由于常染色体与人的性别无关,因此常染色体基因病在后代中也与性别无关。

高考生物计算公式总结8篇

高考生物计算公式总结8篇

高考生物计算公式总结8篇篇1一、遗传学部分1. 基因频率的计算:基因频率是指在一个种群中,某个基因占该种群所有等位基因的比例。

计算时,需要知道该种群中某个基因的数量除以该种群中所有等位基因的总数。

例如,假设一个种群中有100个A基因和200个a 基因,则A基因的频率为100÷300=1/3。

2. 遗传病的概率计算:对于常见的单基因遗传病,如抗维生素D佝偻病,其发病率可通过患者人数除以总人口数来计算。

例如,一个地区有10万人,其中500人患有抗维生素D佝偻病,则该病的发病率为500÷100000=1/200。

二、生物化学部分1. 酶活力的计算:酶活力是指酶催化特定反应的能力,通常以酶的浓度或活性单位来表示。

计算时,需要知道反应速率、底物浓度和酶浓度之间的关系,即Km=底物浓度/(反应速率/酶浓度)。

例如,已知某酶在底物浓度为1mM时的反应速率为1U/mL,则该酶的Km值为1mM/(1U/mL)=1mM。

2. 生物大分子的计算:对于蛋白质和核酸等生物大分子,其相对分子质量可通过氨基酸或核苷酸的数目乘以各自的相对原子质量来计算。

例如,一个由50个氨基酸组成的蛋白质,其相对分子质量为50×128=6400。

三、生态学部分1. 种群密度的计算:种群密度是指单位面积或单位体积内某个种群的数量。

计算时,需要知道该种群在一定空间内的数量和该空间的面积或体积。

例如,一个湖泊中有100只鸭子和200只天鹅,湖泊的面积为10平方公里,则鸭子的种群密度为100÷10=10只/平方公里。

2. 生物多样性的计算:生物多样性是指一个地区或全球范围内生物种类的丰富度和分布情况。

计算时,需要知道某个地区或全球范围内生物的种类数和每个种类的数量。

例如,一个地区有10种不同的植物和5种不同的动物,每种植物和动物的数量分别为100和50,则该地区的生物多样性指数为(10×100+5×50)/(10+5)=8.33。

遗传概率计算公式

遗传概率计算公式

遗传概率计算公式
遗传概率计算公式是指在遗传学中用于计算遗传基因型和表现型比例的数学公式。

这些公式基于孟德尔遗传学定律,考虑到基因的随机分离和重组,以及与环境的互作影响。

根据孟德尔遗传学的定律,基因可以分为显性和隐性,且每个生物体都有两个基因,来自父母各一。

基因型由组成基因对的两个基因决定,表现型则由基因对中的显性基因决定。

遗传概率计算公式主要包括以下内容:
1.基因型比例的计算公式:P(AA):P(Aa):P(aa)=1:2:1
其中,P表示概率,AA表示纯合子(两个基因都一样),Aa表示杂合子(两个基因不同),aa表示纯合子(两个基因都不一样)。

2.表现型比例的计算公式:显性表现型比例为3/4,隐性表现型比例为1/4。

3.联合遗传概率的计算公式:乘法原理和加法原理。

乘法原理:若两个事件A和B相互独立,则它们同时发生的概率为P(A∩B)=P(A)×P(B)。

加法原理:若两个事件A和B互斥,则它们发生任意一个事件的概率为P(A∪B)=P(A)+P(B)。

通过遗传概率计算公式,我们可以预测出不同基因型和表现型的比例,以及预测不同基因型在后代中的分布情况,为遗传学研究提供了基础。

- 1 -。

遗传概率计算公式

遗传概率计算公式

遗传概率计算公式
遗传率计算公式:e=W/t。

遗传力又称遗传率,指遗传方差在总方差(表型方差)中所占的比值,可以作为杂种后代进行选择的一个指标。

遗传力分为广义遗传力和狭义遗传力。

亲子之间以及子代个体之间,性状存在着相似性,表明性状可以从清代传递给子代,这种现象就称为遗传,遗传学是研究此现象的学科,目前已知,地球上现存的生命,主要是通过DNA作为遗传物质,除了遗传之外,决定生命特征的因素还包括有环境以及环境与遗传的交互关系。

整理今日最新小鸡答案_遗传规律相关题型

整理今日最新小鸡答案_遗传规律相关题型

今日最新小鸡答案整理表姓名:职业工种:申请级别:受理机构:填报日期:遗传规律相关题型题型1遗传学中的概率计算典例剖析1某种哺乳动物的短毛(A)、直毛(B)、黑色(C)为显性,基因型为AaBbCc和AaBBCc的个体杂交,产生的子代中基因型为AaBBcc的个体和黑色长直毛个体的概率分别为多少?解析由于Aa×Aa→产生基因型为Aa的概率为1/2;表现型为长毛的概率为1/4。

Bb×BB→产生基因型为BB的概率为1/2;表现型为直毛的概率为1。

Cc×Cc→产生基因型为cc的概率为1/4;表现型为黑色的概率为3/4。

所以,产生的子代中基因型为AaBBcc个体的概率为(1/2)×(1/2)×(1/4)=1/16;产生黑色长直毛个体的概率为(1/4)×1×(3/4)=3/16。

答案1/16和3/16技法点拨首先要将各对基因分开,单独计算每对基因杂交后产生的子代基因型或表现型的概率,最后将各数值相乘。

即子代某基因型出现的概率=亲本中每对基因杂交产生对应的子代基因型概率的乘积;子代某表现型的概率=亲本中每对基因杂交产生对应的子代表现型概率的乘积。

跟踪训练1.基因型分别为ddEeFf和DdEeff的两种豌豆杂交,在3对等位基因各自独立遗传的条件下,回答下列问题:(1)该杂交后代中表现型为D性状显性、E性状显性、F性状隐性的概率为________。

(2)该杂交后代中基因型为ddeeff的个体所占的比例为______。

(3)该杂交后代中,子代基因型不同于两亲本的个体数占全部子代的比例为________,子代表现型不同于两个亲本的个体占全部子代的比例为________。

答案(1)316(2)116(3)3458解析先将双亲性状拆分为三组,即dd×Dd、Ee×Ee及Ff×ff,按照分离定律分别求出各组的杂交后代基因型、表现型及其比例,然后再分别予以乘积,即:(1)该杂交后代中表现型为D显、E显、F隐的概率为:1 2×34×12=316。

高中生物遗传概率的计算技巧

高中生物遗传概率的计算技巧

高中生物遗传概率的计算技巧遗传概率是指某一基因在一代或多代后表现的概率。

在高中生物中,学习遗传概率是非常重要的一部分。

以下是几种常见的计算遗传概率的技巧。

1. 独立基因的遗传概率:当两个基因的遗传不会互相影响时,两个基因的遗传概率可以通过乘积法计算。

例如,红色花瓣是一种显性遗传,白色花瓣是隐性遗传,如果两个单色的花瓣的合子杂交,其子代的花瓣颜色应该是红白相间的。

因此,下一代中红色和白色花瓣的可能性相等,因此是50%。

2. 部分显性基因的遗传概率:在这种情况下,一个基因的表现方式有些微不同,所以有些表现是中间的。

例如黑毛狗(D)是显性基因,白毛狗(d)是隐性基因。

这两个基因的杂交将导致一个产生灰色毛的中间表现。

如果父亲(Dd)和母亲(dd)杂交,他们的后代可能是黑色毛(Dd)、灰色毛(Dd)或白色毛(dd)。

黑色毛与灰色毛的概率都是50%。

3. 复合基因的遗传概率:这种情况下,两个或更多的基因对同一特征进行编码(parental generation)。

例如,一个基因对身体高度编码,另一个基因对眼睛颜色编码。

复合基因的遗传概率可以通过解决Punnett方格表来计算。

例如,在人类中,红绿色盲是由X染色体上的一个反常基因引起的。

如果一个女性是红绿色盲,她的父亲是正常的,那么她的儿子是患病的概率是50%。

4. 应用遗传概率计算概率:这种情况下,遗传概率用于解决问题,而不只是计算后代的可能性。

例如,在一个家庭中,一个男孩有红绿色盲,他的妹妹没有。

他们的母亲是红绿色盲,他们的父亲不是。

我们可以通过遗传概率计算,可知这个家庭中的每个人所携带的基因,并确定哪个家庭成员携带引起这种疾病的基因。

需要注意的是,上述计算技巧是基于课本中示例的简单情况。

在现实生活中,基因的组合很复杂,在计算时还需要考虑许多其他因素。

然而,通过这些技巧,学习遗传概率的基础知识,可以帮助我们更好地理解遗传学的基本原理,更好地理解人类和其他物种的遗传特征。

高一必修二生物遗传概率计算

高一必修二生物遗传概率计算

高一必修二生物遗传概率计算首先,遗传学是研究遗传规律和遗传现象的科学,它揭示了生物遗传的基本原理。

在生物遗传中,我们常常关注的是基因的传递和表现,以及相关特征的遗传概率。

通过遗传学原理,我们可以预测和计算不同基因型和表型的出现概率。

遗传概率计算的基本原理是基于孟德尔遗传定律,即显性和隐性基因的组合遵循一定的比例。

例如,对于一个自由互换的基因对,如果一个个体携带两个相同的显性基因(AA),则它的基因型为纯合子;如果一个个体携带两个相同的隐性基因(aa),则它的基因型也为纯合子;如果一个个体携带一个显性基因和一个隐性基因(Aa),则它的基因型为杂合子。

根据孟德尔遗传定律,杂合子的表现型与纯合子相同,因此杂合子的表现概率为1/2。

在遗传概率计算中,我们常常使用分离规则和乘法规则。

分离规则指出,在杂合子的自由互换基因对中,每个基因在配子中的分离是独立的。

乘法规则指出,多个基因的遗传事件同时发生时,各个事件之间是相互独立的,因此可以将各个事件的概率相乘来计算总体概率。

除了基本原理,遗传概率计算还涉及到一些重要的概念,如基因频率、基因型比例和表现型比例。

基因频率指的是一个群体中某个基因的频率,可以通过观察群体中个体的基因型比例来估计。

基因型比例是指不同基因型的个体在群体中的比例,可以通过遗传概率计算来预测。

表现型比例是指不同表现型的个体在群体中的比例,它受到基因型比例和基因的显性与隐性关系的影响。

在实际的生物遗传概率计算中,我们需要掌握一些计算方法和公式。

例如,对于两个基因座的遗传事件,可以使用二项式定理来计算各个基因型的出现概率。

对于多个基因座的遗传事件,可以使用多项式定理来计算各个基因型的出现概率。

此外,还可以使用Punnett方格来可视化和计算基因型和表现型的概率。

总结起来,高一必修二生物遗传概率计算是通过遗传学原理和概率统计方法来预测和计算生物遗传过程中的概率。

它涉及到孟德尔遗传定律、分离规则、乘法规则、基因频率、基因型比例、表现型比例等概念和原理。

(复习难)遗传概率计算

(复习难)遗传概率计算
遗传概率 的计算
基因的自由组合定律研究的是控制两对或多
对相对性状、位于不同对同源染色体上的基因的
传递规律。由于控制生物不同性状的基因互不干
扰,独立地遵循基因的分离定律,因此,我们可 以用分解组合思想来解答这类试题。
分解组合思想就是把组成生物的两对或多对
相对性状分离开来,用单因子分析法一一加以研 究,最后把研究的结果用一定的方法组合起来, 运用数学中的乘法原理或加法原理进行计算。
⑶若只考虑甲病与血友病,则Ⅱ3与Ⅱ4婚配生一个既患甲病 又患血友病孩子的概率是 1/12 ______。 ⑷若只考虑乙病和血友病,假设乙病是红绿色盲,Ⅱ3与Ⅱ4 婚配后生出III1儿子,产生这一现象的原因最可能 是 同源染色体非姐妹染色体之间的交叉互换 。
【训练】2、某种雌雄同株植物的叶片宽度由等位基因(D与d) 控制,花色由两对等位基因(A与a、B与b)控制。下图是花瓣 细胞中色素形成的代谢途径示意图。某科学家将一株紫花宽叶 植株和一株白花窄叶植株进行杂交,F1均表现为紫花宽叶,F1 自交得到的F2植株中有315株为紫花宽叶、140株为白花窄叶、 105株为粉花宽叶。请回答:
【典例】3、个人8号幼年被拐走,长大后通过各种途径发现 与该图中的家族特征很像,为了鉴定与本家族的亲缘关系, 需采用特殊的鉴定方法。下列方案可行的是( C )
A.比较个体8与2的线粒体DNA序列; B.比较个体8与3的线粒体DNA序列; C.比较个体8与5的Y染色体DNA序列; D.比较个体8与2的X染色体DNA序列。
(1)甲病的遗传方式是 常染色体显性遗传 ,仅考虑甲病,在患病 人群中纯合子的比例是 1/19 。 (2)乙病致病基因是 性基因,要确定其是否位 隐 于X染色体上,最好对家族中的 Ⅰ1或Ⅱ3 个体进行基因检 测。

巧解遗传学中的概率问题

巧解遗传学中的概率问题

为 2x2=4种 5.用 乘 法 原 理 求 子 代 表 现 型 比值
具 有两对 以上相 对性状 的两个 体杂 交 。子代 表现 型 的 比例 等
于 每对相 对性 状 相交所 得 表现 型 比例 的乘 积 。例 如 :已知 双 亲 的
基 因 型 为AaBbxAABb,求 子 代 表 现 型 的 比例 。 因 为AaxAA-+I (AA.Aa),BbxBb--*(3:1),所 以子 代表 现 型的 比例为 lx(3:1)=(3:1)。
AaxAA--* AaBb ̄Bb一 Bb,所 以AaBb的概 率 是 × = 。


2 2 4
2.用 乘 法 原 理 求 子 代 表 现 型 的 概 率
具 有 两 对 以上 相 对 性 状 的 两 个 体 杂 交 .子 代 表 现 型 的概
率 等 于 每 对 相 对 性 状 相 交 所 得 表 现 型 概 率 的乘 积 。例 如 :双 亲
一 、 让 学 生 明 白解 答 遗 传 学 概 率 遵 循 的基 本 原 理 1.乘 法原 理 概 念 :若 事 件 A与 事 件 B互 相 独 立 ,则 A与 B同 时 发 生 的 概 率 等 于 它 们 各 自发 生 的概 率 之 积 ,记 作 P(AB)=P(A)·P(B)。 其 实 质是 不 同类 型 的 甲概 率 和 乙 概率 要 组 合 在 一 起 . 肯 定 这 种 组 合 后 概 率 变 小 ,就 得 相 乘 (因 为 概 率 为 真 分 数 )。 如 :
具 有 两 对 以上 相 对 性 状 的 两 个 体 杂 交 .子 代 表 现 型 的种
数 等 于 每 对 相 对 性 状 相 交 所 得 表 现 型 种 数 的乘 积 。例 如 :已 知 双 亲 的基 因型 为 AaBbxAABb,求 子 代 表 现 型 的种 数 。因 为Aax

遗传学的概率计算

遗传学的概率计算

遗传学的概率计算遗传学的概率计算是高二生物的一个难点,也是许多学生头痛的一个问题,有的同学看到题目之后,不知如何下手去做,或花了很长时间,最后计算出来的结果还是不正确。

这类问题要根据遗传的基本定律和有关概率的数学知识来解决。

现在我们一起来探讨遗传概率的几种计算题型的解题思路和方法。

一、运用分离定律、乘法原理计算有关自由组合定律问题例:下图为甲病(A-a)和乙病(B-b)的遗传系谱图,其中乙病为伴性遗传病,请回答下列问题:(1)甲病属于,乙病属于。

A.常染色体显性遗传病B.常染色体隐性遗传病C.伴Y染色体遗传病D.伴X染色体隐性遗传病E.伴Y染色体遗传病(2)Ⅱ-5为纯合体的概率是,Ⅱ-6的基因型为,Ⅲ-13的致病基因来自于。

(3)假如Ⅲ-10和Ⅲ-13结婚,生育的孩子患甲病的概率是,患乙病的概率是,不患病的概率是。

解析:我们首先分析遗传病的遗传方式。

由于Ⅱ-3、4都患甲病,而生下正常的女儿,可知甲病为“有中生无”且患病父亲生出正常的女儿Ⅲ-9,则为常染色体显性遗传病;Ⅰ-1和Ⅰ-2无乙病,生出Ⅱ-7患病儿子,可知乙病为“无中生有”,且Ⅱ-7生出正常儿子Ⅲ-14,根据题意得出乙病为伴X染色体隐形遗传病。

上述两病也就遵循基因的自由组合规律。

第二步写出相关个体的基因型,根据遗传系谱图中的有关个体的表现型以及减数分裂和受精作用来推测:Ⅱ-5号表现型正常,其父患甲病,Ⅱ-7患乙病,则Ⅰ-1和Ⅰ-2的基因型分别为aaXBXb、AaXBY,由此推出Ⅱ-5的基因型为aaXBXB或aaXBXb, 各占1 2的可能性;Ⅱ-6的基因型为aaXBY;Ⅱ-4的基因型为AaXBXB或AaXBXb,各占1 2的可能性。

由3、4、9可推出Ⅱ-3的基因型为AaXBY,则Ⅲ-10有关甲病的基因型有两种:1 3AA、2 3Aa,有关乙病的基因型有两种:3 4XBXB、1 4XBXb。

Ⅲ-13的基因型为aaXbY。

此时我们由题意已知这两对基因遵循自由组合定律,但每一对基因也单独遵循分离定律。

最全的遗传概率计算方法

最全的遗传概率计算方法

最全的遗传概率计算方法遗传概率是指在遗传过程中其中一特定基因型或表型的出现概率。

遗传概率的计算主要依赖于概率论和遗传学的基本原理。

以下将详细介绍最全的遗传概率计算方法。

一、基因型和表型的概率计算方法:1.根据乘法准则计算:乘法准则是指当两个或多个事件相互独立发生时,它们共同发生的概率等于各事件发生概率的乘积。

在遗传中,可以用乘法准则计算其中一特定基因型的出现概率。

2.根据加法准则计算:加法准则是指当一个事件可以通过多个独立途径实现时,它发生的概率等于各途径概率之和。

在遗传中,可以用加法准则计算其中一特定表型的出现概率。

3.使用分离规律:分离规律是指在杂合子自交过程中,两个互补的等位基因以1:2:1的比例分离到后代中。

根据分离规律,可以计算其中一基因型或表型在后代中出现的概率。

二、遗传交叉概率计算方法:1.使用染色体分离规律:染色体分离规律是指在遗传交叉过程中,同一染色体上的等位基因以一定比例分离到子代中。

通过分析染色体分离规律,可以计算染色体上其中一特定基因型的出现概率。

2.使用二点交叉概率:二点交叉概率是指在遗传交换过程中,两个特定位点之间染色体发生交换的概率。

通过计算二点交叉概率,可以预测其中一特定基因型在后代中的出现概率。

3.使用多点交叉概率:多点交叉概率是指在遗传交叉过程中,多个特定位点之间染色体发生交换的概率。

通过计算多点交叉概率,可以更准确地预测其中一特定基因型在后代中的出现概率。

三、连锁不平衡概率计算方法:1.使用联配不平衡系数计算:联配不平衡系数是指两个或多个等位基因在同一染色体上出现的频率与各等位基因在人群中的频率之间的关系。

通过计算联配不平衡系数,可以获得其中一特定等位基因组合在人群中的出现概率。

2.使用相关系数计算:四、突变概率计算方法:1.基于突变率计算:突变率是指单位时间内其中一基因发生突变的概率。

通过计算突变率,可以估计其中一基因在一代中发生突变的概率。

2.基于突变频率计算:突变频率是指其中一基因在人群中发生突变的频率。

遗传概率计算公式

遗传概率计算公式

遗传概率计算公式1.单因素遗传概率计算单因素遗传概率计算用于计算一个基因座上其中一特定等位基因在后代中出现的概率。

对于单杂合个体,可以使用以下公式计算:P(Aa)=2*P(A)*P(a)其中,P(Aa)表示后代中出现该特定等位基因(Aa)的概率,P(A)表示母本个体中含有该等位基因(A)的概率,P(a)表示父本个体中含有该等位基因(a)的概率。

因为单杂合个体的两个等位基因是随机组合的,所以乘以2对于纯合子个体(AA或aa),可以使用以下公式计算:P(AA)=P(A)^2P(aa) = P(a)^2其中,P(AA)表示后代中出现纯合子(AA)的概率,P(a)表示后代中出现纯合子(aa)的概率。

2.双因素遗传概率计算双因素遗传概率计算用于计算两个基因座上其中一特定等位基因组合在后代中出现的概率。

根据孟德尔遗传定律,两个基因座上的等位基因是独立分配的,可以使用乘法原理计算。

例如,对于两个基因座上两个等位基因Aa和Bb,可以使用以下公式计算后代中出现该组合的概率:P(AaBb)=P(Aa)*P(Bb)其中,P(AaBb)表示后代中出现该等位基因组合(AaBb)的概率,P(Aa)表示父本个体中含有该等位基因组合(Aa)的概率,P(Bb)表示母本个体中含有该等位基因组合(Bb)的概率。

3.卡方检验卡方检验可用于确定一个观察结果的遗传比例是否与理论预期相符。

该检验基于统计学中的卡方分布。

对于一个二项式分布的观察结果,可以使用以下公式计算卡方值:χ²=Σ[(O-E)²/E]其中,χ²表示卡方值,Σ表示求和符号,O表示观察到的结果频数,E表示理论预期的结果频数。

卡方值代表了观察结果与理论预期之间的差异程度。

根据分布表查找卡方值对应的P值,可以判断观察结果是否符合理论预期。

以上就是几种常见的遗传概率计算公式。

这些公式是遗传学推算遗传特征在后代中出现概率的基础,通过运用这些公式,人们可以更好地理解和预测遗传规律。

生物遗传学概率计算

生物遗传学概率计算

生物遗传学概率计算生物遗传学是研究遗传信息在生物体中的传递和变化的科学领域。

在生物遗传学中,概率计算是一种基本的工具,用于预测和解释遗传现象。

这篇文档将介绍生物遗传学中常见的概率计算方法和其在遗传研究中的应用。

一、简介生物遗传学研究遗传信息的传递和变化,涉及到不同基因型之间的概率关系。

概率计算是一种数学方法,用于定量描述和解释这种概率关系。

它通过统计学原理和数学模型,预测和解释遗传现象。

二、基本概率计算1. 单基因遗传单基因遗传是指一个性状由一个基因决定的遗传过程。

常见的单基因遗传模式有显性遗传和隐性遗传。

在显性遗传中,一个显性基因会掩盖一个隐性基因的效果。

在隐性遗传中,需要两个隐性基因才能表现出隐性性状。

概率计算可用于预测和解释特定性状在群体中的分布。

通过确定基因型和基因频率,可以计算各个基因型的概率。

例如,对于显性遗传的性状,AA基因型的概率为p^2,Aa基因型的概率为2pq,aa 基因型的概率为q^2,其中p和q分别为显性和隐性基因的频率。

2. 多基因遗传多基因遗传是指一个性状受多个基因共同影响的遗传过程。

常见的多基因遗传模式有加性遗传和非加性遗传。

在加性遗传中,每个基因的贡献是独立的,可以通过将各个基因的效应累加来预测性状表现。

在非加性遗传中,基因之间相互作用会影响性状表现。

概率计算可用于预测和解释多基因性状的分布和变异度。

通过确定每个基因型的频率和效应,可以计算各个基因型的概率。

例如,对于加性遗传的性状,可以通过将每个基因型的频率与其效应相乘,并将结果相加,来计算整个群体中性状表现的平均值。

三、应用案例1. 遗传病风险评估概率计算在遗传病风险评估中起着重要的作用。

通过分析家族的遗传信息和基因型频率,可以计算一个人患某种遗传病的风险。

例如,对于某种遗传病,如果患病的基因型频率为p,健康的基因型频率为q,那么一个人患病的风险可以通过计算AA基因型的概率来估计。

2. 种群遗传结构分析概率计算还可以用于分析不同种群之间的遗传结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市松江二中2015年不知道是什么考试的微课程(2)
主题:遗传学概率题
【序言】
学过遗传学之后,才发现氨基酸和核酸的那种接近于线性的计算简直弱爆了,难怪童大王都不屑跟我们讲。

大王的心算能力实在没法比,毕竟算了那么多年,背都背出来了,所以在我们还没想出来的时候总说:“这个不敢说啊?”而且不用棋盘法其实是一个不太负责任的说法,其实最保险最清晰的方法还是棋盘法,连狗哥都让我们竞赛的就用棋盘法,尽管多花一点时间,但它体现的是:
看待问题的全面与严谨性
当然,如果大家有更好的方法,可以不用棋盘法。

反正嘛,让这道题端正态度嘛,诶——,端正态度就对了嘛。

考纲上的要求注意p47的6、11条;并且,在端正题目的态度之前先端正自己的态度,深呼吸一口,翻到讲练p4-7、16-21页认真阅读。

顺便看一下老师上个学期发的复习提纲。

可以提炼出以下几种方法:
1.拆分组合
这个方法是大多数遗传概率问题的基础而且很简单,所以不出例题。

出现几对相对性状时,比如AaBb问得到的配子中AB占有的比例,就先算Aa中得到A有1/2,Bb中得到B有1/2,相乘即可得1/4。

或者问Aa与Aa交配所得aa占有比例,其中每一方有1/2几率为a,相乘得1/4。

求性状分离比时就要稍微动点脑筋,从基因型情况种类少的入手,这就是为什么我们能很快得到Aa×Aa得到两种性状为3:1,因为体现隐性性状的只有aa,而其他情况的就用1减去它得到。

(注意1代表的是什么范围,是一对性状的所有可能性还是多对性状)另外,对于一些包含多种情况的情况的概率可以通过算出它的分类几种情况的概率后相加。

如:一种伴X隐的病可以算出X a X a的情况和X a Y的概率之后相加(同样注意范围)
2.反证法(演绎法)
这是一个很保险的方法,在你不知道一个情况可不可以成立的情况下就用它,虽然比较慢,但是可以解决很多问题。

【真题】讲练p54
8、某种鱼的鳞片有4种表现型:单列鳞、野生型鳞、无鳞和散鳞,由位于两对同源染色体上的两对等位基因决定(分别用Aa、Bb表示),且BB对生物个体有致死作用。

将无鳞鱼和纯合野生鳞的鱼杂交,F1代有两种表现型,野生型鳞的鱼占50%,单列鳞鱼占50%;选取F1中的单列鳞鱼进行自交,其后代有4种表现型,这4种表现型比例为6:3:3:1,则F1亲本基因型组合为()
A.aaBb×AAbb或aaBB×AAbb
B.AABb×aabb
C.aaBb×AAbb
D.AaBB×AAbb
【精讲】这道题考的是9:3:3:1的变形,通常是双杂合自交造成。

不过不记得这个也不要紧。

首先我们将A,D排除因为不可能有BB活着。

然而C又是怎么做出来的呢?记得当时说这些鱼的排序跟这个比例是一一对应的,但这其实只是巧合。

解决B选项用的就是反证法。

若B选项成立,则AABb产生AB、Ab两种配子,aabb只产生ab。

且根据题意aabb为野
所以B不成立。

或者反着来看,因为与子代中没相同性状的亲本是aabb,那么它是无鳞鱼,得到AABb为野生型鳞,却不是纯合的,又矛盾。

相同方法得到C没问题。

在解决家谱图问题中反证法尤为重要。

【答案】:C
3.解遗传系谱图的一种简易方法(在复习提纲上都有)
1、2为隐性遗传病,因为假如该致病基因为显性则正常父母为aa aa或X a Y X a X a,不可能有含A或X A的后代。

同理可得若出现1则该病为常隐
3、4为显性病。

若出现情况3则该病为常显。

显和伴X隐
若1、2则不会是伴X隐,因为若是伴
同理3、4必不是伴X显,否则X A Y的母亲和女儿必是患者。

③、较为特殊的情况(猜)
1、有时候系谱图只有男患者,则可能是Y染色体遗传,但患者的父亲、儿子必是患者
2、细胞质遗传我们不考虑。

解题思路:
(1)是不是Y染色体遗传(演绎法)
(2)有无两名患者后代出现非患者现象(确定法),若有,即为常显或伴X显,用确定法确定常显,排除法排除伴X显,不能确定又不能排除,则有常显或伴X 显两种可能。

(3)有无隔代遗传(两名非患者后代出现患者)现象。

(演绎法)
(4)若有隔代遗传现象,则肯定是常隐或伴X隐,之后同(2)
(5)若无两名非患者后代出现患者的现象,则有常隐、伴X隐、常显、伴X显四种可能,再用不对称排除法法排除,不能排除即都有可能。

例题就不写了,典型的是p59.8和p60.10,根据以上方法做几遍即可。

并且建议一天之内不要花太多时间在遗传问题上,保持头脑清醒。

列举情况要全面。

顺便,可以参考讲练p20的口诀:“父子相传为伴Y,子女同母为母系;‘无中生有’为隐性,隐性遗传看女病,父子都病为伴X(女的父亲和儿子);‘有中生无’为显性,显性遗传看男病,母女(男的母亲和女儿)都病为伴X。

”。

相关文档
最新文档