2016高考数学全国1卷导数压轴题《极值点偏移问题》
极值点偏移问题的两种常见解法之比较演示教学
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增 所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x-=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f ==(Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +<令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x e a e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a <11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。
2016全国卷I高考数学理科试题压轴题参考答案
2016全国卷(I)高考数学理科试题压轴题参考答案20(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E.(1)证明:EA EB +为定值,并写出点E 的轨迹方程。
(2)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围。
解:(1)圆方程222150x y x ++-=可化为()22116x y ++=∴圆心A(-1,0),半径r=4由AC//EB,所以∠EBD=∠ACD (1)又AC=AD,所以∠ADC=∠ACD (2)由(1),(2)式,得∠EBD=∠ADCBE DE=得所以4AE BE AE DE AD +=+==所以点E 的轨迹是以A,B 为焦点,长轴为4的椭圆。
E 的轨迹方程为22143x y +=(2)(i)当直线MN 的方程斜率存在时设直线MN 的方程为()1y k x =-则直线PQ 的方程为()11y x k=--联立()221431x y y y k x ⎧+=⎪⎨⎪=-⎩消得()22224384120k x k x k +-+-=()()()()()()2222222228434*********k 4k k 12k MN k k a k k -+-+∆=+=+=++直线PQ 方程()11y x k =--可化为10x ky +-=点A 到直线PQ 的距离为:22101211k d k k -+⋅-==++2222224432411k PQ k k ⎛⎫+=-= ⎪++⎝⎭()()222222222114431243143114343MPNQ 12k 1k 24k S MN PQ 2k k k k 112424+k 44k +++=⋅=⋅⋅=++++⎛⎫== ⎪++⎝⎭四边形83MPNQ 12S <<四边形(ii)当直线MN 的方程斜率不存在时容易算得:MPNQ S =12四边形所以83MPNQ 12S ≤<四边形21(本小题满分12分)已知函数2()()e (1)x f x x-2a x =+-有两个零点。
完整版导数压轴题分类2 极值点偏移问题含答案
导数压轴题分类(2)---极值点偏移问题极值点偏移问题常见的处理方法有⑴构造一元差函数Fx f x f 2x 0 x 或者F x f x o x f x o x 。
其中x o 为函数y f x 的极值点。
⑵利用对数平均不等式。
•、ab-—b -—b 。
⑶变换主元等方法。
In a In b 2任务一、完成下面问题,总结极值点偏移问题的解决方法。
2 21 设函数 f(x) a In x x ax (a R)(1)试讨论函数f (x)的单调性;a 21nx x 2 ax 可知 2x 2 ax a 2 (2x a)(x a)x x① 若a 0时,当 x (0, a)时,f (x)0 ,函数f (x)单调递减,当 x (a, )时,f (x) 0,函数f (x)单调递增;② 若a 0时,当 f (X) 2x 0在x (0,)内恒成立,函数f (x)单调递增;③ 若a 0时,当 x (0,a)时,f (X )0 ,函数f (x)单调递减, 因为函数f(x)的定义域为(0,),所以2 f (x)0,函数f (x)单调递增;当)时,((2) f (x) m 有两解捲必(论x 2),求证:x-i x 2 2a .解析:(1)由f(x)a 2f (x)2x axa 2,(2)要证 X i X 2 2a , 只需证 a 22 a 2xg(x) f (x)为增函数。
只需证: f (X ^jX1) f (a)0,即证2- N +X 2 a 0 (*)x , x 2 a又 a 21n X i X i 2ax i2 2m, a In X 2 X 2 ax 2 m,两式相减整理得:2x a,则 g (x)g(x) (x)x2a 2x , +x 2 aln x 1 ln x 2 1 2(x 1ix x 2a)a0,把丄(x 1aX 2 a) ln x ( xlnX 2 代入(*) X 2式,即证:x 1 x 22ln x (lnx2o 化为2(竺1)=t 即证:2(t 1) lnt 0x2ln^10,令冬x-i x 2x X 2生1xx t 1x令(t ) 2(t 1) ln t(0 t1),则⑴4 1 (t 1)2卜ot 21t 1t t1 t所以⑴为减函数,⑴(1)综上得:原不等式得证。
极值点偏移问题的两种常见解法之比较(汇编)
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2l n 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(l n (2f x f a -极大值2(l n (2)4l n (2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x a x f x a x a x x+-'=-+-= 当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x ea e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '<解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0xf x e ax a =-+=,222()0xf x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。
高中数学:极值点偏移问题的解题方法
⾼中数学:极值点偏移问题的解题⽅法⼀、极值点偏移的定义
⼆、对数平均定义与证明
对数平均不等式在⾼考中不能直接⽤,在解答题中需要证明
三、⾼考例题
极值点偏移问题在历年考题中反复出现,⽐如2016年全国卷、2013年湖南卷、2011年辽宁卷、
2010年天津卷等。
四、答题模板
第⼀步: 根据f(x1)=f(x1)建⽴等式
第⼆步: 如果等式含有参数,则消参; 有指数的则两边取对数,转化为对数式第三步: 通过恒等变换转化为对数平均问题,利⽤对数平均不等式求解
五、经典例题
解法⼀:齐次构造消参
解法⼆: 利⽤极值点偏移构造函数处理
解法三: 构造函数
解法四: 引⼊变量( ⼀)
解法五: 引⼊变量( ⼆)。
导数压轴题分类(2)---极值点偏移问题(含答案)
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
《极值点偏移问题的处理策略及探究》
极值点偏移问题的处理策略及探究所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。
而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。
不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索! 【问题特征】【处理策略】一、不含参数的问题.例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示. 由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<, 构造函数()(1)(1),(0,1]F x f x f x x =+--∈, 则21()(1)(1)(1)0x x x F x f x f x e e+'''=++-=->,所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=,也即(1)(1)f x f x +>-对(0,1]x ∈恒成立.由1201x x <<<,则11(0,1]x -∈,所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +-=->--==,即12(2)()f x f x ->,又因为122,(1,)x x -∈+∞,且()f x 在(1,)+∞上单调递减, 所以122x x -<,即证12 2.x x +>法二:欲证122x x +>,即证212x x >-,由法一知1201x x <<<,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =, 故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x xH x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法三:由12()()f x f x =,得1212x x x ex e --=,化简得2121x x x e x -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t tx x x t t e +=+=+-,故要证:122x x +>,即证:221tt t e +>-,又因为10te ->,等价于证明:2(2)(1)0t t t e +-->…②, 构造函数()2(2)(1),(0)tG t t t e t =+-->,则()(1)1,()0ttG t t e G t te '''=-+=>, 故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立. 法四:由法三中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x x x x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()lim lim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的. 二、含参数的问题.例2.已知函数xae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x .【解析】思路1:函数()f x 的两个零点,等价于方程xxea -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x ,所以⎩⎨⎧==)2()1(2121x x aex ae x , 由)2()1(+得:)(2121xx e e a x x +=+, 要证明122x x +>,只要证明12()2x x a e e +>,由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e-=-, 即证:121212()2x x xx e e x x e e+->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-,则0,1tt e >>, 因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e t ln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+ 构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F 求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增,所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
高考全国I卷导数压轴大题
f
x
有两个零点.
(ii)设 a=0,则 f x x 2 ex 所以 f x 有一个零点.
(iii)设 a<0,若 a e ,则由(I)知, f x 在 1, 单调递增.
2
全国高考 I 卷文科数学导数压轴大题
又当 x 1时, f x <0,故 f x 不存在两个零点;若 a e ,则由(I)知, f x 在
2 f (x1 x2 ) f (x1 ) f (x2 ).
(Ⅰ)设 f (1) 2,求f (1 ), f (1 ); 24
(Ⅱ)证明 f (x) 是周期函数。
(Ⅰ)解:由
f (x1
x2 )
f (x1 )
f (x2 ), x1, x2
[0, 1 ] 知 2
f (x) f ( x ) f ( x ) 0, x [0,1]. 22
②若 a e ,则 ln(-2a)<1,故当 x , ln 2a 1, 时, f ' x 0 ; 2
当 x ln 2a,1 时, f ' x 0 ,所以 f x 在 ,ln 2a,1, 单调递增, 在 ln 2a,1 单调递减.
(II)(i)设 a 0 ,则由(I)知, f x 在 ,1 单调递减,在 1, 单调递增.
又 f 1 e,f 2 a ,取 b 满足 b<0 且 b ln a ,
22
则
f
b
a 2
b
2
ab
12
a
b3
3 2
b
0 ,所以
ln(
导数处理极值点偏移问题
第二讲 导数应用-------极值点偏移问题的处理策略及探究所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。
而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。
不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索! 【问题特征】2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.虽然大多学生理解其题意,但对于极值点偏移的本质理解的深度欠佳,面对此类问题大多感到“似懂非懂”或“云里雾里”.一、试题再现及解析 (一)题目(2016年全国I 卷)已知函数()()()221xf x x e a x =-+-有两个零点.(1)求a 的取值范围;(2)设12,x x 是()f x 的两个零点,证明:122x x +<.本题第(1)小题含有参数的函数()f x 有两个零点,自然想到研究其单调性,结合零点存在性定理求得a 的取值范围是()0,+∞.第(2)小题是典型的极值点偏移的问题,如何证明呢?(二)官方解析(2)不妨设12x x <,由(1)知,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞,()f x 在(),1-∞上单调递减,所以122x x +<等价于()()122f x f x >-,即()()222f x f x >-.由于()()22222221x f x x ea x --=-+-,而()()()2222221x f x x e a x =-+-,所以()()()222222222x x f x f x x e x e ---=---.令()()22x x g x xe x e -=---,则()()()21x x g x x e e -'=--,所以当1x >时,()0g x '<,而()10g =, 故当1x >时,()()10g x g <=.从而()()2220g x f x =-<,故122x x +<. 二、对解析的分析本问待证是两个变量的不等式,官方解析的变形是122x x <-,借助于函数的特性及其单调性,构造以2x 为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为212x x <-,同理构造以1x 为主元的函数来处理.此法与官方解析正是极值点偏移问题的处理的通法.不妨设12x x <,由(1)知,()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞,()f x 在()1,+∞上单调递增,所以122x x +<等价于()()212f x f x <-,即()()1120f x f x --<.令()()()()()2221xx u x f x f x xex e x -=--=--<,则()()()210x x u x x e e -'=-->,所以()()10u x u <=,即()()()21f x f x x <-<,所以()()()1212f x f x f x =<-;所以212x x <-,即122x x +<.极值点偏移问题的处理策略: 【处理策略一】主元法所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.作为一线的教育教学工作者,笔者尝试用主元法破解函数的极值点偏移问题,理性的对此类进行剖析、探究,旨在为今后的高考命题和高考复习教学提供一点参考.一般地,主元法破解极值点偏移问题思路是:第一步:根据()()()1212f x f x x x =≠建立等量关系,并结合()f x 的单调性,确定12,x x 的取值范围; 第二步:不妨设12x x <,将待证不等式进行变形,进而结合原函数或导函数的单调性等价转化. 第三步:构造关于1x (或2x )的一元函数()()()()21,2i i T x f x f a x i =--=,应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.题型一:不含参数的问题.例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示. 由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<,欲证122x x +>,即证212x x >-,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =,故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x xH x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法二:由12()()f x f x =,得1212x x x ex e --=,化简得2121x x x e x -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221t tt e +>-,又因为10te ->,等价于证明:2(2)(1)0tt t e +-->…②,构造函数()2(2)(1),(0)t G t t t e t =+-->,则()(1)1,()0t tG t t e G t te '''=-+=>,故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.法三:由法二中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x xx x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上三种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一利用构造新的函数来达到消元的目的,方法二、三则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.例2.已知()ln f x x x =的图像上有,A B 两点,其横坐标为1201x x <<<,且12()()f x f x =.(1)证明:1221x x e <+<;(2)证明:1<<. 【解析】(1)证明:由()ln ,()ln 1f x x x f x x '==+,令()0f x '=,得1x e=, 故12101x x e <<<<,构造函数21()()(),(0),F x f x f x x e e=--<< 则2221()ln ln()2ln ()2ln 20F x x x x x e e e '=+-+=-+<+=,故()F x 在1(0,)e上单调递减,即1()()0F x F e >=,∴2()()f x f x e >-,令1x x =,则2112()()()f x f x f x e =>-,再由2121,(,1)x x e e -∈,且()f x 在1(,1)e 上单调递增,故212x x e >-,即证:122x x e+>. 又构造函数:1()()(1),(0)2g x f x f x x =--<<,则1112()ln ln(1)2,()01(1)x g x x x g x x x x x -'''=+-+=-=>--,故()g x '在1(0,)2上单调递增,由于0x →时,()g x '→-∞,且1()ln(1)0g e e '=->,故必存在01(0,)x e ∈,使得0()0g x '=,故()g x 在0(0,)x 上单调递减,在01(,)2x 上单调递增,又0x →时,()0g x →,且1()02g =,故()0g x <在1(0,)2x ∈上恒成立,也即()(1)f x f x <-在1(0,)2x ∈上恒成立,令1x x =,有121()()(1)f x f x f x =<-,再由211,1(,1)x x e -∈,且()f x 在1(,1)e 上单调递增,故211x x <-,即证:121x x +<成立.综上:即证1221x x e<+<成立.(2)令12t t =则22112212,,,(0,1)x t x t t t ==∈,且212()2ln ,()(),()2(2ln 1)h t t t h t h t h t t t '===+,令()0h t '=,得t =, 故1201t t <<<<.构造函数()()),(0H t h t h t t =-<<,则 ()()),()())H t h t h t H t h t h t'''''''''=+-=-,由于4()0h t t '''=>,则()h t ''在上单调递增,因为t t <-,故()0H t ''<,()H t '在上单调递减,故()0H t H ''>=,即()H t在上单调递增,即()0H t H <=,即())h t h t <-,同理得出:12t t +<; 再构造1()()(1),(0)2G x h t h t t =--<<,同样求导利用单调性可得出1()()02G t G >=,从而()(1)h t h t >-对1(0,)2t ∈恒成立,同理得出:121t t +>.综上:即证121t t <+<成立,也即原不等式1<<成立.练习1:已知函数2()ln f x x x x =++,正实数12,x x 满足1212()()0f x f x x x ++=,证明:12x x +≥. 【解析】由1212()()0f x f x x x ++=,得2211122212ln ln 0x x x x x x x x ++++++= 从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,构造函数()ln t t t ϕ=-,得11()1t t t tϕ-'=-=,可知()t ϕ在(0,1)上单调递减,在(1,)+∞上单调递增,所以()(1)1t ϕϕ≥=,也即21212()()1x x x x +++≥,解得:12x x +≥.练习2(2013年湖南文科第21题)已知函数()211xx f x e x-=+. (1)求()f x 的单调区间;(2)证明:当()()()1212f x f x x x =≠时,120x x +<.解: (1) ()f x 在(),0-∞上单调递增,在()0,+∞上单调递减;(2)由(1)知当1x <时,()0f x >. 不妨设12x x <,因为()()12f x f x =,即121222121111x x x x e e x x --=++,则1201x x <<<, 要证明120x x +<,即120x x <-<,只需证明()()12f x f x <-,即()()22f x f x <-.而22()()f x f x <-等价于2222(1)10x x e x ---<,令()2()(1)10xg x x ex x =--->,则2'()(12)1x g x x e =--,令2()(12)1xh x x e=--,则2()40x h x xe '=-<,所以()h x 单调递减,()()00h x h <=,即()0g x '<,所以()g x 单调递减, 所以()()00g x g <=,得证.题型二:含参数的问题例3.已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x . 【解析】思路1:函数()f x 的两个零点,等价于方程xxea -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x , 所以⎩⎨⎧==)2()1(2121x x ae x ae x ,由)2()1(+得:)(2121xx e e a x x +=+,要证明122x x +>,只要证明12()2x x a e e +>,由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e -=-,即证:121212()2x x xx e e x x e e+->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-, 则0,1tt e >>, 因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e t ln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+ 构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增, 所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三极值点偏移题型是上一篇所讲述的双变量题型的一种重要分型。
2016年高考I卷的压轴大题就考了这种题型。
这类题型的特点鲜明,解题思路通用性强。
本文通过原创的一张图来直观、简明地揭示极值点偏移问题的基本原理(未见第二家如此系统地阐述它的原理)。
相信每一位同学学会后,再遇到此类题型就有底气而不会再发怵了,真正做到举一反三。
1. 导数(应用)压轴大题之不等式有关问题的极值点偏移题型及典型例题例1(2016国I) 已知函数f(x) = (x-2)e^x +a(x-1)^2有两个零点。
(1) 求a的取值范围;(2) 设x1, x2是f(x)的两个零点,证明:x1+x2<2。
(提示:这题在上一篇中已给出详细解答,这里不再赘述。
作为2016年的压轴题,第(2)问算是极值点偏移题型中的一个难度适中的题目,因此刚好可用来清晰地揭示极值点偏移题型的基本原理与通用解题思路。
不熟悉这类题型的同学应先把该题学透,再继续学习其它例题)例2 已知函数f(x) = xlnx,g(x) = 1/2×mx^2+x。
(1) 若函数f(x)与g(x)的图像上存在关于原点对称的点,求实数m 的取值范围;(2) 设F(x) = f(x) – g(x),已知F(x)在(0, +∞)上存在两个极值点x1、x2,且x1<x2,求证:x1x2 > e^2 (其中e为自然对数的底数)。
解:依题意,x>0,讲解:①从极值点偏移题型角度看,本题(2)问稍有变化(可视作常规题型的变式——出题人常以类似的方式改题或增加难度):(a) 分析的函数对象为‘导函数’及其两个零点——即两个等值点。
但这些变化对以极值点偏移的思路进行解题并无太大差别,仅仅是对象不同而已。
(b) 已知函数的定义域受限——x>0;处理时不要忘了其约束。
(c) 从所求证的‘x1x2 > e^2’看不出与极值点偏移问题相关,但只需利用已知推出可知条件“x1=lnx1/m和x2=lnx2/m”,即可把所求证问题转化为需知问题(或称需知条件)“x2+x1>2/m”——此为极值点偏移的标准形态。
极值点偏移问题1
作者的话(可作为编者按):极值点偏移,在近几年的数学圈里可谓是一个时髦的名词.特别地,它作为2016年高考新课标Ⅰ卷导数压轴题第(2)问出现,更是引起了人们的广泛关注和讨论.一时间,全国上下竞相效仿,各地的模拟题都呈现出大偏移状态.说起极值点偏移,必然要提到对称化构造的处理策略,这可一直追溯到7年前,2010年高考天津卷理数第21题,之后在高考中时有出现,如2011年辽宁卷理数第21题,2013年湖南卷文数第21题等.笔者决定发布极值点偏移问题的系列短文,一期一个解题方法或操作细节,敬请关注.希望对此已有所了解的朋友能认识得更加深入,还不甚了解的朋友能由此入门.极值点偏移问题(1)——对称化构造(解题方法)杨春波(高新区枫杨街 郑州外国语学校,河南 郑州 450001)三张图教你直观认识极值点偏移:xx 0=2(左右对称,无偏移,如二次函数;若()()12f x f x =,则1202x x x +=)x2(左陡右缓,极值点向左偏移;若()()12f x f x =,则1202x x x +>)2x(左缓右陡,极值点向右偏移;若()()12f x f x =,则1202x x x +<) 例1 (2010天津)已知函数()x f x xe -=. (1)求函数()f x 的单调区间和极值;(2)已知函数()g x 的图象与()f x 的图象关于直线1x =对称,证明:当1x >时,()()f x g x >;(3)如果12x x ≠,且()()12f x f x =,证明:122x x +>. 解:(1)()()1xf x e x -'=-,得()f x 在(),1-∞上递增,在()1,+∞上递减,()f x 有极大值()11f e=,无极小值; (2)由()g x 的图象与()f x 的图象关于直线1x =对称,得()g x 的解析式为()2y f x =-,构造辅助函数()()()()()2F x f x g x f x f x =-=--,()1,x ∈+∞,求导得()()()()()()()222111x x x x F x f x f x e x e x x e e ----'''=+-=-+-=--,当1x >时,10x ->,20x x ee --->,则()0F x '>,得()F x 在()1,+∞上单增,有()()10F x F >=,即()()f x g x >.(3)由()()12f x f x =,结合()f x 的单调性可设121x x <<,将2x 代入(2)中不等式得()()222f x f x >-,又()()12f x f x =,故()()122f x f x >-,又11x <,221x -<,()f x 在(),1-∞上单增,故122x x >-,122x x +>.点评:该题的三问由易到难,层层递进,完整展现了处理极值点偏移问题的一般方法——对称化构造的全过程,直观展示如下:x例1是这样一个极值点偏移问题:对于函数x f x xe -=,已知()12f x f x =,且21x x ≠,证明122x x +>.再次审视解题过程,发现以下三个关键点:(1)1x ,2x 的范围()1201x x <<<; (2)不等式()()()21f x f x x >->;(3)将2x 代入(2)中不等式,结合()f x 的单调性获证结论. 把握以上三个关键点,就可以轻松解决一些极值点偏移问题.例2 (2016新课标1卷)已知函数()()()221xf x x e a x =-+-有两个零点.(1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,证明:122x x +<.解:(1)()0,+∞,过程略;(2)由(1)知()f x 在(),1-∞上递减,在()1,+∞上递增,由()()120f x f x ==,可设121x x <<.构造辅助函数()()()2F x f x f x =--,求导得()()()()()()()2221(2)1(2)1x x x x F x f x f x x e a x e a x e e --'''=+-=-++-+=--,当1x <时,10x -<,20xxe e --<,则()0F x '>,得()F x 在(),1-∞上单增,又()10F =,故()()01F x x <<,即()()()21f x f x x <-<.将1x 代入上述不等式中,得()()()1212f x f x f x =<-,又21x >,121x ->,()f x 在()1,+∞递增,故212x x <-,122x x +<.通过以上两例,相信读者对极值点偏移问题以及对称化构造的一般步骤已有所了解.但极值点偏移问题的结论不一定总是()1202x x x +><,也可能是()2120x x x ><,借鉴前面的解题经验,我们就可以给出类似的过程.例 3 已知函数()ln f x x x =的图象与直线y m =交于不同的两点()11,A x y ,()22,B x y ,求证:1221x x e<. 证明:()ln 1f x x '=+,得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增;当01x <<时,()0f x <;()10f =;当1x >时,()0f x >;当0x +→时,()0f x →(洛必达法则);当x →+∞时,()f x →+∞.于是()f x 的图象如下,得12101x x e<<<<. x构造函数()()21F x f x f e x ⎛⎫=-⎪⎝⎭,求导得 ()()()22222222111111ln 1ln 1ln 1F x f x f x x e x e x e x e x e x ⎛⎫⎛⎫⎛⎫'''=+=+++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当10x e <<时,1ln 0x +<,22110e x -<,则()0F x '>,得()F x 在10,e ⎛⎫⎪⎝⎭上递增,有()10F x F e ⎛⎫<= ⎪⎝⎭,即()2110f x f x e x e ⎛⎫⎛⎫<<< ⎪⎪⎝⎭⎝⎭.将1x 代入(2)中不等式得()1211f x f e x ⎛⎫<⎪⎝⎭,又()()12f x f x =,故()2211fx f e x ⎛⎫<⎪⎝⎭,又21x e >,2111e x e >,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上递增,故2211x e x <,1221x x e<. 小结:用对称化构造的方法解决极值点偏移问题大致分为以下三步:Step 1. 求导,获得()f x 的单调性,极值情况,作出()f x 的图象,由()()12f x f x =得1x ,2x 的取值范围(数形结合);Step 2. 构造辅助函数(对结论()1202x x x ><,构造()()()02F x f x f x x =--;对结论()2120x x x ><,构造()()20x F x f x f x ⎛⎫=- ⎪⎝⎭),求导,限定范围(1x 或2x 的范围),判定符号,获得不等式;Step 3. 代入1x (或2x ),利用()()12f x f x =及()f x 的单调性证明最终结论. 练习1 已知函数()ln f x x =和()g x ax =,若存在两个实数1x ,2x 且12x x ≠,满足()()11f x g x =,()()22f x g x =,求证:(1)122x x e +>;(2)212x x e >.。