《真空中静电场》选择题解答与分析
12 真空中的静电场习题详解
习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。
空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ] (A)200,44Q L Qi R L R πεπε-∆-; (B)2200,84Q L Qi R L R πεπε-∆-; (C)200,44Q L Qi R L Rπεπε∆; (D)200,44Q L Q Li R L RLπεπε-∆-∆。
答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。
由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R L πε∆,所以圆弧产生的场强为204OQ LE i R Lπε-∆=;又根据电势叠加原理可得04O Q U Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。
答案:D解:由高斯定理知0Φ=S q 。
由于面积S 1和S 2相等且很小,场强可视为均匀。
根据场强叠加原理,120,0E E =<,所以12Φ0,Φ0=>。
3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B2∝2∝rRr R解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。
《真空中的静电场》选择题解答与分析
12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5104(N C -1). (B) 3.25104(N C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。
你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。
错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。
3-1电磁-真空中的静电场 大学物理作业习题解答
dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯
当
r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8
真空中的静电场(1、3)习题难点讲解
若球内无空腔,P点的电场为
E1
3 0
r
若空腔内填满体电荷密度为 的电荷,当
其单独存在时,P点的电场为
由电场叠加原理,得
E2
3 0
r
E
E1
E2
3 0
r
r
3 0
a
6.
en E2
h
E1
en
S E dS E1S E2S
(E1 E2 )S
dE 4 0a2 4 0a
dq dl rd sin
dE
1
40r 2
rd sin
d 40r sin
d
4 0a
指向 dq
指向 dq
这一对线元在O点的元 场强等值反向,相互抵 消。故所有电荷在O点 产生的场强为零。
4. 电荷密度为 Ar 的球体的电场
r
dl
R cos 2 R2 sind
40 R3
sin cosd
2 0
dS x d
O
R
E dE
2 sin cosd
2 0 0
1
sin2
2
20 2
0 4 0
3. 两根平行长直线间距为2a一端用半圆形线连起来。全线上均匀 带电。证明在圆心O处的电场强度为零。
0 20a
E2 y
4 0a
(sin 2
sin1 )
1
2
, 2
E2 y 4 0a E2 2 0a
第九章 真空中的静电场(答案)
一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ(x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D)()j i a+π04ελ. 【提示】左侧与右侧半无限长带电直线在(0,a )处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。
据Guass 定理:SE dS=iiq ε∑⎰r R ≤时,有:()22012rL=r E L R λππεπ⎛⎫ ⎪⎝⎭,即:20r =2E R λπε r R >时,有:()012rL=E L πλε ,即:0=2rE λπε [ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A)06εq . (B) 012εq. (C) 024εq . (D) 048εq .【提示】添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体的外表面构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
另一方面,该高斯面可看成由24个面积与侧面abcd 相等的面组成,且具有对称性。
所以,通过侧面abcd 的电场强度通量等于24εq [ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-.【提示】200248P a M M aq qU E dl dr r a πεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 【提示】根据带电球面在球内外所激发电势的公式,以及电势叠加原理即可知结果。
真空中的静电场答案
对各分量分别求和
E x
0 4 0 R
sin cos d
0
E y
0 4 0 R
sin 2 d 0
0
8 0 R
所以
E
Exi
Ey
j
0 8 0 R
j
3.(1059)
图中虚线所示为一立方形的高斯面,已知空间的场强分布为:Ex=bx, Ey=0, Ez=0.
高斯面边长a=0.1 m,常量b=1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电
试验电荷从A点分别移动到B、C、D各点,则
(A) 从A到B,电场力作功最大.
(B) 从A到C,电场力作功最大.
(C) 从A到D,电场力作功最大. (D) 从A到各点,电场力作功相等.
[D ]
A
-q O
B
C D
二、填空题 1.(1042) A、B为真空中两个平行的“无限大”均匀带电平面,已知两平 面间的电场强度大小为E0,两平面外侧电场强度大小都为E0/3, 方向如图.则A、B两平面上的电荷面密度分别为δA=
解:选杆的左端为坐标原点,x轴沿杆的方向 .在x处取
q0
一电荷元λdx,它在点电荷所在处产生场强为:
d
E
d
4 0 d
x
x 2
d
l
d
l
整个杆上电荷在该点的场强为:
dx
q0
O
x
x
E
4 0
l dx
0d x2
l
40d d
l
d+ x
点电荷q0所受的电场力为:
F
q0l
40d d
l
=0.90
N
题解1-真空中的静电场(已修改)
3 2 3 大小: 区:E i i i 2 0 2 0 2 0 2 0 2 区:E i i i 大小: 2 0 2 0 2 0 2 0 2、 E dS Q E 0 S a 0
大小: 2 0
i (i )
杆 0
EP dE
2
i
P
以无穷远处电势为零, P点电势为:
Ld x
U P dU
杆
L
0
(q / L)dx (q / L) L d ln 4 0 ( L d x) 4 0 d 1
2、一电荷面密度为σ 的“无限大”平面,在距离平面 a米远处一点的场强大小的一半是由平面上的一个半径 为R的圆面积范围内的电荷产生的。试求该圆半径的大 小。 解:圆盘在其轴线上P点场强:
根据电势叠加原理,P点处的电势也与电荷在环L上的 分布状况无关,为: dq
UP
4 0 r Nq 4 0 r
L
dq
4 r
0
1
L
R dq
L
r
P
dE
Z
9、C 空间各点处的总场强为:(方法与选择题第5小题 的方法相同)
0 (r R1 ) 2 E Eer er Q1 /(4 0 r ) ( R1 r R2 ) e (Q Q ) /(4 r 2 ) (r R2 ) 2 0 r 1
'
R
dl
R
Rd
d
y
dE
θ位置处的一窄条在轴线上的一点产生的场强为:
' ' dE i sin j cos 2 0 R 2 0 R d d i sin j cos 2 2 2 0 R 2 0 R
静电场习题解答二版
(C) 如果高斯面上 E 处处不为零,则高斯面内必有电荷.
(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.
[
]
【分析与解答】
E dS
用高斯定理 S
q / 0 来分析。
A 选项:见 8 题 D 选项分析。 B 选项:见 7 题 A 选项分析。
C 选项:高斯面上 E 处处不为零,可能
q 0
求得: q
k 40
k
'
为常数。 正确答案是 A。
13.图 5-31 为一具有球对称分布的静电场的 E~r 关系曲线,请指出该静电场是由下列哪种带电体产生的.
(A)半径为 R 的均匀带电球面.
(B)半径为 R 的均匀带电球体.
E
(C)半径为 R、电荷体密度 ρ=A r(A 为常数)的非均匀带电 (D)半径为 R、电荷体密度 ρ=A/r(A 为常数)的非均匀带
E
1 r2
球体. 电球体.
[]
O
【分析r 的球形高斯面,得
R
图 5-31
r
S E dS E4 r2 q / 0 ,
r R 时,由图得,E=k,带入上式得
q 4 kr2 k 'r2
0
,又因为
q r 4 r2dr
A
C
A
C C
E
B
B
C
B
E
A
E
B D C
B
E
A
A 习题(一).5 图
[]
【分析与解答】 抓关键字眼“带负电”和“减速”。“减速”说明切向加速度沿切向向后,曲线运动需要有指向运动轨迹凹侧的法向加速度,两个 的合效果——总加速度方向应指向轨迹凹侧且与速度夹角为钝角,合力方向与总加速度方向一致,质点仅在电场力作用下,质点 受到的电场力方向即为合力方向,也应指向轨迹凹侧且与速度夹角为钝角。又因为负电荷受到的电场力方向和电场方向相反,所 以电场强度方向指向轨迹凸侧且与速度成锐角。 正确答案是 D。
大学物理第7章真空中的静电场答案解析
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
大学物理课后习题答案 真空中的静电场
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
真空中的静电场(含答案,大学物理作业,考研真题)
班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
P(x,0) xx
[
]
3、(2010 年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互
作用力为 F,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相
同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变
为:
(A) F/2;
(B) F/4;
S1
S2
S3
3、(2012 年北京科技大学)两个平行的“无限大”均
+σ +2σ
匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则 A、
B、C 三个区域的电场强度分别为:
EA
EB
A
B
C
EC
3
三 、计算题 1、两个无限长同轴圆柱面,半径分别为 R1 和 R2(R2>R1),带有等值异号电荷,每单位长 度的电量为λ(即电荷线密度)。试分别求(1)r < R1,(2)r > R2,(3)R1< r<R2 时,离轴线 为 r 处之电场强度。
若将 q 移至 B 点,则:
(A)、S 面上的总电通量改变,P 点的场强不变; (B)、S 面上的总电通量不变,P 点的场强改变;
P· S B·
q·
(C)、S 面上的总电通量和 P 点的场强都不变; (D)、S 面上的总电通量和 P 点的场强都改变。
大学物理 第十二章 真空中静电场习题解答
第十二章 真空中静电场习题解答(参考)12.6 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s , 在圆心处产生的场强的大小为 2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强. 根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为图12.6RΦe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 13.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`. 在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd ,根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法.(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0,积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明] 球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用高斯定理的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r R rπεπε∞=+⎰⎰230084R rRQQ r R rπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r R πε-=.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强. [解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r , 包含的电量为d q = ρd V = 4πρr 2d r , 在球心处产生的电势为00d d d 4O qU r r r ρπεε==,球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.图12.21(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂。
大学物理题库-第5章 静电场习题(含答案解析)
真空中的静电场一 选择题1.两个等量的正电荷相距为2a ,P 点在它们的中垂线上,r 为P 到垂足的距离。
当P 点电场强度大小具有最大值时,r 的大小是:[ ](A )42a r =(B )32a r = (C )22ar = (D )a r 2= 2.如图5-1所示,两个点电荷的电量都是q +,相距为a 2,以左边点电荷所在处为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S ,设通过1S 和2S 的电通量分别为1Φ和2Φ,通过整个球面的电通量为Φ,则[ ](A )021εq=ΦΦ>Φ,(B )0212,εq=ΦΦ<Φ(C )021εq=ΦΦ=Φ,(D )021εq=ΦΦ<Φ,3.在静电场中,高斯定理告诉我们 [ ](A )高斯面内不包围电荷,则高斯面上各点E的量值处处相等;(B )高斯面上各点E只与面内电荷有关,与面外电荷无关;(C )穿过高斯面的E(D )穿过高斯面的E 通量为零,则高斯面上各点的E必为零; 4.如图5-2所示,两个“无限长”的同轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距轴线为r 的P 点处的场强大小为:[ ](A )r 012πελ (B )r 0212πελλ+ (C )()r R -2022πελ (D )()1012R r -πελ5.电荷面密度为+σ和-σ的两块“无限大”均匀带电平行平板,放在与平面垂直的x2-5 图1 - 5 图轴上a +和a -位置,如图5-3所示。
设坐标圆点o 处电势为零,则在a x a +<<-区域的电势分布曲线为: ( )6.真空中两个平行带电平板A 、B ,面积均为S ,相距为)(S d d <<2,分别带电量q +和q -,则两板间相互作用力的大小为:[ ](A )204d q πε (B )Sq 0ε (C )Sq 022ε (D )不能确定7.静电场中,下列说法哪一个是正确的?[ ](A )正电荷的电势一定是正值; (B )等势面上各点的场强一定相等;(C )场强为零处,电势也一定为零; (D )场强相等处,电势梯度矢量一定相等。
工科物理大作业05-真空中的静电场
图5-1(a)d图5-1(b)图5-1(c)0505 真空中的静电场班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.如图5-1(a)所示,一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为λ+(x <0处)和λ-(x >0处),则xOy 平面上P 点(0,a )处的电场强度E 为:A .i a 02πελ; B .i a04πελ;C .)(40j i +aπελ; D .0。
(A )[知识点] 半无限长均匀带电杆E 的计算,场强叠加原理。
[分析与解答] 如图5-1(b)所示,先计算一根长度为l 的均匀带电直线在过其一端的垂面上任一点P 的场强。
在均匀带电直线上任取一微元d x ,其电荷元x q d d λ=在过其一端的垂面上任一点P 的场强d E 的大小为()1/2220d π41d a x x E +=λε 方向如图5-1(b)所示则 ()3/22204cos d d a x xdxE E x +==πελθ()3/22204sin d d a x adxE E y +==πελθ分别积分可得 ()⎪⎪⎭⎫ ⎝⎛-+=+-=⎰a l a a xxdxE lx 11442203/222πελπελ()22003/22244a l la a xadxE ly +=+=⎰πελπελ当∞→l 时,可得半无限长均匀带电直线在其一端垂面上任一点场强为 a E x 04πελ=, aE y 04πελ=可见y x E E =,所以场强E 的方向与带电直线夹角o45=θ。
对于题目给出的“无限长”分段均匀的带电直线,可看作是两半无限长均匀带电直线电场的叠加,两段半无限长带电直线在P 点的场强方向如图5-1(c)所示,迭加后的场强为i i i i E E E aE E E x 0o o 22cos45cos45πελ==+=+=+-+-+2.真空中静电场的高斯定律告诉我们:A .高斯面内不包围自由电荷,则面上各点的E 的量值处处为零;B .高斯面上各点的E 与面内自由电荷有关,与面外的电荷无关;C .穿过高斯面的E 通量,仅与面内自由电荷有关;D .穿过高斯面的E 通量为零,则面上各点的E 必为零;E .高斯定律仅适用于对称性电场,不适用于电偶极子的电场。
练习册-第12章《真空中的静电场》答案
第12章 真空中的静电场 参考答案一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E =,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ;(5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ;(7). -2×103 V ; (8).⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε(9). 0,pE sin α ; (10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R的半圆形,LPd E O沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π 它在O 处产生场强θεεd 24d d 20220RQRq E π=π= 按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQE E x π== θθεθd cos 2cos d d 202RQE E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰所以 j RQ j E i E E y x202επ-=+=3. “无限长”均匀带电的半圆柱面,半径为R设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为θελελd 22d d 020RRE π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x=d E sin θ , d E y=-d E cos θ对各分量分别积分RRE x 02002d sin 2ελθθελππ=π=⎰0d cos 2002=π-=⎰πθθελRE y场强 i Rj E i E E y x02ελπ=+=4.实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2)解:(1) 设电荷的平均体密度为ρ面如图(1)(侧面垂直底面,底面∆S 平行地面)底面处的场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S 高斯面S 包围的电荷∑q i =h ∆S ρ 由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴ () E E h1201-=ερ=4.43×10-13 C/m 3(1)(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)由高斯定理 ⎰⎰E·S d =∑i 01q ε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9×10-10 C/m35. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R ), A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rV π=π==⎰⎰ρ (r ≤R) 以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到 ()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.6. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求:(2)(1) 平板外两侧任一点P 1和P 2处的电场强度大小; (2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即 022d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫⎝⎛-='22220b x k E ε (0≤x ≤b )(3) E '=0,必须是0222=-b x , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).'解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ=圆盘在该处的场强为 i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ∴ix R x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x +-=+=⎰εσεσ8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ =Ar (r ≤R ),式中A 为常量.试求: (1) 圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:⎰π=⋅S rhE S E 2d为求高斯面内的电荷,r <R 时,取一半径为r ',厚d r '、高h 的圆筒,其电荷为 r r Ah V ''π=d 2d 2ρOxP则包围在高斯面内的总电荷为3/2d 2d 302Ahr r r Ah V rVπ=''π=⎰⎰ρ由高斯定理得 ()033/22εAhr rhE π=π 解出 ()023/εAr E = (r ≤R )r >R 时,包围在高斯面内总电荷为:3/2d 2d 302AhR r r Ah V RV π=''π=⎰⎰ρ 由高斯定理 ()033/22εAhR rhE π=π解出 ()r AR E 033/ε= (r >R )(2) 计算电势分布 r ≤R 时⎰⎰⎰⋅+==l R R rlr rrAR r r A r E U d 3d 3d 0320εε ()Rl AR r R A ln 3903330εε+-=r >R 时 rlAR r r AR r E U l rlrln 3d 3d 0303εε=⋅==⎰⎰9.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3m的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B AB A rrr E U U ελ 120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用. 若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰c b a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
第九章静电场(答案解析)
一. 选择题[ B ]1 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a02ελπ.(C)i a 04ελπ. (D)()j i a+π04ελ.【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ]2 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】:由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面,据Guass定理:SE dS=iiqε∑⎰r R ≤时,有:20r 2rL=LE ρππε,即:0=r 2E ρε r R >时,有:20R 2rL=L E ρππε,即:20R =2rE ρε[ C ]3 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 012εq.(C)024εq . (D) 048εq .【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
再据对称性可知,通过侧面abcd 的电场强度通量等于24εq。
[ D ]4 在点电荷+q 的电场中,若取图中P 点处为电势零点, 则M 点的电势为 (A)a q 04επ. (B) aq08επ.(C) a q 04επ-. (D) aq 08επ-.【提示】:220048PaM Maq q V E dl dr raπεπε-===⎰⎰[ C ]5 已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的? (A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.【提示】:静电力做负功,电势能增加。
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
10 真空中的静电场习题(二)-答案 (2)
1真空中的静电场习题(二)答案三、计算题1、 (1)带电直线上离中心O 为z’处的电荷元dq=λdz ’在P 点产生的电势)'z z ('dz 41)'z z (dq 41dU 0-=-=λπεπε带电直线在P 点的电势:)'z z ('dz 41dU U 0llLP -==⎰⎰-λπε,lz l z lnl8q U 0P -+=πεP 点的电场强度:zU E ∂∂-=,)l z (4qE 220-=πε,k )l z (4qE 220 -=πε(2)带电直线上离中心O 为z 处的电荷元dq=λdz 在P 点产生的电势2222rz dz 41rz dq 41dU +=+=λπεπε带电直线在P 点的电势:⎰⎰-+==ll220LP rz dz41dU U λπεrr l l lnl4q U 220P ++=πεP 点的电场强度:rU E ∂∂-=,)l r (r 4qE 220+=πε0220r )l r (r 4qE+=πε2.(1) 120ln22212121r r dr rEdr U U r r r r r r πελπελ===-⎰⎰(2)在点电荷的电场中,我们曾取r →∞处的电势为零,是因为电荷分布在有限的空间中;若无限长均匀带电直线附近的电势也这样取,其电场中任一点的电势为无限大,这就无意义了。
本题中带电体为无限长均匀带电直线,电荷分布在无限的空间中,零电势点就不能取无限远处的电势为零。
3、 无穷远处为电势零点,两个电荷构成的电荷系在O 点和D 点的电势为0L 4q L 4q U 00O =-+=πεπεLq Lq Lq U D 00064314πεπεπε-=-+=(1) 单位正电荷从O 沿OCD 移动到D ,电场力做的功:)U U )(1(A P O -+=, L6q A 0πε=(2) 单位负电荷从D 沿AB 延长线移动到无穷远,电场力做的功:)U U )(1(A P ∞--=,)0L6q (A 0---=πε, L6q A 0πε=4. C 、F 两点之间的电势差为5154-⋅=lq U o CF πε将单位正电荷从C 点沿CDEF 路径运动到F 点,电场力所作的功5154-⋅==lq U A o CF πε5、 根据动能定理,静电力对电子做的功等于电子动能的增量: )U U(e mv21B A2-=114q 414q Uo2o1Aπεπε+=,V 63U A -=, 414q 114q U o2o1B πεπε+=,V 153U B =m )U U (e 2v B A -=, s /m 107.8v 6⨯= 6. 20111)ln (2222=-+=++-∂∂-=∂∂-=xyx x x yx xU x E x53)ln (2222=+=++-∂∂-=∂∂-=yx yx y x xU yE y点P (4,3,0)处的电场强度j i j E i E E y x532011+=+=(1)计算题∙∙ABq-q+ODCL L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5⨯104(N ⋅C -1). (B) 3.25⨯104(N ⋅C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。
你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。
错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041rqE πε= 式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i S q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。
对高斯定理的理解应注意:高斯定理左端的场强是曲面上的各点的总场强,它是由全部空间电荷(既包括闭合曲面内的电荷,也包括闭合曲面外的电荷)共同产生的电场强度的矢量和。
高斯定理右端只对闭合曲面内的电荷求和,这说明通过闭合曲面的电通量只取决于曲面内的电荷。
尽管闭合曲面外的电荷对穿过整个闭合曲面的电通量没有贡献,但对通过闭合曲面上的部分曲面的电通量却是有贡献的。
选择(A),进入下面的思考:1.1如果通过闭合面S 的电通量Φe 为零,是否能肯定面S 上每一点的场强都等于零?参考解答:不能肯定。
若闭合曲面 S 上的S E ΦS ed ⋅=⎰为零,并不能说明被积函数在S 上处处为零。
举两个小例子,如图(a )所示,点电荷 q 在高斯面 S (S 不一定是球面,这里只是为画图简单而画成了球面)之外,S 上的电通量为零,但S 上各处场强均不为零。
另如图(b )所示,高斯面 S 内有两个等量异号的点电荷,同样是S 上的电通量为零,但S 上各处场强均不为零。
“高斯面上的电通量为零,高斯面上的场强就为零”,这是在学习高斯定理时常有的错误观念,一定要注意。
如果把本题的命题倒过来,即高斯面S 上每一点的场强都等于零,那么肯定有S 上的电通量Φe 为零。
在导体问题的讨论中,我们正是“故意地”把高斯面S 取在导体上,利用静电平衡时导体内场强处处为零的条件和高斯定理来分析某些导体问题的。
选择(C),进入下面的思考:1.2在静电场空间作一闭合曲面,如果在该闭合面上场强E处处为零,能否说此闭合面内一定没有电荷?举例说明.参考解答:不一定.闭合面上场强E 处处为零,则穿过此闭合面的电场强度通量Φ=0.由高斯定理知,闭合面内的电荷代数和为零.这可能有两种情况:一是闭合面内确无电荷;另一是闭合面内有电荷,但正电荷与负电荷之代数和为零.因此,只能说在闭合面内没有净电荷.例如,图中所示的两个半径不相等的均匀带电的同心球面,内球面上有正电荷,外球面上带等量的负电荷的情况,在它们的外面作一任意形状的闭合面,闭合面上场强E 处处为零,但面内并非没有电荷.进入下一题:2. 下列关于高斯定理∑⎰⋅=/d εq S E S的说法中(1) ∑q 为闭合面内所有电荷的代数和.(2) 闭合面上各点场强E仅由面内电荷决定,与面外电荷无关. (3) 闭合面的电场强度通量仅取决于面内电荷,与面外电荷无关. 正确的是(A) (1),(2). (B) (1),(3).答案:(B) 参考解答:(2) 错误,应改为闭合面上场强与面内、面外电荷都有关.注意:虽然电通量只与高斯面内电荷有关,但是面上电场却与面内、面外电荷都有关。
电通量与电场是不同的物理量,各服从不同的物理规律。
对于所有选择,给出参考解答,进入下一题:12.3对称性分布的静电场1. 图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带电球面;(B)半径为R 的均匀带电球体;(C) 点电荷;(D) 外半径为R ,内半径为R / 2的均匀带电球壳体. 答案:(A) 参考解答:根据高斯定理,可得均匀带正电球面电场中的场强分布:204r q E πε=)(R r >E 的方向沿径向, 0=E )(R r <.显然答案(A)正确。
对于所有选择,给出下面的相关资料:高斯定理的应用只有当电荷和电场分布具有某种对称性时, 才可用高斯(Gauss)定理求场强. 步骤:(1) 由电荷分布对称性分析电场的对称性;(2) 据电场分布的对称性选择合适的闭合曲面(高斯面); (3) 应用高斯定理计算场强。
关键: 选取合适的闭合曲面高斯面。
进入下一题:2. 图中所示为轴对称性静电场的E ~r 曲线,请指出该电场是由下列哪一种带电体产生的(E 表示电场强度的大小,r 表示离对称轴的距离).(A) “无限长”均匀带电圆柱面; (B) “无限长”均匀带电圆柱体; (C) “无限长”均匀带电直线; (D) “有限长”均匀带电直线.答案:(C) 参考解答:EE根据高斯定理,求“无限长”均匀带电直线电场中的场强分布:电场分布有轴对称性,方向沿径向,如图所示取闭合曲面S ,设均匀带电直线电荷线密度为.λ,12d d d d d 0l rlE S E S E S E S E S E ΨS e λεπ==⋅=⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰侧面侧面下面上面.120rr E ∝=πελ对于所有选择,给出参考解答,进入下一题:3. 图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的. (A) 半径为R 的均匀带电球面.(B) 半径为R 的均匀带电球体. (C) 半径为R 的、电荷体密度为ρ=A r (A 为常数)的非均匀带电球体.(D) 半径为R 的、电荷体密度为ρ=A/r (A 为常数)的非均匀带电球体.答案:(B) 参考解答:根据高斯定理,求半径为R 的均匀带电球体电场中的场强分布:电场分布有球对称性,方向沿径向,如图所示取闭合曲面S 1(球体内同心球面)和S 2(球体外同心球面),设均匀带电球体电荷体密度为ρ,总电量q.,3414d d 30211ρπεπr E r S E S E ΨS S e ⋅==⋅=⋅=⎰⎰⎰⎰ )43(3R q πρ= r R qr E 300431περε==),(R r ≤ ,14d d 0222q E r S E S E ΨS S e ⋅==⋅=⋅=⎰⎰⎰⎰επ 204r q E πε= ).(R r >对于所有选择,给出参考解答,进入下一题:E12.4对称性静电场的电势分布1. 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,该曲线所描述的是(E 为电场强度的大小,U 为电势) (A) 半径为R 的无限长均匀带电圆柱体电场的E~r 关系.(B) 半径为R 的无限长均匀带电圆柱面电场的E~r 关系.(C) 半径为R 的均匀带正电球面电场的U~r 关系.(D) 半径为R 的均匀带正电球体电场的U~r 关系.答案:(C) 参考解答:已知电场的分布,且电场具有某种对称性,通常可由⎰⋅=参考点PP l E Ud 求电势。
例如:求均匀带电球面 (R , q ) 电场中电势的分布。
已知204rq E πε=)(R r >, 0=E )(R r <.因为E 的方向沿径向,故选取沿径向的直线为积分路径,⎰⎰∞∞⋅=⋅=P P P r E l E U ,d d当 r > R 时, ⎰⎰⎰∞∞∞=⋅=⋅=⋅=P rP P rq r rq r E l E U .4d 4d d 020πεπε当 r ≤ R 时, ⎰⎰⎰⎰∞∞∞=⋅+⋅=⋅=⋅=r RRr P P Rq r rq r r E l E U .4d 4d 0d d 020πεπε对于所有选择,给出参考解答,进入下一题:2. 确定静电场中某点的电势,为什么必须选定一个电势零点?参考解答:静电场中某点电势在数值上等于单位正电荷置于该点所具有的电势能.电势能的改变是以电场力作功来度量的,电势能只是一个相对的量,因而电势也是一个相对的量,故必须选定一个电势零点,而静电场中某点的电势就等于该点与电势零点之间的电势差.进入下一题: 12.5电场力作功1. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大. (B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等. 答案:(D)参考解答:根据静电场力的功与电势差的关系:)(00a b ba ab U U q l d E q A --=⋅=⎰ , 点电荷位于圆心0,则同一圆周上的各点,电势相同。
将一试验电荷从A 点分别移动到B 、C 、D 各点,因为电势差相同,则电场力作功相等。
对于所有选择,给出下面的相关资料:2. 静电场的环路定理,静电力作功的特点。
参考解答:静电场的环路定理:静电场中场强E沿任意闭合路径的线积分等于零.其数学表达式为:0d =⎰⋅l E L.它表示在静电场中把单位正电荷从某点出发经任意闭合路径回到原来位置,静电场力作功等于零. 这表明静电场是保守力场. 静电力作功的特点:电荷在静电场中移动过程,静电场力作的功只与电荷大小及路径的起点与终点位置有关,与路径无关。