中值定理的应用方法与技巧
中值定理证明方法总结
设 f (x) , g(x) , h(x) 都在 (a , b) 上连续 , 且在 [a , b] 内可导, 证明至少存在一点 ξ ∈(a , b) , 使
f (a) f (b) f ′(ξ ) g(a) g(b) g′(ξ ) = 0 h(a) h(b) h′(ξ )
说明 若取 h(x) ≡1, g(x) = x , f (a) = f (b) ,即为罗尔定理; 若取 h(x) ≡1, g(x) = x , 即为拉格朗日中值定理; 若取 h(x) ≡1, g′(x) ≠ 0, 即为柯西中值定理; ( 自己验证 )
柯西 目录 上页 下页 返回 结束
f (b) − f (a) F(x) − f (x) 证: 作辅助函数 ϕ(x) = F(b) − F(a) 则 (x) 在[a,b]上 续, 在(a,b)内 导, 且 ϕ 连 可 f (b)F(a) − f (a)F(b) ϕ(a) = = ϕ(b) F(b) − F(a) 使 由罗尔定理知, 至少存在一点 即 f (b) − f (a) f ′(ξ ) = . F(b) − F(a) F′(ξ ) 思考: 思考 柯西定理的下述证法对吗 ? ∵ f (b) − f (a) = f ′(ξ )(b − a), ξ ∈(a, b) 两个 ξ 不 F(b) − F(a) = F′(ξ )(b − a), ξ ∈(a, b) 一定相同 上面两式相比即得结论. 错!
1 f (n) (x )(x − x )n +⋯+ 0 0 n!
f (b) − f (a) f ′(ξ ) = F(b) − F(a) F′(ξ )
证明中值定理的方法
直观分析 辅助函数法 逆向分析 例如, 证明拉格朗日定理 : f (b) − f (a) = f ′(ξ )(b − a) 要构造满足罗尔定理条件的辅助函数 . y = f (x) 方法1. 方法 直观分析 由图可知 , 设辅助函数
利用微分中值定理解题的一些技巧
利用微分中值定理解题的一些技巧微分中值定理是微分学的理论基础。
它是研究函数的有力工具,其中最重要的内容是拉格朗日定理。
可以说其他中值定理都是拉格朗日中值定理的特例或推广。
熟练应用中值定理真的不容易,尤其是引入辅助函数,更是五花八门。
下面给出微分中值定理在一些证明题中的巧妙运用。
一、微分中值定理的主要应用1. 证明等式;2. 证明恒等式;3. 证明不等式;4.讨论方程实根(或函数零点)的存在性。
二、掌握微分中值定理应用方法的关键——在分析解题思路时,必须紧紧抓住“定理”、“函数”、“区间”三要素“定理” ——适用定理的选择“函数” ——辅助函数的构造“区间” ——讨论区间的确定。
三、运用中值定理证明关于两个中间点等式的方法方法一:构造一个辅助函数,在两个不同的区间应用拉格朗日定理或柯西定理,然后对定理的结论做一些运算。
方法二:构造两个辅助函数,在相同的区间内应用拉格朗日定理或柯西定理,然后对定理的结论做一些运算。
方法:构造两个辅助函数,在两个不同的区间应用拉格朗日定理或柯西定理,然后对定理的结论做一些运算。
微分中值定理证明试题范例设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: (1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ξ∈(0,η),使得f'(ξ)-λ[f(ξ)-ξ]1 第二问最后少打了等号,应该是f'(ξ)-λ[f(ξ)-ξ]=1(1)证明:由介值定理知,至少存在一点ζ∈(0, 1/2), 使f(ξ)=1/2再由介值定理知,至少存在一点η∈(ζ,1),即存在η∈(1/2,1),使f(η)=η(2) 证明:构造函数F(x)=e^(-λx)[f(x)-x]则F(x)在区间[0,1]上连续,在(0,1)内可导F(η)=0, F(0)=0∴由罗尔定理知,必存在ξ∈(0,η), 使F'(ξ)=0即-λe^(-λξ)[f(ξ)-ξ]+e^(-λξ)[f'(ξ)-1]=0∴f'(ξ)-λ[f(ξ)-ξ]=1。
微分中值定理
微分中值定理微分中值定理是微积分中的重要定理之一,它揭示了函数在某个区间内取得极值的一种方法。
微分中值定理包括拉格朗日中值定理和高尔的中值定理两种形式,下面将分别介绍这两种定理。
拉格朗日中值定理是微分学中的基本定理之一,它表明如果函数满足一些条件,那么在某个区间内一定存在一个点,它的导数等于函数在这个区间两个端点处的斜率。
具体来说,如果函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且a<b,那么存在一个点c∈(a,b),使得函数在点c处的导数等于函数在区间的两个端点处的斜率。
也就是说,存在c∈(a,b)使得:f'(c) = (f(b) - f(a)) / (b - a)这个定理的图像可以形象地理解为,曲线在某点的切线与连接两个端点的直线斜率相等。
高尔的中值定理是拉格朗日中值定理的一个推广,它是由高尔证明的。
高尔的中值定理的条件比拉格朗日中值定理更加宽松,它只要求函数在闭区间[a,b]上连续,在开区间(a,b)上可导。
具体来说,如果函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且函数在区间的两个端点处的斜率相等,那么存在一个点c∈(a,b),使得函数在点c处的导数等于函数在区间的两个端点处的斜率。
也就是说,存在c∈(a,b)使得:f'(c) = (f(b) - f(a)) / (b - a)高尔的中值定理可以看做拉格朗日中值定理的推广,它更加灵活,适用范围更广。
微分中值定理的证明可以通过利用拉格朗日中值定理或高尔的中值定理的定义和一些基本的微积分知识进行推导。
证明的过程比较复杂,需要运用到数学分析中的一些技巧与方法。
微分中值定理在微积分的应用中有着广泛的应用。
它可以用来证明一些数学定理,比如费马最值定理、罗尔定理和拉格朗日多重中值定理等。
此外,微分中值定理还可以用来求函数的零点、证明函数的单调性和判断函数的极值等。
在实际问题中,微分中值定理常常被用来解决一些最优化问题,比如求函数的最值、最小二乘法中的参数估计等。
高考数学冲刺拉格朗日中值定理考点突破
高考数学冲刺拉格朗日中值定理考点突破在高考数学的冲刺阶段,拉格朗日中值定理作为一个重要的考点,常常让同学们感到困惑和棘手。
但只要我们掌握了它的核心概念和解题方法,就能在考试中应对自如,为取得高分增添一份保障。
一、拉格朗日中值定理的定义及内涵拉格朗日中值定理是指:如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,那么在开区间(a,b) 内至少存在一点ξ,使得f(b) f(a) = f'(ξ)(b a) 。
简单来说,就是在一个连续且可导的函数区间内,一定存在某个点的导数等于区间两端点连线的斜率。
这个定理看似抽象,但实际上蕴含着深刻的数学思想。
为了更好地理解它,我们可以通过一些具体的函数来进行分析。
比如,对于函数 f(x) = x²,在区间 0, 2 上,f(2) f(0) = 4 0 = 4,而 f'(x) = 2x,令2ξ = 2,解得ξ = 1,此时 f'(1) = 2,恰好满足拉格朗日中值定理。
二、拉格朗日中值定理在解题中的应用1、证明不等式在证明不等式的问题中,拉格朗日中值定理常常能发挥重要作用。
例如,要证明当 x > 0 时,x /(1 + x) < ln(1 + x) < x 。
我们可以令 f(x) = ln(1 + x) ,在区间 0, x 上应用拉格朗日中值定理,得到 ln(1 + x) ln(1 + 0) = f'(ξ)x ,其中 0 <ξ < x 。
因为 f'(ξ) = 1 /(1 +ξ) ,且 1 /(1 + x) < 1 /(1 +ξ) < 1 ,所以可以得到 x /(1 +x) < ln(1 + x) < x 。
2、求函数的取值范围当给定一个函数,要求其在某区间内的取值范围时,拉格朗日中值定理也能提供思路。
比如对于函数 f(x) = x³ 3x + 1 在区间 0, 2 上,我们可以先求出其导数 f'(x) = 3x² 3 。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理是微积分中的一个重要定理,描述了一种函数的平均斜率与函数其中一点的斜率之间的关系。
下面将介绍中值定理的应用方法与技巧。
一、介值定理的应用方法1.求函数的零点:根据介值定理,如果$f(a)$和$f(b)$异号,那么在区间$(a,b)$内至少存在一个点$c$,使得$f(c)=0$。
因此,通过寻找$f(a)$和$f(b)$异号的区间,可以确定函数的零点的存在性和位置。
2.确定函数的最值:根据介值定理,如果$f(a)$和$f(b)$是函数$f(x)$在区间$(a,b)$上的最小值和最大值,那么在区间$(a,b)$内必然存在一个点$c$,使得$f(c)$是函数的最小值和最大值。
因此,可以通过求解极值点来确定函数的最值。
3.求解方程与不等式:根据介值定理,如果$f(a)<0$且$f(b)>0$,那么在区间$(a,b)$内至少存在一个点$c$,使得$f(c)=0$。
因此,可以通过将方程或不等式转化为函数,然后求解函数的零点来求解方程或不等式。
4.判断函数的增减性:根据介值定理,如果函数$f'(x)>0$在一些区间上恒成立,那么函数$f(x)$在该区间上是递增的;如果函数$f'(x)<0$在一些区间上恒成立,那么函数$f(x)$在该区间上是递减的。
因此,可以通过求导并分析导数的符号来判断函数的增减性。
二、中值定理的技巧1.构造辅助函数:有时候使用中值定理计算问题会比较复杂,需要构造辅助函数来简化计算。
辅助函数的选择需要考虑计算的便利性和准确性。
2.利用函数的性质和对称性:中值定理的应用过程中可以利用函数的性质和对称性来简化计算。
例如,如果已知$f(-x)=f(x)$,可以利用这一对称性将问题转化为求解正数情况下的解析表达式。
3.通过作图来理解问题:在使用中值定理计算问题时,可以通过绘制函数的图像来帮助理解问题,辅助解题。
通过图像可以直观地看到函数的变化趋势和函数的性质,更容易理解和判断。
微分中值定理的全部基础理论和常见优秀题型解法技巧
1柯西中值定理 拉格朗日中值定理 洛尔定理 费马定理 根值(零值)定理 有界定理或最大值与最小值定理 n以下的连续函数在闭区间x ∈[a , b ]的基本定理(只与函数有关)共同条件:闭连续微分中值 8 定理与积分 3 定理及函数的 9 性质的综合证明题型与技巧一) 中值八定理① x ∈[a , b ] ⇒ m ≤ f (x ) ≤ M 。
注意 x ∈[a , b ]是闭区间。
② ●是 介 于 f (a ) 与f (b ) ⎡⎣f (a ) ≠ f (b ), ≠ f (a ),≠ f (b )⎤⎦ 任 一 值 , 则 必∃ ∈ (a , b ) ⇒ f ( ) = 。
注意 ∈ (a , b ) 是开区间。
● 其推论是:当m ≤ ≤ M ,则必∃ ∈[a , b ]⇒ f ( ) = 。
∈[a , b ]。
注意 ∈[a , b ]是闭区间。
③ f (a ) ⋅ f (b ) < 0 ,则 ∃ ∈ (a , b ) ⇒ f ( ) = 0 。
注意 x ∈ (a , b ) 是开区间。
④ x ∈ ( x 0 - , x 0 + ), f (x ) ≥ f (x 0 )或 ≤ f (x 0 ) ,如果 f '(x 0 ) 存在,则 f '(x 0 ) =0。
⑤ f (a ) = f (b ), 则 ∃ ∈ (a , b ) ⇒ f '( ) = 0⑥ ∃ ∈ (a , b ) ⇒ f (b ) - f (a ) = f '( )(b - a )⑦ ∃ ∈ (a , b ) ⇒f (b ) - f (a ) =g (b ) - g (a ) f '( )g '( )⑧ ∞1 ⎛ ∂ ⎫n12f ( x ) = f ( x 0 + h ) = ∑ n ! h ∂x ⎪ f ( x 0 ) + R n = f ( x 0 ) + f ' ( x 0 )( x - x 0 ) + f ' ( x 0 )( x - x 0 ) 2! + ... + R n其中:• R n =f (n +1)() (n + 1)!n = 0⎝ ⎭h n +1 为拉格朗日余项, 介于 x 0 和 x = x 0 + h 之间, 但不等于它们,x 0 ∈ (a , b ), x ∈ (a , b ),令 ∈ (0, 1) ⇒ = x 0 + ( x - x 0 ) = x 0 + h = x 0 + ( x ) h ; 只要求在开区间(a , b )有直到n + 1阶 导数; 它不要求f ( x )及其n 阶导数在[a , b ]上连续, 而且不要求f (n +1)( x )的连续性。
积分中值定理与定积分应用积分中值定理与定积分应用的实战技巧
积分中值定理与定积分应用积分中值定理与定积分应用的实战技巧积分中值定理与定积分应用的实战技巧积分中值定理和定积分是微积分中的重要概念,能够帮助我们解决各种实际问题。
本文将介绍积分中值定理和定积分的基本概念,以及如何应用这些概念来解决实际问题。
一、积分中值定理积分中值定理是微积分中的基本定理之一,它与导数中值定理有密切关联。
积分中值定理表明,若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导,则在[a,b]上至少存在一点c,使得函数的平均值等于函数在c处的导数值。
其数学表达式如下:∫[a,b] f(x) dx = f(c) (b-a)其中,f(x)表示在[a,b]上的连续函数,c为[a,b]上的某一点,b和a 分别为积分上限和下限。
积分中值定理的应用十分广泛。
它可以用于证明其他定理,例如柯西中值定理和拉格朗日中值定理。
除了数学的理论性应用外,积分中值定理还可用于解决实际问题,如求函数在某个区间上的平均值、证明函数在某个区间上的增减性等。
下面将以一个具体例子来说明积分中值定理的应用。
例子:求函数f(x) = 2x^2 + 3x在区间[1,3]上的平均值。
解:根据积分中值定理,函数f(x)在[1,3]上的平均值等于函数在该区间上某一点的函数值。
首先,我们计算函数f(x)在[1,3]上的定积分:∫[1,3] (2x^2 + 3x) dx = (2/3)x^3 + (3/2)x^2 |[1,3] = 24然后,求出函数f(x)在[1,3]上的平均值:平均值 = (1/3 - 1/2) * 24 = 8所以,函数f(x) = 2x^2 + 3x在区间[1,3]上的平均值为8。
通过这个例子,我们可以看到积分中值定理的实际应用,它不仅使我们能够求出函数在某个区间上的平均值,还可以帮助我们判断函数在某个区间上的增减性。
二、定积分的应用定积分是对区间上函数值的累加,可以用于求解曲线下面的面积、体积、平均值等问题。
(完整版)中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分.微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述.积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若)(x f 在[a,b ]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第二中值定理为前者的推广,即若)(),(x g x f 在[a ,b ]上连续,且)(x g 在[a ,b ]上不变号,则在[a ,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。
一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a ba +='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理的基本形式有三种:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
它们分别适用于不同的函数类型和问题背景。
首先说一下拉格朗日中值定理。
对于一个在闭区间[a,b]上连续并可微的函数f(x),拉格朗日中值定理给出了这个函数在[a,b]上存在一个点c,使得f(b)-f(a)=f'(c)(b-a)。
也就是说,存在一个点c,这个点的导数等于函数在整个闭区间上的平均斜率。
这个定理的应用方法和技巧如下:1.利用导数等于0来找出函数在闭区间上的极值点。
因为根据导数中值定理,如果函数在闭区间[a,b]上连续并可微,且导数f'(x)在[a,b]的一些内点c处等于0,那么在[a,b]上存在至少一个点c,使得f(x)在c点取得极值。
2.利用中值定理来证明函数在一些区间上的性质。
例如,如果能够证明函数f(x)在闭区间[a,b]上的导数f'(x)始终大于0,则可以得出结论:在该区间上函数是单调递增的。
接下来讨论柯西中值定理。
柯西中值定理是拉格朗日中值定理的推广,适用于两个函数同时存在的情况。
设有两个在闭区间[a,b]上连续并可微的函数f(x)和g(x),且g(x)≠0。
柯西中值定理给出了存在一个点c,使得[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
这个定理的应用方法和技巧如下:1.利用柯西中值定理证明函数的零点存在性。
例如,如果能够证明函数f(x)和g(x)在闭区间[a,b]上连续并可微,且f(a)≠f(b),f(x)和g(x)在闭区间上无共同的导数零点,则可以得出结论:在[a,b]上存在一个点c,使得f(c)=g(c)。
2.利用柯西中值定理证明函数在一些区间上的性质。
例如,如果能够证明函数f(x)和g(x)在闭区间[a,b]上连续并可微,且f(x)和g(x)的导数始终满足[f'(x)/g'(x)]>0,则可以得出结论:在该区间上函数f(x)和g(x)的增减情况相同。
11中值定理
2
3
n
第五章 中值定理的证明技巧
例3 求函数 f ( x) = x ln x 在点 x = 1 处 的 n 阶泰勒展开式
2
解:x = ( x −1) + 1 = ( x −1)2 + 2( x −1) + 1
2 2
1 2 ln x = ln 1 + ( x − 1) = ( x − 1) − ( x − 1) 2 1 3 n n n−1 1 + ( x −1) −L+ (−1) ( x −1) + o ( x −1) 3 n
= 1 + x − 2 x + o( x )
2 2
第五章 中值定理的证明技巧
第五章 中值定理的证明技巧
x x 4 cos x = 1 − + + o( x ) 2! 4! x2 2 2 − x 1 x 2 4 2 e = 1 − + ( − ) + o( x ) 2 2! 2 1 1 4 4 ( − ) x + o( x ) 4! 8 原极限= x→0 故 原极限= lim 4 x 1 =− 12
第五章 中值定理的证明技巧
于是
f ( x) = x ln x
2
2
1 2 = ( x − 1) + 2 ( x − 1) + 1 ⋅ [( x − 1) − ( x − 1) 2 1 3 n n n−1 1 + ( x −1) −L+ (−1) ( x −1) + o ( x −1) ] 3 n 3 1 1 2 3 4 = ( x − 1) + ( x − 1) + ( x − 1) + ( x − 1) 2 3 12 n 2( x − 1) n −1 n +L + (−1) + o ( x − 1) n(n − 1)(n − 2)
定积分的中值定理
定积分的中值定理是一个非常重要的数学定理,它可以帮助我们更加深入地了解定积分的本质和性质,同时也为我们解决各种实际问题提供了非常有效的方法和手段。
在本文中,我们将探讨的相关知识和应用。
一、中值定理的基本概念和定义中值定理是微积分学中的一个基本定理,它描述了函数在某个区间内的平均值与函数在该区间内某一点的取值之间的关系。
具体来说,如果函数$f(x)$在区间$[a,b]$上连续,并且在该区间内存在一个点$c\in(a,b)$,使得$\int_a^bf(x)dx=f(c)\times(b-a)$,则$c$就是函数$f(x)$在区间$[a,b]$上的中值点。
这个定理的基本思想是:将函数在某个区间上的积分值与该区间的长度相乘,得到的是函数在该区间上的平均值,这个平均值可以通过中值定理求得。
中值定理的重要性在于它建立了积分与函数取值之间的联系,使得我们能够更加深入地理解和应用积分的相关知识和技巧。
二、中值定理的证明方法中值定理的证明方法有很多种,其中比较常用和直观的方法是通过构造辅助函数来进行证明。
具体来说,我们可以这样做:假设函数$f(x)$在区间$[a,b]$上连续,并且在该区间内存在一个点$c\in(a,b)$,使得$\int_a^bf(x)dx=f(c)\times(b-a)$。
我们定义一个辅助函数$F(x)=f(x)-f(c)$,则有$\int_a^bF(x)dx=\int_a^bf(x)dx-\int_a^bf(c)dx=\int_a^bf(x)dx-f(c)\times(b-a)=0$。
根据介值定理,由于$F(x)$是连续函数,所以一定存在一个点$d\in(a,b)$,使得$F(d)=0$。
即$f(d)-f(c)=0$,从而得到$c=d$。
三、中值定理的应用中值定理在实际问题中有着广泛的应用,其中比较常见和重要的应用包括:1. 求函数在某个区间上的平均值。
根据中值定理,函数在区间$[a,b]$上的平均值可以通过$\frac{\int_a^bf(x)dx}{b-a}$来计算,其中$\int_a^bf(x)dx$是函数在该区间上的积分值。
a的x次方用拉格朗日中值定理
A的x次方用拉格朗日中值定理1. 引言A的x次方是数学中常见的一个问题,对于任意给定的A和x,我们希望能够找到A的x次方的值。
在高中数学中,我们学习了求一个数的x次方的方法,但是对于非整数次方以及复数次方,我们需要借助更加深奥的数学定理来进行求解。
本文将介绍如何使用拉格朗日中值定理来解决A的x次方的问题。
2. 拉格朗日中值定理的定义拉格朗日中值定理是微分学中的一个重要定理,它表明了函数在某个区间内的平均变化率等于在该区间内某个点的导数。
具体来说,如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,则存在一个点ξ,使得:f'(ξ) = (f(b) - f(a))/(b - a)3. 使用拉格朗日中值定理求解A的x次方现在,我们来考虑如何使用拉格朗日中值定理来解决A的x次方的问题。
假设我们需要求解A的x次方,其中A为常数,x为变量。
我们可以定义函数f(t) = A^t,其中t为实数。
然后我们考虑函数f(t)在区间[0, x]上满足拉格朗日中值定理的条件,即f'(ξ) = (f(x) - f(0))/(x - 0)。
由于f'(t) = ln(A) * A^t,我们可以得到:ln(A) * A^ξ = (A^x - A^0)/x进一步化简可以得到:A^ξ = A^x - 1从而我们得到了A的x次方的一个表达式。
4. 举例说明为了更好地理解上述方法,我们来举一个具体的例子。
假设A=2,x=3,我们要求解2的3次方。
根据上述推导,我们可以得到:2^ξ = 2^3 - 1ξ = 3 - 1ξ = 2我们可以得到2的3次方等于2的2次方再乘以2,即8。
5. 总结通过使用拉格朗日中值定理,我们可以比较简洁地求解A的x次方的问题。
当然,这里的推导过程并不是严格的数学证明,但是可以帮助我们更好地理解拉格朗日中值定理在解决A的x次方问题上的应用。
对于非整数次方以及复数次方,我们也可以借助类似的方法来进行求解。
拉格朗日中值定理证明不等式的技巧
拉格朗日中值定理证明不等式的技巧为了证明不等式,我们可以利用拉格朗日中值定理来转化函数的性质。
以下是一些常见的技巧:1. 构造函数:我们可以人为地构造一个满足定理条件的函数。
例如,我们可以定义一个新函数g(x) = f(b) - f(a) - kf'(x)(b - a) ,其中k为一些常数。
然后,我们可以使用拉格朗日中值定理来证明不等式,即证明g(x)满足一些条件。
通过巧妙地选择k的值,我们可以得到需要的结果。
2.使用导数的性质:通过研究函数的导数,我们可以从函数的变化率中获得有关不等式的信息。
例如,如果我们证明了函数f(x)在[a,b]上的导数满足一些条件,比如导数大于零或导数单调递增,那么可以推断出函数在这个区间上是递增的,从而可以得到不等式。
若证明f'(x)>0,则有f(a)<f(b),即f(x)在[a,b]上是单调递增的函数。
3.利用函数的凸性与凹性:如果函数f(x)在一些区间上是凸函数,那么可以使用拉格朗日中值定理来证明不等式。
如果函数f(x)满足f''(x)≥0,那么我们可以通过证明f(b)-f(a)≥f'(c)(b-a),其中c∈(a,b),来得到所需的不等式。
4.最大最小值:如果函数在一些区间上的最大值或最小值发生在区间的端点上,那么可以利用拉格朗日中值定理来证明不等式。
通过假设函数的最大值或最小值在(a,b)之间的特定点c处达到,我们可以使用函数的导数来推导出不等式的限制条件。
5.二分法与中值的选择:在证明不等式时,我们可以应用二分法来选择合适的区间,并使用拉格朗日中值定理来证明不等式。
通过逐步缩小区间的范围,并选择合适的中值点,我们可以得到不等式的证明过程。
这些技巧只是在使用拉格朗日中值定理证明不等式时的一些常见方法和思路。
在具体的证明过程中,我们还需要根据不等式的具体形式和所给的条件灵活选择合适的方法。
同时,还需要注意在使用拉格朗日中值定理时,对函数和导数的要求,以及定理条件的合理性。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理是微积分中的重要定理,它是罗尔定理和拉格朗日中值定理的推广与拓展。
中值定理具有广泛的应用,能够帮助我们解决各种问题。
下面将介绍中值定理的应用方法与技巧。
1.判断函数在一些区间上的单调性中值定理可以帮助我们判断函数在一些区间上的单调性。
如果函数在一些区间上满足函数值递增(或递减)的条件,则可以利用中值定理来证明函数在该区间上单调递增(或递减)。
具体步骤如下:-首先,我们需要证明函数在该区间上是连续的。
如果函数在该区间上是不连续的,我们不能使用中值定理来判断函数的单调性。
-接下来,我们需要证明函数在该区间上是可导的。
如果函数在该区间上不可导,我们也不能使用中值定理来判断函数的单调性。
-然后,我们通过计算函数在该区间的导数。
如果导数在该区间的值恒大于0(或小于0),则函数在该区间上单调递增(或递减)。
2.判断函数在一些点上的凹凸性中值定理也可以帮助我们判断函数在一些点上的凹凸性。
如果函数在一些点的导数大于0(或小于0),则函数在该点上是凹向上(或凹向下)的。
具体步骤如下:-首先,我们需要证明函数在该点的导数存在。
如果函数在该点的导数不存在,我们不能使用中值定理来判断函数的凹凸性。
-接下来,我们计算函数在该点的二阶导数。
如果二阶导数大于0(或小于0),则函数在该点上是凹向上(或凹向下)的。
3.判断函数的极值点中值定理可以帮助我们判断函数的极值点。
如果函数在一些区间上的导数由正变负(或由负变正),则函数在该区间上存在极值。
具体步骤如下:-首先,我们需要证明函数在该区间上是连续的。
如果函数在该区间上是不连续的,我们不能使用中值定理来判断函数的极值点。
-接下来,我们需要证明函数在该区间上是可导的。
如果函数在该区间上不可导,我们也不能使用中值定理来判断函数的极值点。
-然后,我们通过计算函数在该区间的导数。
如果导数在该区间内由正变负(或由负变正),则函数在该区间上存在极值。
4.证明不等式中值定理是证明不等式的有力工具,特别是对于带有变量的不等式。
高等数学常见中值定理证明及应用
中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。
介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。
(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。
此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。
2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。
泰勒公式与泰勒中值定理的系统理论与使用技巧
泰勒公式与泰勒中值定理的系统理论与使用技巧泰勒公式(Taylor's theorem)和泰勒中值定理(Taylor's theorem with remainder)是微积分中重要的定理,用于用已知函数的其中一点的信息推导出该函数在附近任意点的近似值。
下面将对这两个定理的系统理论和使用技巧进行详细阐述。
1. 泰勒公式(Taylor's theorem):泰勒公式是一个逼近函数的公式,其形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f(x)是要逼近的函数,a是近似点,f'(a)、f''(a)、f'''(a)等是函数在点a的各阶导数。
公式可以继续扩展至更高阶导数。
泰勒公式的推导涉及到多项式的展开,通过使用导数的定义进行求解,存在其中一种程度的复杂性。
然而,在实际应用中,我们通常使用该公式的前几项进行近似计算,而不需要考虑无穷多项的求和。
在使用泰勒公式时,需要满足以下条件:-要求函数f(x)在开区间(a,b)上具有至少n+1阶连续导数;-近似点a必须在开区间(a,b)内;-近似点a必须在函数f(x)在(a,b)范围内的一些点,即a∈(a,b)。
2. 泰勒中值定理(Taylor's theorem with remainder):泰勒中值定理是泰勒公式的一个推广,它包含了一个误差项。
泰勒中值定理的形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x)其中,R_n(x)是余项,它表示在使用泰勒公式展开的前n项进行近似时产生的误差。
余项的具体形式为:R_n(x)=(x-a)^n/(n!)*(f^(n+1)(c))其中,c是a和x之间的一些点。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若f(x)在[a,b]上连续,则在[a,b]上至少存在一点,b使得f(x)dx f( )(b a)。
积分第二中值定理为前者的推广,即若f(x),g(x)在a[a,b]上连续,且g(x)在[a,b]上不变号,则在[a,b]上至少存在一点,使得b ba f (x)g(x)dx f( ) a g(x)dx。
a a一、微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设(X)在[0,1]上连续可导,且(0) 0, (1) 1。
证明:任意给定正整数a,b,必存在(0,1)内的两个数,,使得」b a b成立。
() ()证法1 :任意给定正整数a,令t(x) ax, f2(x) (x),则在[0,1]上对fdx), f2(x)应用柯西中值定理得:存在(0,1),使得一◎红卫a。
() (1) (0)任意给定正整数b,再令g,x) bx,g2(x) (x),则在[0,1]上对5(x),g2(x)应用柯西中值定理得:存在(0,1),使得一^ 匚°b。
()(1) (0)两式相加得:任意给定正整数a,b,必存在(0,1)内的两个数,,使得a ba b() ()成立。
证法2:任意给定正整数a,b,令£3 ax, f2(x) (x),则在[0,1]上对分析:鉴于所要证明的等式中含有两个中值, 中,因此可考虑用两次柯西中值定理,即证法 2分式中函数值差的部分改用拉格朗日中值定理进行进一步f i (x), f 2(x)应用柯西中值定理得:存在 (0,1),使得g i (x) (a b) (x) bx,g 2(x)(x),则在[0,1]上对 g i (x), g 2(x)应用柯西中值定理得:存在 (0,1),使得(a b) () b (a b) b a 0因此有() (1) (0)亠(a b) ()ba b 上,移项得:」 Lab 。
考研数学中值定理证明题技巧以及结论汇总
目录第一部分:中值定理结论总结 (1)1、介值定理 (1)2、零点定理 (2)3、罗尔定理 (2)4、拉格朗日中值定理 (2)5、柯西中值定理 (2)6、积分中值定理 (3)第二部分:定理运用 (3)第三部分:构造函数基本方法 (9)一、要证明的等式是一阶导数与原函数之间的关系 (10)二、二阶导数与原函数之间关系 (11)第四部分:中值定理重点题型分类汇总(包含所有题型) (14)题型一:中值定理中关于θ的问题题型二:证明f(n)(ξ)=0题型三:证明f(n)(ξ)=C0(≠0)题型四:结论中含一个中值ξ,不含a,b,导数的差距为一阶题型五:含两个中值ξ,η的问题题型六:含a,b及中值ξ的问题题型七:杂例题型八:二阶保号性问题题型九:中值定理证明不等式问题(第一部分:中值定理结论总结1、介值定理:设函数 f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A 及f(b)=B ,那么对于 A 与 B 之间的任意一个数 C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于 A 、B 之间的,结论中的ξ取开区间。
介值定理的推论:设函数 f(x)在闭区间[a,b]上连续,则 f(x)在[a,b]上有最大值 M ,最小值m,若 m≤C≤M,则必存在ξ∈[a,b], 使得 f(ξ)=C 。
闭区间上的连续函数必取得介于最大值 M 与最小值 m 之间的任何值。
此条推论运用较多)Ps :当题目中提到某个函数 f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。
2、零点定理:设函数 f(x)在闭区间[a,b]上连续,且 f(a)与 f(b)异号,即 f(a).f(b)<0, 那么在开区间内至少存在一点ξ使得 f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为 0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<aξ<b),使得f`(x)=0;4、拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<aξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得f(b)-f(a) g(b)-g(a)=f`(ξ) g`(ξ)Ps:对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。
拉格朗日中值定理在不等式证明中的应用
拉格朗日中值定理在不等式证明中的应用拉格朗日中值定理(Lagrange Interpolation Theorem)是一个多项式插值定理,其证明用到了不等式的技巧。
它的应用非常广泛,在数学、物理、工程等多个领域都发挥着重要作用。
在不等式证明中,拉格朗日中值定理也可以发挥作用。
首先,我们来看拉格朗日中值定理的描述:如果在区间[a, b]上有n + 1个不同的点x0, x1, ..., xn,则存在一个多项式P(x),使得对于任意的i,有P(xi)=f(xi)。
这里,f(x)是在[a, b]上定义的函数。
拉格朗日中值定理有很多应用,其中之一就是在不等式证明中的应用。
下面我们来看一个例子,证明 f(x) = x2 + x + 1在满足 0 < x < 1 的所有 x 上都大于 0。
首先,我们将 [0, 1] 划分成 n 个相等的小区间,即[0, 1/n], (1/n, 2/n],…,((n-1)/n, 1],然后求出每个小区间内的端点,得到 x0=0, x1=1/n, x2=2/n,...,xn=1。
我们记 f(x) 的值在每个端点 xi 上的值为 yi,即y0=f(0)=1, y1=f(1/n), y2=f(2/n)...,yn=f(1)=2。
根据拉格朗日中值定理,我们知道在 [0,1] 上存在一个多项式 P(x),使得 P(xi)=yi,即 P(0)=1,P(1/n)=f(1/n), P(2/n)=f(2/n)...,P(1)=2。
由 Taylor 展开式,我们知道 P(x) 的形式为P(x)=y0+y'0(x-x0)+y''0(x-x0)(x-x1)+...+y^(n-1)0(x-x0)...(x-x_n-1)因此,可以求出 P(x) 的表达式,其中的系数可以用分母为n!的组合数表示,即P(x)=sum_{i=0}^ny_iC_i(x)只要把 C_i(x) 表示出来,就可以求出 P(x) 的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。
一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ 成立。
证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a =')(ξϕ。
再令)()(,)()()(21x x g bx x b a x g ϕϕ=-+=,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得a b b a b b a =--+='-'+)0()1()()()()(ϕϕηϕηϕ。
因此有)()()()()(ηϕηϕηϕξϕ'-+='-'+='b b a b b a a ,移项得:b a b a +='+')()(ηϕξϕ。
分析:解1和解2都是应用了柯西中值定理。
鉴于所要证明的等式中含有两个中值,并且中值处的导数位于分式中,因此考虑须用两次柯西中值定理。
证法1和解2的不同之处是解1分别从,)(ξϕ'a )(ηϕ'b 出发构造相应的函数。
而证法2是先将b a b a +='+')()(ηϕξϕ移项得:)()()()()(ηϕηϕηϕξϕ'-'+='-+='b b a b b a a ,然后从两边出发构造相应的函数。
例二.设)(x f 在[a,b]上连续,在(a,b)内可导且)()(b f a f ≠,试证明:存在),(,b a ∈ηξ,使得ab f f +'=')(2)(ηξξ。
证法1:根据条件,由拉格朗日中值定理,存在),(b a ∈η,使得))(()()(a b f a f b f -'=-η令2)(x x g =,在[a,b]上对)(),(x g x f 应用柯西中值定理,得存在),(b a ∈ξ,使得 ab f a b a f b f f +'=--=')()()(2)(22ηξξ。
证法2:令2)(x x g =,在[a,b]上对)(),(x g x f 应用柯西中值定理,得存在),(b a ∈ξ,使得 22)()(2)(ab a f b f f --='ξξ。
再令x a b x g )()(+=,在[a,b]上对)(),(x g x f 应用柯西中值定理,得存在),(b a ∈η,使得 22)()()()()()()(a b a f b f a a b b a b a f b f a b f --=+-+-=+'η。
综合两式得到存在),(,b a ∈ηξ,使得a b f f +'=')(2)(ηξξ。
分析:鉴于所要证明的等式中含有两个中值,并且中值处的导数位于分式中中,因此可考虑用两次柯西中值定理,即证法2。
也可用一次柯西中值定理后,分式中函数值差的部分改用拉格朗日中值定理进行进一步化简,即为证法1的基本思想方法。
例三.设)(),(x g x f 在[a,b]上二阶可导,并且0)(≠''x g ,0)()(==b f a f ,0)()(==b g a g ,试证:(1)在(a,b)内,0)(≠x g ,(2)在(a,b)内至少存在一点ξ,使)()()()(ξξξξg f g f ''''=。
证明:(1)用反证法。
假设存在点),(b a c ∈,使0)(=c g 。
分别在],[],,[b c c a 上对)(x g 运用罗尔定理,可得存在),(),,(21b c c a ∈∈ξξ,使得0)()(21='='ξξg g 再在],[21ξξ上应用罗尔定理,又可得存在],[213ξξξ∈,使得0)(3=''ξg ,这与题设矛盾。
故在(a,b)内,0)(≠x g 。
(2)即证0)()()()(=''-''ξξξξf g g f 。
为此作辅助函数:)()()()()(x f x g x g x f x H '-'=由于0)()()()(====b g a g b f a f ,故0)()(==b H a H 。
在[a,b]上对)(x H 应用罗尔定理得:在(a,b)内至少存在一点ξ,使0)()()()()(=''-''='ξξξξξf g g f H ,从而有)()()()(ξξξξg f g f ''''=。
分析:该题的证明主要运用了罗尔定理。
由于题设中出现了0)()(==b f a f ,0)()(==b g a g ,因此在(1)的证明中可考虑用反证法,通过反复运用罗尔定理导出0)(3=''ξg ,从而推出矛盾,证得结论。
而(2)的证明关键在于首先要将欲证的等式变形成某一函数在中值处的导数为零。
从中选定一函数对其应用罗尔定理导出结论。
例四.设)(x f 在[-a,a]上连续,在0=x 处可导,且0)0(≠'f 。
(1)求证:)1,0(),,0(∈∈∀θa x ,)]()([)()(00x f x f x dt t f dt t f x x θθ--=+⎰⎰-(2)求θ+→0lim x 证明:(1)令⎰⎰-+=x x dt t f dt t f x F 00)()()(,则)()()(x f x f x F --='。
根据拉格朗日中值定理,),0(a x ∈∀,)1,0(∈∃θ,使得)]()([)0)(()0()()(x f x f x x x F F x F x F θθθ--=-'=-=即)]()([)()(00x f x f x dt t f dt t f x x θθ--=+⎰⎰-(2)由于θθθθθ+++→→-→'=--=+⎰⎰002000lim )0(2)()(lim 2)()(lim x x x x x f x x f x f x dt t f dt t f 而运用洛必达法则,)0(2122)()(lim 2)()(lim 02000f x x f x f x dt t f dt t f x x x x '=⋅--=+++→-→⎰⎰。
因此21lim 0=+→θx 。
分析:此题运用的知识点和方法较为综合。
既用到了积分上限的函数特性,又用到了拉格朗日中值定理另一种表达方式,以及洛必达法则、函数极限运算法则、导数概念等等。
因此要求解题者需具备较扎实的微积分知识基础和一定的函数构造技巧。
例五.证明下列不等式:(1)b a b a -≤-arctan arctan(2)当1>x 时,ex e x >证明:(1)令],[,arctan )(b a x x x f ∈=,)(x f 在],[b a 上连续,在),(b a 内可导,因此根据拉格朗日中值定理,有))(()()(a b f a f b f -'=-ξ,b a <<ξ。
即)(11arctan arctan 2a b a b -+=-ξ,b a <<ξ,故b a b a -≤-arctan arctan (2)设ex e x f x -=)(,由于)(x f 在],1[x 上连续,在),1(x 内可导,因此根据拉格朗日中值定理,有),1(),1)(()1()(x x f f x f ∈-'=-ξξ。
即)1)((--=-x e e ex e x ξ。
由于),1(x ∈ξ,所以0)1)((>--x e e ξ,从而当1>x 时,ex e x >。
分析:本例是运用拉格朗日中值定理证明不等式的典型实例。
利用拉格朗日中值定理证明不等式的一般步骤为:(1)从所欲证的不等式中找到含函数值差的表达式,从中选定)(x f 及一闭区间(2)运用拉格朗日中值定理得到一等式(3)利用此等式及b a <<ξ导出欲证的不等式。
例六.设)(x f 在[0,1]上三阶可导,且0)0(,0)1(,1)0(='=-=f f f ,试证:至少存在一点)1,0(∈ξ,使得)(!3)1(1)(22ξf x x x x f '''-++-=, )1,0(∈x 证明:即证至少存在一点)1,0(∈ξ,使得)(!3)1(1)(22ξf x x x x f '''-=-+。