eda 电子设计自动化
eda的名词解释
eda的名词解释EDA(Electronics Design Automation)是指电子设计自动化,是一种通过使用计算机软件来辅助和支持电子产品的设计和开发的技术。
在现代电子工程领域中,EDA被广泛应用于各个方面,从芯片设计到电路板布局,再到系统级设计和验证。
EDA主要包括设计工具和设计方法两个方面。
设计工具是指通过计算机软件来进行电子产品设计的工具,例如电路仿真工具、布局和布线工具、综合工具等。
而设计方法则是指利用这些设计工具进行电子产品设计的方法和流程。
EDA的发展使得电子产品的设计速度更快、性能更佳、成本更低、可靠性更高。
在EDA中,电路仿真是一个重要的环节。
电路仿真可以通过计算机模拟电子电路的行为,以评估和优化电路的性能。
通过电路仿真,设计工程师可以验证电路的功能、分析电路的稳定性和信号完整性,并进行优化和修改。
电路仿真工具可以模拟不同电路的工作情况,从简单的门电路到复杂的处理器设计,以确保电路的正确性和可靠性。
另一个重要的EDA技术是布局和布线。
在电子产品设计中,布局指的是将电路的元件(如电阻、电容、晶体管等)放置在电路板上的过程。
而布线则是将这些元件之间的电连接线路进行规划和设计。
好的布局和布线可以最大程度地提高电路的性能,减少信号传输的延迟和干扰,提高电路的稳定性和可靠性。
综合工具是EDA中另一个关键的技术。
综合工具将高级语言(如VHDL或Verilog)的电路描述进行转换,生成对应的门级电路网表。
通过综合工具,设计工程师可以将电路的功能描述转化为硬件结构的实现方式,并通过综合优化来提高电路的性能和效率。
EDA还涉及到系统级设计和验证。
系统级设计是指对整个电子产品进行整体设计和规划,包括功能分析、系统分解、接口设计等。
系统级验证则是通过建立系统级模型进行全面的验证工作,以确保电子产品在不同工作条件下的可靠性和稳定性。
EDA的发展不仅为电子设计工程师提供了强大的设计工具和方法,还推动了整个电子行业的创新和发展。
eda是什么
电子设计自动化(英语:Electronic design automation,缩写:EDA)是指利用计算机辅助设计(CAD)软件,来完成超大规模集成电路(VLSI)芯片的功能设计、综合、验证、物理设计(包括布局、布线、版图、设计规则检查等)等流程的设计方式。
在电子设计自动化出现之前,设计人员必须手工完成集成电路的设计、布线等工作,这是因为当时所谓集成电路的复杂程度远不及现在。
工业界开始使用几何学方法来制造用于电路光绘的胶带。
到了1970年代中期,开发人应尝试将整个设计过程自动化,而不仅仅满足于自动完成掩膜草图。
第一个电路布局、布线工具研发成功。
设计自动化研讨会在这一时期被创立,旨在促进电子设计自动化的发展。
电子设计自动化发展的下一个重要阶段以卡弗尔·米德和琳·康维于1980年发表的论文《超大规模集成电路系统导论》为标志。
这一篇具有重大意义的论文提出了通过编程语言来进行芯片设计的新思想。
如果这一想法得到实现,芯片设计的复杂程度可以得到显著提升。
这主要得益于用来进行集成电路逻辑仿真、功能验证的工具的性能得到相当的改善。
随着计算机仿真技术的发展,设计项目可以在构建实际硬件电路之前进行仿真,芯片布局、布线对人工设计的要求降低,而且软件错误率不断降低。
直至今日,尽管所用的语言和工具仍然不断在发展,但是通过编程语言来设计、验证电路预期行为,利用工具软件综合得到低抽象级(或称“后端”)物理设计的这种途径,仍然是数字集成电路设计的基础。
从1981年开始,电子设计自动化逐渐开始商业化。
1984年的设计自动化会议上还举办了第一个以电子设计自动化为主题的销售展览。
Gateway设计自动化在1986年推出了一种硬件描述语言Verilog,这种语言在现在是最流行的高级抽象设计语言。
1987年,在美国国防部的资助下,另一种硬件描述语言VHDL被创造出来。
现代的电子设计自动化设计工具可以识别、读取不同类型的硬件描述。
电子设计自动化EDA绪论
电子设计自动化(EDA)绪论引言电子设计自动化(Electronic Design Automation,EDA)是利用计算机辅助设计(Computer-ded Design,CAD)技术来辅助电子系统的设计和开发的一门学科。
随着电子技术的发展和电子产品的普及,EDA在现代电子工程中扮演着重要的角色。
本文将介绍电子设计自动化的发展历程、应用领域以及未来趋势。
发展历程EDA的起源可以追溯到20世纪50年代末的数学计算和电子计算机出现之前。
当时,电子设计工程师需要手工布线、调整参数并进行实验验证。
正是因为这种繁琐的工作方式,才催生了EDA这一概念的提出和应用的需求。
随着计算机技术的发展,EDA得到了广泛的应用,大大提高了电子设计的效率和准确性。
应用领域EDA在电子工程的各个领域都有着广泛的应用。
以下是一些主要的应用领域:1.集成电路设计:EDA在集成电路设计中发挥着核心作用。
它可以实现逻辑设计、物理设计、电路模拟、验证等功能。
EDA工具可以帮助工程师完成复杂的电路设计、优化电路性能并减少设计周期。
2.PCB设计:EDA在PCB(Printed CircuitBoard)设计中也有重要应用。
通过使用EDA工具,工程师可以根据电路原理图自动生成PCB布局,协助进行电气和机械检查,提高PCB设计的效率和可靠性。
3.系统级设计:EDA在系统级设计中起到了重要的支持作用。
它可以协助工程师进行系统级建模、分析和优化,保证系统的正确性和可靠性。
4.验证和仿真:EDA工具可以进行电路的验证和仿真,帮助工程师在硬件设计之前发现可能存在的错误,提高设计的质量和稳定性。
5.封装和测试:EDA在封装设计和测试过程中提供了许多有用的工具和方法。
这些工具可以帮助工程师进行封装选择、封装布局以及封装测试,提高封装的成功率和可用性。
未来趋势随着信息技术的不断发展,EDA也在不断演进和改进。
以下是一些EDA未来的发展趋势:1.机器学习的应用:随着机器学习技术的迅速发展,EDA也可以应用机器学习来优化设计过程和结果。
电路与电子技术-电子设计自动化(eda)简介
HDL描述可以被EDA工具转换成可执行的硬件配置,从而在FPGA或ASIC上实现。
逻辑合成
01
逻辑合成是将HDL描述转换为门级网表的自动化过程
。
02
逻辑合成工具使用优化算法和库技术,将HDL代码转
换为低层次的逻辑门级描述,以便于物理实现。
成熟阶段
20世纪80年代以后,随着计算机技 术的飞速发展,EDA技术逐渐成熟, 出现了许多功能强大的EDA软件, 广泛应用于电子设计领域。
EDA技术的应用领域
集成电路设计
EDA技术广泛应用于集成电路 设计领域,包括逻辑设计、物 理设计、布线设计和可靠性分
析等环节。
电路板设计
EDA技术可以帮助设计师完成 电路板的设计、布局、布线和 仿真等任务,提高设计效率和 产品质量。
大数据分析
通过大数据技术,对电路设计过 程中的数据进行分析,挖掘设计 规律和优化方向,提高设计效率 和质量。
实时计算与仿真
利用云计算的强大计算能力,实 现电路设计的实时仿真和计算, 提高设计的实时性和准确性。
5G通信技术在EDA中的应用
远程协同设计
利用5G高速网络,实现 远程协同设计,让团队 成员在全球范围内进行 实时沟通和协作。
特点
EDA技术具有自动化、智能化、高精度和高效率等特点,能够大大提高电路和 电子系统的设计和生产效率,降低成本,缩短研发周期。
EDA技术的发展历程
初级阶段
20世纪60年代,人们开始使用计 算机辅助设计(CAD)软件进行 简单的电路原理图绘制和布局。
发展阶段
20世纪70年代,随着集成电路的 出现,EDA技术逐渐发展,出现了 电路仿真和版图自动布局布线等工 具。
电子设计自动化EDA实验
电子设计自动化(EDA)实验引言电子设计自动化(EDA)是一种利用计算机技术来辅助电子系统设计的工具和方法。
传统的电子设计过程通常需要进行大量的手工操作,但由于电子系统的复杂性不断增加,现代电子设计已经无法满足快速、高效、准确开发产品的需求。
因此,EDA成为了现代电子设计的关键技术。
本实验将介绍EDA的基本概念和相关工具,以帮助大家更好地理解和应用EDA技术。
1. EDA的定义EDA,即Electronic Design Automation,是指利用计算机和相关工具来辅助进行电子系统设计的一种技术。
它采用了计算机辅助设计(CAD)的概念和方法,结合了电路设计、逻辑设计、物理设计等多种技术,可大大提高电子系统设计的效率和可靠性。
EDA技术已经广泛应用于各个层次的电子系统设计中,包括电路设计、芯片设计、电路板设计等。
2. EDA的基本流程EDA的基本流程包括以下几个主要步骤:2.1 电路设计电路设计是EDA的首要步骤之一。
在电路设计阶段,需要通过选择合适的元器件和器件参数来构建电路图,并进行电路仿真和性能评估。
常用的电路设计工具包括Altium Designer、Cadence 等。
2.2 逻辑设计逻辑设计是EDA的核心步骤之一。
在逻辑设计阶段,需要将电路图转化为逻辑电路图,并进行逻辑仿真、逻辑综合等操作,以验证电路功能和性能的正确性。
常用的逻辑设计工具包括Verilog、VHDL等。
2.3 物理设计物理设计是EDA的重要步骤之一。
在物理设计阶段,需要进行芯片布局、布线规划、时钟树设计等操作,以实现电路的物理布局和布线,最终生成物理设计数据。
常用的物理设计工具包括Cadence、Synopsys等。
2.4 验证与验证验证与验证是EDA的关键步骤之一。
在验证与验证阶段,需要进行电路功能验证、时序验证、功耗验证等操作,以保证电子系统设计的正确性和可靠性。
常用的验证与验证工具包括Mentor、Cadence等。
EDA(电子设计自动化)教程
➢ Used to Ensure Hardware/Software Version
Synchronization
➢ Simple 2 read-only register peripheral containing
hardware ID tags.
• Register 1 contains random number
• Register 2 contains time and date when system was
generated in SOPC Builder
➢ Can be checked at runtime to ensure that the software to
be downloaded matches the hardware image
▪ Support for DDR/DDR2 in SOPC Builder GUI ➢ With burst adapter • Sequential master to interleaved slave enhancement ➢ Separate READ/Write duplex slaves • Automatically matches address of read/write slaves • Arbitration logic connects read/write masters to both slaves
7
7.1 Nios Ⅱ嵌入式处理器简介
▪ Nios II提供3种不同的内核,以满足系统对不同性能和成本的需求。
表7-2 Nios Ⅱ系列处理器的成员
最高性能的优化
平衡性能和尺寸
最小逻辑占用的优化
8
7.1 Nios Ⅱ嵌入式处理器简介
142《电子设计自动化(EDA)》课程标准
《电子设计自动化(EDA)》课程标准课程名称:电子设计自动化(EDA)课程编码:0509069 学分:3总学时:54(30+24)适用专业:机电一体化专业一、前言1.课程性质《电子设计自动化(EDA)》课程是机电一体化专业必修的专业核心课程,是一门理实一体课程。
本门课程在第四学期开设,为专业核心课程,其前导课程是计算机应用基础,电路基础,电子技术基础。
为后续的“单片机技术与应用”等课程的综合设计打下了理论和实践的基础。
2.基本理念本课程是一门实践性非常强的课程。
要求学生注重实践,在掌握Protel 99 SE软件的基本操作后,重点加强PCB工程训练。
采用多媒体教学,实例分析教学。
3.设计思路(1)、以机电产品开发技术员以及开发助理员岗位完成机电产品硬件开发工作任务所需的能力要求作为课程内容选取的主要依据。
根据电子行业经济发展的需要,聘请企业技术人员对机电一体化专业领域的职业岗位进行工作任务分析,根据完成机电产品硬件开发典型工作任务所需的知识、能力和素质要求进行教学内容的选取。
(2)、结合国家职业标准确定了课程标准在课程主讲老师和企业专家共同参与下,根据行业对职业能力的要求,结合“计算机辅助设计绘图员(电子)(简称电子CAD绘图员)”国家职业标准,明确本课程教学内容及对各内容的掌握要求。
然后,根据典型工作任务的特点,将各教学内容进行知识的解构。
按照职业成长规律与认知学习规律,以项目的形式,将本课程分解为电源电路、信号源电路、智能温度计等六个电路由易至难、由简单到复杂的学习子领域,将之前解构的各知识点重构到相应的学习子领域中,真正实现“用什么,学什么”。
以项目为载体,设计完成子领域教学目标的学习情境,在学习情境中明确学习目标、学习内容、建议教学方法、教学材料、使用工具、学生知识能力的储备、教师要求、考核与评价。
(3)、基于行动导向原则进行教学模式设计采用工作过程系统化的课程改革方法,用三个学习情境贯穿教学组织,每一个学习情境都是一个完整的工作过程,无论是简单的还是复杂的电路,都经历了原理图设计——PCB设计——PCB制作等几个主要工作环节,与企业的PCB设计员实际所做的项目或工作完全一致,充分体现职业性。
电子设计自动化课程设计
电子设计自动化课程设计一、课程目标知识目标:1. 理解电子设计自动化(EDA)的基本概念,掌握EDA工具的使用方法。
2. 学习并掌握基本的硬件描述语言(如Verilog HDL)。
3. 了解数字电路设计的基本流程,掌握从电路设计、仿真到布局布线的全过程。
技能目标:1. 能够运用EDA工具进行简单的数字电路设计和仿真。
2. 能够使用Verilog HDL编写简单的数字电路模块,并进行功能验证。
3. 能够分析电路设计中的问题,并进行相应的优化。
情感态度价值观目标:1. 培养学生对电子设计的兴趣,激发学生的创新意识。
2. 培养学生严谨、细致的科学态度,提高学生的团队协作能力。
3. 强化学生的工程伦理观念,使学生在设计和实践中遵循可持续发展原则。
分析课程性质、学生特点和教学要求:本课程为电子设计自动化课程设计,旨在让学生掌握现代电子设计的基本方法和技术。
结合学生年级特点和知识背景,课程以实践操作为主,注重培养学生的实际操作能力。
教学要求理论与实践相结合,以学生为主体,充分发挥学生的主观能动性。
二、教学内容1. EDA概述- 了解EDA的发展历程、现状和未来趋势。
- 熟悉常见的EDA工具及其功能特点。
2. 硬件描述语言Verilog HDL- 学习Verilog HDL的基本语法和数据类型。
- 掌握Verilog HDL的模块化设计方法,编写简单的数字电路模块。
3. 数字电路设计流程- 学习数字电路设计的基本流程,包括设计、仿真、布局布线等。
- 掌握EDA工具中的相关操作,如原理图绘制、仿真参数设置等。
4. 实践项目- 设计并实现一个简单的数字电路系统,如加法器、计数器等。
- 进行功能仿真和时序仿真,优化电路设计。
5. 教学内容安排与进度- EDA概述(1课时)- Verilog HDL基础(4课时)- 数字电路设计流程(2课时)- 实践项目(6课时)6. 教材章节及内容- 教材第1章:电子设计自动化概述- 教材第2章:硬件描述语言Verilog HDL- 教材第3章:数字电路设计流程- 教材第4章:实践项目及案例分析教学内容确保科学性和系统性,注重理论与实践相结合,使学生能够循序渐进地掌握电子设计自动化的基本知识和技能。
电子设计自动化技术内容讲解
电子设计自动化技术内容讲解1. 引言电子设计自动化技术(Electronic Design Automation,简称EDA)是一种利用计算机技术辅助进行电子系统设计的技术。
它包括了电子设计自动化软件工具的开发、集成和应用。
EDA技术的发展,极大地提高了电子系统的设计效率和成功率。
本文将对EDA技术进行详细的讲解。
2. EDA技术的分类EDA技术可以根据其在电子系统设计中的应用领域进行分类,主要包括:2.1 电路设计自动化技术电路设计自动化技术是EDA技术中最重要的一个领域,其主要用于集成电路(Integrated Circuit,简称IC)的设计和验证。
这些工具包括原理图编辑器、电路模拟器、布局设计工具等。
电路设计自动化技术的发展,极大地提高了IC的设计效率和可靠性。
2.2 系统级设计自动化技术系统级设计自动化技术主要用于复杂电子系统的设计和验证。
这些工具可以从高层次的角度对电子系统进行建模、分析和仿真。
系统级设计自动化技术的应用使得电子系统的设计更加灵活、可靠和高效。
2.3 物理设计自动化技术物理设计自动化技术主要用于集成电路的物理设计和制造。
这些工具包括布局布线工具、印刷电路板设计工具等。
物理设计自动化技术的发展,使得集成电路的布局布线更加紧凑、稳定和可靠。
2.4 验证和测试技术验证和测试技术是EDA技术中非常重要的一个领域,它主要用于验证和测试电子系统和芯片的性能和可靠性。
这些工具包括功能模拟器、时序模拟器、测试生成器等。
3. EDA技术的应用EDA技术在电子系统设计中的应用十分广泛,主要包括以下几个方面:3.1 集成电路设计EDA技术在集成电路设计中的应用非常广泛。
通过使用EDA工具,设计工程师可以方便地进行电路的建模、仿真和验证,从而大大提高了集成电路的设计效率和可靠性。
3.2 PCB设计EDA技术在PCB设计中也有重要应用。
设计工程师可以使用EDA工具进行印刷电路板的布局布线,以及信号完整性的验证和仿真。
电子设计自动化
电子设计自动化1. 简介电子设计自动化(Electronic Design Automation,简称EDA)是一种利用计算机软件来辅助电子设计过程的技术。
它集成了多种工具和方法,用于设计、模拟、验证和制造电子系统。
EDA的应用范围广泛,包括集成电路、系统级芯片、电路板设计和封装等。
2. EDA的历史EDA技术的起源可以追溯到20世纪50年代,当时的电子设计主要是通过手工绘图和计算器来完成。
随着电子技术的迅速发展,电路复杂度不断增加,人工设计和验证的效率显著下降。
1960年代末,EDA开始出现,并逐渐成为电子设计的主要工具。
3. EDA的组成EDA系统通常由多个模块组成,包括以下主要模块:3.1 电路设计工具电路设计工具是EDA中最基础、最重要的模块之一。
它提供了创建、编辑和验证电路的功能,可以绘制电路图,并进行模拟分析和优化。
常见的电路设计工具包括Cadence、Mentor Graphics、Synopsys等。
3.2 电路仿真工具电路仿真工具是用于验证电路设计的重要模块。
它可以对电路进行数值仿真和时序仿真,以检测设计中的错误和故障。
常见的仿真工具有SPICE、HSPICE、PSpice等。
3.3 物理设计工具物理设计工具用于将电路设计转化为实际的物理布局。
它可以进行芯片的布局、布线和时序优化,以满足电路设计的性能要求。
常见的物理设计工具有Calibre、ICC、Encounter等。
3.4 设计验证工具设计验证工具用于对电路设计的正确性进行验证和测试。
它可以对电路进行功能仿真和时序验证,以确保设计的准确性和稳定性。
常见的验证工具有FormalPro、VCS、ModelSim等。
3.5 设备制造工具设备制造工具是用于电路生产和制造的模块。
它可以进行版图优化、掩膜生成和工艺仿真,以满足芯片制造的需要。
常见的设备制造工具有Calibre、Hermes、Tanner等。
4. EDA的优势EDA技术在电子设计过程中具有如下优势:•提高设计效率:EDA工具可以自动化设计流程,减少人工操作,提高设计效率和精度。
电子设计自动化EDA
电子设计自动化(EDA)概述电子设计自动化(Electronic Design Automation,简称EDA)是一种利用计算机软件工具来设计和验证电子器件和系统的方法。
由于现代电子设备的复杂性和功能要求不断增加,传统的手工设计方法已经无法满足设计师们的需求。
EDA技术的发展使得电子设备的设计和验证过程更加快速、准确和可靠。
EDA的主要应用EDA技术主要应用于以下几个方面:1. 电路设计电路设计是EDA技术最早应用的领域之一。
通过EDA软件工具,设计师可以利用图形界面进行电路原理图的绘制和元件的布局。
EDA软件还可以帮助设计师进行性能分析、信号完整性分析和功耗优化等工作。
EDA技术的应用使得电路设计过程更加高效和可靠。
2. 片上系统设计片上系统(System-on-Chip,简称SoC)是现代电子设备中常见的组件,它集成了大量的电子元器件和功能模块。
EDA软件工具可以帮助设计师进行SoC的系统级设计、仿真和验证。
通过EDA技术,设计师可以在更短的时间内完成SoC 设计,提高生产效率和产品质量。
3. FPGA设计可编程逻辑门阵列(Field Programmable Gate Array,简称FPGA)是一种灵活可编程的集成电路。
EDA技术在FPGA设计中扮演着重要的角色。
设计师可以利用EDA软件工具进行FPGA的电路设计、布局和验证。
EDA技术的应用使得FPGA设计更加灵活、高效和可靠。
4. PCB设计印刷电路板(Printed Circuit Board,简称PCB)是电子设备中的重要组成部分。
EDA技术在PCB设计中发挥着关键的作用。
设计师可以通过EDA软件工具进行PCB的布线、信号完整性分析和电气规则检查等工作。
EDA技术的应用使得PCB设计过程更加高效和可靠。
EDA的工作流程EDA技术的工作流程主要包括以下几个步骤:1.需求分析和规格说明:在设计开始之前,设计师需要进行需求分析和规格说明,明确设计目标和功能要求。
电子设计自动化EDA
可测试性设计
EDA技术可以帮助设计师进行 可测试性设计,提高产品的可
测试性和可靠性。
02
EDA工具分类与功能
硬件描述语言(HDL)工具
总结词
用于描述数字电路和系统的行为和结构。
详细描述
HDL工具包括Verilog和VHDL等,用于描述数字电路和系统的行为和结构。这 些工具支持逻辑设计、模拟、验证等功能,是电子设计过程中不可或缺的一部 分。
05
EDA发展趋势与未来展望
AI与机器学习在EDA中的应用
自动化设计优化
利用机器学习算法对电路设计进行自动优化, 提高设计的性能和可靠性。
智能物理设计
通过机器学习技术实现物理设计的自动化, 提高设计的效率和质量。
自动化布线
利用机器学习技术实现布线的自动化,提高 布线的准确性和效率。
自动化测试
通过机器学习技术实现测试的自动化,提高 测试的准确性和效率。
特点
EDA技术具有自动化程度高、设计灵 活、精度高、可重复性好等优点,能 够大大提高设计效率,缩短产品上市 时间。
EDA技术的发展历程
起源
20世纪60年代,随着集成电路的出现, 人们开始使用计算机辅助设计工具进 行电子系统设计。
发展
现状
目前,EDA技术已经成为电子系统设 计不可或缺的重要工具,广泛应用于 集成电路、印刷电路板、系统级等多 个领域。
云计算与高性能计算在EDA中的应用
01
云计算资源共享
02
高性能计算加速
03
云端协同设计
通过云计算技术实现EDA资源的 共享,提高资源的利用率和效率。
利用高性能计算技术加速EDA的 计算过程,提高设计的速度和效 率。
电子设计自动化EDA技术课程设计
电子设计自动化EDA技术课程设计一、背景总述电子设计自动化(Electronic Design Automation, EDA)技术指的是利用计算机软、硬件工具以及CAD技术来设计、仿真电子电路、系统,辅助设计工程师在电路、系统设计和验证、PCB设计、印制、生产、测试中快速有效地完成工作。
随着电子技术的迅速发展,EDA技术的重要性日益凸显。
本课程设计旨在让学生了解EDA软件的基本使用方法,并借助EDA工具设计、仿真、验证电路,提高学生的电子设计和EDA技能。
二、课程设计目标1.熟悉EDA软件的基本使用方法;2.了解EDA技术在电路、系统设计和验证、PCB设计、印制、生产、测试等方面的应用;3.了解EDA技术的发展历程、现状、趋势及相关的标准和规范;4.综合运用所学知识和技能,设计、仿真、验证电路。
三、课程大纲及教学安排课程大纲如下:章节内容学时1 EDA技术概述 2章节内容学时2 EDA软件介绍 43 电路设计流程 64 电路仿真技术85 PCB设计流程86 PCB制造流程 67 PCB测试技术 48 EDA技术的应用 69 课程设计实践项目 6教学安排:•第一周:课程介绍,EDA技术概述•第二周:EDA软件介绍1•第三周:EDA软件介绍2•第四周:电路设计流程•第五周:电路设计流程•第六周:电路仿真技术1•第七周:电路仿真技术2•第八周:PCB设计流程1•第九周:PCB设计流程2•第十周:PCB制造流程•第十一周:PCB测试技术•第十二周:EDA技术的应用•第十三周:课程设计实践项目介绍•第十四周:课程设计实践项目报告和演示四、课程设计实践项目本课程设计实践项目要求学生综合运用所学知识和技能,设计、仿真、验证一个电路。
项目步骤如下:1.确定电路类型和功能,选择EDA软件进行电路设计和仿真;2.使用EDA软件进行原理图绘制和电路仿真;3.对仿真结果进行分析和图表绘制,评估电路性能;4.根据仿真结果进行电路设计和优化,再次进行仿真并评估性能;5.根据电路设计结果进行电路板的制作和组装;6.使用测试设备对电路进行测试、分析,调试完善电路;7.撰写实验报告。
电子设计自动化EDA
编译网 表提取
数据库 逻辑综 逻辑划
建立合分分配定时模 拟网表装配
3. 执行编译 选择Start按钮,编译过程中如果出错,其错误及警告等
信息将会显示在自动打开的Message-Compiler窗口,可以定位 错误。修改错误,再次运行编译,直至纠正全部错误。
编译结束,编译器将会产生相应的输出文件,输出文件 的图标出现在对应模块框的下方,有*.rpt、*.snf和*.pof文件 等。双击文件图标,可以打开输出文件。
3. 分析验证模块:包括各个层次的模拟验证、设计规则的检 查、故障诊断等。 4. 综合仿真模块:包括各个层次的综合工具,理想的情况是: 从高层次到低层次的综合仿真全部由EDA工具自动完成。 5. 布局布线模块:实现由逻辑设计到物理实现的映射,因此 该模块与物理实现的方式密切相关。例如,最终的物理实现 可以是门阵列、可编程逻辑器件等,由于对应的器件不同, 因此各自的布局布线工具会有很大的差异。
1.5.2 Xilinx公司的EDA工具
ISE简介 • ISE(Integrated System Configuration)是集成系统环境
的简称,是Xilinx公司提供的一套完整的软件工具集, 利用ISE可以完成FPGA/CPLD开发过程中的全部操作。 • Xilinx公司提供的集成系统环境ISE,从设计输入、仿真、 编译、综合、布局布线直至下载都在ISE集成环境下完 成。最新版本:ISE 6.x。 • ISE工具分为输入工具、仿真工具、综合工具、实现工 具和辅助工具等几大类。
2. 输入设计文件 在MAX+plusII的项目管理器File菜单下选中New,出
现新建文件对话框。根据设计文件需要选择对应的格式。 在接着打开的编辑窗口输入设计文件,由于文件格式不同, 打开的编辑窗口也有所不同。
eda 模拟集成电路设计自动化基础
eda 模拟集成电路设计自动化基础EDA(Electronic Design Automation,电子设计自动化)是指在电子系统设计的各个阶段中,利用计算机及相关软件工具来辅助实现电路设计、电子系统设计和芯片设计的过程。
EDA在集成电路设计中起到了关键的作用。
模拟集成电路设计自动化是EDA中的一个重要分支,主要涉及到模拟电路的设计和仿真。
模拟电路是指通过连续变化的电压和电流来表示和处理信息的电路。
模拟集成电路设计自动化的目标是通过计算机辅助设计工具,提高模拟电路设计的效率和准确性。
模拟集成电路设计自动化的基础包括以下几个方面:1. 电路建模:模拟电路的设计需要通过建立电路模型来描述电路的行为和性能。
在EDA中,利用数学模型和电路元件的参数来建模,以实现对电路行为的仿真和分析。
2. 仿真工具:模拟集成电路设计自动化中,需要使用仿真工具来对设计的电路进行验证和优化。
仿真工具能够模拟电路的动态行为和性能,帮助设计师发现潜在的问题并进行设计改进。
3. 优化算法:在模拟集成电路设计中,常常需要对电路进行优化,以满足指定的性能要求。
优化算法可以帮助设计师找到最佳的电路参数组合,以实现最优的性能。
4. 参数提取:在模拟电路设计中,需要通过对电路进行参数提取,获取电路的关键参数,以便进行后续的仿真和分析。
参数提取工具能够自动提取电路的参数,并生成电路的等效模型。
5. 物理设计:模拟集成电路设计自动化还涉及到电路的物理设计,包括布局设计和布线设计。
布局设计是指将电路元件在芯片上的位置进行规划,布线设计是指将电路元件之间的连线进行规划。
物理设计工具可以帮助设计师实现电路的高效布局和布线。
通过以上的基础工具和技术,模拟集成电路设计自动化能够提高电路设计的效率和准确性,缩短设计周期,降低设计成本,为电子系统设计提供有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、如图1所示,电路为二级电压串联负反馈的放大电路,其中Vs为V AC/SOURCE,其属性设置为默认值。
三极管Q2N3904的模型参数为默认值。
试用EWB软件作如下的分析:(1)求直流工作点;(2)求无负反馈(即无电阻Rf)时的输入电阻、输出电阻、电压增益和上限截止频率;(3)当电阻Rf分别为6.2kΩ、15kΩ和30kΩ时的反馈深度,并总结反馈深度对放大电路性能的影响。
(25分)Re1300Rb420kRs200Rf6.2kVcc12VdcCe210uCe110uR55kQ2Q2N3904Cb22.2uRb3300kVoutQ1Q2N3904Vs1Vac0VdcCb12.2uVinRe2680Rb1300k Cb32.2uRe3820Rc15.1kR2b20kRc25.1k解:(1)直流工作点由图知:I CQ1=124.345uA I CQ2=140.332uA计算知:U CEQ1=V CC-I CQ1(R C1+R E1+R E2)=11.244VU CEQ2=V CC-I CQ2(R C2+R E3)=11.189V(2)无负反馈时的输入电阻、输出电阻、电压增益和上限截止频率a、输入电阻由图知:Ui=9.865mA Ii=673.469nA计算得:Ri=Ui/Ii=14.6kΩb、输出电阻由下页图知:Uo=11.665pV Io=2.334fA计算得:Ro=Uo/Io=5kΩC、电压增益d、上限截止频率查书得:f=1/(2×3.14×Rs×C)=3.6MhzMhzRs=200Ω C=2.2uF(3)当电阻Rf分别为6.2kΩ、15kΩ和30kΩ时的反馈深度Af=2.462V/987.371mV=2.5Af=2.803V/987.371mV=2.8Af=2.947V/986.945mV=3反馈深度1+AF=A/Af;由上可得:Af减小二级电压串联负反馈:Ri=Ri/(1+Af);Ro=Ro*(1+Af);使的Ri 减小Ro增大;二、设计题。
设计一个水温控制系统。
(40分)基本要求:一升水由1kW的电炉加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。
达到的性能指标:①温度设定范围:40~90℃,最小区分度为1℃;②控制精度:温度控制的静态误差≤1℃;③用十进制数码显示实际水温;④能打印实测水温值;⑤具有通信能力,可接收其他数据设备发来的命令,或将结果传送到其他数据设备。
完成作业的要求:(1)根据课堂讲授的设计方法完成本题;给出设计步骤和说明(2)查阅相关资料,画出原理框图(3)按照题目的功能要求,设计并画出完整的原理图(利用画图软件),并给出元器件选用说明。
(4)完成PCB图的设计。
设计: 1 总体方案论证(1)、方案一:此方案是采用传统的模拟控制方法(方案框图如图2-1-1),选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定加热或者不加热。
器特点是电路简单,易于实现,但是系统所得结果的精度不高并且调节动作频繁,系统静差大,不稳定。
系统受环境的影响大,不能实现复杂的控制算法,而且不易实现对系统的控制及对温度的显示,人机交换性能差。
(2)、方案二:采用单片机89c52为核心。
采用了温度传感器AD590采集温度变化信号,A/D采样芯片ADC0804将其转换成数字信号并通过单片机处理后去控制温度,使其达到稳定。
使用单片机具有编程灵活,控制简单的优点,使系统能简单的实现温度的控制及显示,并且通过软件编程能实现各种控制算法使系统还具有控制精度高的特点。
该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。
以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。
另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。
所以,本例采用以单片机为核心的直接数字控制系统。
比较两种方案,方案二明显的改善了方案一的不足及缺点,并具有控制简单、控制温度精度高的特点。
因此本设计电路采用方案二。
2.总体设计本设计以89c52单片机为核心,采用了温度传感器AD590,A/D采样芯片ADC0804,可控硅MOC3041及PID 算法对温度进行控制。
该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。
本设计实现了水温的智能化控制以及提供完善的人机交互界面及多机通讯接口,系统由前向通道模块(即温度采样模块)、后向控制模块、系统主模块及键盘显示摸块等四大模块组成。
本系统的特点在于采用PC 机及普通键盘实现了多机通信。
系统框图如图所示。
3.硬件电路设计与计算本电路总体设计包括五部分:主机控制部分(89C52)、前向通道(温度采样电路)、后向通道(温度控制电路)、键盘和数字显示部分、微机控制及图形显示。
⑴ 主机控制部分此部分是电路的核心部分,系统的控制采用了单片机89C52。
单片机89C52内部有8KB 单元的程序存储器及256字节的数据存储器。
因此系统不必扩展外部程序存储器和数据存储器这样大大的减少了系统硬件部分。
⑵ 温度采样电路系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D 转换电路(ADC0804)三部分组成。
电路图如图所示R25KDB018DB117DB216DB315DB414DB513DB612DB711/CS 1/RD 2/W R 3/INTR 5V+20CLK R 19CLK IN 4VIN+6VIN-7AGND8Vref/29DGND 10J6ADC0804-2+3674185J3OP0712J4414812J54148R810kC2150pVCCR720k+15-15R430kR381k213Vin GNDOUT J17812+1512J2AD590-15AGNDR130KR65kR 55k89C52VCC+c110uAD590性能描述 测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V 之间,稳定度为1﹪时,误差只有±0.01℃ 。
AD590为电流型传感器温度每变化1℃其电流变化1uA 在35℃和95℃时输出电流分别为308.2uA 和368.2uA 。
ADC0804性能描述 ADC0804为8bit 的一路A/D 转换器,其输入电压范围在0—5v ,转换速度小于100us ,转换精度0.39﹪。
满足系统的要求。
电路原理及参数计算 温度采样电路的基本原理是采用电流型温度传感器AD590将温度的变化量转换成电流量,再将电流量转换成电压量通过A/D 转换器ADC0804将其转换成数值量交由单片机处理。
如上图中三端稳压7812作为基准电压,由运放虚短虚断可知运放的反向输入端ui 的电压为零伏,当输出电压为零伏时,列出A 点的节点方程如下: (12)U b R R I c += …………………………………………………….(1) 由于系统控制的水温范围为35℃--95℃,所以当输出电压为零伏时AD590的输出电流为308.2uA,因此为了使Ui 的电位为零就必须使电流I b等于电流I c等于308.2uA, 三端稳压7812的输出电压为12v 所以由方程(1)得121238.94308.2U b v R R k I c u A+===Ω………………………………(2) 由方程(2)的取电阻R2=30k , R1=10k 的电位器。
又由于ADC0804的输入电压范围为0—5v ,为了提高精度所以令水温为95℃时ADC0804的输入电压为5v (即Uo=5v )。
此时列出A 点的结点方程如下: (54)(12)U o R R U b R R I c +++= ……………………………(3) 5(54)308.2368.2v R R u A u A ++= 5483.33RR k +=当水温为95℃时AD590的输出电流为368.2uA 。
由方程式(3)得 R4+R5=83.33k 因此取R5=81k , R5=5k 的电位器。
⑶温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。
MOC3041光电耦合器的耐压值为400v ,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。
100Ω电阻与0.01uF 电容组成双向可控硅保护电路220v100Ω0.01u FB T A 12MOC304174LS07250Ω电炉vccin27Ω⑷键盘与数字显示部分在设计键盘/显示电路时,我们使用单片机2051做为电路控制的核心,单片机2051具有一个全双工的串行口采用串口,利用此串行口能够方便的实现系统的控制和显示功能。
图中单片机2051的P1口接数码管的8只引脚,这样易于对数码管的译码,使数码管能显示设计者所需的各数值、小数点、符号等等。
单片机2051的P3.3、P3.4、P3.5接3-8译码器74L138,译码器的输出端直接接八个数码管的控制端和键盘,键盘扫描和显示器扫描同用端口这样能大大的减少单片机的I/O,减少硬件的花费。
键盘的接法的差别直接影响到硬件和软件的设计,考虑到单片机2051的端口资源有限,所以我们在设计中将传统的4*4的键盘接成8*2的形式(如图4-4-2),键盘的扫描除了和显示共用的8个端外,另外的两个端直接和2051的P3.2和P3.7相连。
⑸微机控制及图形显示部分为了使系统具有更好的人机交换界面,在系统设计中我们通过Visual Basic 语言设计了微机控制界面。
通过系统与微机的通信大大的提高了系统的各方面性能。
由于单片机89C52串行口为TTL电平,而PC机为RS232电平,因此系统采用了MAX232电平转换芯片。
由于系统设计了多机通信的功能,即主系统(89C52)和键盘及数字显示部分的通信、主系统(89C52)和PC机的通信,所以在设计电路时要特别注意多机通信的时序及竞争问题,针对此类问题在设计中我们特地的在两根串行通信线上增加了如图4-5-2的电路:如图4-5-2由于主机部分发送两个从机都可以接受,因此主机的发送部分(及主机 TXD)不存在竞争问题。
而两个从机可能同时向主机发送各类控制信息,因此会存在竞争问题。
其实图4-5-2为一个与门电路,图中R1为提升电阻,D1、D2为开关二极管,当pc TXD(或2051 TXD)中有一个为低电平时主机RXD为低电平,同时另一个分机无效,当pc TXD(或2051 TXD)中有一个为高电平时主机RXD为高低电平。