(人教版)九年级数学下:26.1.1《反比例函数》ppt课件

合集下载

26.1.1反比例函数(教学课件)-九年级数学下册同步教学精品课件(人教版)

26.1.1反比例函数(教学课件)-九年级数学下册同步教学精品课件(人教版)
典例小结
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;

2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =

小结:

问题1 中得到的函数1: =


问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =

请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数

= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数

则设 关于的函数解析式为 = ( ≠ 0)



将 = 2, = 6 代入 = 中得 6 =

2
∴ = 12
12
∴ 关于的函数解析式为 =

(2)将 = 4 代入 =

人教版初三数学9年级下册 第26章(反比例函数)26.1.1反比例函数 课件(共31张PPT)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1反比例函数 课件(共31张PPT)
宽是5 cm,高是 y cm.
(1)写出用长表示高的函数解析式;
(2)写出自变量 x 的取值范围;
(3)当它的长是8 cm时,求长方体的高.
解: (1)由题意得5xy=100,所以 =
(2)自变量 x 的取值范围是 x>0.
(3)当 x=8时, =
20
8
20
.

= 2.5 ,
所以当长方体的长是8 cm 时,长方体的高是2.5 cm.
m=1
m+1≠0
−2
2 −2
2022 =1
解:因为 = + 1
是反比例函数,
所以 2 − 2 = −1,且 m+1≠0,解得 m=1.
当 m=1时, − 2 2022 = 1 − 2 2022 = −1 2022 = 1.
不要忽略比例系数不能为零
3.已知一个长方体的体积是100 cm3 ,它的长是 x cm,
200

,该函数是反比例函数.
2.下列函数:
①y =2x +3
② =
8


③y=x2 +7x-1
④ =
3
2
其中 y 是 x 的反比例函数的有
⑤y=x-1
⑥Байду номын сангаас=


缺少条
件m≠0
⑦xy= -1
②⑤⑦ . (填序号)
新知探究 知识点2 用待定系数法求反比例函数的解析式
例1 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.


在反比例函数 = (k 为常数,k≠0)中,只有一个待
定系数 k,因此只要给出一组 x,y 的对应值,就可以

(人教版)九年级数学下:26.1.1《反比例函数》ppt课件

(人教版)九年级数学下:26.1.1《反比例函数》ppt课件

课题
五、强化训练
4、矩形的面积为4,一条边的长为x ,另
一条边的长为y,则y与 x 的函数解析式
为 y4 ; x
5、已知y是x 的反比例函数,当x=2时, y 1 (1)求y与x的函数关系式;
(2)当 x 1 时,求y的值;
4
(3)当 y 1 时,求x的值. 2
新课引入 展示目标 研读课文 归纳小结
反比例函数的三种表达式:
①yk x
② y kx1 ③ xy k
新课引入 展示目标 研读课文 归纳小结 强化训练
三、研读课文
例1 已知y与x成反比例,并且当x=2时,
y=6.
(1)写出y和x之间的函数关式;

(2)求x=4时y的值.
识 点 一
解:(1)设y= k ,因为当x=2时y=6,
三、研读课文
认真阅读课本第39至40页的内容, 完成下面练习并体验知识点的形成过程.
新课引入 展示目标
课题
归变量间的对应关系可
用怎样的函数关系式表示?这些函数有什
知 么共同特点? 识
点 一
(1)京沪线铁路全程为1463km,某次列车平均 速度v(单位:km/h)随此次列车的全程运行时
代入 y 2
x
解得 x 4
新课引入 展示目标 研读课文 归纳小结
课题
Thank you!
课题
五、强化训练
5. 已知y是 x的反比例函数,当 x=2时,y 1
(1)求y与x 的函数关系式;
解:设 y k
x
因为 当 x 2 时 y 1
所以有 1 k
2
解得 k 2
所以
y与
x的函数关系式是

九年级数学下册 第26章 反比例函数 26.1 反比例函数 2

九年级数学下册 第26章 反比例函数 26.1 反比例函数 2

解得k 12. y 12 .
x
(2)解:当x=4时,y= 12 3 4
活动三:开放训练 体现应用
例2 已知一个函数y与自变量x满足下表:
x -5
-4
-3
-2
-1
1
2
3
y 1.8
2.25 3
4.5
9
-9
-4.5
-3
(1)判断这个函数是所学的哪种函数? (2)求函数的解析式.
解:(1)∵-5×1.8=-4×2.25=-3×3=-2×4.5=-1×9=1×(9)=2×(-4.5)=3×(-3)=-9, ∴这个函数是反比例函数.
复习回顾 1.我们以前学习过哪些函数?
学过的函数有一次函数、二次函数等
2.你能说出它们的一般形式吗?
(1)一次函数:y=kx+b(k≠0) (2)二次函数:y=ax2+bx+c(a≠0)
活动一:创设情境 导入新课
思考:下列问题中,变量间的对应关系
可用怎样的函数解析式来表示? (1)京沪线铁路全程为1463 km,某次列车 的平均速度v(单位:km/h)随此次列车的全程 运行时间t(单位:h)的变化而变化;
v 1463 t
活动一:创设情境 导入新课
思考:下列问题中,变量间的对应关系
可用怎样的函数解析式来表示? (2)某住宅小区要种植一个面积为1000m2的 矩形草坪,草坪的长y(单位:m)随宽x(单位: m)的变化而变化;
y 1000 x
活动一:创设情境 导入新课
思考:下列问题中,变量间的对应关系
x≠0且y≠0
2、反比例函数的解析式还可以有哪些形式?
三种形式:
活动三:开放训练 体现应用

26.1 第1课时 反比例函数的图象 课件(共21张PPT)数学人教版九年级下册

26.1  第1课时 反比例函数的图象 课件(共21张PPT)数学人教版九年级下册

(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
(2) 当 k < 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.
k 的正负决定反比例函 数图象的位置和增减性
当堂练习
1.已知反比例函数 y m 2 的图象在第一、三
y
4 x
的图象.
解析:通过刚刚的学习可知画图象的三个步骤为
列表
描点
连线
需要注意的是在反比例函数中自变量 x 不能为 0.
解:列表如下
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
…2 3
0.8 1
4 3
2
4 -4 -2 - 4 -1
3
-0.8 - 2 …
3
y
y=
4 x
6
5 4 3
为(-1,3),则它们的另一个交点坐标是
( C)
A. (1,3)
y
B. (3,1) C. (1,-3)
x O
D. (-1,3)
4.已知反比例函数y k 的图象经过点 A (2,3). x
(1) 求这个函数的表达式;
解:∵ 反比例函数 y k 的图象经过点 A(2,3), x
∴ 把点 A 的坐标代入表达式,得 3 k , 2
例3 已知反比例函数的图象经过点 A (2,6). (1) 这个函数的图象位于哪些象限?y 随 x 的增大如
何变化?
解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小.
(2) 点B(3,4),C( 2 1 , 4 4),D(2,5)是否在这个

人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

(((((((((((453534434254))))))))))))-yyxyyx3yyxxyyyxyyy121x+1x1212=2xx11x0x21xx
(5)
y
2

x
不具备 y k 的形式,所以y不是x的反
比例函数。 x
可以改写成
y

2 3x
,所以y是x的反
比例函数,比例系数k= 2




⑨ y 1
x2

⑩ y ( 2 3)x1 ⑾

1000 y 0 x

“聚焦”自变量
对于反比例函数 y 1000
x
①当x=50时,y=__2_0__ ②当x=-100时,y=__-_1_0_
③X的值能不能取0?为什么? 函数 y k(k≠0)中,自变量x的取值范围是不为0的一 切实数。x ④某住宅小区要种植一个面积为1000m2的矩形草坪,草 坪的长y(单位:m)随宽x(单位:m)的变化而变化。
4
变式2、已知函数 y = y1 + y2,y1与x 成正比例,y2与x成
反比例,且当x=1时,y=3;当x=2时,y=3。
解((12:))(1求 当)设yx与=y41x时的,k函1xy数,的关y值2 系。式kx2;方将求法两出:组函先值数分代的别入值设所。设y1,的y2函与数x的关关系系式式中,,
x
4.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
“极限”大挑战
5.(1)已知y与z成正比例,z与x成正比例。问y是x
的什么函数?
y与x成正比例

人教版初三数学9年级下册 第26章(反比例函数)26.1.1 反比例函数 课件(共17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1  反比例函数 课件(共17张ppt)
复习回顾
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均

26.1.1 反比例函数课件(共22张PPT)

26.1.1  反比例函数课件(共22张PPT)
x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x

x, y可以表示单独字母,

x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2

0
),

y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.

人教版数学九年级下册反比例函数教学精品课件PPT

人教版数学九年级下册反比例函数教学精品课件PPT


4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
人 教 版 数 学 九年级 下册-2 6.1.1反 比例函 数教学 课件
26.1.1 反比例函数
人 教 版 数 学 九年级 下册-2 6.1.1反 比例函 数教学 课件
人 教 版 数 学 九年级 下册-2 6.1.1反 比例函 数教学 课件
温故知新
1.正比例函数的一般形式是 y = kx ,( K ≠0 )

2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
20
50 100
人 教 版 数 学 九年级 下册-2 6.1.1反 比例函 数教学 课件
人 教 版 数 学 九年级 下册-2 6.1.1反 比例函 数教学 课件
课堂小结
1、形如 y =
k x
(k为常数,k≠0) 的函数,称
为反比例函数,其中x是自变量,y是函数。
2、反比例函数得三种表现形式:
① y=

人教版数学九年级下册《 反比例函数的图象和性质》PPT课件

人教版数学九年级下册《  反比例函数的图象和性质》PPT课件
x

则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x


y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y

y



的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课引入
展示目标
研读课文
归纳小结
课题
五、强化训练
3、下列函数关系中,是反比例函数的是:
A 、圆的面积s与半径r的函数关系 B、三角形的面积为固定值时(即为常数)
底边a与这边上的高h的函数关系
C、人的年龄与身高关系
D、小明从家到学校,剩下的路程s与速度v 的函数关系
新课引入
展示目标
研读课文
归纳小结
课题
1
新课引入
展示目标
研读课文
归纳小结
强化训练
三、研读课文
例1 已知y与x成反比例,并且当x=2时, y=6. (1)写出y和x之间的函数关式; (2)求x=4时y的值.
知 识 解:(1)设y= k ,因为当x=2时y=6, 点 x k 所以有 一 6
12 因此 y= x 12 (2)把x= 4 代入y= 得 x 12 y= 4 = 3 .
“引导学生读懂数学书”课题 研究成果配套课件
新课引入
展示目标
研读课文
归纳小结
强化训练
第二十六章
反比例函数
第一课时
26.1.1
反比例函数
课件制作: 怀集县梁村中学
新课引入
李玉坚
强化训练
展示目标
研读课文
归纳小结
一、新课引入
1、什么是函数? 答:在某变化过程中有两个变量x 、y ,按照 某个 对应法则 ,对于给定的 x ,有唯一确定 的y与之对应,那么y就叫做 x的函数。 其中 x 叫自变量 ,y叫 因变量 。 2、正比例函数一般形式是y= kx ( k ≠0) , 它的图象是一条过原点的直线 ; 3 . 、一次函数一般形式是y= kx b ( k ≠0) , 它的图象是一条 直线 。
y 5. 已知y是 x 的反比例函数,当 x =2时,
(2)当
1 x 4
1
时,求y的值;
2 1 解: 把 x 代入 y x 4
2 得 y 1 8 4
新课引入 展示目标 研读课文
归纳小结
课题
五、强化训练 y 1 5. 已知y是 x 的反比例函数,当 x =2时,
1 (3)当 y 时,求 x的值. 2
研读课文
归纳小结
强化训练
三、研读课文
(2)某住宅小区要种植一个面积为1000m2 的矩形草坪,草坪的长为y(单位:m)随 宽x(单位:m)的变化而变化:y 1000 x
知 识 点 (3)已知北京市的总面积为1.68×104平方 一 千米,人均占有的土地面积S(平方千米/人)
4
随全市总人口数n(单位:人)的变化而变 化: 1.68 10 s n
新课引入 展示目标 研读课文 归纳小结
2 解得:k= 12
强化训练
三、研读课文
1、指出下列函数关系式中,哪一个成反比 例函数关系,并指出k的值. 1 x y ( 4) y ( 1) 2 1 3 3 xy 2 ( 2) y ( 5) 4x y 1 1 ( 3) y ( 6 ) 2x x
(C) xy 5
2 (D)y x
2
新课引入
展示目标
研读课文
归纳小结
强化训练
k y x 1、反比例函数的定义:形如
变量 x的取值范围是 x 0 .
四、归纳小结
( k为
常数,k≠0)的函数称为反比例函数,自 2、反比例函数有时也写成 y kx 或 xy k
1
(k为常数,k≠0)的形式.
3、学习反思:
你有什么要 对同伴们说的?
课题 强化训练
新课引入
展示目标
研读课文
五、强化训练
1、下列哪个等式中的y是x的反比例函数? y (B) 3 (A) y 4 x
(C) y 6 x 1
x (D) xy 123
6 反比例函数关系式为 y x
2、反比例函数经过点(2,-3),则这个
课题 展示目标 研读课文 归纳小结 强化训练
二、学习目标
1
理解并掌握反比例函数的概念;
2
能判断一个给定的函数是否 为反比例函数,并会用待定系数 法求函数解析式。
新课引入
课题
研读课文
归纳小结
强化训练
三、研读课文
认真阅读课本第39至40页的内容, 完成下面练习并体验知识点的形成过程.
新课引入
展示目标
五、强化训练
y 5. 已知y是 x 的反比例函数,当 x =2时,
(1)求y与 x 的函数关系式;
k 解:设 y x
1
因为 当 x 2 时 y 1
k 所以有 1 2 解得 k 2 2 所以 y与 x的函数关系式是 y x
新课引入 展示目标 研读课文 归纳小结 课题
ቤተ መጻሕፍቲ ባይዱ
五、强化训练
课题
归纳小结
强化训练
三、研读课文
问题:下列问题中,变量间的对应关系可 用怎样的函数关系式表示?这些函数有什 么共同特点?
知 识 点 (1)京沪线铁路全程为1463km,某次列车平均 一 速度v(单位:km/h)随此次列车的全程运行时
间t(单位:h)的变化而变化:v 1463 t
新课引入
展示目标
1 解: 把 y 2
2 代入 y x
1 2 得 2 x
解得 x 4
新课引入
展示目标
研读课文
归纳小结
课题
Thank you!
五、强化训练
4、矩形的面积为4,一条边的长为x ,另 一条边的长为y,则y与 x 的函数解析式 为 y4 ;
x
y 1 (1)求y与 x 的函数关系式;
1
5、已知y是 x 的反比例函数,当 x =2时, (2)当 x 时,求y的值; 4
1 (3)当 y 时,求 x的值. 2
新课引入 展示目标 研读课文 归纳小结 课题
新课引入 展示目标 研读课文 归纳小结 强化训练
三、研读课文
上面的函数关系式,都具有 分式 的 形式,其中 分子 是常数.
知 识 点 一
如果两个变量 x, y之间的关系可以表示 k 成 y 的形式,那么 y是 x 的反比例函数, x 反比例函数的自变量 x 不 为零.
反比例函数的三种表达式: k ①y ② y kx ③ xy k x
2
答:成反比例函数关系的式子有: (1)、(2)、(5)
1 3 、 2、 它们的K值分别是: 3 4
新课引入 展示目标 研读课文 归纳小结 强化训练
三、研读课文
则 m= 2 . 2、若函数 y x 是反比例函数,
m 3
3、在下列函数中,y是x的反比例函数 的是( C )
8 ( A) y x5 1 7 ( B) y 3x
相关文档
最新文档