换热器的计算举例
板式换热器换热量的计算
板式换热器例题1、换热器换热量的计算w t Gc Q 1046750)2065(4187360020000=-⨯⨯=∆= 2、外网进入热水供应用户的水流量s kg t c Q G /10)7095(418710467500=-=∆= 3、加热水的流通断面积换热器内水的流速取0.1~0.5m/s 。
加热水的平均温度为(95+70)/2=82.5℃,该温度下水的密度为970.2kg/m 3。
200206.02.9705.010m w G f r r r =⨯==ρ 4、被加热水的流通断面积换热器内水的流速取0.1~0.5m/s 。
被加热水的平均温度为(65+20)/2=42.5℃,该温度下水的密度为991.2kg/m 3。
201868.02.9913.0360020000m w G f l l l =⨯⨯==ρ 5、选型初选BR12型板式换热器,单片换热面积为0.12m 2/片,单通道流通断面积为0.72×10-3。
6、实际流速加热水流道数为281072.00206.03=⨯==-d r r f f n 被加热水流道数为261072.001868.03=⨯==-d l l f f n 取流道数为28。
加热水实际流速s m f n G w r d r r /5.02.9701072.0281030=⨯⨯⨯==-ρ 被加热水实际流速s m f n Gw l d l l /28.02.9911072.02856.53=⨯⨯⨯==-ρ 7、传热系数查图知传热系数为3600w/m 2.K 。
8、传热温差()()()()℃396595207065952070)()()()(11221122=-----=-----=∆In t t In t t t p ττττ 9、传热面积246.73936001046750m t K Q F p =⨯=∆= 10、需要的片数6212.046.7===d F F N 11、实际片数考虑一个富裕量。
有相变的换热器计算实例
有相变的换热器计算实例
以一个复合相变换热器为例,其由蒸发段和冷凝段组成。
蒸发段中,烟道内的热工质吸收烟气热量,使其处于相变状态。
这种换热器能大幅降低排烟温度,提高锅炉热效率,并广泛应用于各种行业的空气预热器、煤气预热器、余热锅炉、热风炉、工业窑炉等设备中。
此外,它还可以根据不同的使用要求,借助于设置冷热流体的不同分流和不同配比,实现现代高效换热器不同结构形式的优化组合,并构造成不同具体形式的复合相变换热器。
与一般换热器相比,它能在较大幅度降低废气排放温度的同时将整个低温段受热面壁温维持在较高的温度水平,既最大可能地提高了用热设备的热效率,又避免了因结露引起低温腐蚀和灰堵现象。
如需更多相变换热器的计算实例,建议咨询相关行业的专家或查阅行业内的技术手册。
换热器热量及面积计算公式
换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。
3、有相变化a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1)式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h1 kcal = 4.18 kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。
( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。
) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值。
换热器的计算举例
换热器的计算举例换热器的计算举例条件:1.空气量4100m3/h2.空气预热温度t空=300 0C (冷空气为20 0C)3.烟气量V''烟=6500m3/h (烟气温度为7000C)4.烟气成分(体积%)CO2 H2o O2N219.4 7.5 2.1 71.05.换热器的型式及材质型式:直管形平滑钢管换热器材质:换热管采用Ф 60*3.5毫米无缝钢管材质16Mn钢最高使用温度小于4500C计算举例:一. 主要热之参数的确定1.入换热器空气的温度t'空=200C出换热器空气的温度t''空=3000C2.入换热器空气量取换热器本身的漏损及管道漏损 3%则V真实=1.03 V'空=1.03×4100=4223m/h或 V空=1.03V'空/3600=4223/3600=1.17m/s3.入换热器烟气的温度考虑16Mn铜的最高温度不大于450℃。
初步确定入换热器的烟气温度t′烟=550℃,稀释导数确定如下:烟气700℃的比热为:C烟(700)=0.01(0.501×19.4+0.392×7.5+0.342×2.1+0.325×71)=0.365KJ/m3℃烟气在550℃的比热为:C烟(500)=0.01(0.484×19.4+0.383×7.5+0.337×2.1+0.321×71)=0.358 KJ/m3℃20℃空气的比热为0.311 KJ/m3℃则φ=(i1-i2)/(i2-i0)=(0.365×700-0.385×550)/(0.358×550-0.311×20)=0.3094.入换热器的烟气量V烟=(1+φ)V′烟=(1+0.309)×6500=8508.5m3/h或V烟=8508.5/3600=2.36m3/s5.烟气成分(%)V CO2= V′CO2(V′烟/V烟)=19.4×6500/8508.5=14.82 V H20=V′H2O(V′烟/V烟)=7.5×6500/8508.5=5.73V O2=(V′O2+21φ)V′烟/V烟=(2.1+21×0.309)×6500/8508.5=6.56V N2=(V′N2+79φ)V′烟/V烟=(71+79×0.309)×6500/8508.5=72.89Σ=1006.计算换热气的烟气温度取换热气绝热效率η换=0.90.先假定烟气出口温度为400℃。
换热器、热网加热器计算示例
管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。
换热器的计算举例
换热器的计算举例换热器是一种常见的热交换设备,用于在流体之间传递热量。
它在许多工业过程中发挥着重要的作用,例如化工、石油、食品加工、制药等。
以下是一个计算换热器的例子,以说明如何确定换热器的工作参数和尺寸。
假设我们需要设计一个换热器来将热水从80°C降低到60°C,并且需要将冷水从20°C加热到40°C。
我们已经知道热水的流量为1,000升/小时,冷水流量为800升/小时。
步骤1:确定热水和冷水的进出口温度差首先,我们需要确定热水和冷水的温度差。
在本例中,热水的进口温度为80°C,出口温度为60°C,所以温度差为20°C。
同样,冷水的温度差为20°C。
步骤2:计算热水和冷水的热量热水的热量可以通过以下公式计算:Q=m×c×ΔT其中,Q代表热量,m代表质量,c代表比热容,ΔT代表温度差。
在本例中,热水的质量可以通过以下公式计算:m=流量×密度已知热水的流量为1,000升/小时,那么质量可以通过将流量转换为千克/小时来计算:m=1,000千克/立方米×1立方米/1,000升×1,000升/小时=1千克/小时热水的密度可以通过查找热水的性质表来获取,假设为1千克/立方米。
热水的比热容可以通过查找热水的性质表或使用常见物质的比热容来估计,假设为4.18千焦尔/千克•摄氏度。
因此,热水的热量可以计算为:Q热水=1千克/小时×4.18千焦尔/千克•摄氏度×20°C=83.6千焦尔/小时同样地,可以使用相同的方法计算冷水的热量。
冷水的流量为800升/小时,质量为0.8千克/小时(假设冷水的密度为1千克/立方米),比热容为4.18千焦尔/千克•摄氏度。
因此,冷水的热量为:Q冷水=0.8千克/小时×4.18千焦尔/千克•摄氏度×20°C=66.88千焦尔/小时步骤3:计算换热器的传热面积传热面积是换热器设计中的关键参数,它决定了换热器的尺寸。
列管式换热器(设计举例)
三、平均传热温差
平均传热温差是换热器的传热推动力。其值不但和流体的进出口温度有关,而且还与换 热器内两种流体的流型有关。对于列管式换热器,常见的流型有三种:并流,逆流,和折流
对于并流和逆流,平均传热温差均可用换热器两端流体温度的对数平均温差表示, 即:
《列管式换热器》
t m t1 t 2 t ln 1 t 2
R
热流体的温降 T1 T2 冷流体的温升 t 2 t1 t t 冷流体的温升 1 2 两流体最初温差 T1 T2
(1—13 a )
P
式中
(1—13 b )
T1、T2 — 热流体进、出口温度, ℃; t1、t 2 — 冷流体进、出口温度, ℃.
《列管式换热器》
第- 称为管心距。管心距的大小主要与传热管和管板的连接方式有 关,此外还要考虑到管板强度和清洗管外表面时所需的空间。 传热管和管板的连接方法有胀接和焊接两种,当采用胀接法时,采用过小的管心距,常 会造成管板变形,而采用焊接法时,管心距过小,也很难保证焊接质量,因此管心距应有一 定的数值范围。一般情况下,胀接时,取管心距 t 1.3~1.5d 0 ;焊接时,取 t 1.25d 0 ( d 0
共 37页
一般要求 t 的值不得低于 0.8,若低于此值,当换热器的操作条件略有变化时, t 的 变化较大,使得操作极不稳定。 t 小于 0.8 的原因在于多管程换热器内出现温度交差或温 度逼近。在这种情况下,应考虑采用多壳程结构的换热器或多台换热器串联来解决。所需的 壳程数或串联的换热器的台数可按下述方法确定: 首先,在坐标纸上作 Q ~ T 和 Q ~ t 线,由热衡算方程知,若两流体的热容量流率不变则
《列管式换热器》
第- 1 -页
换热器设计型计算
换热器的设计型计算Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)Q=KA ∆t m 2211221A A A 1αλδα++=m A K(无相变传热过程,Re>104,Pr>0.7, bd PrRe .,.80210230λαα=()()12211221t T t T t T tT t m -----=∆ln 1、 设计型计算的命题给定生产任务:q m1,T 1→T 2(or q m2,t 1→t 2)选择工艺条件:t 1,t 2计算目的:换热器传热面积A 及其它有关尺寸(管子规格,根数);qm2特点:结果的非唯一性。
2、 计算公式: 质量衡算:p V N nu d q ⋅⋅=24π热量衡算:Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)传热速率式:Q=KA ∆t m3、 计算方法:1)计算换热器的热流量)(2111T T Cp q Q m -=2)作出适当的选择并计算平均推动力m t ∆),,,,(2121流向t t T T f t m =∆∴必须选择A 、流向(逆流.并流.复杂流动方式)B 、选择冷却介质出口温度3)计算冷热流体与管壁的对流体给热系数和总传热系数必须选择:A 、冷,热流体各走管内还是管外B 、选择适当的流速C 、选择适当的污垢热阻4)由传热基本方程m t KA Q ∆=计算传热面积关键是:条件参数的选择!4、 条件参数的选择选择的原则:技术可行,经济合理1) t 1:决定于工艺需要,现实条件,经济性。
温度要求不很低,以水为冷却剂时,应以夏季水温为设计温度更安全。
2)t 2:技术:理论上t2可选范围经济性:q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)t 2越大,q m2消耗越少,↓1122p m p m C q C q⇒经常性操作费用少但∆t m ↓,同时q m2↓可能导致K ↓则mt K Q A ∆⋅=↑⇒设备投资费用大 ∴有经济优化问题。
换热面积表
太阳能热水系统换热器面积计算一、换热器换热面积F 的计算:jr t Δε×××=K Q C F Z式中:F ——换热面积(㎡);Z Q ——集热系统换热量(W ); K ——传热系数,根据换热器厂家技术参数确定 ε——结垢影响系数,0.6~0.8,r C ——集热系统热损失系数,1.1~1.2,j t ∆——计算温度差,宜取5~10℃,集热性能好,温差取高值,否则取低值。
假设,集热系统换热量为50757.14 W ,传热系数为5000,结垢影响系数取0.7,集热系统热损失系数取 1.2,计算温度差取8℃,经计算换热面积 2.175㎡。
集热系统换热量Z Q 的计算YL Z S C Q ⨯⨯⨯⨯⨯⨯⨯=36001000t -t ρq f k e r rd t )(式中:Z Q ——集热系统换热量(W );t k ——太阳辐照度时变系数,一般取1.5~1.8,取高限对太阳能利用率有利;f ——太阳能保证率,按照太阳能实际保证率计算; rd q ——日均用水量,kg ;C ——工质的定压比热容,4.18KJ/(㎏·℃); r ρ——工质密度1(kg/L ); e t ——贮水箱内水的设计温度,℃;L t —— 水的初始温度,℃;Y S ——年平均日日照小时数,h 。
假设,太阳辐照度时变系数取 1.7,太阳能保证率取60%,日均用水量为10吨,工质的定压比热容为4.18KJ/(㎏·℃),工质(水)密度为1(kg/L ),贮水箱内水的设计温度为45℃,水的初始温度为15℃,年平均日日照小时数为7h/d 的条件下,经计算集热系统换热量Z Q =50757.14 W 。
换热器计算实例范文
换热器计算实例范文换热器是一种用于将热量从一个物体传递到另一个物体的设备。
它在许多工业和日常应用中广泛使用,如锅炉系统、空调系统、汽车发动机等。
本文将通过一个实际的案例来说明如何计算换热器的设计参数。
假设我们需要设计一个用于汽车发动机冷却的换热器。
汽车发动机在运行过程中会产生大量的热量,如果不及时散热,将会导致发动机过热,甚至损坏。
因此,冷却系统是汽车发动机非常重要的一部分。
第一步是确定设计参数。
我们需要知道发动机的最大功率和最大工作温度,以及冷却系统的工作条件,如冷却液的进口温度和出口温度。
假设发动机最大功率为100kW,最大工作温度为100°C。
冷却液的进口温度为80°C,出口温度为90°C。
根据这些参数,我们可以计算出需从发动机散热的热量。
热量的传递可以通过换热器的有效面积来实现。
根据热传递定律,热量传递速率与温度差和有效传热面积成正比。
我们可以使用以下公式计算热量传递速率:Q=U×A×ΔT其中,Q为热量传递速率,U为换热系数,A为有效传热面积,ΔT为温度差。
第二步是选择适当的换热器类型。
根据具体的应用要求和可用条件,可以选择不同类型的换热器,如壳管式换热器、板式换热器等。
在汽车发动机冷却系统中,常用的是壳管式换热器,因为它具有良好的热传导性能和可靠性。
第三步是计算换热系数。
换热系数是一个重要的设计参数,它反映了热量传递的效率。
换热系数取决于换热器的结构和材料,以及流体的性质和流动速度。
根据经验公式,壳管式换热器的换热系数可估算为:U=k×ΔTm其中,k为换热系数的经验常数,ΔTm为平均温差。
第四步是计算有效传热面积。
根据前面的公式,我们可以把热量传递速率和换热系数代入,得到:A=Q/(U×ΔT)最后一步是进行换热器的选型和设计。
根据上述计算结果,我们可以选择适当的壳管式换热器,并确定其设计参数,如管道的数量和长度,管径等。
换热器设计计算范例
换热器设计计算范例(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--列管式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
◎初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数大于,否则应改变流动方式,重新计算。
◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A估。
◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
◎计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P 和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
◎核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
◎计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18设计条件数据物料流量kg/h组成(含乙醇量)mol%温度℃操作压力MPa进口出口釜液109779145原料液102680795 128试设计选择适宜的列管换热器。
换热器计算实例
水 t1=20℃ 2=3.5kW/m2K cp=4.187 kJ/kgK LMTD 法 216kg/h 油 216kg/h T1=150℃ cp=2.0 kJ/kgK, t2 2 1=1.5 kW/m K
T2=80℃
K 0.894kW m 2 K (以外表面为基准)
t m,逆 t 2 t 1 T1 t 2 T2 t 1 76.9C t 2 T1 t 2 ln ln t 1 T2 t 1
t 2 53.4C
Q Kd 外 L逆 t m 逆
L逆 1.56m
4
解一: 并流时: Q、t2、K与逆流时相同 Q 8.4 kJ s
( 2)
代入式2得:
KA NTU h 1.07 qm h c ph
1.07 216 2.0 L并 1.83m Kd 外 3600
9
习题课 ------操作型问题举例
【例 2】有一台现成的卧式列管冷却器,想把它改作氨冷凝 器,让氨蒸汽走管间 ,其质量流量 950kg/h ,冷凝温度为 40℃,冷凝传热系数 1=7000KW/m2K。冷却水走管内,其进 、出口温度分别为32℃和36℃,污垢及管壁热阻取为0.0009 m2K/W(以外表面计)。假设管内外流动可近似视为逆流。试 校核该换热器传热面积是否够用。 列管式换热器基本尺寸如下: 换热管规格 252.5mm 管长 l=4m 管程数 m=4 总管数 N=272根 外壳直径 D=700mm 附:氨冷凝潜热 r=1099kJ/kg 34℃下水的物性: 2 0.6236W m K 2 74.2 105 Pa s 2 994 kg m 3
Q qm1r qm 2c p2 t2 t1
板式换热器换热量的计算
板式换热器例题1、换热器换热量的计算w t Gc Q 1046750)2065(4187360020000=-⨯⨯=∆= 2、外网进入热水供应用户的水流量s kg t c Q G /10)7095(418710467500=-=∆= 3、加热水的流通断面积换热器内水的流速取0.1~0.5m/s 。
加热水的平均温度为(95+70)/2=82.5℃,该温度下水的密度为970.2kg/m 3。
2003436.02.9703.010m w G f r r r =⨯==ρ 4、被加热水的流通断面积换热器内水的流速取0.1~0.5m/s 。
被加热水的平均温度为(65+20)/2=42.5℃,该温度下水的密度为991.2kg/m 3。
201868.02.9913.0360020000m w G f l l l =⨯⨯==ρ 5、选型初选BR12型板式换热器,单片换热面积为0.12m 2/片,单通道流通断面积为0.72×10-3。
6、实际流速加热水流道数为481072.003436.03=⨯==-d r r f f n 被加热水流道数为261072.001868.03=⨯==-d l l f f n 加热水实际流速s m f n G w r d r r /298.02.9701072.0481030=⨯⨯⨯==-ρ 被加热水实际流速s m f n Gw l d l l /3.02.9911072.02656.53=⨯⨯⨯==-ρ 7、传热系数查图知当流速为0.3m/s 时传热系数为3100w/m 2.K 。
8、传热温差()()()()℃396595207065952070)()()()(11221122=-----=-----=∆In t t In t t t p ττττ 9、传热面积266.83931001046750m t K Q F p =⨯=∆= 10、需要的片数7212.066.8===d F F N 11、实际片数考虑一个富裕量。
太阳能热水系统换热器面积计算
太阳能热水系统换热器面积计算一、换热器换热面积F 的计算:jr t Δε×××=K Q C F Z式中:F ——换热面积(㎡);Z Q --集热系统换热量(W );K -—传热系数,根据换热器厂家技术参数确定ε-—结垢影响系数,0.6~0.8,r C --集热系统热损失系数,1。
1~1.2,j t ∆——计算温度差,宜取5~10℃,集热性能好,温差取高值,否则取低值。
假设,集热系统换热量为50757。
14 W ,传热系数为5000,结垢影响系数取0.7,集热系统热损失系数取1.2,计算温度差取8℃,经计算换热面积2.175㎡。
二、推荐换热器换热面积集热系统换热量Z Q 的计算YL Z S C Q ⨯⨯⨯⨯⨯⨯⨯=36001000t -t ρq f k e r rd t )(式中:Z Q ——集热系统换热量(W);t k -—太阳辐照度时变系数,一般取1.5~1。
8,取高限对太阳能利用率有利;f -—太阳能保证率,按照太阳能实际保证率计算;rd q ——日均用水量,kg ;C ——工质的定压比热容,4.18KJ/(㎏·℃);r ρ——工质密度1(kg/L ); e t ——贮水箱内水的设计温度,℃;L t -— 水的初始温度,℃;Y S ——年平均日日照小时数,h.假设,太阳辐照度时变系数取1.7,太阳能保证率取60%,日均用水量为10吨,工质的定压比热容为4.18KJ/(㎏·℃),工质(水)密度为1(kg/L ),贮水箱内水的设计温度为45℃,水的初始温度为15℃,年平均日日照小时数为7h/d 的条件下,经计算集热系统换热量Z Q =50757。
14 W 。
不同面积的参数取值及换热量:。
换热器的换热面积计算
换热器热量及面积计算
一、热量计算 1、
一般式
Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj 2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算
S=Q/(K. △tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算。
热风换热器计算
热风换热器计算
热风换热器的计算涉及到多个参数,如热风流量、温度、换热效率等。
以下是一个简单的计算示例:
假设我们需要一个热风换热器,其任务是将入口的热风从80℃降低到50℃,同时保持流量为1000m³/h。
1. 首先,我们需要计算所需的换热量。
这可以通过以下公式得出:
Q = m ×c ×Δt
其中,Q是换热量(kJ/h),m是流量(kg/h),c是比热容(kJ/kg·℃),Δt是温度差(℃)。
在本例中,c取为1.0 kJ/kg·℃,Δt为30℃(80℃-50℃)。
将这些值代入公式,得到:Q = 1000 ×1.0 ×30 = 30000 kJ/h
2. 接下来,我们需要选择一个合适的换热器。
这需要考虑多个因素,如传热效率、材料、成本等。
假设我们选择了一种传热效率为95%的换热器,那么实际的换热量为:
Q_actual = Q / 0.95
3. 最后,我们还需要考虑换热器的设计参数,如翅片间距、翅片高度等。
这些参数会影响换热器的性能和成本。
根据实际需要和设计经验,我们可以选择合适的参数。
需要注意的是,以上计算仅为示例,实际应用中还需要考虑更多的因素和细节。
具体的计算过程和参数选择需要根据实际情况进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热器的计算举例条件:1.空气量4100m3/h2.空气预热温度t空=300 0C (冷空气为20 0C)3.烟气量V''烟=6500m3/h (烟气温度为7000C)4.烟气成分(体积%)CO2 H2o O2N219.4 7.5 2.1 71.05.换热器的型式及材质型式:直管形平滑钢管换热器材质:换热管采用Ф 60*3.5毫米无缝钢管材质16Mn钢最高使用温度小于4500C计算举例:一. 主要热之参数的确定1.入换热器空气的温度t'空=200C出换热器空气的温度t''空=3000C2.入换热器空气量取换热器本身的漏损及管道漏损 3%则V真实=1.03 V'空=1.03×4100=4223m/h或 V空=1.03V'空/3600=4223/3600=1.17m/s3.入换热器烟气的温度考虑16Mn铜的最高温度不大于450℃。
初步确定入换热器的烟气温度t′烟=550℃,稀释导数确定如下:烟气700℃的比热为:C烟(700)=0.01(0.501×19.4+0.392×7.5+0.342×2.1+0.325×71)=0.365KJ/m3℃烟气在550℃的比热为:C烟(500)=0.01(0.484×19.4+0.383×7.5+0.337×2.1+0.321×71)=0.358 KJ/m3℃20℃空气的比热为0.311 KJ/m3℃则φ=(i1-i2)/(i2-i0)=(0.365×700-0.385×550)/(0.358×550-0.311×20)=0.3094.入换热器的烟气量V烟=(1+φ)V′烟=(1+0.309)×6500=8508.5m3/h或V烟=8508.5/3600=2.36m3/s5.烟气成分(%)V CO2= V′CO2(V′烟/V烟)=19.4×6500/8508.5=14.82V H20=V′H2O(V′烟/V烟)=7.5×6500/8508.5=5.73V O2=(V′O2+21φ)V′烟/V烟=(2.1+21×0.309)×6500/8508.5=6.56V N2=(V′N2+79φ)V′烟/V烟=(71+79×0.309)×6500/8508.5=72.89Σ=1006.计算换热气的烟气温度取换热气绝热效率η换=0.90.先假定烟气出口温度为400℃。
烟气入口温度为550℃时的比热C′烟(550)=0.01(0.484×14.82+0.383×5.73+0.337×6.56+0.321×72.89)=0.350 kJ/m2 •℃烟气为4000C时的比热C烟=0.01(0.463×14.82+0.374×5.73+0.330×6.56+0.316×72.89) =0.342kj/m3 0C稀释用空气量:V空=φ V′烟=0.309×6500=2008.5m3/ht〞烟=η换V烟C′烟t′烟-V空(C〞空t〞空-C′空t′空)/η换V'烟Cˊ烟=0.90×8508.5×0.350×550-4223(0.315×300-0.311×20)/0.90×0.342×8508.5=400.450C与假设的4000C相接近,故确定烟气出口温度t〝〞烟=4000C二.有效换热量Q效=V空(C〞空t〞空-C'空t'空)=4223×(0.315×300-0.311×20)=372806.4kj/h三.烟气和空气平均温度差烟气和空气在换热器内为正交逆流因此:△t始=t′烟-t〞空=550-300=250℃t终= t〞烟- t′空=400-20=380℃空气具有的实际流通面积f空=N f0=80×0.0022=0.176m2空气的实际流速W空= V空/f空=1.17/0.176=6.648m/s烟气在管外流动,换热器成交错式排列,并取管中心距S1=S2=S=2d=2×0.06=0.12m。
在垂直烟气流动的断面上m=10列管,则沿气流方向上排列:n=N/m=70/10=7列管群排列方式如下图上图见课程设计资料(要可到学习委员处借阅也可拿去复印)第六页△t终/△t始=380/250=1.52<2故可取算术平均值△t均=1/2(△t始+△t终)=1/2(250+380)=315℃正交逆流,乘以修正系数£△t=0.98则△tm=ε△t△t均=0.98×315=309℃四.换热器内换热管的排列Φ60×3.5mm无缝钢管的流通截面积f0=0.0022m2取空气在馆内流动的流速W′空=10m/s(适宜经验取值为5-10m/s)则一个行程内空气应具有的流通面积:f′空=V空/W空=1.17/6.7=0.175 m2一个行程内换热器的根数为N= f′空/ f0=0.175/0.0022=79.5≈80根取烟气在管群最窄截面处的流速W烟=2.7m/s(经验取值:2-4m/s)则烟气具有的流通截面:f′烟= V烟/W′烟=2.36/2.7=0.84m管群最窄截面的管间宽度a=s1-d=0.12-0.06=0.06m则烟气通道具有的高度:b= f′烟/ma=0.87/(10×0.06)=1.45m取换热管长度l=1.6m则实际烟气的流通截面为:f烟=mal=10×0.06×1.6=0.96m2实际烟气流速:W烟= V烟/ f烟=2.36/0.96=2.46m/s五.空气给热系数空气平均温度t空=1/2(t〞空+ t′空)=1/(300+200)=160℃因W空=9.94n=m/s管内直径D=0.053m查图3-2得:Re=18000(紊流)查图3-6得:空气对流给热系数a0=28KJ/m2h℃因空气层加热,需乘修正系数k′t为此设壁温t壁=250℃则T空/ T壁=(160+273)/(250+273)=0.828查图3-5得k′t=0.91取管道长度的补正系数k t=1.05则空气给热系数:a空=a0k t k′t=28×1.05×0.91=26.75 KJ/m2h℃六.烟气给热系数1.对流给热系数烟气平均温度T烟=1/2(t〞烟+ t′烟)=1/2(550+400)=475℃475℃时烟气各组成的运动粘度系数查得:V co2=43.2×10-6v H2O=87.9×10-6v O2=71.1×10-6v N2=70.9×10-6m2/s烟气近似运动粘度V烟=1/( Vco2/ vco2+V H2O/ v H2o+V O2/ v O2+V N2/ v N2)=1×10-6/(0.1482/43.2+0.0573/87.9+0.0656/71.1+0.728/70.9) =65.47×10-6m2/s烟气雷诺系数:Re=wd/v=[2.46×(1+475/273)×0.06]/65.47×10-6=6177 查图3-12 a0=34 KJ/m2h℃取修正系数 k=0.96则a烟对=34×0.96=32.64 KJ/m2h℃2.辐射给热系数烟气有效射线长度l=2.8x=2.8(0.12-0.06)=0.168mPco2l= Vco2l=0.1482×0.168=0.0249m.atmP H2O= V H2O l=0.0573×0.168=0.00963m.atm查图3-16,3-17,3-18t烟=475℃εco2=0.07 ε'H2O=0.037 β=1.02ε烟=εco2+βε'H2O=0.07+1.02×0.037=0.108当t烟= t壁=250℃时εco2=0.062 ε'H2O=0.048 β=1.02ε'烟=0.062+1.02×0.048=0.111取管壁黑度ξ壁=0.8C导=4.88/(1/ε'烟+1/ε壁-1)=4.88/(1/0.111+1/0.8-1)=0.528 KJ/m2h℃a辐烟= C导【ε烟/ε'烟(T烟/100)4-( T壁/100)】/(t烟-t壁)=11.6 KJ/m2h℃则a烟= a辐烟+a烟对=32.64+11.6=44.24KJ/m2h℃七.传热系数不考虑管壁及污垢热阻1/K=1/a空+1/a烟K= a空a烟/( a烟+ a空)=(44.24×26.75)/(26.75+44.24)=16.67 KJ/m2h℃八.有效换热面积A=Q/k△tm=372806.4/(16.67×309)=72.38m2考虑烟尘沾污换热管使传热降底,故增加10%的换热面A=1.1×72.38=79.62 m2九.换热器的引程a辐烟= C导【ε烟/ε'烟(T烟/100)4-( T壁/100)】/(t烟-t壁)=11.6 KJ/m2h℃则a烟= a辐烟+a烟对=32.64+11.6=44.24KJ/m2h℃七.传热系数不考虑管壁及污垢热阻1/K=1/a空+1/a烟K= a空a烟/( a烟+ a空)=(44.24×26.75)/(26.75+44.24)=16.67 KJ/m2h℃八.有效换热面积A=Q/k△tm=372806.4/(16.67×309)=72.38m2考虑烟尘沾污换热管使传热降底,故增加10%的换热面A=1.1×72.38=79.62 m2九.换热器的引程a辐烟= C导【ε烟/ε'烟(T烟/100)4-( T壁/100)】/(t烟-t壁)=11.6 KJ/m2h℃则a烟= a辐烟+a烟对=32.64+11.6=44.24KJ/m2h℃七.传热系数不考虑管壁及污垢热阻1/K=1/a空+1/a烟K= a空a烟/( a烟+ a空)=(44.24×26.75)/(26.75+44.24)=16.67 KJ/m2h℃八.有效换热面积A=Q/k△tm=372806.4/(16.67×309)=72.38m2考虑烟尘沾污换热管使传热降底,故增加10%的换热面A=1.1×72.38=79.62 m2九.换热器的引程Φ60×3.5mm无缝钢管每米长的加热面f=0.178m2则一个引程的加热面:A'=Nfl=80×0.178×1.6=22.784 m2换热器的引程:M=A/ A'=79.62/22.784=3.49≈4引程换热器的总加热面:4×22.784=91.14 m2十.换热器的实际传热系数(设计值)K=372806.4/(91.14×309)=13.24 KJ/m2h℃十一.壁温(平均)T壁= (a烟t烟+ a空t 空)/( a烟+ a空)=(44.24×475+26.75×160)/(44.24+26.75) =356.3℃换热器的技术性能:加热面79.5m2换热方式4行程正交逆流空气出口温度300℃空气入口温度 20℃空气量 5500m3/h烟气入口温度 550℃烟气出口温度 400℃入换热器烟气量 9170 m3/h空气流速 9.94 m/s烟气流速 2.65 m/s传热系数 22.3KJ/m2h℃管壁温度230℃换热管尺寸Φ60×3.5mm换热管根数 280根换热管长度 l=1600mm 换热管材质 16Mn。