均值不等式求最值的方法

合集下载

利用均值不等式求最值的方法

利用均值不等式求最值的方法

利用均值不等式求最值的方法
均值不等式,又称数学期望不等式,它的应用非常的广泛,可以帮助人们处理各种计算问题。

当我们对一组数据或一组变量进行统计分析时,常常要求知道它们出现的最小值及最大值。

而利用均值不等式求最值的方法,可以满足这一要求。

均值不等式是数学期望不等式的一种,它表达的是某一随机变量的数学期望,英文名叫Markov inequality,它的概念很简单。

均值不等式可以描述为:若X是随机变量,E(X)是其期望,那么X≥E (X)/a,a为任意正数。

均值不等式求最值的方法可以0简单分为三个步骤:
(1)首先确定X是一个随机变量,并计算出它的期望值E(X)。

如果X是一组数据,那么E(X)可以使用求平均值的方法计算出来;
(2)在均值不等式中,把任意正数a定为2;
(3)用E(X)/a的结果做X的上界,那么小于等于这一上界的X的最大值就可以确定有效而且较为优良的最大值了。

因此,利用均值不等式求最值的方法,可以有效地快速得到一组数据或变量的最值。

它的使用可以节省人们的精力,提高效率。

当然,均值不等式求最值的方法也存在着局限性。

它仅适用于求数学期望,对于其他类型的变量,则无法使用。

此外,均值不等式求最值的方法只能提供一个估计值,并不能保证得到的结果恰好是最值。

以上就是均值不等式求最值的方法的相关介绍,它是一种简单又实用的方法,可以有效地求出一组数据或变量的最值,在许多计算问
题中都有着重要的作用。

利用均值不等式求最值的方法

利用均值不等式求最值的方法

利用均值不等式求最值的方法均值不等式a b ab a b +≥>>200(,,当且仅当a =b 时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。

对于有些题目,可以直接利用公式求解。

但是有些题目必须进行必要的变形才能利用均值不等式求解。

下面是一些常用的变形方法。

一、配凑1. 凑系数例1. 当04<<x 时,求y x x =-()82的最大值。

解析:由04<<x 知,820->x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2828x x +-=()为定值,故只需将y x x =-()82凑上一个系数即可。

y x x x x x x =-=-≤+-=()[()]()821228212282282· 当且仅当282x x =-,即x =2时取等号。

所以当x =2时,y x x =-()82的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项例2. 已知x <54,求函数f x x x ()=-+-42145的最大值。

解析:由题意知450x -<,首先要调整符号,又()42145x x --·不是定值,故需对42x -进行凑项才能得到定值。

∵x x <->54540, ∴f x x x x x ()()=-+-=--+-+42145541543 ≤---+=-+=2541543231()x x ·当且仅当54154-=-x x,即x =1时等号成立。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

3. 分离例3. 求y x x x x =+++-271011()≠的值域。

解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

y x x x x x x x x =+++=+++++=++++227101151411415()()() 当x +>10,即x >-1时y x x ≥+++=214159()·(当且仅当x =1时取“=”号)。

例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧利用均值不等式求函数最值是数学中常用的一种方法,通过这种方法,可以简单地确定函数的最大值和最小值。

本文将介绍几种利用均值不等式求函数最值的常用技巧。

1.权值平均:使用均值不等式时,通过给定变量的权重,我们可以找到一个平均值,该平均值应该落在函数的最大值和最小值之间。

例如,如果我们要找出一个函数f(x)在一些闭区间[a,b]上的最大值,我们可以找到一个适当的c,使得a<c<b,并应用以下均值不等式:f(a)≤f(c)≤f(b)然后,我们可以将函数的值乘以相应的权重(比如(a-c)和(b-c)),并利用均值不等式得出结论。

2.凸函数和凹函数:对于凸函数而言,任意两个点之间的连线位于这两个点所对应的函数值之上。

如果我们要找到函数f(x)在一些闭区间上的最大值,我们可以在该区间上找到两个点,判断这两个点的连线是否位于这个函数值之上。

如果是,那么函数值将成为该区间的最大值。

对于凹函数来说,与凸函数类似,只是方向相反。

3.形象化问题:通过将问题形象化,我们可以更好地理解利用均值不等式求函数最值的思路。

例如,我们有一个数轴上的几个点,我们想找到距离它们最近和最远的点。

我们可以将这些点放在数轴上,并根据它们的位置找到距离最近和最远的点。

同样地,在函数的最大值和最小值问题中,我们可以通过绘制图形并观察函数曲线来找到函数的最大值和最小值。

4.极值问题:利用均值不等式求函数最值时,我们可以寻找函数的极值点。

当函数的导数为0时,函数可能取得最大值或最小值。

我们可以计算导数,找到可能的极值点,并对这些极值点应用均值不等式,从而确定函数的最大值和最小值。

5.多元函数:均值不等式也可以应用于多元函数的情况。

在多元函数的情况下,我们可以将问题转化为一元函数的情况,并使用上述方法解决。

综上所述,利用均值不等式求函数最值是一个实用的方法。

通过使用权值平均、凸函数和凹函数特性、形象化问题、极值问题和多元函数等技巧,我们可以更好地利用均值不等式来确定函数的最大值和最小值,从而解决数学中的一些问题。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

3、用均值不等式求最值等号不成立。

例3、若x 、y +∈R ,求4()f x x x=+)10(≤<x 的最小值。

解法一:(单调性法)由函数()(0)bf x ax a b x=+>、图象及性质知,当(0,1]x ∈时,函数4()f x x x=+是减函数。

证明:任取12,(0,1]x x ∈且1201x x <<≤,则12121244()()()()f x f x x x x x -=-+-211212()4x x x x x x -=-+⋅1212124()x x x x x x -=-⋅, ∵1201x x <<≤,∴12121240,0x x x x x x --<<,则1212()()0()()f x f x f x f x ->⇒>,即4()f x x x=+在(0,1]上是减函数。

故当1x =时,4()f x x x=+在(0,1]上有最小值5。

解法二:(配方法)因01x <≤,则有4()f x x x =+24=+,易知当01x <≤时,0μ且单调递减,则2()4f x =+在(0,1]上也是减函数,即4()f x x x =+在(0,1]上是减函数,当1x =时,4()f x x x=+在(0,1]上有最小值5。

解法三:(导数法)由4()f x x x =+得24()1f x x '=-,当(0,1]x ∈时,24()10f x x'=-<,则函数4()f x x x =+在(0,1]上是减函数。

故当1x =时,4()f x x x=+在(0,1]上有最小值5。

解法四:(拆分法)4()f x x x =+)10(≤<x 13()x x x =++31≥5=,当且仅当1x =时“=”号成立,故此函数最小值是5。

评析:求解此类问题,要注意灵活选取方法,特别是单调性法、导数法具有一般性,配方法及拆分法也是较为简洁实用得方法。

利用均值不等式求最值的方法

利用均值不等式求最值的方法

利用均值不等式求最值的方法均值不等式是数学中常见的一种不等式形式,可以用于求解各种最值问题。

该不等式提供了一种有效的方法来估算函数的最大值和最小值。

均值不等式最常见的形式是算术平均数和几何平均数之间的关系,即对于任意一组非负实数$x_1,x_2,...,x_n$,有以下不等式成立:$\sqrt[n]{x_1x_2...x_n} \leq \frac{x_1+x_2+...+x_n}{n}$其中,算术平均数是$x_1,x_2,...,x_n$的和除以$n$,而几何平均数是$x_1,x_2,...,x_n$的乘积开$n$次方。

均值不等式的证明可以通过数学归纳法和对数函数的单调性来完成,具体证明过程超出本文篇幅,不过可以查阅相关数学教材进行学习。

步骤1:确定题目要求求解的最值问题,明确自变量和因变量。

一般来说,最值问题都是求解一些函数的最大值或最小值。

步骤2:将问题转化为均值不等式的形式。

利用均值不等式,可以将函数中的一些项转化为均值的形式,进而简化问题求解过程。

步骤3:确定均值的形式。

根据函数中的项,可以选择合适的均值形式,如算术平均数、几何平均数、调和平均数等。

步骤4:利用均值不等式进行变换。

将问题中的需要求解的部分,利用均值不等式进行变换,得到简化后的表达式。

步骤5:求解均值不等式中的最值问题。

根据均值不等式,可以得到简化后的表达式的最值。

具体求解方法,根据实际问题采取不同的手段,如求导法、取等法等。

步骤6:将最值结果回代到原始问题中。

将得到的最值结果回代到原始问题中,得到最终的结果。

下面通过一个简单的例子来说明利用均值不等式求最值的方法。

例题:已知$a,b,c$满足$a^2+b^2+c^2=1$,求$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。

解答:步骤1:确定题目要求求解的最值问题。

题目要求求解函数$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。

利用均值不等式求最值的方法

利用均值不等式求最值的方法

利用均值不等式求最值的方法均值不等式是一种重要的数学统计工具,它可以用来求出一组数据的最值。

均值不等式是一种用于求解参数最值的统计工具,它通过约束数据集中参数值来构建最大或最小值,从而获得最优解。

均值不等式最适用于求解连续参数的最值问题。

均值不等式由两部分构成,下面将进行详细讨论。

首先,均值不等式中包含一个数学定义,它是这样定义的:假设有一组数据集,记作:X = {x1, x2,, xn}其中,n表示数据集中数据的个数。

均值不等式的定义为:∑x/n KK为预先设定的参数值,它可以用来确定最值的上限。

其次,均值不等式还包含一些可以应用到数据集中的算法,这些算法可以用来求解最值问题。

例如,当要求解最小值时,可以通过下面的算法来推断出最小值:1.先计算出 X 中各数据项的和,记作 s 。

2.出 K 与 s比值 r=K/s 。

3.X中的每个数据项 xi乘以 r 。

4.乘以 r的数据项求出平均值,记作 m 。

5.较 m 与 xi值,得出最小值。

均值不等式有着广泛的应用,它通常用于求解线性规划问题,最优化函数等最值问题。

均值不等式还可以用于求解投资组合最值等一系列最值问题,具有很强的实用性。

接下来,将着重介绍均值不等式在解决最值问题中的实际应用。

首先,均值不等式可以用于求解数学优化问题。

优化问题中,最常用的是线性规划模型。

性规划模型可以用均值不等式来约束参数范围,从而得到最优解。

举个例子,在最小二乘法中,可以使用均值不等式来计算最小残差。

其次,均值不等式还可以用于解决投资组合的最值问题。

投资组合问题是指由投资者将自己的财富分散投资,通过投资组合来获得最高收益的问题。

在投资组合中,均值不等式可以有效地约束投资者不超出预先设定的范围,从而使投资收益最大化。

最后,均值不等式还可以用于求解最优化函数的最值问题。

最优化函数是指通过最小化或最大化函数值来获得最优解的函数,而均值不等式可以用于函数的求解。

总结,均值不等式是一种有效的数学统计工具,它可以用来求解最值问题。

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。

它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。

下面,我将详细介绍均值不等式的方法和技巧。

1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。

这个不等式常常被用于证明其他数学结论的基础。

2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。

对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。

使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。

3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。

对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。

4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。

对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。

均值不等式求值的十种方法

均值不等式求值的十种方法

均值不等式求最值的十种方法————————————————————————————————作者:————————————————————————————————日期:用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数()22101y xx x =-<<的最大值。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧均值不等式是数学中常用的一种求最值的方法和技巧,它通过将数列中各个数的和与它们的平均值相比较,从而得到最值的估计。

本文将详细介绍均值不等式的定义、性质、应用以及解题步骤,以帮助读者更好地理解和运用这一重要的不等式求解问题。

一、均值不等式的定义均值不等式是数学中一类关于平均值的不等式,通常用来对一组具有其中一种关系的数值进行比较。

假设有n个非负实数a1、a2、…、an,则它们的平均值和它们的几何平均值之间存在以下关系:(a1+a2+…+an)/n ≥ √(a1*a2*…*an) 或(a1+a2+…+an)/n ≥(a1+a2+…+an)/n ≥ ∛(a1*a2*…*an)其中,等号当且仅当a1=a2=…=an时成立。

二、均值不等式的性质1.单变量均值不等式:对于任意n个非负实数a1、a2、…、an,有(a1^p+a2^p+…+an^p)/n ≥ [(a1+a2+…+an)/n]^p其中,p为实数且p≥12.双变量均值不等式:对于任意两个非负实数a和b以及实数p≥1,有[(a^p+b^p)/2]^1/p≥[(a^q+b^q)/2]^1/q其中,p≥q且p、q均不等于0。

3.形式化均值不等式:设f(x)是定义在[a,b]上的连续函数,则对于任意无穷个非负实数a1、a2、…,有f(∫(a1→∞)f(x)dx) ≤ ∫(a1→∞)f(x)dx/lna1其中,a1为自然对数的底数。

三、均值不等式的应用均值不等式在数学中有着广泛的应用,特别是在求最值、证明不等式和优化问题中。

以下是几个常见的应用场景:1.证明不等式:通过应用均值不等式,可以证明很多重要的不等式,如柯西不等式、霍尔德不等式和克劳斯不等式等。

2.求极值:通过应用均值不等式,可以求解一些极值问题,如求最大面积、最小周长和最优化问题等。

3.优化设计:在工程和经济学中,均值不等式可以帮助优化设计,如在材料使用、成本控制和资源分配等方面。

用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法均值不等式是基本不等式之一,常用于寻找函数最值。

一般来说,使用均值不等式求最值的方法可以分为以下几种类型。

一、切分法:切分法的思路是将原函数分割成若干个子函数,并通过均值不等式来确定这些子函数的最值,最后通过求和或求积的方式得到原函数的最值。

常用的方法有以下几种:1.等量切割法:将原函数的定义域分割为若干等距的小区间,然后对每个小区间内的子函数应用均值不等式,求得每个小区间的函数最值,最后通过求和或求积得到原函数的最值。

2.不等量切割法:将原函数的定义域按照实际情况进行分割,使得函数在每个小区间上的性质较为简单,然后对每个小区间内的子函数应用均值不等式,求得每个小区间的函数最值,最后通过求和或求积得到原函数的最值。

二、二次函数法:二次函数法的思路是将原函数通过二次函数的形式进行逼近,然后使用二次函数的性质求得原函数的最值。

常用的方法有以下几种:1.利用平均值定理:原函数的图像与二次函数的图像在一点处相切,通过求解相切点的横坐标,可以得到原函数的最值。

2.利用顶点性质:原函数的图像与二次函数的图像的顶点相对应,通过求解顶点的横坐标,可以得到原函数的最值。

三、积分法:积分法的思路是将原函数表示为一个积分的形式,然后利用积分的性质和均值不等式求得原函数的最值。

常用的方法有以下几种:1.利用积分的几何意义:将原函数表示为一个曲线的长度或面积,然后利用均值不等式求得原函数的最值。

2.利用积分的均值定理:将原函数表示为一个函数在一定区间上的平均值与变化量之积,然后利用均值不等式求得原函数的最值。

四、极限法:极限法的思路是将原函数表示为一个极限的形式,然后利用极限的性质和均值不等式求得原函数的最值。

常用的方法有以下几种:1.利用函数极限的定义:通过对原函数的极限进行变形,然后利用均值不等式求得变形后函数的最值,再通过极限的性质得到原函数的最值。

2.利用函数导数的定义:通过对原函数的导数进行变形,然后利用均值不等式求得变形后函数的最值,再通过导数的性质得到原函数的最值。

均值不等式求最值的方法

均值不等式求最值的方法

均值不等式求最值的方法《均值不等式求最值的方法》嘿,朋友们!今天咱们来唠唠均值不等式求最值的那些事儿!咱先来说说啥是均值不等式哈。

其实就是几个数的算术平均数大于等于它们的几何平均数。

听起来是不是有点晕乎?别急,咱们慢慢看。

比如说,对于两个正实数 a 和 b ,就有(a + b) / 2 ≥√(ab) 。

这就像一个神奇的小魔法,能帮咱们找到最值呢!那咋用它来求最值呢?举个例子,假如让你求 x + 1/x (x > 0)的最小值,这时候均值不等式就派上用场啦!因为 x > 0 ,所以x + 1/x ≥ 2√(x × 1/x) = 2 ,这样一下子就找到最小值是 2 啦,是不是挺神奇的?再比如说,给你一个式子 3x + 4/(1 x) ,其中 0 x 1 ,让求它的最值。

咱们可以把式子变一变,变成 (3x + 3) + 4/(1 x) 3 。

然后把 3x + 3 和 1 x 当成整体,用均值不等式,就能求出最值啦!还有哦,如果遇到那种有条件限制的,比如说给了你 a + b = 1 ,然后让你求一些式子的最值,这时候就得灵活运用这个条件啦。

可以把要求的式子乘以 1 ,也就是乘以 a + b ,然后再展开,用均值不等式去求。

但是朋友们要注意哈,用均值不等式求最值的时候,有几个关键点得留神。

一是得保证这些数都是正的,要是有负数可就不行啦。

二是得注意等号能不能取到,要是取不到,那可就白忙活啦。

呢,均值不等式求最值就像是一把神奇的钥匙,能帮咱们打开很多难题的大门。

只要咱们多琢磨,多练习,就能把这招用得炉火纯青,啥最值都不在话下!加油哦,朋友们,相信你们一定能行!。

利用均值不等式求最值常用技巧

利用均值不等式求最值常用技巧

(2) a b c 3 abc , (a, b, c R ) , abc a b c 3 。当且仅当 a=b=c 时,取等号。
3
3
6、熟悉一个重要的不等式链:
2 11
ab a b 2
ab
a2 b2 。 2
7、利用均值不等式求最值的条件: 一正、二定、三相等 ①各项必须为正; ②含变数的各项和或积必须为定值(和定积最大,积定和最小); ③必须有自变量值能使函数取到等号. 二、利用均值不等式求最值常用解题技巧
x
0,y
4x
9 x2
2x
2x
9 x2
3
3
2x 2x
9 x2
33 36
当且仅当 2x
9 x2
,即 x
3
36 2
时等号成立,所以当 x
3
36 2
时, ymin
33
36

技巧五:换元
例 1、求 y x2 7x 10 (x 1) 的值域。 x 1
解:令 t=x+1, y (t 1)2 7(t 1)+10 = t2 5t 4 t 4 5
例 1:求函数 y x2 5 的值域。 x2 4
解:令 x2 4 t(t 2) ,则 y x2 5 x2 4 1 t 1 (t 2)
x2 4
x2 4
t
因 t 0, t 1 1 ,但 t 1 解得 t 1不在区间2, ,故等号不成立,考虑单调性。
t
t
因为 y t 1 在区间1, 单调递增,所以在其子区间2, 为单调递增函数,故 y 5 。
C.3 =,
D.3
∴a+2b=(s﹣1)+2(t﹣1)=s+2t﹣3,

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等";② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值.(2) 已知01x <<,求函数321y x x x =--++的最大值.解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=".故max 3227y =。

评注:通过因式分解,将函数解析式由“和"的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积"的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-。

均值不等式求最值的6种常用方法-高一数学(人教B版2019必修第一册)(解析版)

均值不等式求最值的6种常用方法-高一数学(人教B版2019必修第一册)(解析版)

均值不等式求最值的6种常用方法一、均值不等式常用的结论1、如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、如果0a >,0b >,则2a b ab +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、2220,0)1122a b a b ab a b a b++≤≤≤>>+ 二、利用均值不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用均值不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用均值不等式求最值的方法1、直接法:条件和问题间存在均值不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用均值不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为34+a b 与3+a b ,分子为2+a b ,设()()()()2343343+=+++=+++a b a b a b a b λμλμλμ∴31432+=⎧⎨+=⎩λμλμ,解得:1525⎧=⎪⎪⎨⎪=⎪⎩λμ4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用均值不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

均值不等式求最值的方法

均值不等式求最值的方法

均值不等式求最值的方法均值不等式是数学中常用的一种方法,用于求解最值问题。

它基于一组数的算术平均数和几何平均数之间的关系,通过比较大小来确定最大值或最小值。

接下来,我将详细介绍均值不等式及其应用方法,并给出几个实际问题的解析。

一、均值不等式的基本形式在介绍具体的应用方法之前,我们首先来看一下均值不等式的基本形式。

对于一组非负实数a1, a2, …, an,均值不等式可以表示为:1.算术平均数(AM)和几何平均数(GM)之间的关系:AM≥GM其中,AM = (a1 + a2 + … + an)/n,GM = (a1 * a2 * … *an)^(1/n)。

2.算术平均数(AM)和谐均值(HM)之间的关系:AM≥HM其中,HM = n/(1/a1 + 1/a2 + … + 1/an)。

二、均值不等式的应用方法1.求最小值:如果我们需要求解一组非负实数的最小值,可以利用均值不等式中的几何平均数和谐均值。

根据AM≥GM和AM≥HM的关系,我们可以得到以下不等式:GM≤AM≤HM即,几何平均数不大于算术平均数不大于谐均值。

因此,当我们需要求解最小值时,可以通过计算几何平均数和谐均值,然后将这两个值与给定的实数进行比较,取其中较小的值作为最小值。

2.求最大值:类似地,如果我们需要求解一组非负实数的最大值,可以利用均值不等式中的几何平均数和算术平均数。

根据AM≥GM的关系,我们可以得到以下不等式:AM≥GM即,算术平均数不小于几何平均数。

因此,当我们需要求解最大值时,可以通过计算几何平均数和算术平均数,然后将这两个值与给定的实数进行比较,取其中较大的值作为最大值。

三、均值不等式的实际应用以下是几个实际问题,利用均值不等式进行求解的示例。

问题一:求证面积最大假设有一个固定的周长为2l的矩形,我们需要求解矩形的面积最大值。

解析:设矩形的长和宽分别为a和b,根据题意,有2(a+b)=2l,即a+b=l。

我们需要求解面积S=a*b的最大值。

用均值不等式求最值与方法与技巧

用均值不等式求最值与方法与技巧

几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

三、用均值不等式求最值的常见的技巧 1、 添、减项(配常数项) 例1 求函数221632y x x =++的最小值.2、 配系数(乘、除项)例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.3、 裂项例3 已知1x >-,求函数()()521x x y x ++=+的最小值.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值.5、 平方例5 已知0,0x y >>且22283y x +=求.6、 换元(整体思想)例6 求函数y =的最大值.7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .8、 巧组合例8 若,,0a b c >且()4a a b c bc +++=-求2a b c ++的最小值 .9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值是.几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:ba 2+2a b+≤≤≤222b a +。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。

例1、求函数21(1)2(1)y x x x =+>-的最小值。

解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

2、求几个正数积的最大值。

例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。

【高中数学】利用均值不等式求最值的方法

【高中数学】利用均值不等式求最值的方法

【高中数学】利用均值不等式求最值的方法均值不等式<style='width:141.75pt;>当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。

对于有些题目,可以直接利用公式求解。

但是有些题目必须进行必要的变形才能利用均值不等式求解。

下面是一些常用的变形。

一、匹配1.凑系数示例1当<style='width:46.5pt;'>何时,找到的最大值。

解析:由<style='width:46.5pt;'>知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到为定值,故只需将当且仅当x=2,取等号。

所以当x=2时,的最大值。

分析:从问题的意义来看,我们应该首先调整符号,而不是固定值,所以我们需要将项目四舍五入以获得固定值。

∵只要等号成立。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

3.分离例3.求的值域。

分析:平均不等式似乎不能用于这个问题。

建议将分子式中包含(x+1)的术语四舍五入,然后将其分开。

当,即时瞬间的值域为。

注释:求分式函数的最大值通常转化为常数正或负g(x)的形式,然后用平均不等式求最大值。

二、整体代换例4已知,求最小值。

解法1:不妨将乘以1,而1用a+2b代换。

当且仅当取等号时,它由即时,的最小值为。

解决方案2:在分子中使用1评注:本题巧妙运用“1”的代换,得到与的积为定值,即可用均值不等式求得的最小值。

三、交换元素例5.求函数,则时,当且仅当,即。

评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。

四、方格例6.求函数的和为定值。

也当且仅当。

评论:这个问题从解析公式两边的平方中构造出“和为定值”,这为使用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

高中数学例说利用均值不等式求最值的几种技巧2018.1

高中数学例说利用均值不等式求最值的几种技巧2018.1

例说利用均值不等式求最值的几种技巧2018.1 在现行中学数学中,利用均值不等式求函数最值的问题,是一类值得重视的常用方法。

但学生在利用均值不等式求最值时,常常因为取不到等号,以致解题受阻。

所以在解题过程中需要对函数进行适当的变形。

由于在变形过程中常要用到某些特定的技巧,因而形成难点。

本文拟就此介绍几种常用的技巧。

一、乘方后使用均值不等式将所得出的正函数平方,立方,……,n 次方,然后再使用均值不等式求解。

例1 已知()πθ,0∈,求函数 )cos 1(2sin θθ+⋅=y 的最大值。

(94年全国数竞题) 解: ()πθ,0∈ )cos 1(2cos 1θθ+⋅-=∴y22)cos 1(2cos 1θθ+⋅-=∴y = )cos 1()cos 1()cos 22(41θθθ+⋅+⋅-⋅ 33)cos 1()cos 1()cos 22(41⎥⎦⎤⎢⎣⎡++++-⋅≤θθθ = 2716 934≤∴y 当且仅当θθcos 1cos 22+=- 即31cos =θ时取到等号。

所以 y 的最大值为934 例2 有一浮标由三部分组成,一个圆筒和两个相同的圆锥,其中每一个圆锥的高等于圆筒的高,问当表面积一定时,什么形状会有最大体积?(第一届普特南数竞题)解:设圆筒的半径为 r , 高为 h ,那么2222r h r rh S +⋅+⋅=ππ 即 rSr S h ⋅-=ππ44422 =⋅=⋅+⋅=h r h r h r V 2223532πππ )4(125422r S r Sπ-⋅⋅ 4422444)4()125(r S r SV π-⋅⋅= 利用五个正数的算术平均数不小于它们的几何平均数即可求得最大体积。

当且仅当42242416r S r ππ-=, 即42220πS r =时取到等号。

此时进一步有 r h 522= 。

二、 引参后使用均值不等式有些和(积)不为常数的函数求最值时,可通过引入参数后,再使用均值不等式求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式求最值的方法均值不等式是求函数最值的一个重要工具,同时也是高考常考的一个重要知识点。

下面谈谈运用均值不等式求解一些函数的最值问题的方法和技巧。

一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b +≤≤≤222b a +。

二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。

例1、求函数21(1)2(1)y x x x =+>-的最小值。

解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

2、求几个正数积的最大值。

例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。

②0,sin 0,cos 02x x x π<<>>∴,则0y >,欲求y 的最大值,可先求y 2的最大值。

242sin cos y x x =⋅222sin sin cos x x x =⋅⋅2221(sin sin 2cos )2x x x =⋅⋅22231sin sin 2cos 4()2327x x x ++≤⋅=,当且仅当22sin 2cos x x =(0)2x π<<tanx ⇒=,即xarc =时,不等式中的“= 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。

通常要通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。

3、用均值不等式求最值等号不成立。

例3、若x 、y +∈R ,求4()f x x x=+)10(≤<x 的最小值。

解法一:(单调性法)由函数()(0)bf x ax a b x=+>、图象及性质知,当(0,1]x ∈时,函数4()f x x x=+是减函数。

证明:任取12,(0,1]x x ∈且1201x x <<≤,则12121244()()()()f x f x x x x x -=-+-211212()4x x x x x x -=-+⋅1212124()x x x x x x -=-⋅,∵1201x x <<≤,∴12121240,0x x x x x x --<<, 则1212()()0()()f x f x f x f x ->⇒>,即4()f x x x=+在(0,1]上是减函数。

故当1x =时,4()f x x x=+在(0,1]上有最小值5。

解法二:(配方法)因01x <≤,则有4()f xx x =+24=+,易知当01x<≤时,μ且单调递减,则2()4f x =+在(0,1]上也是减函数,即4()f x x x =+在(0,1]上是减函数,当1x =时,4()f x x x=+在(0,1]上有最小值5。

解法三:(导数法)由4()f x x x =+得24()1f x x '=-,当(0,1]x ∈时,24()10f x x'=-<,则函数4()f x x x =+在(0,1]上是减函数。

故当1x =时,4()f x x x=+在(0,1]上有最小值5。

解法四:(拆分法)4()f x x x=+)10(≤<x 13()x xx =++31≥5=,当且仅当1x =时“=”号成立,故此函数最小值是5。

评析:求解此类问题,要注意灵活选取方法,特别是单调性法、导数法具有一般性,配方法及拆分法也是较为简洁实用得方法。

4、条件最值问题。

例4、已知正数x 、y 满足811x y+=,求2x y +的最小值。

解法一:(利用均值不等式)2x y +8116()(2)10x y x y x y y x =++=++1018≥+=,当且仅当81116x y x yyx ⎧+=⎪⎪⎨⎪=⎪⎩即12,3x y ==时“=”号成立,故此函数最小值是18。

解法二:(消元法)由811x y +=得8x y x =-,由00088xy x x x >⇒>>⇒>-又则2x y +22(8)1616162(8)108888x x x x x x x x x x -+=+=+=++=-++----1018≥=。

当且仅当1688x x -=-即12,3x y ==此时时“=”号成立,故此函数最小值是18。

解法三:(三角换元法)令228sin 1cos x x x y⎧=⎪⎪⎨⎪=⎪⎩则有228sin 1cos x x y x ⎧=⎪⎪⎨⎪=⎪⎩ 则22822sin cos x y x x+=+2222228csc 2sec 8(1cot )2(1tan )108cot 2tan x x x x x x =+=+++=++10≥+18≥,易求得12,3x y ==此时时“=”号成立,故最小值是18。

评析:此类问题是学生求解易错得一类题目,解法一学生普遍有这样一种错误的求解方法:812()(2)8x y x y x y +=++≥。

原因就是等号成立的条件不一致。

5、利用均值不等式化归为其它不等式求解的问题。

例5、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。

解法一:由0,0x y >>,则3xy x y =++3xy x y ⇒-=+≥,即230-≥解得13≤-≥(舍),当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值范围是[9,)+∞。

又23()2x y x y xy +++=≤2()4()120x y x y ⇒+-+-≥2()6x y x y ⇒+≤-+≥舍或,当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故x y +的取值范围是[6,)+∞解法二:由0,0x y >>,3(1)3xy x y x y x =++⇒-=+知1x ≠,则31x y x +=-,由30011x y x x +>⇒>⇒>-,则: 2233(1)5(1)44(1)51111x x x x x xy x x x x x x ++-+-+=⋅===-++----59≥=,当且仅当41(0)31x x x x -=>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。

314441(1)2261111x x x y x x x x x x x x +-++=+=+=++=-++≥=----,当且仅当41(0)31x x x x -=>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。

三、用均值不等式求最值的常见的技巧 1、 添、减项(配常数项) 例1 求函数221632y x x =++的最小值.分析:221632x x ++是二项“和”的形式,但其“积”的形式不为定值.而212x +可与22x +相约,即其积为定积1,因此可以先添、减项6,即22163662y x x =++-+,再用均值不等式.222221620,32163(2)6266x y x x x x +>=++=++-+≥=解:当且仅当22163(2)2x x +=+,即223x =-时,等号成立. 所以y 的最小值是6.评注 为了创造条件利用均值不等式,添项是常用的一种变形技巧;为了保证式子的值不变,添项后一定要再减去同一项. 2、 配系数(乘、除项)例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值. 分析 lg lg lg()x y xy +=, xy 是二项“积”的形式,但不知其“和”的形式x y +是否定值,而已知是3x 与2y 的和为定值12,故应先配系数,即将xy 变形为326x y⋅,再用均值不等式.220,032lg lg lg()lg6132112lg lg 6262lg 6x y x y x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6. 评注 本题是已知和为定值,要求积的最大值,可逆用均值不等式,即利用22a b ab +⎛⎫≤ ⎪⎝⎭来解决. 3、 裂项例3 已知1x >-,求函数()()521x x y x ++=+的最小值.分析 在分子的各因式中分别凑出1x +,借助于裂项解决问题.()()141110,14(1)5519x x x y x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦+>=+=+++≥+=解:当且仅当411x x +=+,即1x =时,取等号. 所以min 9y =.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 分析 分母是x 与(12)x -的积,可通过配系数,使它们的和为定值;也可通过配系数,使它们的和为(1)x + (这是解本题时真正需要的).于是通过取倒数即可解决问题. 解 由102x <<,得10x +>,120x ->.取倒数,得221(12)1312(1)31131211113212x x x x y x x xx x x x --==⋅⋅+++-⎡⎤+⎢⎥++≤=⎢⎥⎢⎥⎣⎦当且仅当31211x x x x -=++,即15x =时,取等号.故y 的最小值是12. 5、 平方例5 已知0,0x y >>且22283y x +=求.分析 条件式中的x 与y 都是平方式,而所求式中的x 是一次式,y 是平方式但带根号.初看似乎无从下手,但若把所求式题思路豁然开朗,即可利用均值不等式来解决.222222222((62)32(1)32(1)9333()22y x y x y x =+=⋅+⎡⎤++⎢⎥≤=⎢⎥⎢⎥⎢⎥⎣⎦解:当且仅当222(1)3y x =+,即32x =,y =时,等号成立.故评注 本题也可将x纳入根号内,即将所求式化为数,再运用均值不等式的变式. 6、 换元(整体思想)例6求函数y =的最大值.分析t =,进行换元,再使分子常数化,然后运用均值不等式来解决.22,0,2,(0)2100;101212=.3,24t t x t t y t t t y t y t t t t t x =≥=-=≥+==>=≤=+==-则当时,当时,当且仅当,即所以时7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .分析 直接利用均值不等式,只能求xy 的最小值,而无法求x y +的最小值.这时可逆用条件,即由191x y =+,得19()()x y x y x y +=++,然后展开即可解决问题.190,0,1199()()1010169,4,12.16.x yx yy xx y x yx y x yy xx yx yx y>>+=+=++=++≥====+解:由,得当且仅当即时,等号成立故的最小值是评注若已知0,0,x y>>1x y+=(或其他定值),要求19x y+的最大值,则同样可运用此法.8、巧组合例8 若,,0a b c>且()4a abc bc+++=-求2a b c++的最小值 .分析初看,这是一个三元式的最值问题,无法利用a b+≥+b来解决.换个思路,可考虑将2a b c++重新组合,变成()()a b a c+++,而()()a b a c++等于定值4-,于是就可以利用均值不等式了.,,0,2()()2,,1.2 2.a b c a b c a b a cb cb c aa b c>++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为9、消元例9、设,,x y z为正实数,230x y z-+=,则2yxz的最小值是.分析本题也是三元式的最值问题.由题意得32x zy+=,则可对2yxz进行消元,用,x z表示,即变为二元式,然后可利用均值不等式解决问题.22223,0,,29666=3,443,,=33.x zx z y y x z xz xz xz xz xz xzyx z x y z y xz +>=+++≥====解:由可得当且仅当即时,取“”.故的最小值为练习: 1、试填写两个正整数,满足条件411[ ][ ]+=,且使这两个正整数的和最小。

相关文档
最新文档