高斯小学奥数含答案三年级(上)第21讲等差数列求和

合集下载

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好能够分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及答案————————————————————————————————作者:————————————————————————————————日期:计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

高斯小学奥数含答案三年级(上)第22讲 等差数列应用

高斯小学奥数含答案三年级(上)第22讲 等差数列应用

6- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -这几个等差数列虽然都不一样,但它们的项数、和与中间数都是相同的:项数都是7,和都是112,中间数都是16.其实只要项数与和相同,中间数就自然相同了,因为我们学过公式:和=中间数×项数,那么中间数=和÷项数.也就是说,可以通过项数与和求出一个等差数列的中间数.这种通过公式反向求解的方法在等差数列的问题中非常常见.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1一个等差数列的第1项是21,前7项的和为105,这个数列的第10项是多少?分析:前7项的和是105,根据公式可以求出第几项呢?练习1一个等差数列的第1项是3,前11项之和为198,这个数列的第20项是多少?第1项 第2项 第7项 21第10项 和105第二十二讲 等差数列应用9个连续自然数的和是126,其中最小的数是多少?分析:这9个数是等差数列吗?如果是的话,公差是几?练习27个连续奇数之和为91,其中最小的数是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 当然,要使用公式:和=中间数×项数来解题的话,这个数列的项数必须是奇数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3已知一个等差数列的前15项之和为450,前21项之和为819,请问:这个数列的公差是多少?首项是多少?第1项第2项第15第21和为450和为819分析:如果知道任何两项具体的数值,就能算出公差.能不能找到这样的两项呢?练习3已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 但并不是所有的等差数列的项数都是奇数.当项数是偶数时,只能根据公式:和=(首项+末项)×项数÷2,算出首项与末项的和.如果再能求出首项与末项的差,便能求出首项与末项的具体数值了.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7把248表示成8个连续偶数的和,其中最大的偶数是多少?分析:首项与末项的和是多少?差是多少?练习4把115表示成10个连续自然数之和,其中最小的数是几?例题5已知一个等差数列的前15项之和为450,前20项之和为750.请问:这个数列的公差是多少?首项是多少?分析:通过“前15项之和为450”这个条件除了能知道“中间数”之外,还能知道其他一些信息吗?例题6在一次考试中,第一组同学的分数恰好构成了公差为3的等差数列,总分为609.小高发现自己的分数算少了,找老师更正后,加了21分,这时他们的成绩还是一个等差数列.请问小高正确的分数是多少?分析:思考下一共有几个人?改分前小高是第几个,改分后小高是第几个?89作业1. 已知一个等差数列的首项是17,前7项之和为161,这个数列的第11项是多少?2. 7个连续偶数之和为112,其中最小的那个数是多少?3. 8个连续奇数之和为112,其中最小的那个数是多少? 课 堂 内 外根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宰相见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宰相,作为对他忠心的奖赏,他需要得到什么赏赐.宰相开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒,……即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的倍数,直到最后一个格子第64格放满为止,这样我就十分满足了.“好吧!”国王哈哈大笑,慷慨地答应了宰相的这个谦卑的请求.这位聪明的宰相到底要求的是多少麦粒呢?稍微算一下就可以得出:234636412222221+++++⋅⋅⋅+=-,直接写出数字来就是18446744073709551615粒,这位宰相所要求的,竟是全世界在两千年内所产的小麦的总和!如果造一个宽四米,高四米的粮仓来储存这些粮食,那么这个粮仓就要长三亿千米,可以绕地球赤道7500圈,或在日地之间打个来回.国王哪有这么多的麦子呢?他的一句慷慨之言,成了他欠宰相西萨·班·达依尔的一笔永远也无法还清的债.正当国王一筹莫展之际,王太子的数学教师知道了这件事,他笑着对国王说:“陛下,这个问题很简单啊,就像1+1=2一样容易,您怎么会被它难倒?”国王大怒:“难道你要我把全世界两千年产的小麦都给他?”年轻的教师说:“没有必要啊,陛下.其实,您只要让宰相大人到粮仓去,自己数出那些麦子就可以了.假如宰相大人一秒钟数一粒,数完18446744073709551615粒麦子所需要的时间,大约是5800亿年(大家可以自己用计算器算一下!).就算宰相大人日夜不停地数,数到他自己魂归极乐,也只是数出了那些麦粒中极小的一部分.这样的话,就不是陛下无法支付赏赐,而是宰相大人自己没有能力取走赏赐.”国王恍然大悟,当下就召来宰相,将教师的方法告诉了他.西萨·班·达依尔沉思片刻后笑道:“陛下啊,您的智慧超过了我,那些赏赐……我也只好不要了!”当然,最后宰相还是获得了很多赏赐.等比数列小故事4.把325表示成10个连续自然数之和,其中最小的数是多少?5.已知一个等差数列的前11项之和为451,前19项之和为1235,这个数列的首项是多少?1011第二十二讲 等差数列应用1. 例题1答案:3详解:先求出第4项:105715÷=,所以公差为:()()2115412-÷-=,第10项为:()2121013-⨯-=. 2. 例题2答案:10详解:9个连续自然数是一个公差为1的等差数列,第5项为:126914÷=,所以最小的数为:14410-=.3. 例题3答案:3;9详解:先根据前15项之和,求出第8项为:4501530÷=.再根据21项之和,求出第11项为:8192139÷=.所以公差是:()()39301183-÷-=,首项为:()303819-⨯-=.4. 例题4答案:38详解:8个连续偶数构成的是公差为2的一个等差数列,最大数应该比最小数大2714⨯=,再算出最小数与最大数的和:2482862⨯÷=,所以最大数为:()6214238+÷=.5. 例题5答案:3;9详解:“前15项之和为450”,所以第1项与第15项之和为:45021560⨯÷=.同样地,算出第1项与第20项之和为75,都含有第1项,所以第20项比第15项大了756015-=,公差为:1553÷=,第15项比首项大31442⨯=,所以首项为:()604229-÷=.6. 例题6答案:99分详解:原来是最低的,加了21分之后应该变成最高的,公差是3,所以小组里共有7人.原来中间的数为609787÷=分,所以最后小高是99分.7. 练习1答案:60简答:第6项为:1981118÷=,公差为:()()183613-÷-=,第20项为:331960+⨯=. 8. 练习2答案:7简答:第4个是:91713÷=,最小数为7.9. 练习3答案:11简答:第7项为:5331341÷=,第8项为:6901546÷=,公差为5,则首项为:415611-⨯=.10. 练习4答案:7简答:最小数比最大数小9,且最小数与最大数之和为:11521023⨯÷=,则最小数为7. 11. 作业112 答案:37简答:第4项为161723÷=,而首项为17,那么公差为(2317)(41)2-÷-=,第11项为1721037+⨯=.12. 作业2答案:10简答:中间项即第4个数为112716÷=,则最小的是10.13. 作业3答案:7简答:()82112+⨯÷=首项末项,所以28+=首项末项,而对于8个连续奇数,末项比首项大2714⨯=,则首项为7.14. 作业4答案:28简答:这10个连续自然数构成一个公差为1的等差数列,()102325+⨯÷=首项末项,所以65+=首项末项,而首项又比末项小9,则首项为28.15. 作业5答案:11简答:第6项为4511141÷=,第10项为12351965÷=,则公差为(6541)(106)6-÷-=,首项为41(61)611--⨯=.。

高斯小学奥数含答案三年级(上)第22讲等差数列应用

高斯小学奥数含答案三年级(上)第22讲等差数列应用

☆7 O求解的方法在等差数列的问题中非常常见项和105CD这4个等著数列 之间有什么相同 的地方少练习1那么中间数=和十项数•也就是说,可以通过项数与和求出一个等差数列的中间数•这种通过公式反向 例题10 2N 25 分析:前7项的和是105,根据公式可以求出第几项呢?/0, 2 4fig 第:项 中间数都是16 •其实只要项数与和相同, 中间数就自然相同了,因为我们学过公式:和=中间数x 项数 8D 这几个等差数列虽然都不一样, 但它们的项数、和与中间数都是相同的: 项数都是7,和都是112 20P Sflo 28一个等差数列的第1项是3,前11项之和为198,这个数列的第20项是多少?第骑第2项 一个等差数列的第 1项是21,前7项的和为105,这个数列的第10项是多少?第二十二讲等差数列应用9个连续自然数的和是126,其中最小的数是多少?分析:这9个数是等差数列吗?如果是的话,公差是几?练习27个连续奇数之和为91,其中最小的数是多少?当然,要使用公式:和=中间数X项数来解题的话,这个数列的项数必须是奇数.例题3已知一个等差数列的前15项之和为450,前21项之和为819,请问:这个数列的公差是多少?首项是多少?和为819分析:如果知道任何两项具体的数值,就能算出公差.能不能找到这样的两项呢?练习3已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?但并不是所有的等差数列的项数都是奇数•当项数是偶数时,只能根据公式:和=(首项+末项)X项数吃,算出首项与末项的和.如果再能求出首项与末项的差,便能求出首项与末项的具体数值了.第亡项和为450'."第项☆4是多少?少?(7^例题6例题5分析:首项与末项的和是多少?差是多少?表示成8个连续偶数的和,其中最大的偶数是多少?分析:思考下一共有几个人?改分前小高是第几个,改分后小高是第几个?在一次考试中,第一组同学的分数恰好构成了公差为分析:通过“前15项之和为450”这个条件除了能知道“中间数”之外,还能知道其他一些信息吗? 已知一个等差数列的前 15项之和为450,前20项之和为750.请问:这个数列的公差是多少?首项 3的等差数列,总分为 609.小高发现自己的 练习4把115表示成10个连续自然数之和,其中最小的数是几?分数算少了,找老师更正后,加了 21分,这时他们的成绩还是一个等差数列.请问小高正确的分数是多等比数列小故事作业1. 已知一个等差数列的首项是17,前7项之和为161,这个数列的第11项是多少?2. 7个连续偶数之和为112,其中最小的那个数是多少?4. 325表示成10个连续自然数之和,其中最小的数是多少?5.已知一个等差数列的前11项之和为451,前19项之和为1235,这个数列的首项是多少?答案:3详解:先求出第4项:105 7 15,所以公差为:21 15 4 1 2,第10项为:21 2 10 1 3 .2.例题2答案:10详解:9个连续自然数是一个公差为1的等差数列,第5项为:126 9 14,所以最小的数为:14 4 10 .3.例题3答案:3 ;9详解:先根据前15项之和,求出第8项为:450 15 30 •再根据21项之和,求出第11项为:819 21 39 .所以公差是:39 30 11 8 3,首项为:30 3 8 1 9 .4.例题4答案:38详解:8个连续偶数构成的是公差为2的一个等差数列,最大数应该比最小数大2 7 14,再算出最小数与最大数的和:248 2 8 62,所以最大数为:62 14 2 38 .5.例题5答案:3 ;9详解:“前15项之和为450”,所以第1项与第15项之和为:450 2 15 60 .同样地,算出第 1 项与第20项之和为75,都含有第1项,所以第20项比第15项大了75 60 15,公差为:15 5 3,第15项比首项大3 14 42,所以首项为:60 42 2 9 .6.例题6答案:99分详解:原来是最低的,加了21分之后应该变成最高的,公差是3,所以小组里共有7人.原来中间的数为609 7 87分,所以最后小高是99分.7.练习1答案:60简答:第6项为:198 11 18,公差为:18 3 6 1 3,第20项为:3 3 19 60.8.练习2答案:7简答:第4个是:91 7 13,最小数为7.9.练习3答案:11简答:第7项为:533 13 41,第8项为:690 15 46,公差为5,则首项为:41 5 6 11 .10.练习4答案:7简答:最小数比最大数小9,且最小数与最大数之和为:115 2 10 23,则最小数为7.答案:10简答:中间项即第4个数为112 7 16,则最小的是10.13.作业3答案:7末项比首项大简答:(首项末项)8 2 112,所以首项末项28,而对于8个连续奇数,2 714,则首项为7.14.作业4答案:28简答:这10个连续自然数构成一个公差为1的等差数列,(首项末项)10 2 325,所以首项末项65,而首项又比末项小9,则首项为28.15.作业5答案:11简答:第6项为4511141,第10项为12351965,则公差为(6541)(106)6,首项为41 (6 1) 6 11 .。

三年级奥数高斯求和

三年级奥数高斯求和

断题目中的各个加数是否构成等差数列。
大家好
5
例2: 1+2+3+4+5+……+99 =? 分析与解:这串加数1,2,3,…,99是
等差数列,首项是1,末项是99,共有99个 数。由等差数列求和公式可得
1+2+3+4+5+……+99 =(1+99)×99÷2
=4950
大家好
6
例3: 1+3+5+7+9+11+13+15+17 =? 分析与解:这串加数1,3,5,7,9 , 11,
(1)1,2,3,4,5,…,100; (2)1,3,5,7,9,…,99; (3)8,15,22,29,36,…,71。
(1)是首项为1,末项为100,公差为1的等差数列; (2)是首项为1,末项为99,公差为2的等差数列;(3) 是首项为8,末项为71,公差为7的等差数列。
大家好
3
• 由高斯的巧算方法,得到等差数列的 求和公式:
50+58+66+74+82+90+98 =(50+98)×7÷2 =148 ×7÷2
=518
大家好
9
结束
大家好
10
相等。于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单 快捷,并且广泛地适用于“等差数列”的求和问题。
大家好
2
若干个数排成一列称为数列,数列中的每一个数称 为一项,其中第一项称为首项,最后一项称为末项。后 项与前项之差都相等的数列称为等差数列,后项与前项 之差称为公差。 例如:

(完整)三年级奥数等差数列求和习题及答案

(完整)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

高斯小学奥数含答案三年级(上)第21讲等差数列求和

高斯小学奥数含答案三年级(上)第21讲等差数列求和

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -对于一个等差数列而言,除了它的首项、公差、项数和末项很重要之外,数列中所有数之和也是非常重要的.在进行等差数列求和时,最常用的方法就是分组法.以123456789++++++++为例:把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于首项加末项()19+,而且共有项数()9那么多对,所以所有数之和等于:首项末项项数因为我们把原来的等差数列写了2遍,所以所有数之和就等于原来等差数列之和的2倍,于是可以+ + + + + + + + 1 23456789+ + + + + + + + 987654321+先把数列正着写一遍:再把数列反着写一遍:第二十一讲等差数列求和得到等差数列求和公式:2和首项末项项数- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1计算下列各题:(1)36912151821242730+++++++++;(2)4137332925211713951++++++++++.分析:试着用公式进行一下计算,首项、末项、项数分别是多少?练习1计算:61116212631364146++++++++.例题2计算下列各题:(1)511177783+++++L ;(2)827772127.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习2计算:100928412L.例题3计算下列各题:(1)10121824共项+++L 14444444244444443;(2)131********共项+++L 1444444442444444443.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习3计算:12101316共项+++L 14444444244444443.例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完.请问:萱萱一共读了多少天?这本课外书共有多少页?分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米,请问:小高这些天里一共游了多少米?例题5小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子,请问:这15个盒子中一共有多少颗珠子?分析:奇数项等差数列求和公式?中间数是几?项数有几项?例题6小明从1开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果2007.小刚也从1开始计算若干连续自然数的和,他因为漏加了其中的一个自然数,也得到了错误结果2007.请问被重复计算和漏掉的两个数之和是多少?分析:等差数列求和接近2007时,这个等差数列的最后一项是几?作业1.计算:.2.计算:.3.计算:.31581114L 144424443共项111825102++++L 7067646158555249+++++++课堂内外高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师.高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生.高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich ).弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就.他发现姐姐的儿子聪明伶俐,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力.若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”.正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲.罗捷雅直到34岁才出嫁,生下高斯时已有35岁了.她性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围.当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.高斯的故事4.一个等差数列的首项是21,从第二项起每一项都比前一项大2,它的前20项之和是多少?5.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了18根香蕉.馋嘴猴前9周一共吃了多少根香蕉?第二十一讲等差数列求和1.例题 1答案:(1)165;(2)231详解:(1)()36912151821242730330102165+++++++++=+锤=.(2)()4137332925211713951411112231++++++++++=+锤=.2.例题 2答案:(1)616;(2)712 详解:(1)先求项数=()8356114-?=,再求和:()583142616原式=+锤=.(2)先求项数=()8275116-?=,827162712原式.3.例题 3答案:(1)390;(2)2041详解:(1)先求末项=()12101666+-?,()1218661266102390原式=+++=+锤=L .(2)先求末项=()1931316121--?,()1931871211931211322041原式=+++=+锤=L .4.例题 4答案:(1)8天;(2)204页详解:先求项数,即多少天=()3615318-?=天,()151********2204++鬃?=+锤=,即共有204页.5.例题 5 答案:360颗详解:利用中间数×项数,共有1524360?颗.6.例题 6 答案:63详解:123621953++++=L ,123632016++++=L ,则多加的数为2007195354-=,则漏加的数为201620079-=,则被重复计算和漏掉的两数之和为54963+=.7.练习 1 答案:234简答:()6111621263136414664692234++++++++=+锤=.8.练习 2 答案:672简答:先求项数=()100128112-?=,10012122672原式.9.练习 3 答案:318简答:先求末项=()10121343+-?,()121013161043122318+++=+锤=L 14444444244444443共项.10.练习 4答案:3600米简答:先求项数,有()6002005019-?=天,()200250600200600923600++鬃?=+锤=,即共游了3600米.11.作业 1答案:476简答:首项为70,末项为49,项数为8.(7049)82476原式.12.作业 2答案:791简答:项数为(10211)7114,和为(10211)142791.13.作业 3答案:1550简答:末项为530395,和为(595)3121550.14.作业 4答案:800简答:公差为2,第20项为2119259,和为(2159)202800.15.作业 5答案:162根简答:前9项的中间项是第5项.所以前9项和为189162.。

用高斯算法解题(等差数列求和)

用高斯算法解题(等差数列求和)
(4)计算:(2+4+6+8+...+2010)—(1+3+5+7+...+2009)
(5)在图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍组成?

小三角形数
火柴数
(5)盒子里放有3个乒乓球,一位魔术师第一次从盒子里拿出1个球,将它变成3个球放回盒子里;第二次又从盒子里拿出2个球,将每个球变成3个球后放回盒子里...第十次从盒子里拿出10个球,将每个球各变成3个球后放回到盒子里。这时盒子里共有多少个乒乓球?
7、小吉在计算从2到100的联系偶数之和时,把其中的一个偶数给漏掉了,结果得2522,他漏掉的偶数是多少?
8、从1到80的连续自然数中,取两数相加,使这两数相加的和大于80,有多少种不同取法?
9、从1到100的连续自然数中,取两数相加,使这两数相加的和不大于100,有多少种不同取法?
10、一座古钟,每走到整时处,对应敲整时下,一昼夜该钟共敲多少下?
1,5,9,13,...,93,97
5、下面的算式是按一定的规律排列的,那么,第20个算式的结果是( )
(1+3),(2+6),(3+9),(4+12),(5+15),...
6、计算50+51+52+53+...+100
7、计算3+10+17+24+...+101
8、(20+21+22+...+49+50)—(10+11+12+...+39+40)

三年级上奥数精品讲义等差数列求和

三年级上奥数精品讲义等差数列求和

高斯的烦恼(等差数列求和)知识图谱高斯的烦恼知识精讲一.等差数列求和1.等差数列求和公式:()2=+⨯÷和首项末项项数.2.等差数列项数为奇数时,可以利用中间数来求和.公式为:=⨯和中间数项数.三点剖析本讲主要培养学生的运算能力,其次培养学习的实践应用能力.本讲内容是在等差数列的基础计算上,继续学习等差数列的求和.从“凑整思想”中总结出基本求和公式,并且学习了对于奇数列利用中间数来求和的方法.课堂引入例题1、高斯在上小学时,一天老师布置了一道数学题:计算1234599100+++++++……的和是多少?老师觉得这题还是比较难的,正想坐下休息一会.但是没想到,高斯很快就把写有答案的石板交上来了,上面正写着正确答案——5050.老师不相信,让高斯回去再算,高斯却说:“1和100凑成101,2和99凑成101,________和________凑成________,……这样的数一共有________组,所以它们的和就是____________(列算式).”优秀的你能帮高斯填一下吗?例题2、 根据课堂引入中的方法,求1234564849++++++++…….基本求和公式例题1、 计算:7067646158555249+++++++.例题2、 计算:111825102+++⋅⋅⋅+=_________.今天我们要来来讲一讲高斯的故事.高斯?不就是先生您吗?您要讲您的什么故事呀?当然不是啦,此高斯非彼高斯.应该是说德国的数学家高斯吧?高斯真的很聪明哦~同为高斯,我是没有数学家高斯那么优秀了!但是大家还有机会哦~等差数列求和公式还记得吗?这个数列有多少项呢?例题3、 计算:从1开始的100个连续奇数的和是________.例题4、 柯小南为了减肥,计划每天做仰卧起坐,第一天她做了5个,以后每一天都比前一天多做2个,最后一天做了95个.那么柯小南一共做了多少天的仰卧起坐?共做了多少个仰卧起坐?例题5、 柯小南从27起写了26个连续奇数,唐小虎从26起写了26个连续自然数,然后他们分别将自己写的26个数求和,那么这两个和的差是多少呢?随练1、 计算:________.随练2、 计算:9083763427+++⋅⋅⋅⋅⋅⋅++=________.随练3、 唐小虎为了减肥开始长跑,他第一天跑了600米,以后每天他都比前一天多跑40米,那么前30天里他一共跑了多少米?利用中间数求和例题1、 一个等差数列共13项,那么这个等差数列的中间数是第________项.例题2、 一个等差数列共5项,和等于100,那么这个等差数列的中间项是第________项,这个数是________.例题3、 若9个连续偶数的和是2016,那这些数中,最小的是________.例题4、 7层书架,共777本,每下面一层比上面多7本,最上面一层有多少本书?1317212529333741+++++++=公式我都记住了,这题太简单!中间数的项数跟什么有关呢?已知和,反求中间项,我该用什么方法好呢?例题5、 一个等差数列的第1项是18,前5项的和为160,那么这个等差数列的第8项是________.随练1、 一个等差数列共15项,那么这个等差数列的中间数是第________项. 随练2、 9个连续奇数之和为171,其中最大的奇数是________.易错纠改例题1、 有这样的一道题目:若9个连续奇数的和是2025,那这些数中,最大的是________.看完他们的对话,你能写出正确的计算过程吗?拓展1、 计算:32343638404244464850+++++++++=__________.2、 计算:131925......6773+++++=__________.3、 371115......++++,等差数列共12项,那么这12项的和是__________.4、 雁雁很喜欢吃鸡蛋,她每天吃的鸡蛋数成等差数列,已知她第4天吃了10个鸡蛋,那么雁雁前7天共吃了__________个鸡蛋.5、 一个等差数列的第1项是8,前9项的和为180,那么这个等差数列的第12项是__________.6、 计算:从1开始的100个连续偶数的和是________.7、 9个连续偶数之和为144,其中最大的偶数是__________.8、 暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米.请问:小高这些天里一共游了多少米?9、 分析并口述题目的做题思路及方法.小明把一些珠子放在桌子上的15个盒子里.已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子.请问:这15个盒子中一共有多少颗珠子?这个是求末项的,上节课学过,我可以做哦~但是哪里好像有些不一样呢……求最小的数,也就是求末项呗!题目中给出了项数、和,求末项还需要首项,末项不知道,不能求呀……但是项数是奇数呀,这就够了!有和、项数就行了.对,还得有公差!都有都有,可以解决问题了!。

等差数列三年级奥数题

等差数列三年级奥数题

等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中每个相邻的元素之差相等。

等差数列的基本性质包括:1.等差数列中任意两个相邻元素的差值相等;2.等差数列中任意两个元素之差的值都是相同的;3.等差数列中元素的和与项数成正比。

二、等差数列求和公式等差数列求和公式是指将一个等差数列的所有元素相加得到的总和的计算公式。

等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的第一个元素,an 表示等差数列的最后一个元素。

三、三年级奥数等差数列求和习题及答案1.习题:一个等差数列的前5 个元素分别为1, 3, 5, 7, 9,求这个等差数列的和。

答案:S = 5 * (1 + 9) / 2 = 252.习题:一个等差数列的前10 个元素分别为2, 4, 6, 8, 10, 12, 14, 16, 18, 20,求这个等差数列的和。

答案:S = 10 * (2 + 20) / 2 = 110四、提高等差数列求和题目的解题技巧1.观察题目中的已知条件,如元素个数、首项和末项等,确定等差数列的性质;2.利用等差数列求和公式,将已知条件代入公式计算;3.注意数列中可能出现的公差为0 的情况,此时等差数列的所有元素都相等,和为元素个数乘以任意一项。

通过以上提纲和正文内容,我们可以了解到等差数列的概念和基本性质,以及等差数列求和公式的应用。

同时,我们通过三年级奥数等差数列求和习题及答案,学会了如何利用等差数列求和公式解决实际问题。

(完整版)三年级奥数等差数列求和习题及答案

(完整版)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 .三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=.四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲: 例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13= (3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85—1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如(1)式=(1+199)×199÷2=19900答案:(1)19900 (2)1160 (3)5355例3:一个等差数列2,4,6,8,10,12,14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8756⨯=答案:56例4:求1+5+9+13+17……+401该数列的和是多少.分析:这个数列的首项是1,末项是401,项数是(401-1)÷4+1=101,所以根据求和公式,可有:和=(1+401)×101÷2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+(61-1)×3=182根据求和公式:和=(2+182)×61÷2=5612答案:5612例6:把自然数依次排成“三角形阵”,如图。

小学奥数训练题 等差数列与高斯求和

小学奥数训练题 等差数列与高斯求和

等差数列与高斯求和1、计算下列各题:(1)11+14+17+ (101)(2)2+6+10+ (90)(3)297+293+289+ (209)(4)193+187+181+ (103)(5)1+3+4+6+7+9+10+12+13+…+66+67+69+70;(6)2+4+8+10+14+16+20+…+92+94+98+100;(7)1000+999-998+997+996-995+…+103+102-101.2、在19和91之间插入5个数,使这7个数构成一个等差数列.写出插入的5个数.3、在1000到2000之间,所有个位数字是7的自然数之和是多少?4、左下图是一个堆放铅笔的V形架,如果V形架上一共放有210支铅笔,那么最上层有多少支铅笔?5、有一堆粗细均匀的圆木,堆成右上图的形状,最上面一层有6根,每向下一层增加一根,共堆了25层.问:这堆圆木共有多少根?6、在上题中,如果最下面一层有98根,这堆圆木共有2706根,那么共堆了多少层?7、用相同的立方体摆成右图的形式,如果共摆了10层,那么最下面一层有多少个立方体?8、某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.问:这个剧院一共有多少个座位?9、小明从1月1日开始写大字,第1天写了4个,以后每天比前一天多写相同数量的大字,结果全月共写了589个大字.问:小明每天比前一天多写几个大字?10、一个七层书架放了777本书,每一层比它的下一层少7本书.问:最上面一层放了几本书?11、学校进行乒乓球选拨赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了78场比赛.问:有多少人参加了选拨赛?12、跳棋棋盘(如左下图)上一共有多少个棋孔?13、右上图中的正六边形棋盘上共有多少个棋孔?14、用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形按左下图所示铺满一个大的等边三角形,已知这个大的等边三角形的底边放有10根火柴,那么一共要用多少根火柴?15、有一个六边形点阵(右上图),它的中心是一个点,看做第1层,第2层每边2个点,第3层每边3个点……这个六边形点阵共100层.问:这个点阵共有多少个点?16、求前100个既能被2整除又能被3整除的数之和.17、在1~100这100个自然数中,所有不能被9整除的数的和是多少?18、在1~100这100个自然数中,所有不能被9整除的奇数的和是多少?19、在1~200这200个自然数中,所有能被4整除或能被11整除的数的和是多少?20、求所有加6以后能被11整除的三位数的和.21、在所有的两位数中,十位数字比个位数字小的两位数有多少个?22、一个数列有11个数,中间一个数最大.从中间的数往前数,一个数比一个数小2;从中间的数往后数,一个数比一个数小3.这11个数的总和是200,那么中间的数是几?23、编号为1~9的九个盒子中共放有351粒米,已知每个盒子都比前一号盒子多同样粒米.如果1号盒子内放了11粒米,那么后面的盒子比它前一号的盒子多放几粒米?如果3号盒子内放了23粒米,那么后面的盒子比它前一号的盒子多几粒米?24、从两位的自然数中,每次取两个不同的数,要使这两个数的和是三位的自然数,有多少种取法?25、某校排练体操,一圈套一圈地围成若干圈,从外向内各圈人数依次少4人.如果围成8圈的最外圈人数比围成4圈的最外圈人数少20人,那么参加排练的共有多少人?26、观察下面的数阵,容易看出,第n行最右边的数是n2,那么,第20行最左边的数是几?第20行所有数字的和是多少?27、有一列数:1,999,998,1,997,996,1,…从第3个数起,每一个数都是它前面2个数中大数减小数的差.求从第1个数起到第999个数这999个数之和.28、10个连续偶数的和是从1开始的10个连续奇数和的2.5倍,其中最大的偶数是多少?29、有一类自然数,其中每一个数与5的和都是9的倍数,与5的差都是7的倍数,这类自然数中从小到大排列的第10个是几?30、设自然数按如下方式排列,那么第10行第1个数字是几?31、某车间从3月2日开始每天调入1人,已知每人每天生产1件产品,该车间从3月1日至3月21日共生产840件产品.问:该车间原有工人多少名?32、小明练习打算盘,他按照自然数的顺序从1开始求和,当加到某个数时,和是1000,但他发现计算时少加了一个数.问:小明少加了哪个数?33、莎莎练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是888,但她重复计算了其中一个数字.问:莎莎重复计算了哪个数字?34、有一套丛书共6册,每册出版间隔时间是7年,当6册出完后,这套丛书的出版年份的总和是11883.问:第6册是何年出版的?35、奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.已知去时用了4天,回来时用了3天.问:学校距离百花山多少千米?36、上体育课时,我们几个同学站成一排,从1开始顺序报数,除我以外的其他同学报的数之和减去我报的数恰好等于50.问:共有多少个同学?我报的数是几?37、有若干个学生,顺次编号为1,2,3,…所有编号之和是100的倍数且小于1000.问:共有多少个学生?38、重阳节那天,延龄茶庄请来25位老人品茶,这25位老人的年龄恰好是25个连续自然数,并且年龄之和恰好是2000.问:其中年龄最大的老人多少岁?39、☆9张面积都是9的图形放在面积为45的桌面上(不能超出桌面),能否使任何2个图形相互重叠的面积都小于1?40、☆求一个自然数n,使得前n个自然数的和是一个三位数,并且该三位数的个位、十位、百位三个数码都相同.。

小学奥数题讲解:高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列)

德国数学家⾼斯幼年时代聪明过⼈,上学时,有⼀天⽼师出了⼀道题让同学们计算: 1+2+3+4+…+99+100=? ⽼师出完题后,全班同学都在埋头计算,⼩⾼斯却很快算出答案等于5050。

⾼斯为什么算得⼜快⼜准呢?原来⼩⾼斯通过细⼼观察发现: 1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,⼩⾼斯把这道题巧算为 (1+100)×100÷2=5050。

⼩⾼斯使⽤的这种求和⽅法,真是聪明极了,简单快捷,并且⼴泛地适⽤于“等差数列”的求和问题。

若⼲个数排成⼀列称为数列,数列中的每⼀个数称为⼀项,其中第⼀项称为⾸项,最后⼀项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是⾸项为1,末项为100,公差为1的等差数列;(2)是⾸项为1,末项为99,公差为2的等差数列;(3)是⾸项为8,末项为71,公差为7的等差数列。

由⾼斯的巧算⽅法,得到等差数列的求和公式: 和=(⾸项+末项)×项数÷2。

例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,⾸项是1,末项是1999,共有1999个数。

由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

注意:利⽤等差数列求和公式之前,⼀定要判断题⽬中的各个加数是否构成等差数列。

例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,⾸项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利⽤等差数列求和公式时,有时项数并不是⼀⽬了然的,这时就需要先求出项数。

高思奥数导引小学三年级含详解答案第21讲.间隔与数列

高思奥数导引小学三年级含详解答案第21讲.间隔与数列

第21讲间隔与阵列兴趣篇1、社区门口有一条长为100米的马路,现在要在这条马路的一侧种树,每隔10米种一棵,而且马路的两端都要种。

一共需要种多少棵树?2、学校门前有条长100米的马路,马路两侧一共种了42棵树。

每侧相邻两棵树之间的距离都相等,而且马路的两端都种了。

请问:相邻两棵树之间的距离是多大?3、包包上楼,从第一层走到第三层需要上36级台阶。

如果各层楼之间的台阶数相同,那么包包从第一层走到第六层一共需要上多少级台阶?4、学校组织军训,教官让男生站一排,女生站一排。

请问:(1)包包和同班女生站成一排,她发现自己的左侧有7人、右侧有8人。

女生一共有多少人?(2)铮铮和同班男生站成一排,他发现自己是左起第7个、右起第9个。

男生一共有多少人?(3)昊昊也在男生队伍里。

他发现自己是左起第4个,他的右侧应该有几人?他应该是右起第几人?5、运动会闭幕式结束后,大家准备散场。

班长包包让全班同学站成一行清点人数(她自己并不在队伍中)。

她先从左往右数,发现铮铮是第25个;然后她又从右往左数,发现昊昊正好是第29个。

如果队伍里一共有31人,那么铮铮和昊昊之间有几个人?6、一整块大豆腐长40厘米,宽20厘米。

厨师准备把它切成一些长5厘米,宽4厘米的小块,而且每次只能沿着直线切。

如果不允许移动豆腐的位置,那么厨师至少要切几次?7、学校有一个圆形水池,水池的周长为40米。

如果绕着水池每隔4米种一棵树,一共要种几棵树?8、50个男生沿着300米的跑道站成一圈,并且相邻两人之间的距离都相等。

现在,每相邻两个男生之间又加入了两个女生,相邻两人之间的距离还是相等。

请问:一共加入了多少个女生?加入女生后,相邻两人之间的距离又是多少米?9、有100个人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?10、一个实心方阵,最外层一共有20人。

请问:(1)最外层每边有多少人?这个方阵一共有多少人?(2)如果要组成一个更大的方阵,至少需要增加多少人?(3)如果给这个方阵最外面再增加一层,那么需要增加多少人?拓展篇1、刘老师想做一张木凳。

三年级奥数题及参考答案-等差数列

三年级奥数题及参考答案-等差数列
为大家准备了小学三年级奥数题希望小编整理奥数题等差数列问题可以帮助到你们助您快速通往高分之路
三年级奥数题及参考答案-等差数列
编者小语:“题海无边,题型有限”。学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。为大家准备了小学三年级奥数题,希望小编整理奥数题等差数列问题,可以帮助到你们,助您快速通往高分之路!!
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。那么应插入哪些数?
2、一个等差数列的首项是6,第源自项是55,公差是( )。解答1:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。
解答2:d=(55-6)÷(8-1)=7

三年级奥数题及参考答案等差数列基础练习

三年级奥数题及参考答案等差数列基础练习

三年级奥数题及参考答案:等差数列基础练习编者导语:数学竞赛题代表了活的数学。

解竞赛题虽离不开一般的思维规律,离不开数学知识,也有一些使用频率较大的方法和技巧,但大都没有常规模式可套,也无万能范本可循。

且赛题内容不断更新,重要的是整体全局上的洞察力、敏锐的直觉和独创性的构思。

查字典数学网为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:等差数列基础练习,可以帮助到你们,助您快速通往高分之路!!1、一个递增(后项比前项大)的等差数列,第28项比第53项(多或少)个公差。

2、一个递增(后项比前项大)的等差数列,第53 项比第28 项(多或少)个公差。

3、一个递增(后项比前项大)的等差数列,第55 项比第37 项(多或少)个公差。

4、一个递增(后项比前项大)的等差数列,第55 项比第83 项(多或少)个公差。

5、一个递增(后项比前项大)的等差数列,第28项比第73项(多或少)个公差。

6、一个递增(后项比前项大)的等差数列,第90项比第73项(多或少)个公差。

7、一个递增(后项比前项大)的等差数列,首项比第73 项(多或少)个公差。

8、一个递增(后项比前项大)的等差数列,第87 项比首项(多或少)个公差。

9、一个递减(后项比前项小)的等差数列,第18项比第32 项(多或少)个公差。

10、一个递减(后项比前项小)的等差数列,第32项比第 18 项(多或少)个公差。

11、一个递减(后项比前项小)的等差数列,第74项比第26项(多或少)个公差。

12、一个递减(后项比前项小)的等差数列,第74项比第91 项(多或少)个公差。

13、一个递减(后项比前项小)的等差数列,第29项比第 86 项(多或少)个公差。

14、一个递减(后项比前项小)的等差数列,第123 项比第86项(多或少)个公差。

15、一个递减(后项比前项小)的等差数列,首项比第76 项(多或少)个公差。

16、一个递减(后项比前项小)的等差数列,第76项比首项(多或少)个公差。

小学奥数 等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。

要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。

一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

高斯小学奥数含答案三年级(上)第21讲等差数列求和

高斯小学奥数含答案三年级(上)第21讲等差数列求和

☆☆常重要的+ 先把数列正着写一遍 再把数列反着写一遍 且共有项数(9)那么多对,所以所有数之和等于 在进行等差数列求和时,最常用的方法就是分组法•以 首项末项项数对于一个等差数列而言, 除了它的首项、 公差、项数和末项很重要之外,数列中所有数之和也是非 9 + 8 + 7 + 6 +5 + 4 + 3 + 2 +1 因为我们把原来的等差数列写了 2遍,所以所有数之和就等于原来等差数列之和的 2倍,于是可以1 +2 +3 +4 + 5+ 6 + 7 + 8 + 91+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9 为例: 把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于首项加末项(1+ 9),而 第二^一讲等差数列求和例题1计算下列各题:(1)3+ 6+ 9+ 12 + 15+ 18+ 21+ 24+ 27+ 30 ;(2)41 + 37 + 33+ 29 + 25 + 21 + 17+ 13+ 9+ 5+ 1 .分析:试着用公式进行一下计算,首项、末项、项数分别是多少?练习1计算:6+ 11+ 16+ 21 + 26+ 31+ 36 + 41+ 46 .例题2计算下列各题:(1)5+ 11+ 17+ L + 77 + 83 ;(2)82 77 72 12 7 .分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习2计算:100 92 84 L 12 .例题3计算下列各题:(1)电444442難为屁;共10项(2)唱444444444444443.共13项分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完•请问:萱萱一共读了多少天?这本课外书共有多少页?分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米,请问:小高这些天里一共游了多少米?例题5小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子,请问:这15个盒子中一共有多少颗珠子?分析:奇数项等差数列求和公式?中间数是几?项数有几项?例题6小明从1开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果2007 •小刚也从1开始计算若干连续自然数的和,他因为漏加了其中的一个自然数,也得到了错误结果2007 •请问被重复计算和漏掉的两个数之和是多少?分析:等差数列求和接近2007时,这个等差数列的最后一项是几?课堂内外高斯的故事高斯是一对普通夫妇的儿子•他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲•在她成为高斯父亲的第二个妻子之前,她从事女佣工作•他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师•高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今•他曾说,他在麦仙翁堆上学会计算•能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁•父亲格尔恰尔德迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生. 高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)•弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就•他发现姐姐的儿子聪明伶俐,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力•若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”•正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲•罗捷雅直到34岁才出嫁,生下高斯时已有35岁了•她性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围•当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.作业1. 计算:70 + 67+ 64 + 61+ 58+ 55 + 52+ 49 •2. 计算:11+ 18+ 25+ L + 102 •3.计算:54844>2 414 族共31项馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了18根香蕉•馋嘴猴前5.9周一共吃了多少根香蕉?详解:(1) 3+ 6+ 9+ 12+15+ 18+ 21 + 24 + 27 + 30= (3 + 30)锤10 2= 165 .(2) 41 + 37 + 33 + 29 + 25 + 21 + 17 + 13 + 9 + 5 + 1 =(41 + 1)锤11 2 = 231 .2. 例题2答案:(1) 616; (2) 712详解:(1)先求项数=(83 - 5)? 6 1= 14,再求和:原式=(5+ 83)锤14 2= 616 .(2)先求项数=(82 - 7)? 5 1= 16,原式82 7 16 2 712 .3. 例题3答案:(1) 390 ; (2) 2041详解:(1)先求末项=12 + (10- 1)? 6 66 ,原式=12 + 18 + L + 66 = (12 + 66)锤10 2 = 390 .(2)先求末项=193- (13- 1)? 6 121 , 原式=193 + 187 + L + 121 = (193 + 121)锤13 2 = 2041 .4. 例题4答案:(1) 8天;(2) 204页详解:先求项数,即多少天=(36 - 15)? 3 1 = 8 天,15 + 18 + 鬃? 36 = (15 + 36)锤8 2= 204 ,即共有204页.5. 例题5答案:360颗详解:利用中间数X项数,共有15? 24 360颗.6. 例题6答案:63详解:1+ 2+ 3+ L + 62= 1953 , 1 + 2+ 3+ L + 63= 2016,则多加的数为2007- 1953= 54,则漏加的数为2016- 2007= 9,则被重复计算和漏掉的两数之和为54 + 9= 63 .7. 练习1答案:234简答:6 + 11 + 16 + 21 + 26 + 31 + 36 + 41 + 46 = (6 + 46)锤9 2 = 234 .8. 练习2答案:672简答:先求项数=(100 - 12) ? 8 1 = 12 ,原式100 12 12 2 672 .9. 练习3答案:318简答•先求末项=10+ (12 - 1)? 3 43 W I44424444443= (10+ 43)锤12 2=318' 共12项即共游了3600米.11. 作业1答案:476简答:首项为70,末项为49,项数为 & 原式(70 49) 8 2 476 .12. 作业2答案:791简答:项数为(102 11) 7 1 14,和为(102 11) 14 2 791 .13. 作业3答案:1550简答:末项为5 30 3 95,和为(5 95) 31 2 1550 .14. 作业4答案:800简答:公差为2,第20项为21 19 2 59,和为(21 59) 20 2 800 •15. 作业5答案:162根简答:前9项的中间项是第5项•所以前9项和为18 9 162 •12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 计算: 11+ 18+ 25+ L + 102 ?
4 3.计算: 5 48 44>2 4 1 族 共 31 项
5. 馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第 9 周一共吃了多少根香蕉 ?
5 周吃了 18 根香蕉 ?馋嘴猴前
详解: ( 1) 3+ 6+ 9+ 12+15+ 18+ 21 + 24 + 27 + 30= (3 + 30 )锤 10
第二 ^一讲等差数列求和
☆☆
常重要的
对于一个等差数列而言, 除了它的首项、 公差、项数和末项很重要之外,数列中所有数之和也是非
在进行等差数列求和时,最常用的方法就是分组法 ?以
1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9 为例 :
先把数列正着写一遍 再把数列反着写一遍
1+2+3 + 4 + 5+6 +7 +8 +9 +
(1) 3+ 6+ 9+ 12 + 15+ 18+ 21+ 24+ 27+ 30 ;
(2) 41 + 37 + 33+ 29 + 25 + 21 + 17+ 13+ 9+ 5+ 1
.
分析:试着用公式进行一下计算,首项、末项、项数分别是多少
?
练习 1
计算: 6+ 11+ 16+ 21 + 26+ 31+ 36 + 41+ 46 .
?
59 ,和为 (21 59) 20 2 800
15. 作业 5 答案: 162 根 简答:前 9 项的中间项是第 5 项?所以前 9 项和为 18 9
162 ?
2= 165 .
( 2) 41 + 37 + 33 + 29 + 25 + 21 + 17 + 13 + 9 + 5 + 1 = ( 41 + 1 ) 锤 11 2 = 231 .
2. 例题 2 答案: ( 1) 616 ; ( 2) 712
详解: ( 1) 先求项数 =(83 - 5 )? 6 1= 14 ,再求和: 原式 =(5+ 83 )锤 14 2= 616 .
凭自己的经验为年幼的高斯规划人生 . 高斯
尊重他的父亲,并且秉承了其父诚实、 谨慎的性格 .
在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希
( Friederich )? 弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就 ?他
发现姐姐的儿子聪明伶俐,
因此他就把一部分精力花在这位小天才身上,
例题 2
计算下列各题:
(1) 5+ 11+ 17+ L + 77 + 83 ;
(2) 82 77 72
12 7 .
分析:要用等差数列求和公式, 那些算出来 .
需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的
练习 2
计算: 100 92 84 L 12 .
例题 3
计算下列各题:
(1) 电 4444 42 難为屁;
高斯用很短的时间计算出了小学老师布置的任务:
对自然数从 1 到 100 的求和 . 他所使用
的方法是:对 50 对构造成和 101 的数列求和 ( 1+100,2+99,3+98 ……) ,同时得到结果 : 5050 . 这 一年,高斯 9 岁?
父亲格尔恰尔德 迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢
34 岁才出嫁,生下高斯时已有 35 岁了 ?她性格坚强、聪明贤慧、
富有幽默感 . 高斯一生下来,
这已经超出了一个孩子能被许可的范
围?当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无
知.
作业
1. 计算: 70 + 67+ 64 + 61+ 58+ 55 + 52+ 49 ?
12 2
672 .
9. 练习 3 答案: 318
简答?先求末项 =10+ (12 - 1 )? 3 43 W I44424444443= (10+ 43 )锤 12 2 = 318
'
共 12 项
即共游了 3600 米. 11. 作业 1
答案: 476
简答:首项为 70 , 末项为 49 , 项数为 & 原式 (70
即共有 204 页.
5. 例题 5 答案: 360 颗
详解:利用中间数 X 项数,共有 15? 24
360 颗.
6. 例题 6 答案: 63
详解: 1+ 2+ 3+ L + 62= 1953 , 1 + 2+ 3+ L + 63= 2016 ,则多加的数为 2007- 1953= 54 ,则
漏加的数为 2016- 2007= 9 ,则被重复计算和漏掉的两数之和为
( 2) 先求项数 =(82 - 7 )? 5
1= 16 ,原式 82
7 16 2 712 .
3. 例题 3 答案: ( 1) 390 ; ( 2) 2041
详解: ( 1) 先求末项 =12 + (10- 1 )? 6
66 , 原式 =12 + 18 + L + 66 = (12 + 66 )锤 10
2 = 390 .
( 2) 先求末项 =193- (13- 1 )? 6
121 , 原式 =193 + 187 + L + 121 = (193 + 121 )锤 13
2 = 2041 .
4. 例题 4 答案: ( 1) 8 天; ( 2) 204 页
详解:先求项数,即多少天
= (36 - 15 )? 3 1 = 8 天, 15 + 18 + 鬃? 36 = (15 + 36 )锤 8 2= 204 ,
用生动活泼的方式开
发高斯的智力 ?若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成
才之重要,他想到舅舅多
产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”
?正
是由于弗利德里希慧眼识英才,
经常劝导姐夫让孩子向学者方面发展,
才使得高斯没有成为园
丁或者泥瓦匠 .
在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲 ?罗捷雅直到
共 10 项
(2) 唱 444444444444443 .
共 13 项
分析:要用等差数列求和公式, 那些算出来 .
需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的
例题 4
萱萱读一本课外书, 第一天读了 15 页,以后每天都比前一天多读 3 页,最后一天读了 36 页,刚好 把书读完 ?请问:萱萱
15 个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差
数列,并且从左数第 8 个盒子中有 24 颗珠子,请问:这 15 个盒子中一共有多少颗珠子?
分析:奇数项等差数列求和公式?中间数是几?项数有几项?
例题 6
小明从 1 开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果
接受过教育,近似于文盲
?在她成为高斯父亲的第二个妻子之前,她从事女佣工作 ?他的父亲
曾做过园丁,工头,商人的助手和一个小保险公司
的评估师 ?高斯三岁时便能够纠正他父亲的
借债账目的事情,已经成为一个轶事流传至今 ?他曾说,他在麦仙翁堆上学
会计算 ?能够在头 脑中进行复杂的计算,是上帝赐予他一生的天赋 .
一共读了多少天?这本课外书共有多少页? 分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?
练习 4
暑假里,小高练习游泳,第一天他游了
600 米,请问:小高这些天里一共游了多少米?
200 米,以后每一天都比前一天多游
50 米,最后一天游了
例题 5
小华把一些珠子放在桌子上的
54 + 9= 63 .
7. 练习 1 答案: 234
简答: 6 + 11 + 16 + 21 + 26 + 31 + 36 + 41 + 46 = (6 + 46 )锤 9
2 = 234 .
8. 练习 2 答案: 672
简答:先求项数 =(100 - 12 ) ? 8
1 = 12 , 原式 100 12
9+8+7+6+5+4+3 +2+ 1
把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于
( 且共有项数 9)那么多对,所以所有数之和等于
首项加末项 (1+ 9 ),而
首项末项项数
因为我们把原来的等差数列写了 2 遍,所以所有数之和就等于原来等差数列之和的
2 倍,于是可以
例题 1
计算下列各题:
2007 ?小刚也从 1 开始计算若干连续自然数的和,
他因为漏加了其中的一个自然数,
2007 ?请问被重复计算和漏掉的两个数之和是多少?
分析:等差数列求和接近 2007 时,这个等差数列的最后一项是几?
相关文档
最新文档