中考数学专题一元一次方程及其应用

合集下载

初中数学知识归纳一元一次方程的实际应用

初中数学知识归纳一元一次方程的实际应用

初中数学知识归纳一元一次方程的实际应用一元一次方程是初中数学中的基础内容,它的实际应用广泛且重要。

本文将对一元一次方程的实际应用进行归纳总结,以帮助读者更好地理解和应用这一数学知识。

1. 买卖问题在日常生活中,我们经常会遇到买卖问题。

通过建立一元一次方程,我们可以求解出一些相关信息,比如商品的原价、打折后的价格等。

例如,小明在商场看中了一件原价为x元的衣服,由于打折活动,他最终以80元买下了这件衣服。

假设打折的折扣率为p(0<p<1),我们可以建立如下方程:x * p = 80通过解这个方程,我们可以得到原价x的数值,从而了解到商品的真实价值。

2. 平均数问题在统计学中,经常需要求解一组数据的平均数。

通过建立一元一次方程,我们可以根据已知条件求解未知数,得到平均数的数值。

例如,某班级共有30名学生,他们的数学期末成绩的平均分为80分。

现在,有一名学生因病没有参加考试,但是我们知道他的成绩为90分。

我们可以建立如下方程:(30 * 80 - 90) / 30 = 平均分通过解这个方程,我们可以计算出去掉这名学生后班级的平均分数。

3. 距离、速度和时间问题在物理学和交通运输领域,经常需要通过距离、速度和时间之间的关系建立一元一次方程,来求解未知数。

例如,一辆汽车以速度v行驶了t小时,行驶的距离为d。

我们知道速度和时间之间的关系为v = d / t,其中d为常数。

如果我们知道速度为60km/h,时间为2小时,我们可以建立如下方程:60 = d / 2通过解这个方程,我们可以求解出汽车行驶的总距离。

4. 工程问题在工程领域中,一元一次方程也有着重要的应用。

比如建筑设计、电路布线等方面,我们可以通过建立一元一次方程来求解相关参数,计算出设计所需的具体数值。

例如,一栋建筑物的墙壁总面积为A平方米,我们知道每平方米的墙壁所需喷涂的面漆量为x升。

我们可以建立如下方程:A = x * 喷涂的面漆量通过解这个方程,我们可以计算出墙壁喷涂所需的具体面漆量。

2023年中考数学真题分项汇编(全国通用)一次方程(组)及其应用(33题)(解析版)

2023年中考数学真题分项汇编(全国通用)一次方程(组)及其应用(33题)(解析版)

一次方程(组)及其应用一、单选题【答案】A【分析】根据碳水化合物、蛋白质与脂肪的含量共30g 列方程.【详解】解:设蛋白质、脂肪的含量分别为g x ,g y ,则碳水化合物含量为(1.5)g x , 则: 1.530x x y ++=,即5302x y +=,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.【答案】A【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:12绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x 尺,绳子长y 尺,那么可列方程组为: 4.50.51y x y x =+⎧⎨=−⎩,故选:A .【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.3.(2023·黑龙江齐齐哈尔·统考中考真题)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm 的导线,将其全部截成10cm 和20cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( ) A .5种 B .6种 C .7种 D .8种【答案】C【分析】设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意,得出152x y −=,进而根据,x y 为正整数,即可求解.【详解】解:设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意得,1020150x y +=,即152xy −=,∵,x y 为正整数, ∴1,3,5,7,9,11,13x = 则7,6,5,4,3,2,1y =, 故有7种方案, 故选:C .【点睛】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.【答案】A【分析】设木长x 尺,根据题意“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺”,列出一元一次方程即可求解. 【详解】解:设木长x 尺,根据题意得,1( 4.5)12x x +=−,故选:A.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.【答案】A【分析】设长木长为x 尺,则绳子长为()4.5x +尺,根据“将绳子对折再度量长木,长木还剩余1尺”,可列出方程.【详解】设长木长为x 尺,则绳子长为()4.5x +尺,根据题意,得:()14.512x x +=−故选:A.【点睛】本题考查一元一次方程解决实际问题,理解题意,找出等量关系列出方程是解题的关键. 【答案】B【分析】根据题意,由设鸡有x 只,兔有y 只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有x 只,兔有y 只,则由题意可得:352494x y x y +=⎧⎨+=⎩, 故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.【答案】D【分析】设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得()24015012x x =+故选:D .【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.【答案】B【分析】根据某村有土地60公顷,计划将其中10%的土地种植蔬菜,得到种植茶园和种植粮食的面积为90%,结合茶园的面积比种粮食面积的2倍少3公顷,列出方程组即可. 【详解】解:设茶园的面积为x 公顷,种粮食的面积为y 公顷,由题意,得:()60110%23x y x y ⎧+=−⎨=−⎩,即:5423x y x y +=⎧⎨=−⎩ 故选B .【点睛】本题考查根据实际问题列方程组.找准等量关系,正确的列出方程组,是解题的关键.9.(2023·浙江绍兴·统考中考真题)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A .5352x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y =+⎧⎨=+⎩D .5253x y x y =+⎧⎨=+⎩【答案】B【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组. 【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.【答案】C【分析】根据等量关系“鸡的只数+兔的只数35=”和“2⨯鸡的只数4+⨯兔的只数94=”即可列出方程组. 【详解】解:设有x 只鸡,y 只兔,由题意可得:352494x y x y +=⎧⎨+=⎩, 故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.11.(2023·广西·模拟预测)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x −=⨯C .24015024012x x +=⨯D .24015015012x x −=⨯【答案】D【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设快马x 天可以追上慢马, 依题意,得: 240x -150x=150×12. 故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.(2023·黑龙江·统考中考真题)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( ) A .5种 B .6种 C .7种 D .8种【答案】B【分析】设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,根据采购三种图书需500元列出方程,再依据x 的数量分两种情况讨论求解即可.【详解】解:设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,其中56,0,0,x y z ≤≤>>且,,x y z 均为整数,根据题意得,302520500x y z ++=, 整理得,654100x y z ++=, ①当5x =时,6554100y z ⨯++=, ∴704,5zy −=∵0,0,y z >>且,y z 均为整数, ∴当70410z −=时,2y =,∴15z =; 当70430z −=时,6y =,∴10z =; 当70450z −=时,10y =,∴5z =; ②当6x =时,6654100y z ⨯++=,∴644,5zy −=∵0,0,y z >>且,y z 均为整数, ∴当64420z −=时,4y =,∴11z =; 当64440z −=时,8y =,∴6z =; 当64460z −=时,12y =,∴1z =; 综上,此次共有6种采购方案, 故选:B .【点睛】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.13.(2023·四川南充·统考中考真题)关于x ,y 的方程组321x y m x y n +=−⎧⎨−=⎩的解满足1x y +=,则42m n ÷的值是( ) A .1 B .2 C .4 D .8【答案】D【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n÷变形,即可解答.法二:321x y m x y n +=−⎧⎨−=⎩①②中①-②得到()221m n x y −=++,再根据1x y +=求出23m n −=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=−⎧⎨−=⎩①②,+①②得421x m n =+−,解得214m n x +−=,将214m n x +−=代入②,解得2314m n y −−=,1x y =+,21231144m n m n +−−−∴+=,得到23m n −=,2234222228m n m n m n −∴÷=÷===,法二:321x y m x y n +=−⎧⎨−=⎩①②①-②得:2221x y m n +=−−,即:()221m n x y −=++,∵1x y +=,∴22113m n −=⨯+=,2234222228m n m n m n −∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系是解题的关键.【答案】C【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.【详解】解:设每枚黄金重x 两,每枚白银重y 两,根据题意得,911(10)(8)13x yy x x y =⎧⎨+−+=⎩. 故选:C.【点睛】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.15.(2023·四川眉山·统考中考真题)已知关于,x y 的二元一次方程组34125x y m x y m −=+⎧⎨+=−⎩的解满足4x y −=,则m 的值为( ) A .0 B .1C .2D .3【答案】B【分析】将方程组的两个方程相减,可得到3x y m −=+,代入4x y −=,即可解答.【详解】解:34125x y m x y m −=+⎧⎨+=−⎩①②,−①②得2226x y m −=+,3x y m ∴−=+,代入4x y −=,可得34m +=,解得1m =, 故选:B .【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.二、填空题【答案】54573x x +=+【分析】根据题中钱的总数列一元一次方程即可. 【详解】解:设合伙人数为x 人, 根据题意列方程54573x x +=+; 故答案为:54573x x +=+.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.17.(2023·辽宁大连·统考中考真题)我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________. 【答案】8374x x −=+【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解. 【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元, 则可列方程为:8374x x −=+ 故答案为:8374x x −=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.【答案】7(答案不唯一)【分析】先解关于x 、y 的二元一次方程组的解集,再将x y +>代入,然后解关于a 的不等式的解集即可得出答案.【详解】将两个方程相减得3x y a +=−,∵x y +>∴3a −>∴3a >+ ∵489<<,∴23<<,∴536<<,∴a 的一个整数值可以是7. 故答案为:7(答案不唯一).【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点. 19.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=−的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b −=⎧⎨−+=−⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4−−【分析】先分别解一元一次方程37322x x +=−和二元一次方程组2428a b a b −=⎧⎨−+=−⎩,求得点Q 的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=−,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b −=⎧⎨−+=−⎩①②,由2+⨯①②得,3=12b −,解得:4b =−,把4b =−代入①得,24=4a +,解得:0a =,∴=04=4a b +−−,∴点Q 的纵坐标为4−,∴点Q 的坐标为()5,4−,又∴点Q 关于y 轴对称点Q '()5,4−−, 故答案为:()5,4−−.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键. 20.(2023·浙江·统考中考真题)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为__________斤.【答案】967【分析】设原有生丝x 斤,根据题意列出方程,解方程即可求解.【详解】解:设原有生丝x 斤,依题意,30121230316x =−,解得:967x =,故答案为:967.【点睛】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.三、解答题21.(2023·江苏连云港·统考中考真题)解方程组3827x y x y +=⎧⎨−=⎩ 【答案】31x y =⎧⎨=−⎩【分析】方程组运用加减消元法求解即可.【详解】解:3827x y x y +=⎧⎨−=⎩①②①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =−.∴原方程组的解为3,1.x y =⎧⎨=−⎩【点睛】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.22.(2023·浙江台州·统考中考真题)解方程组:7,2 2.x y x y +=⎧⎨−=⎩【答案】3,4.x y =⎧⎨=⎩【分析】把两个方程相加消去y ,求解x ,再把x 的值代入第1个方程求解y 即可.【详解】解:722x y x y +=⎧⎨−=⎩①②①+②,得39x =.∴3x =.把3x =代入①,得4y =.∴这个方程组的解是34x y =⎧⎨=⎩.【点睛】本题考查的是二元一次方程组的解法,熟练的利用加减消元法解方程组是解本题的关键.23.(2023·湖南常德·统考中考真题)解方程组:213423x y x y −=⎧⎨+=⎩①② 【答案】52x y =⎧⎨=⎩【分析】方程组利用加减消元法求解即可.【详解】解:将①2⨯得:242x y −=③+②③得:5x =将5x =代入①得:2y =所以52x y =⎧⎨=⎩是原方程组的解.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)租14辆45座客车较合算【分析】(1)设参加此次研学活动的师生有x 人,原计划租用45座客车y 辆,根据题意列出二元一次方程组求解即可;(2)由(1)结论求出所需费用比较即可.【详解】(1)解:设参加此次研学活动的师生有x 人,原计划租用45座客车y 辆依题意得451560(3)y x y x +=⎧⎨−=⎩,解得:60013x y =⎧⎨=⎩,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,142002800⨯=,103003000⨯=,∵28003000<∴租14辆45座客车较合算.【点睛】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键. 25.(2023·四川自贡·统考中考真题)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【答案】该客车的载客量为40人【分析】设该客车的载客量为x 人,由题意知,430510x x +=−,计算求解即可.【详解】解:设该客车的载客量为x 人,由题意知,430510x x +=−,解得,40x =,∴该客车的载客量为40人.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意正确的列方程. 26.(2023·安徽·统考中考真题)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元,已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【答案】调整前甲、乙两地该商品的销售单价分别为40,50元【分析】设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意,列出二元一次方程组,解方程组即可求解.【详解】解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得,()10110%15x y x y +=⎧⎨++=−⎩,解得:4050x y =⎧⎨=⎩答:调整前甲、乙两地该商品的销售单价分别为40,50元【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键. 27.(2023·全国·统考中考真题)2022年12月28日查干湖冬捕活动后,某商家销售A ,B 两种查干湖野生鱼,如果购买1箱A 种鱼和2箱B 种鱼需花费1300元:如果购买2箱A 种鱼和3箱B 种鱼需花费2300元.分别求每箱A 种鱼和每箱B 种鱼的价格.【答案】每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【分析】设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,由题意得:21300232300x y x y +=⎧⎨+=⎩,解得700300x y =⎧⎨=⎩,答:每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.【答案】(1)甲区有农田50000亩,乙区有农田40000亩;(2)100亩【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫− ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【详解】(1)解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.(2)解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫− ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y ⎛⎫=− ⎪⎝⎭,即5031.2y y ⎛⎫=− ⎪⎝⎭, 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,根据题意建立方程组,解方程组即可得;(2)设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m −箱,根据题意建立不等式组,解不等式组可得m 的取值范围,再结合m 为正整数可得m 所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,由题意得:9639058310x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩,答:A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元.(2)解:设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m −箱,购买A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,()()305230m m m m ⎧−−≥⎪∴⎨≤−⎪⎩,解得35202m ≤≤,又m 为正整数,m ∴所有可能的取值为18,19,20,①当18m =,3012m −=时,购买总费用为30182012780⨯+⨯=(元),②当19m =,3011m −=时,购买总费用为30192011790⨯+⨯=(元),③当20m =,3010m −=时,购买总费用为30202010800⨯+⨯=(元),所以购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.(1)一户家庭人口为3人,年用气量为3200m ,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m (1200)x x >,该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m )【答案】(1)534;(2) 3.63768(1200)y x x =−>;(3)26立方米【分析】(1)根据第一阶梯的费用计算方法进行计算即可;(2)根据“单价×数量=总价”可得y 与x 之间的函数关系式;(3)根据两户的缴费判断收费标准列式计算即可解答.【详解】(1)∵33200m 400m <,∴该年此户需缴纳燃气费用为:2.67200534⨯=(元),故答案为:534;(2)y 关于x 的表达式为()()400 2.671200400 3.15 3.631200y x =⨯+−⨯+− 3.63768(1200)x x =−> (3)∵()400 2.671200400 3.1535883855⨯+−⨯=<, ∴甲户该年的用气量达到了第三阶梯.由(2)知,当3855y =时,3.637683855x −=,解得1273.6x ≈.又∵()()2.67100400 3.15120020050041703855⨯++⨯+−=>, 且()2.6710040013353855⨯+=<, ∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为3m a .则有()2.67500 3.155003855a ⨯+−=,解得1300.0a =,∴31300.01273.626.426m −=≈.答:该年乙户比甲户多用约26立方米的燃气.【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程. 31.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人;(2)至少购买了甲树苗80棵【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m −棵树苗,再根据总费用不超过5400元列出不等式求解即可.【详解】(1)解:设该班的学生人数为x 人,由题意得,320425x x +=−,解得45x =,∴该班的学生人数为45人;(2)解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m −棵树苗, 由题意得,()30401555400m m +−≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量 32.(2023·山东临沂·统考中考真题)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M 型平板电脑的价值为2100元;(2)她应获得120m 元的报酬【分析】(1)设这台M 型平板电脑的价值为x 元,根据题意,列出方程进行求解即可;(2)根据题意,列出代数式即可.【详解】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:150********x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.【答案】(1)豆沙粽的单价为4元,肉粽的单价为8元;(2)①豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②10m =【分析】(1)设豆沙粽的单价为x 元,则肉粽的单价为2x 元,依题意列一元一次方程即可求解;(2)①设豆沙粽优惠后的单价为a 元,则肉粽优惠后的单价为b 元,依题意列二元一次方程组即可求解; ②根据销售额=销售单价⨯销售量,列一元二次方程,解之即可得出m 的值.【详解】(1)解:设豆沙粽的单价为x 元,则肉粽的单价为2x 元,依题意得10122136x x +⨯=,解得4x =;则28x =;所以豆沙粽的单价为4元,肉粽的单价为8元;(2)解:①设豆沙粽优惠后的单价为a 元,则肉粽优惠后的单价为b 元,依题意得20302703020230a b a b +=⎧⎨+=⎩,解得37a b =⎧⎨=⎩,所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②依题意得[3(40)7](804)[3(40)7](48)17280m m m m m m +−⨯⨯−+⨯−+⨯+=,解得19m =或10m =, 1(40)2m m <−,∴403m <,10m ∴=.【点睛】本题考查了一元二次方程的应用、二元一次方程组的应用和一元一次方程的应用,根据题意找到题中的等量关系列出方程或方程组是解题的关键.。

一元一次方程的解的应用

一元一次方程的解的应用

一元一次方程的解的应用一元一次方程是数学中最基本且常见的方程形式,它具有广泛的应用。

通过解一元一次方程,我们能够解决各类实际问题,从解释自然现象到解决实际生活中的计算问题都离不开一元一次方程。

1. 一元一次方程在几何中的应用在几何学中,一元一次方程可以用来解决诸多问题。

一个典型的例子是计算直线的交点坐标。

假设有两条直线,分别表示为y = k1x + b1和y = k2x + b2,其中k1、k2分别表示两条直线的斜率,b1、b2分别表示两条直线的截距。

当两条直线交于一点时,即存在一个坐标(x0, y0)满足方程组:k1x0 + b1 = k2x0 + b2求解这个方程组即可得到交点的坐标。

2. 一元一次方程在物理中的应用物理学中,一元一次方程是最常见的模型之一,常被用来描述物理量之间的关系。

例如,根据物体运动的速度、时间和位移的关系,可以建立如下方程:v = s / t其中v表示速度,s表示位移,t表示时间。

通过解这个方程,我们可以计算出物体在给定时间内的位移。

3. 一元一次方程在经济学中的应用经济学中,一元一次方程被广泛用于描述经济关系。

例如,假设某商品的销售价格为p,销售量为q,那么销售收入可以表示为: r = p * q其中r表示销售收入。

通过解这个方程,我们可以计算出在不同的价格和销售量情况下的销售收入,从而为经济决策提供依据。

4. 一元一次方程在工程中的应用在工程领域,一元一次方程被广泛应用于各类计算中。

例如,假设某个工程项目的总工时为H,每小时的工资为W,那么总费用可以表示为:C = H * W其中C表示总费用。

通过解这个方程,我们可以计算出不同工时和工资水平下的总费用,从而为工程预算提供参考。

综上所述,一元一次方程的解的应用非常广泛,几乎渗透到了各个领域。

通过解一元一次方程,我们可以解决几何、物理、经济和工程等各类实际问题,为决策和计算提供了方便和依据。

因此,掌握一元一次方程的方法和技巧对于我们在各个领域的学习和工作都至关重要。

中考数学专题《一元一次方程的应用》专题讲练原卷

中考数学专题《一元一次方程的应用》专题讲练原卷

专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。

1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。

3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。

中考数学专项练习一元一次方程的实际应用几何问题(含解析)

中考数学专项练习一元一次方程的实际应用几何问题(含解析)

中考数学专项练习一元一次方程的实际应用几何问题(含解析)【一】单项选择题1.一个圆柱的底面半径为Rcm,高为8cm,假设它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,那么R=〔〕A.4cmB.5cmC.6cmD.7cm2.一个长方形的周长是26cm,假设这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,那么长方形的长是〔〕A.5cmB.7cmC.8cmD.9cm3.如图〔1〕,把一个长为m,宽为n的长方形〔m>n〕沿虚线剪开,拼接成图〔2〕,成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔〕A.B.m﹣nC.D.4.一个角比它的余角大25°,那么这个角的补角是〔〕A.67.5°B.22.5°C.57.5°D.122.5°5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60c m,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离〔即在圆周上两人之间的圆弧的长〕相等.设每人向后挪动的距离为x,根据题意,可列方程〔〕A.=B.=C.2π〔60+10〕×6=2π〔60+π〕×8 D.2π〔60-x〕×8=2π〔6 0+x〕×66.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框〔如下图〕.铺这个框恰好用了504块边长为0.5米的正方向花岗岩〔接缝忽略不计〕.假设设此标志性建筑底面长方形的宽为x米,给出以下方程:①4×3〔2x+3〕=0.5×0.5×504;②2×3〔2x+6〕+2×3x=0.5×0.5×504;③〔x+6〕〔2x+6〕﹣2x•x=0.5×0.5×504,其中正确的选项是〔〕A.②B.③C.②③D.①②③7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,那么需直径为4厘米的圆钢柱长〔〕A.10厘米B.20厘米C.30厘米D.40厘米8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是〔〕A. 5.4米B.7米C. 5.08米D. 6.67米9.用A、B两种规格的长方形纸板〔如图1〕无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,A种长方形的宽为1cm,那么B种长方形的面积是〔〕A.10cm2B.12cm2C.14cm2D.16cm210.钟表的时针与分针在运行过程中每隔一定时间就相遇一次,相遇间隔的时间是〔〕A.1小时B.小时C. 1.2小时D. 1.1小时11.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为〔〕A.10和2B.8和4C.7和5D.9和312.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的选项是〔〕A.2〔x﹣10〕=120B.2[x+〔x﹣10〕]=120C.2〔x+10〕=120D.2[x+〔x+10〕]=12013.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.3cm,5cmB. 3.5c m,4.5cmC.4cm,6cm D.10cm,6cm 【二】填空题14.线段AB=30cm,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点 B 向点 A 以3cm/s 的速度运动,那么________秒钟后,P、Q 两点相距10cm.16.如图,长方形MNPQ 是某市民健身广场的平面示意图,它是由6 个正方形拼成的长方形,中间最小的正方形 A 的边长是1,观察图形特点可知长方形相对的两边是相等的〔如图中MN=PQ〕,请根据这个等量关系,计算长方形MNPQ 的面积,结果为________.17.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2c m,就可成为一个正方形,设长方形的长为xcm,可列方程________.18.在同一条数轴上,点B位于有理数—8处,点C位于有理数16处,假设点B每秒向右匀速运动6个单位长度,同时点C每秒向左匀速运动2个单位长度,当运动________秒时,BC的长度为8个单位长度.19.假设一个角的余角比它的补角的还多1°,那么这个角的大小是_ _______.【三】解答题20.一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?22.一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?【四】综合题23.某校开展爱心义卖活动,同学们纷纷推销自己的手工制品并将获得的利润捐给贫困结对学校,小明以3元/张的价格买了400张金属板,其长和宽分别为30厘米,12厘米,现将金属板按图1方式剪去四个相同的小正方形,制成无盖形状的桌面收纳盒.并使其底面长与宽之比为4:1〔金属板厚度略去不计,粘合损耗不计〕.〔1〕求制成的无盖收纳盒的高.〔2〕现小明将360张金属板按图1方式裁剪,40张金属板按图2方式裁剪后给部分盒子配上盖子,现定价无盖收纳盒5元/个,有盖收纳盒8元/个,那么全部销售后能获利多少元?24.数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.〔1〕甲,乙在数轴上的哪个点相遇?〔2〕多少秒后,甲到A,B,C的距离和为48个单位?〔3〕在甲到A,B,C的距离和为48个单位时,假设甲调头并保持速度不变,那么甲,乙还能在数轴上相遇吗?假设能,求出相遇点;假设不能,请说明理由.【一】单项选择题1.一个圆柱的底面半径为Rcm,高为8cm,假设它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,那么R=〔〕A.4cmB.5cmC.6cmD.7cm【解析】【解答】解:依题意得:8π〔R+2〕2﹣8πR2=192,解得r=5.应选:B、【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.2.一个长方形的周长是26cm,假设这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,那么长方形的长是〔〕A.5cmB.7cmC.8cmD.9cm【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设长方形的长为x cm,∵长方形的周长是26cm,∴长方形的宽为〔-x〕cm,∵长方形的长减少1cm为〔x-1〕cm,宽增加2c m为〔-x+2〕cm,根据题意得:x-1=-x+2,解得:x=8,应选C.【分析】周长除以2减去长方形的长即为长方形的宽,等量关系为:长-1=宽+2. 得到长方形的宽是解决此题的突破点.3.如图〔1〕,把一个长为m,宽为n的长方形〔m>n〕沿虚线剪开,拼接成图〔2〕,成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔〕A.B.m﹣nC.D.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设去掉的小正方形的边长为x,那么:〔n+x〕2=mn+x2 ,解得:x= .应选A、【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.4.一个角比它的余角大25°,那么这个角的补角是〔〕A.67.5°B.22.5°C.57.5°D.122.5°【考点】一元一次方程的实际应用-几何问题【解析】【解答】设这个角的度数为x°,根据题意得:x-(90-x)=25,解得x=57.5,所以这个角为57.5°,所以这个角的补角为180°-57.5°=12 2.5°.【分析】先根据题意利用一元一次方程求的这个角,再根据补角的定义求这个角的补角.5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60c m,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离〔即在圆周上两人之间的圆弧的长〕相等.设每人向后挪动的距离为x,根据题意,可列方程〔〕A.=B.=C.2π〔60+10〕×6=2π〔60+π〕×8 D.2π〔60-x〕×8=2π〔6 0+x〕×6【解析】【解答】设每人向后挪动的距离为x,那么这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.应选A、【分析】首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.列方程解应用题的关键是找出题目中的相等关系.6.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框〔如下图〕.铺这个框恰好用了504块边长为0.5米的正方向花岗岩〔接缝忽略不计〕.假设设此标志性建筑底面长方形的宽为x米,给出以下方程:①4×3〔2x+3〕=0.5×0.5×504;②2×3〔2x+6〕+2×3x=0.5×0.5×504;③〔x+6〕〔2x+6〕﹣2x•x=0.5×0.5×504,其中正确的选项是〔〕A.②B.③C.②③D.①②③【考点】一元一次方程的实际应用-几何问题7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,那么需直径为4厘米的圆钢柱长〔〕A.10厘米B.20厘米C.30厘米D.40厘米【解析】【解答】解:设应截取直径4厘米的圆钢x厘米,由题意得:π×〔〕2×16×10=π×〔〕2•x解得:x=40.应选:D、【分析】根据题意可知,圆柱形毛坯与圆钢的体积相等,利用此相等关系列方程,求解.8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是〔〕A. 5.4米B.7米C. 5.08米D. 6.67米【解析】【解答】水箱上升3×3×3÷〔5×5〕=1.08〔米〕水面的高度将是:4+1.08=5.08〔米〕.应选C、【分析】此题的关键是把握小正方形的体积,它相当于底面是边长为5米的正方形的水箱上升x米的体积,求出x ,再加上4米即可.9.用A、B两种规格的长方形纸板〔如图1〕无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,A种长方形的宽为1cm,那么B种长方形的面积是〔〕A.10cm2B.12cm2C.14cm2D.16cm2【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设A长方形的长是xcm,那么B长方形的宽是〔4﹣x〕cm,B长方形的长是〔8﹣x〕cm,依题意有4[〔4﹣x〕+〔8﹣x〕]=32,解得x=4,〔4﹣x〕〔8﹣x〕=〔4﹣2〕×〔8﹣2〕=2×6=12.故B种长方形的面积是12cm2 .应选:B、【分析】可设A长方形的长是xcm,那么B长方形的宽是〔4﹣x〕cm,B长方形的长是〔8﹣x〕cm,根据大正方形周长为32cm,列出方程求解即可.10.钟表的时针与分针在运行过程中每隔一定时间就相遇一次,相遇间隔的时间是〔〕A.1小时B.小时C. 1.2小时D. 1.1小时【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设相遇间隔的时间是x小时,时针的速度为x格/小时,那么分针的速度为12x格/小时,12x﹣x=12,解得:x=.答:相遇间隔的时间是小时.应选:B、【分析】由题意可知:钟表的时针每转动一大格,那么分钟就转动12个大格,也就是一周,每隔一定时间就相遇一次也就是分针比时针就多运行12个大格,设相遇间隔的时间是x小时,那么时针转了为x格,那么分针转了12x格,由此列出方程解答即可.11.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为〔〕A.10和2B.8和4C.7和5D.9和3【考点】一元一次方程的实际应用-几何问题【解析】【分析】设这个长方形的长是x,那么宽就是12-x,因为长与宽的差是4,即x-〔12-x)=4.解方程求解.【解答】设这个长方形的长是x,根据题意列方程得:x-〔12-x)=4,解得x=8,那么宽就是12-8=4.这个长方形的长宽分别为8和4.应选B、【点评】列方程解应用题的关键是正确找出题目中的相等关系,把列方程的问题转化为列代数式12.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的选项是〔〕A.2〔x﹣10〕=120B.2[x+〔x﹣10〕]=120C.2〔x+10〕=120D.2[x+〔x+10〕]=120【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:由题意可得,2[x+〔x+10〕]=120,应选D、【分析】根据题意可以列出相应的一元一次方程,此题得以解决.13.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.3cm,5cmB. 3.5c m,4.5cmC.4cm,6cm D.10cm,6cm 【考点】一元一次方程的实际应用-几何问题【解析】【分析】设长方形的宽为xcm,那么长为〔x+1〕cm,列方程得x+x+1=8或2x+2〔x+1〕=16,解得x=3.5.应选B.【二】填空题14.线段AB=30cm,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点 B 向点 A 以3cm/s 的速度运动,那么________秒钟后,P、Q 两点相距10cm.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设经过xs,P、Q两点相距10cm,由题意得:2x+3x+10=30或2x+3x-10=30,解得:x=4或x=8.那么4秒或8秒钟后,P、Q两点的距离为10cm.【考点】一元一次方程的实际应用-几何问题16.如图,长方形MNPQ 是某市民健身广场的平面示意图,它是由6 个正方形拼成的长方形,中间最小的正方形 A 的边长是1,观察图形特点可知长方形相对的两边是相等的〔如图中MN=PQ〕,请根据这个等量关系,计算长方形MNPQ 的面积,结果为________.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:由中间最小的正方形A的边长是1米,设图中最大正方形B的边长是x米,可得正方形F的边长x-1,E的边长x-2,C的边长x-3;根据题意得:2〔x-3〕+x-2=x+x-1.解得:x=7.所以A的面积为1,B的面积为49,F的面积为36,E的面积为25,D、C 的面积为16,所以长方形的面积为:1+49+36+25+16×2=143.【分析】此题主要考查了一元一次方程的应用,利用长方形相对的两边相等得出等式是解题关键.17.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2c m,就可成为一个正方形,设长方形的长为xcm,可列方程________.18.在同一条数轴上,点B位于有理数—8处,点C位于有理数16处,假设点B每秒向右匀速运动6个单位长度,同时点C每秒向左匀速运动2个单位长度,当运动________秒时,BC的长度为8个单位长度.【解析】【解答】设时间为t,那么运动后点B所表示的数为:-8+6t,点C所表示的数为16-2t;①、当点B在点C的左边时,16-2t-〔-8+ 6t〕=8,解得:t=2;②、当点B在点C的右边时,〔-8+6t〕-〔16-2t〕=8,解得:t=4.【分析】设时间为t,那么运动后点B所表示的数为:-8 +6t,点C所表示的数为16-2t;然后分两类讨论:①、当点B在点C的左边时,列出方程16-2t-〔-8+6t〕=8,②、当点B在点C的右边时,列出方程〔-8+6t〕-〔16-2t〕=8 ,分别解两个方程得出t的值。

中考数学一轮复习专题解析—一元一次方程及其应用

中考数学一轮复习专题解析—一元一次方程及其应用

中考数学一轮复习专题解析—一元一次方程及其应用复习目标1.了解方程、一元一次方程的概念,会解一元一次方程;2.能够根据具体问题中的数量关系,列出一元一次方程解决实际问题,能根据具体问题的实际意义,检验结果是否合理。

考点梳理1.等式及其性质:⑴ 等式:用等号“=”来表示相等关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a c b ±;② 如果b a =,那么=ac bc ;如果b a =()0≠c ,那么=c a cb . 2.方程、一元一次方程的概念:⑴ 方程:含有未知数的等式叫做方程;使方程左右两边值相等的未知数,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有1个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为b ax =()0≠a .3.解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.4.一元一次方程的应用:列方程解应用题的步骤:审→设→列→解→验→答即:(1)审题:弄清题意和题目中的数量关系;(2)设未知数:用字母表示题目中的一个未知数,可直接设也可间接地设;(3)列方程:找出适当的数量关系,列出方程;(4)解:选择适当的方法解方程;(5)检验:检验解是否符合实际意义;(6)答。

综合训练1.(2022·湖南株洲·中考真题)方程122x-=的解是( )A .2x =B .3x =C .5x =D .6x =【答案】D【分析】通过移项、合并同类项、系数化为1三个步骤即可完成求解.【详解】 解:122x-=,32x=,6x =;故选:D .2.(2022·无锡市天一实验学校九年级月考)方程2132x x -=-的解为( ) A .1x = B .1x =- C .3x = D .3x =-【答案】A【分析】按照解一元一次方程的步骤求解即可.【详解】解:移项可得:2321x x -=-+,合并同类项得:1-=-x系数化为1得:1x=故选:A.3.(2022·四川绵阳·中考真题)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件【答案】B【分析】设该分派站有x个快递员,根据“若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件”,即可得出关于x的一元一次方程,解之即可得出x 的值,再将其代入(10x+6)中即可求出该分派站现有包裹数.【详解】解:设该分派站有x个快递员,依题意得:10x+6=12x−6,解得:x=6,∴10x+6=10×6+6=66,即该分派站现有包裹66件.故选:B.4.(2022·黑龙江牡丹江·中考真题)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元【分析】设分别设两件运动衫的进价分别是a元,b元,根据售价=成本±利润,列方程求得两件运动衫的进价,再计算亏盈.【详解】解:设盈利60%的运动衫的进价是a元,亏本20%的运动衫的进价是b元.则有(1)a(1+60%)=160,a=100;(2)b(1-20%)=160,b=200.总售价是160+160=320(元),总进价是100+200=300(元),320-300=20(元),所以这次买卖中商家赚了20元.故选:B.5.(2022·浙江九年级二模)学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x人去甲处,则()A.48=2(42﹣x)B.48+x=2×42C.48﹣x=2(42+x)D.48+x=2(42﹣x)【答案】D设从乙处调配x 人去甲处,根据”调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍“列方程即可得到结论.【详解】解:设从乙处调配x 人去甲处,根据题意得,48+x =2(42-x ),故选:D .6.(2022·浙江)某商铺促销,单价80元的衬衫按照8折销售仍可获利10元,若这款衬衫的成本价为x 元/件,则( )A .800.810x ⨯-=B .()800.810x x --=C .800.810x ⨯=-D .()800.810x x -⨯=-【答案】A【分析】利用利润=标价⨯折扣率-成本价,即可得出关于x 的一元一次方程.【详解】解:依题意得:800.810x ⨯-=,故选:A .7.(2022·山东九年级二模)已知x =3是关于x 的方程23mx nx =-的解,则24n m -的值是( )A .2B .-2C .1D .﹣1 【答案】A【分析】把x =3代入方程23mx nx =-,可得n -2m =1,进而即可求解.【详解】解:∵x =3是关于x 的方程23mx nx =-的解,∴6m =3n -3,即:n -2m =1,∴24n m -=2,故选A .8.(2022·浙江)《孙子算经》是中国古代重要的数学著作,书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,则可列方程为( ) A .()33100100x x +-=B .()3100100x x +-=C .()131001003x x +-=D .()3100100x x +-= 【答案】C【分析】根据“大马拉瓦+小马拉瓦=100”可以列出方程 .【详解】解:设大马有 x 匹,则由题意可得:()131001003x x +-=, 故选C .9.(2022·广西梧州·中考真题)运用方程或方程组解决实际问题:若干学生分若干支铅笔,如果每人5支,那么多余3支;如果每人7支,那么缺5支.试问有多少名学生?共有多少支铅笔?【答案】学生有4人,铅笔23支设学生有x人,则铅笔数表示为5x+3或7x−5,由此利用铅笔数相等联立方程求得答案即可.【详解】解:设学生有x人,由题意得5x+3=7x−5,解得:x=4,经检验,符合题意则6x+3=23.答:学生有4人,铅笔23支.10.(2022·广西桂林·中考真题)解一元一次方程:4x﹣1=2x+5.【答案】x =3.【分析】先把方程化移项,合并同类项,系数化1法即可.【详解】解:4 x﹣1=2x+5,移项得:4 x﹣2x=5+1合并同类项得:2 x=6,∴系数化1得:x =3.11.(2022·全国九年级专题练习)解下列方程:(1)36156x x-=--(2)1.5 1.51 0.62x x--=【答案】(1)1x=-;(2)7 =12 x(1)根据解方程步骤,移项,合并同类项,把x 系数化为1,即可求出解; (1)根据解方程步骤,方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:(1)移项得:36156x x +=-+,合并同类项得:99x =-,解得:1x =-;(2)去分母得:2?1.50.6(1.5) 1.2x x --=,去括号得:30.90.6 1.2x x -+=,移项得:30.6 1.20.9x x +=+,合并同类项得:3.6 2.1x =, 解得:7=12x . 12.(2022·陕西西北工业大学附属中学九年级模拟预测)解方程:1123xx ++=. 【答案】45【分析】 按照去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:1123xx ++= 去分母得:3x +2(x +1)=6,去括号得:3x +2x +2=6,移项合并得:5x=4,系数化为1得:x=45.。

初中数学知识归纳一元一次方程的应用

初中数学知识归纳一元一次方程的应用

初中数学知识归纳一元一次方程的应用一元一次方程是初中数学中的重要内容,它具有广泛的应用和实际意义。

在实际生活和工作中,我们常常会遇到需要利用一元一次方程进行问题求解的情况。

本文将就一元一次方程的应用领域、解题方法和实例进行归纳总结,以帮助读者更好地理解和应用这一知识。

一、应用领域(1)商业领域:在商业领域中,一元一次方程常常用于解决与货币和财务相关的问题。

比如计算物品的价格降低了多少才能使销售量增加,或者计算打折后的商品价格等。

(2)几何问题:一元一次方程在几何学中也有广泛的应用。

比如求解线性函数的图像与坐标轴的交点,或者求解两条直线的交点等几何问题。

(3)流量问题:一元一次方程在流量计算中也有应用。

比如计算水龙头的流量,或者计算水缸注满所需的时间等。

二、解题方法解一元一次方程的基本方法是通过逆运算将未知数孤立出来,然后求解未知数的值。

常用的解题步骤如下:(1)根据题目将问题转化为一元一次方程的形式。

(2)对方程进行整理,将未知数项移项,常数项归整。

(3)通过逆运算得到未知数的值。

(4)验证解是否满足原方程,并进行合理性判断。

三、实例分析下面通过几个实例来进一步说明一元一次方程的应用。

例1:小明去商场买东西,他手里有300元,现在有一种商品特价售卖,原价是x元,打8折出售。

小明购买了该商品后,手里还剩下200元。

求该商品的原价。

解:设该商品原价为x元,则根据题目可得一元一次方程:0.8x + 200 = 300整理方程可得:0.8x = 100x = 100 ÷ 0.8 = 125所以该商品的原价为125元。

例2:一条铁链长80米,现需要将其分成两段,且第一段比第二段长2倍,求第一段的长度。

解:设第一段的长度为x,则根据题目可得一元一次方程:x + 2x = 80整理方程可得:3x = 80x = 80 ÷ 3 ≈ 26.67所以第一段的长度约为26.67米。

通过以上实例,我们可以看到一元一次方程在实际问题中的应用非常灵活,解题方法也比较简单明了。

中考重点一元一次方程组的应用

中考重点一元一次方程组的应用

中考重点一元一次方程组的应用一元一次方程组是中学数学的基础内容之一,在中考中也是重点考察的内容。

掌握了一元一次方程组的应用,可以帮助我们解决实际生活中的问题。

下面将通过几个具体的例子来说明一元一次方程组的应用。

例1:两个数的问题假设有两个数,且这两个数的和是10,差是2,我们可以用一元一次方程组来解决这个问题。

假设这两个数分别是x和y,根据题意可以得到以下两个方程:x + y = 10 (方程1)x - y = 2 (方程2)我们可以通过消元法来解这个方程组。

将方程1乘以2得到2x + 2y = 20,再将方程2加上这个等式,可以消去y的项。

得到3x = 22,从而得到x = 22/3。

将x的值代入方程1或方程2中可以求得y的值。

最终得到x = 22/3,y = 4/3。

所以,这两个数分别是22/3和4/3。

例2:图形的问题假设有一个矩形,它的长是宽的4倍,且周长是16,我们可以用一元一次方程组来解决这个问题。

假设矩形的长为x,宽为y,根据题意可以得到以下两个方程:x = 4y (方程1)2x + 2y = 16 (方程2)可以通过代入法来解这个方程组。

将方程1中的x用4y代入方程2中,得到2(4y) + 2y = 16。

化简后得到10y = 16,从而得到y = 16/10 =8/5。

将y的值代入方程1或方程2中可以求得x的值。

最终得到x =32/5,y = 8/5。

所以,这个矩形的长是32/5,宽是8/5。

例3:配方的问题假设有一个正方形和一个矩形,它们的面积相等,且正方形的边长是矩形的边长的3倍,我们可以用一元一次方程组来解决这个问题。

假设正方形的边长为x,矩形的长为y,宽为z,根据题意可以得到以下两个方程:x^2 = yz (方程1)x = 3z (方程2)可以通过代入法或消元法来解这个方程组。

将方程2中的x用3z代入方程1中,得到(3z)^2 = yz。

化简后得到9z^2 = yz,从而得到9z = y,进一步得到z = y/9。

专题4_一元一次方程及其应用

专题4_一元一次方程及其应用

专题4_一元一次方程及其应用一元一次方程及其应用是初中数学的基础知识之一,它无论在学习上还是实际生活中都具有重要的应用价值。

本文将围绕一元一次方程的概念、解法、应用以及一些实际问题展开讨论。

一、一元一次方程的概念一元一次方程是指其中只包含一个未知数,并且未知数的最高次数为一的方程。

一般形式为ax+b=0,其中a和b是已知数,a≠0。

二、一元一次方程的解法1.移项法:通过变换方程式,将未知数移到等号的一侧,已知数移到等号的另一侧。

例如,对于方程2x+5=13,可以通过移项法得到2x=13-5=8,再除以2得到x=4,从而求得方程的解x=42.消元法:联立两个或多个方程,通过消去一些系数,得到一个只含一个未知数的一元一次方程。

例如,联立方程组{x+2y=5,2x+3y=10},可以通过消元法得到-x+y=-5,再乘以2得到2x-2y=10,联立原方程组得到3y=0,进而求得y=0,再代入方程得到x=5/2,从而求得方程组的解x=5/2,y=0。

三、一元一次方程的应用一元一次方程在实际生活中的应用十分广泛,以下是一些常见的应用领域:1.商品质量问题:如果已知一种商品的质量为x千克,每件商品的质量比前一件多1/4千克,总共有10件商品,那么可以通过建立方程10x=总质量来求得总质量。

2.速度与时间问题:速度等于路程除以时间,如果已知辆车以30km/h的速度行驶2小时,求其行驶的总路程,可以通过建立方程30*2=总路程来求得总路程。

3.比例问题:比例可以用一元一次方程来表示,例如已知甲乙两个数的比例为4:3,而甲的值为12,可以通过建立方程4x=12来求得乙的值x,进而求得甲乙两个数的具体值。

四、一元一次方程的实际问题1.甲乙两个数的比例为4:3,但甲的值比乙大3,求甲、乙的具体数值。

解:设乙的值为x,则甲的值为x+3、根据比例关系,可以建立方程4/(x+3)=3/x,通过变换方程解得x=6/5,从而可以求得甲的值为9/5,乙的值为6/52.辆车从A点和B点之间的距离是90千米,其中从A点到B点的距离是从B点到A点距离的3倍加上3千米,求A点到B点的距离。

九年级中考数学复习专题---解一元一次方程

九年级中考数学复习专题---解一元一次方程

一元一次方程及其应用解一元一次方程的步骤:1、解方程:(1)()()() 3175301x x x --+=+; (2)21101136x x ++-=.2、某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?二元一次方程组及其应用消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.1、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m =( ) A .2 B .-1C .1D .-22、解下列方程组: (1){4519323a b a b +=--= (2){2207441x y x y ++=-=- (3) ⎪⎩⎪⎨⎧=---=+1213343144y x y x3 、若方程组{31x y x y +=-=与方程组{84mx ny mx ny +=-=的解相同,求m 、n 的值.4、某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.① 求该同学看中的随身听和书包单价各是多少元?② 某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?一元二次方程及其应用1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边只有二次项和一次项,右边为常数;③配方,即方程两边都加上一次项系数一半的平方;④化原方程为2()x m n +=的形式;⑤如果n 是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是240)x b ac =-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.1.方程 (5x -2) (x -7)=9 (x -7)的解是_________.2、解方程(1))4(5)4(2+=+x x ; (2)4x 2-8x +1=0;(3)22)21()3(x x -=+; (4)31022=-x x .3、已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.4、用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?5.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率.一元二次方程根的判别式1.一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2.若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )A .m<lB .m>-1C .m>lD .m<-13. 若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 .4.当c =__________时,关于x 的方程2280x x c ++=有实数根.(填一个符合要求的数)5、菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 . 分式方程及其应用1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.1、如果分式12-x 与33+x 的值相等,则x 的值是( ) A .9 B .7 C .5 D .32. 以下是方程1211=--xx x 去分母、去括号后的结果,其中正确的是( ) A .112=--x B.112=+-x C.x x 212=+- D.x x 212=--3.分式方程21124x x x -=--的解是( ) A .32- B .2- C .52- D .32 4.方程22123=-+--xx x 的解是x= . 5、若关于x 方程2332+-=--x m x x 无解,则m 的值是 . 6、 解分式方程:1233x x x=+--.7、在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.8、今年以来受各种因素的影响,猪肉的市场价格仍在不断上升.据调查,今年5月份一级猪肉的价格是1月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在5月份购得一级猪肉比在1月份购得的一级猪肉少0.4斤,那么今年1月份的一级猪肉每斤是多少元?。

中考数学复习之一元一次方程综合应用训练题(20大题)

中考数学复习之一元一次方程综合应用训练题(20大题)

中考数学复习之一元一次方程综合应用训练题(20大题)1.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.2.如图,已知数轴上点A表示的数为﹣60,点B表示的数为20,甲在A点,乙在B点,甲的速度是每秒5个单位,乙的速度是每秒3个单位,小狗的速度是每秒20个单位.(1)点A与点B之间的距离是.(2)若甲、乙两人同时同向(向右)而行,几秒钟甲追上乙?(3)若甲、乙两人同时相向而行,在C点相遇,求点C表示的数并在数轴上表示出来?(4)若小狗随甲同时同地向右出发,当小狗碰到乙时,乙才开始出发,乙和小狗同时向甲方向前进,当小狗再次碰到甲时又向乙方向跑,碰到乙的时候再向甲方向跑,就这样一直跑下去,直到甲、乙两人相遇为止,问这只小狗一共跑了多少路程?3.已知:A,B在数轴上对应的数分别用a,b表示,且(a+4)2+|b﹣12|=0.(1)数轴上点A表示的数是,点B表示的数是.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.(3)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动,当P运动到B点时,再立即以同样速度返回,运动到A点停止;点P从点A出发时,另一动点Q从原点O出发,以1个单位长度/秒速度向B运动,运动到B点停止.设点Q运动时间为t秒.当t为何值时,点P与点Q之间的距离为2个单位长度.4.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?5.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设P A=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?6.2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?7.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)8.利用方程解决下面问题:相传有个人不讲究说话艺术常引起误会,一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的三个人也都告辞走了,聪明的你能知道开始来了几位客人吗?9.列方程或方程组解应用题:中国2010年上海世博会第三期预售平日门票分为普通票和优惠票,其中普通票每张150元人民币,优惠票每张90元人民币.某日一售票点共售出1000张门票,总收入12.6万元人民币.那么,这一售票点当天售出的普通票和优惠票各多少张?注:优惠票的适用对象包括残疾人士、老年人(1950年12月31日前出生的)、学生、身高超过1.20米的儿童、现役军人.10.十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x≤5005%0x≤15005%0 2500<x≤200010%251500<x≤450010%32000<x≤500015%1254500<x≤900020%45000<x≤2000020%3759000<x≤3500025%975520000<x≤4000025%137535000<x≤5500030%2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?11.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?12.某学校为改善办学条件,计划购置至少40台电脑,现有甲,乙两家公司供选择:甲公司的电脑标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠;乙公司的电脑标价也是每台2000元,购买40台以上(含40台),则一次性返回10000元给学校.(1)假如你是学校负责人,在电脑品牌,质量,售后服务等完全相同的前提下,你如何选择?请说明理由;(2)甲公司发现乙公司与他竞争(但甲公司不知乙公司的销售方案),便主动与该校联系,提出新的销售方案;标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠,在40台的基础上,每增加15台,便赠送一台.问:该学校计划购买120台(包括赠送),至少需要多少元?13.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x 对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.14.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.15.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km /h ,人步行的速度是5km /h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.16.某电信局现有600部已申请装机的电话尚待装机,此外每天有新申请装机的电话也待装机.假定每天新申请装机的电话部数相同,每个电话装机小组每天安装电话的部数也相同,若安排3个装机小组去安装电话,则30天可将待装电话装机完毕;若安排5个装机小组去安装电话,则恰好10天可将待装电话装机完毕.(1)求每天新申请装机的电话部数及每个电话装机小组每天安装电话部数.(2)如果要在5天内将待装电话装机完毕,那么电信局至少需按排几个电话装机小组同时装机?17.据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程数: 车站名ABC D E F G H各站至H 站的里程 数(单位:千米)1500 1130 910 622 402 219 72 0 例如,要确定从B 站至E 站火车票价,其票价为180×(1130−402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的(要求写出解答过程).18.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.19.阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表: 顾客乘车路程(单位:千米) 1 1.5 2.5 3.5 需支付的金额(单位:元) “5.1”前4.4 “5.1”后4(2)小方从家里坐出租车到A 地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A 地路程大约 .(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.20.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a (元) 200≤a <400 400≤a <500 500≤a <700 700≤a <900 … 获奖券金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元). 购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价. 试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?。

专题06 一元一次方程(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题06 一元一次方程(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题06一元一次方程【专题目录】技巧1:巧用一元一次方程求字母系数的值技巧2:特殊一元一次方程的解法技巧【题型】一、一元一次方程概念【题型】二、一元一次方程的解法【题型】三、一元一次方程应用之配套问题和工程问题【题型】四、一元一次方程应用之销售盈亏问题【题型】五、一元一次方程应用之比赛积分问题【考纲要求】1、了解等式、方程、一元一次方程的概念,掌握等式的基本性质.2、掌握一元一次方程的标准形式,熟练掌握一元一次方程的解法.3、会列方程(组)解决实际问题.【考点总结】一、一元一次方程【注意】一元一次方程的特征1.只含有一个未知数x2.未知数x 的次数都是13.等式两边都是整式,分母中不含未知数。

整式方程一元一次方程概念只含有一个未知数,并且未知数的次数是一次的整式方程,叫做一元一次方程。

其一般形式是ax +b =0(a,b 为常数,且a ≠0).解法解法依据是等式的基本性质.性质①:若a =b ,则a ±m =b ±m ;性质②:若a =b ,则am =bm ;若a =b ,则db d a (d ≠0).解法的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.【技巧归纳】技巧1:巧用一元一次方程求字母系数的值【类型】一、利用一元一次方程的定义求字母系数的值1.已知方程(m -2)x |m|-1+16=0是关于x 的一元一次方程,求m 的值及方程的解.2.已知方程(3a +2b)x 2+ax +b =0是关于x 的一元一次方程,求方程的解.3.已知(m 2-1)x 2-(m +1)x +8=0是关于x 的一元一次方程,求式子199(m +x)(x -2m)+9m +17的值.【类型】一、利用方程的解求字母系数的值题型1:利用方程的解的定义求字母系数的值4.关于x 的方程a(x -a)+b(x +b)=0有无穷多个解,则()A .a +b =0B .a -b =0C .ab =0D .a b=05.关于x 的方程(2a +b)x -1=0无解,则ab 是()A .正数B .非正数C .负数D .非负数6.已知关于x 的方程9x -3=kx +14有整数解,那么满足条件的整数k =__________.7.已知x =12是方程6(2x +m)=3m +2的解,求关于y 的方程my +2=m(1-2y)的解.8.当m 取什么整数时,关于x 的方程12mx -53=题型2:利用两个方程同解或解具有已知倍数关系确定字母系数的值9.如果方程x -43-8=-x +22的解与关于x 的方程2ax -(3a +5)=5x +12a +20的解相同,确定字母a 的值.题型3:利用方程的错解确定字母系数的值10.小马虎解方程2x -13=x +a 2-1,去分母时,方程右边的-1忘记乘6,其他步骤都正确,这时方程的解为x =2,试求a 的值,并正确解方程.参考答案1.解:-1=1,-2≠0,所以m =-2.将m =-2代入原方程,得-4x +16=0,解得x =4.2.解:+2b =0,,所以3a =-2b ,即a =-23b.当3a +2b =0时,原方程可化为ax +b =0,则x =-b a.将a =-23b 代入方程的解中,得x =-b a =32.3.解:2-1=0,+1≠0,所以m =1.当m =1时,原方程可化为-2x +8=0,解得x =4.当m =1,x =4时,199(m +x)(x -2m)+9m +17=199×5×2+9×1+17=2016.4.A 5.B 6.8,-8,10或267.解:将x =12代入方程6(2x +m)=3m +2,得2×12+3m +2,解得m =-43.将m =-43代入方程my +2=m(1-2y),得-43y +2=-43(1-2y),解得y =56.点拨:已知一元一次方程的解,确定关于某一个未知数的方程中另外一个字母的值,只需把未知数的值(方程的解)代入原方程,即可得出含另一个字母的方程,通过求解确定另一个字母的值,从而进行关于其他字母的计算.8.解:原方程可化为12mx -53=12x -23,所以12(m -1)x =1,所以(m -1)x =2.因为x 必须为正整数且m 为整数,故m -1=1或2.当m -1=1,即m =2时,x =2;当m -1=2,即m =3时,x =1.所以当m =2或3时,方程的解为正整数.9.解:x -43-8=-x +22,去分母,得2(x -4)-48=-3(x +2).去括号、移项、合并同类项,得5x =50.系数化为1,得x =10.把x =10代入方程2ax -(3a +5)=5x +12a +20,得2a×10-(3a +5)=5×10+12a +20,去括号、移项,得20a -3a -12a =5+50+20.合并同类项,得5a =75,系数化为1,得a =15.10.解:由题意得4x -2=3x +3a -1,移项、合并同类项,得x =3a +1.因为x =2,所以2=3a +1,则a =13.当a =13时,原方程为2x -13=x +132-1,解得x =-3.技巧2:特殊一元一次方程的解法技巧【类型】一、分子、分母含小数的一元一次方程题型1:巧化分母为11.解方程:4x -1.60.5-3x -5.40.2=1.8-x 0.1.2.解方程:2x +10.25-x -20.5=-10.题型2:巧化同分母3.解方程:x 0.6-0.16-0.5x 0.06=1.题型3:巧约分去分母4.解方程:4-6x 0.01-6.5=0.02-2x 0.02-7.5.【类型】二、分子、分母为整数的一元一次方程题型1:巧用拆分法5.解方程:x -12-2x -36=6-x 3.6.解方程:x 2+x 6+x 12+x 20=1.题型2:巧用对消法7.解方程:x 3+x -25=337-6-3x 15.题型3:巧通分8.解方程:x +37-x +25=x +16-x +44.【类型】三、含括号的一元一次方程题型1:利用倒数关系去括号92-x =2.题型2:整体合并去括号10.解方程:x -13x -13(x -9)=19(x -9).题型3:整体合并去分母11.解方程:13(x -5)=3-23(x -5).题型4:不去括号反而添括号12.解方程:12x -12(x -1)=23(x -1).题型5:由外向内去括号13-6+2=0.题型6:由内向外去括号14.解方程:243x =34x.参考答案1.解:去分母,得2(4x -1.6)-5(3x -5.4)=10(1.8-x).去括号、移项、合并同类项,得3x =-5.8.系数化为1,得x =-2915.点拨:本题将各分数分母化为整数1,从而巧妙地去掉了分母,给解题带来了方便.2.解:去分母、去括号,得8x +4-2x +4=-10.移项、合并同类项,得6x =-18.系数化为1,得x =-3.点拨:由0.25×4=1,0.5×2=1,可巧妙地将分母化为整数1.3.解:化为同分母,得0.1x 0.06-0.16-0.5x 0.06=0.060.06.去分母,得0.1x -0.16+0.5x =0.06.解得x =1130.4.解:原方程可化为4-6x 0.01+1=0.01-x 0.01.去分母,得4-6x +0.01=0.01-x.解得x =45.点拨:本题将第二个分数通过约分处理后,使两个分数的分母相同,便于去分母.5.解:拆项,得x 2-12-x 3+12=2-x 3.移项、合并同类项,得x 2=2.系数化为1,得x =4.点拨:方程通过拆项处理后,便于合并同类项,使复杂方程简单化.6.解:x 1.整理得x -x 5=1.解得x =54.点拨:因为x 2=x -x 2,x 6=x 2-x 3,x 12=x 3-x 4,x 20=x 4-x 5,所以把方程的左边每一项拆项分解后再合并就很简便.7.解:原方程可化为x 3+x -25=247+x -25,即x 3=247.所以x =727.点拨:此题不要急于去分母,通过观察发现-6-3x 15=x -25,两边消去这一项可避免去分母运算.8.解:方程两边分别通分后相加,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012.解得x =-36211.点拨:本题若直接去分母,则两边应同乘各分母的最小公倍数420,运算量大容易出错,但是把方程左右两边分别通分后再去分母,会给解方程带来方便.9.解:去括号,得x 4-1-3-x =2.移项、合并同类项,得-34x =6.系数化为1,得x =-8.点拨:观察方程特点,由于32与23互为倒数,因此让32乘以括号内的每一项,则可先去中括号,同时又去小括号,非常简便.10.解:原方程可化为x -13x +19(x -9)-19(x -9)=0.合并同类项,得23x =0.系数化为1,得x =0.11.解:移项,得13(x -5)+23(x -5)=3.合并同类项,得x -5=3.解得x =8.点拨:本题将x -5看成一个整体,通过移项、合并同类项进行解答,这样避免了去分母,给解题带来简便.12.解:原方程可化为12[(x -1)+1-12(x -1)]=23(x -1).去中括号,得12(x -1)+12-14(x -1)=23(x -1).移项、合并同类项,得-512(x -1)=-12.解得x =115.13.解:-2+2=0.[来源:学科网]去小括号,得136x -112=0.移项,得136x =112.系数化为1,得x =3.14.解:去小括号,得2[43x -23x +12]=34x.去中括号,得43x +1=34x.移项,合并同类项,得712x =-1.系数化为1,得x =-127.【题型讲解】【题型】一、一元一次方程概念例1、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为()A .9B .8C .5D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C .【题型】二、一元一次方程的解法例2、解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x+=-C .2(1)63x x +=-D .3(1)62x x+=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .例3、解方程:221123x x x ---=-【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】解:221123x x x ---=-()()6326221x x x --=--636642x x x -+=-+634662x x x -+=-+72x =27x =【题型】三、一元一次方程应用之配套问题和工程问题例4、某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x 名工人生产螺钉,依题意列方程为()A .1200x =2000(22﹣x )B .1200x =2×2000(22﹣x )C .1200(22﹣x )=2000xD .2×1200x =2000(22﹣x )【答案】D【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x ),即2×1200x=2000(22-x ),故选D .【题型】四、一元一次方程应用之销售盈亏问题例5、随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A .180B .170C .160D .150【答案】A【分析】设该超市该品牌粽子的标价为x 元,则售价为80%x 元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x 元,则售价为80%x 元,由题意得:80%x ﹣120=20%×120,解得:x =180.即该超市该品牌粽子的标价为180元.故选:A .【题型】五、一元一次方程应用之比赛积分问题例6、一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A .17道B .18道C .19道D .20道【答案】C 【分析】设作对了x 道,则错了(25-x )道,根据题意列出方程进行求解.【详解】设作对了x 道,则错了(25-x )道,依题意得4x-(25-x)=70,解得x=19故选C.一元一次方程(达标训练)一、单选题1.(2020·浙江·模拟预测)下列各式:①253-+=;②235=3x x x -+;③211x +=;④21=x ;⑤23x +;⑥4x =.其中是一元一次方程的有()A .1个B .2个C .3个D .4个【答案】B【分析】根据一元一次方程的定义逐个判断即可【详解】解:①不含未知数,故错②未知数的最高次数为2,故错③含一个未知数,次数为1,是等式且两边均为整式,故对④左边不是整式,故错⑤不是等式,故错⑥含一个未知数,次数为1,是等式且两边均为整式,故对故选:B【点睛】本题考查了一元一次方程的定义,熟练掌握并理解一元一次方程的定义是解本题的关键2.(2022·浙江温州·三模)解方程2233522x x x x x--+=--,以下去分母正确的是()A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-【答案】D【分析】利用等式的性质在分式方程两边分别乘()2x -即可.【详解】A ,()223352,x x x x +--=-故此选项不符合题意.B ,()223352,x x x x +--=-故此选项不符合题意.C ,()223352,x x x x +--=-故此选项不符合题意.D ,()223352,x x x x +--=-故此选项符合题意.故选:D .【点睛】本题主要考查了解分式方程去分母,根据等式的性质在分式方程两边分别乘以分母的最简公分母,熟练掌握等式的性质是解此题的关键.3.(2022·重庆沙坪坝·一模)若关于x 的方程25x a +=的解是2x =,则a 的值为()A .9-B .9C .1-D .1【答案】D【分析】把2x =代入方程计算即可求出a 的值.【详解】解:把2x =代入方程得:45a +=,解得1a =.故选:D .【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(2022·河北石家庄·二模)1x =是下列哪个方程的解()A .65x=-B .2233+=+x x C .21133x x x x -=--D .2x x =【答案】D【分析】把x =1代入各选项进行验算即可得解.【详解】解:A 、5−1=4≠6,故本选项错误;B 、2124⨯+=,3136⨯+=,4≠6,故本选项错误;C 、当x =1时,x -1=0即分式的分母为0,故本选项错误;D 、211=,故本选项正确.故选:D .【点睛】本题考查了方程的解的概念,使方程的左右两边相等的未知数的值是方程的解.5.(2022·广东·佛山市南海外国语学校三模)我国古代的《洛书》中记载了最早的三阶幻方—九宫图.在如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等,则m 的值是()A .5B .3C .1-D .2-【答案】A 【分析】根据幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等列出方程,即可求解.【详解】解:设幻方正中间的数字为a ,依题意得:124a m a ++=++,解得:5m =.故选A .【点睛】此题考查了一元一次方程的应用,正确理解题意是解题的关键.二、填空题6.(2022·四川达州·二模)方程2x -3=5的解为________.【答案】x =4【分析】根据解一元一次方程的解法求解即可得.【详解】解:2x -3=5,移项得2x =8,系数化为1得:x =4,故答案为:x =4.【点睛】题目主要考查解一元一次方程,熟练掌握方法是解题关键.7.(2022·四川广元·二模)已知:A ,B 在数轴上对应的数分别用a ,b 表示,且2(4)|12|0a b ++-=.若点C 点在数轴上且满足3AC BC =,则C 点对应的数为________.【答案】8或20##20或8【分析】先根据非负数的性质求出a ,b 的值,分C 点在线段AB 上和线段AB 的延长线上两种情况讨论,即可求解.【详解】解:∵2(4)|12|0a b ++-=∴a +4=0,b −12=0解得:a =−4,b =12∴A 表示的数是−4,B 表示的数是12设数轴上点C 表示的数为c∵AC =3BC∴|c +4|=3|c −12|当点C 在线段AB 上时则c +4=3(12−c )解得:c =8当点C 在AB 的延长线上时则c +4=3(c −12)解得:c =20综上可知:C 对应的数为8或20.【点睛】本题考查了非负数的性质,方程的解法,数轴两点之间的距离,运用分类讨论思想方程思想和数形结合思想是解本题的关键.三、解答题8.(2022·四川广元·一模)解方程:2(1)13x x x --=-.【答案】12x =-【分析】先去括号,再移项,合并同类项,最后把未知数的系数化“1”,从而可得答案.【详解】解:去括号,得2213x x x -+=-.移项及合并同类项,得21x =-.系数化为1,得12x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.9.(2022·湖南·长沙市长郡双语实验中学二模)“小口罩,大温暖”,为有效防控疫情,缓解基层防疫物资短缺问题,2020年2月10日,福山区首批4万只口罩免费派发.烟台市政府紧急调拨的这批民用口罩包括A ,B 两种不同款型,其中A 型口罩单价100元,B 型口罩单价80元.(1)先进行试点发放,某社区环卫工人共收到A ,B 两种款型的口罩100盒,总价值共计9200元,求免费发放给该社区环卫工人的A 型口罩和B 型口罩各多少盒?(2)我区某街道办事处决定将此项公益活动在其整个街道社区全面铺开,按照试点发放中A ,B 两种款型的数量比共发放2000盒.若该社区人口平均每500人发放A型口罩m盒,B型口罩(328m-)盒.求该街道社区人口总数.【答案】(1)免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒(2)该街道社区人口总数为50000人【分析】(1)设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,根据题意,列出方程,即可求解;(2)根据题意可得3286040m m-=,从而得到m=12,即可求解.(1)解:设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,依题意得:100100809200x yx y+=⎧⎨+=⎩,解得:6040xy=⎧⎨=⎩.答:免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒.(2)解:依题意得:328 6040m m-=,解得:m=12,∴m+3m−28=20.∴该街道社区人口总数=200020×500=50000(人).答:该街道社区人口总数为50000人.【点睛】本题主要考查了一元一次方程的应用,二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.一元一次方程(提升测评)一、单选题1.(2022·湖北十堰·一模)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数,羊价各是多少?如果我们设合伙人数为x ,则可列方程()A .54573x x +=+B .54573x x -=-C .45357x x +=+D .45357x x -=+【答案】A【分析】根据每人出5钱,还差45钱;若每人出7钱,还差3钱,可以列出相应的一元一次方程,本题得以解决.【详解】解:设合伙人数为x ,则可列方程为54573x x +=+;故选:A【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2022·浙江温州·二模)若代数式()()2132x x +++的值为8,则代数式()()2231x x -+-的值为()A .0B .11C .7-D .15-【答案】C【分析】由()()2132x x +++的值为8,求得x =0,再将x =0代入计算可得.【详解】解:∵()()2132x x +++的值为8,∴2x +2+3x +6=8,∴x =0,当x =0时,()()2231x x -+-=2×(-2)+3×(-1)=-7.故选:C .【点睛】本题考查了解一元一次方程,代数式的求值,掌握解一元一次方程的解法是解题的关键.3.(2022·河北·石家庄市第四十一中学模拟预测)已知m n =,下列等式不成立的是()A .2m n m +=B .0-=m nC .22m x n x -=-D .235m n n-=【答案】D【分析】根据等式的性质和合并同类项即可判断.【详解】由m n =,得2m n m m m +=+=,故A 成立;0m n m m -=-=,故B 成立;根据等式的性质,等式两边同加或减一个等式,左右两边仍相等,22m x n x -=-,故C 成立;2323m n n n n -=-=-,故D 不成立;故选D .【点睛】本题考查了等式的性质和合并同类项,熟记运算法则是解题的关键.4.(2022·河北保定·一模)已知分式:341(32a a a a -+---■的某一项被污染,但化简的结果等于2a +,被污染的项应为()A .0B .1C .23a a --D .32a a --【答案】B【分析】设被污染的部分为p ,然后根据等式的性质解关于p 的方程,求出p 的表达式即可.【详解】解:设被污染的部分为p ,则341()(232a a p a a a -+-=+--,∴241()232a p a a a --=+--,∴()()()132222a p a a a a --=+⨯--+,∴3122a p a a -=+--,∴22a p a -=-,∴1p =.故选:B .【点睛】本题主要考查了分式的混合运算和利用等式的性质解一元一次方程,解题的关键是根据等式的性质解方程和掌握分式混合运算顺序和运算法则.5.(2022·重庆·三模)下列四种说法中正确的有()①关于x 、y 的方程24107x y +=存在整数解.②若两个不等实数a 、b 满足()()244222a b a b +=+,则a 、b 互为相反数.③若2()4()()0a c a b b c ---=-,则2b a c =+.④若222x yz y xz z xy ---==,则x y z ==.A .①④B .②③C .①②④D .②③④【答案】B【分析】将24x y +提公因式2得2(2)x y +,由x 、y 为整数,则2(3)x y +为偶数,因为107为奇数,即原等式不成立,即可判断①;将442222()()a b a b +=+,整理得222()0a b -=,即得出22a b =,由于实数a 、b 不相等,即得出a 、b 互为相反数,故可判断②;2()4()()0a c a b b c ---=-整理得2(2)0a c b +-=,即得20a c b +-=,即2a c b +=,故可判断③;由222x yz y xz z xy ---==,得出2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,即可变形为222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,可以得出x y z ==或0x y z ++=,故可判断④.【详解】解:∵262(3)x y x y +=+,∴如果x 、y 为整数,那么2(3)x y +为偶数,∵107为奇数,∴24107x y +=不存在整数解,故①错误;442222()()a b a b +=+444422222a b a b a b +++=442220a b a b +-=222()0a b -=∴22a b =,∵实数a 、b 不相等,∴a 、b 互为相反数,故②正确;2()4()()0a c ab bc ---=-222244440a ac c ab ac b bc -+-++-=()()22440a cb ac b +-++=2(2)0a cb +-=∴20ac b +-=,即2a c b +=,故③正确;∵222x yz y xz z xy---==∴2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,∴2222222211441144x xz z y yz z y xy x z xz x ⎧++=++⎪⎪⎨⎪++=++⎪⎩,即222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,∴11()2211()22x z y z y x z x ⎧+=±+⎪⎪⎨⎪+=±+⎪⎩,∴x y z ==或0x y z ++=,故④不一定正确.综上可知正确的有②③.故选B .【点睛】本题考查因式分解,整式的混合运算.熟练掌握完全平方公式是解题关键.二、填空题6.(2022·山东临沂·一模)如图,用一块长7.5cm 、宽3cm 的长方形纸板,和一块长6cm 、宽1.5cm 的长方形纸板,与一块小正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则小正方形的边长是______cm ,拼成的大正方形的面积是______cm 2.【答案】 4.581【分析】设小正方形的边长为x cm ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】解:设小正方形的边长为x cm ,则大正方形的边长为(6+7.5-x )cm 或(x +3+1.5)cm ,根据题意得:6+7.5-x =x +3+1.5,解得:x =4.5,则大正方形的边长为6+7.5-x =6+7.5-4.5=9(cm ),大正方形的面积为92=81(cm 2),故答案为:4.5;81.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,设出小正方形的边长并表示出大正方形的边长.7.(2022·上海静安·1=的解是________.【答案】x =1【分析】首先方程两边同时平方,把无理方程化为有理方程,再解方程即可求得【详解】解:方程两边同时平方,得3x -2=1,解得x =1,经检验,x =1是原方程的解,所以,原方程的解为x =1.故答案为:x =1.【点睛】本题考查了无理方程的解法,熟练掌握和运用无理方程的解法是解决本题的关键,注意要检验.三、解答题8.(2022·河北·育华中学三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a 、c 的值,;②求代数式222a c ac +-的值;(2)若将数轴折叠,使得点A 与点C 重合,求与点B 重合的点表示的数;(3)请在数轴上确定一点D ,使得AD =2BD ,则D 表示的数是.【答案】(1)①-2,6;②64(2)3(3)4或0【分析】(1)①根据平方和绝对值的非负性即可求出a 和c ,②把a 和c 的值代入222a c ac +-求值即可;(2)根据题意,求出b 的值,然后求出线段AC 的中点,即可求出结论;(3)设点D 表示的数为x ,然后根据点D 的位置分类讨论,分别根据2AD BD =列出方程即可分别求出结论.(1)解:①∵()2620c a -++=,∴20a +=,60c -=,解得2a =-,6c =.故答案为:-2,6.②把2a =-,6c =代入222a c ac +-,2224362464a c ac +-=++=;(2)解:∵b 是最小的正整数,∴1b =,∴线段AC 的中点为()2622-+÷=,设与点B 重合的点表示的数为n ,则(1+n )÷2=2,解得:n =3.∴与点B 重合的点表示的数是3.故答案为:3.(3)解:因为a =-2,b =1,c =6,设点D 表示的数为x ,若2AD BD =,分三种情况讨论:①若点D 在点A 的左侧,则x <-2且()221x x --=-,解得4x =(不符合题意,舍去);②若点D 在点A 、B 之间,则-2<x <1且()()221x x --=-,解得0x =;③若点D 在点B 右侧,则x >1且x -(-2)=2(x -1),解得:x =4.综上所述,点D 表示的数是0或4.故答案为:0或4.【点睛】此题考查了非负性的应用、数轴上两点之间的距离、中点公式和一元一次方程的应用,解题的关键是掌握平方、绝对值的非负性、数轴上两点之间的距离公式、中点公式和等量关系.。

专题4一元一次方程及其应用

专题4一元一次方程及其应用

专题4一元一次方程及其应用一、一元一次方程的定义一元一次方程是指只含有一个未知数的一次方程。

一元一次方程的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。

二、解一元一次方程的方法解一元一次方程的常见方法有:等式两边同时加减一个数、等式两边同时乘除一个非零数。

1.等式两边加减一个数:对于方程ax + b = 0,我们可以将b加到等式两边或者减去等式两边,得到ax = -b或者ax = b。

然后,再将方程两边同时除以a,就可以得到x的值。

2.等式两边乘除一个非零数:对于方程ax + b = 0,我们可以将等式两边乘以一个非零数c,得到acx + bc = 0。

然后,再将方程两边同时除以ac,就可以得到x的值。

三、一元一次方程的应用一元一次方程在我们日常生活中有很多应用场景,例如:1.购买物品:假设物品的原价是x元,经过打折后的价格是y元,且折扣为a。

那么我们可以建立以下一元一次方程来求解原价x:x - ax = y通过求解方程,我们就可以得到物品的原价。

2.算术平均数:假设一些班级学生的身高分别是x₁、x₂、x₃、..、xn,其中n是班级学生的总数,而x是班级学生的平均身高。

那么我们可以建立以下一元一次方程来求解平均身高x:(x₁ + x₂ + x₃ + ... + xn) / n = x通过求解方程,我们就可以得到班级学生的平均身高。

3.运动速度:假设人以v的速度行驶t小时,行驶的距离为s。

那么我们可以建立以下一元一次方程来求解速度v:s = vt通过求解方程,我们就可以得到人的速度。

四、例题解析1.问题:小明在商场购买了一件原价100元的衣服,打完折后的价格是80元。

请问,打折的折扣是多少?解答:设折扣为x。

根据题意,我们可以得到以下一元一次方程:100-x*100=80解方程得到x=(100-80)/100=0.2所以,打折的折扣是20%。

2. 问题:班级共有30名学生,他们的体重平均为55kg。

一元一次方程的解法及应用拓展

一元一次方程的解法及应用拓展

一元一次方程的解法及应用拓展一、一元一次方程的概念1.1 定义:含有一个未知数,未知数的最高次数为1,且两边都为整式的等式称为一元一次方程。

1.2 形式:ax + b = 0(a, b为常数,a≠0)二、一元一次方程的解法2.1 公式法:将方程ax + b = 0两边同时除以a,得到x = -b/a。

2.2 移项法:将方程中的常数项移到等式的一边,未知数项移到等式的另一边。

2.3 因式分解法:将方程进行因式分解,使其成为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

三、一元一次方程的应用3.1 实际问题:将实际问题转化为一元一次方程,求解未知数。

3.2 线性方程组:由多个一元一次方程组成的方程组,可用代入法、消元法等方法求解。

3.3 函数图像:一元一次方程的图像为直线,可通过解析式分析直线与坐标轴的交点、斜率等性质。

四、一元一次方程的拓展4.1 比例方程:含有一元一次方程的等比例关系,可通过交叉相乘、解一元一次方程求解。

4.2 分式方程:含有一元一次方程的分式,可通过去分母、解一元一次方程求解。

4.3 绝对值方程:含有一元一次方程的绝对值,可分为两种情况讨论,求解未知数。

五、一元一次方程的练习题5.1 选择题:判断下列方程是否为一元一次方程,并选择正确的解法。

5.2 填空题:根据题目给出的条件,填空求解一元一次方程。

5.3 解答题:解答实际问题,将问题转化为一元一次方程,求解未知数。

六、一元一次方程的考试重点6.1 掌握一元一次方程的定义、形式及解法。

6.2 能够将实际问题转化为一元一次方程,求解未知数。

6.3 熟练运用一元一次方程解决线性方程组、函数图像等问题。

6.4 理解一元一次方程的拓展知识,如比例方程、分式方程、绝对值方程等。

七、一元一次方程的学习建议7.1 多做练习题:通过大量的练习题,熟练掌握一元一次方程的解法及应用。

7.2 深入理解实际问题:学会将实际问题转化为一元一次方程,提高解决问题的能力。

中考数学必考考点专题6一元一次方程及其应用含解析

中考数学必考考点专题6一元一次方程及其应用含解析

专题06 一元一次方程及其应用专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。

2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。

(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。

(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。

(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。

(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。

要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解x =b/a ;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

知识点3:列一元一次方程解应用题1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。

(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,利用等量关系写出等式,即列方程。

初中数学一元一次方程解应用题的10大题型

初中数学一元一次方程解应用题的10大题型

初中数学一元一次方程解应用题的10大题型增长率问题增长量=原有量×增长率;现在量=原有量+增长量=原有量×(1+增长率)例题1:某学校食堂这个月的大米购进量比上个月减少了5%,由于受疫情影响米价上涨,这个月购进大米的费用反而比上个月增加了14%,求这个月大米价格相对上个月的增长率.数字问题数字问题需要清除数字的表示方法,一个两位数字,个位上是a,十位上是b,那么该数为10b+a;一个三位数,百位上是a,十位上是b,个位上是c,那么该数为100a+10b+c。

偶数常表示为2n,奇数常表示为2n-1或2n+1。

例题2:一个两位数,个位的数字比十位上的数字大1,交换两位数位置得到新的两位数与原两位数之和等于33,求这个两位数.例题3:一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.日历问题在日历中,横向相邻的两个数相差1,相邻的三个数可设为n-1,n,n+1;纵向相邻的两个数相差7,相邻的三个数可设为n-7,n,n+7.例题4:在一张日历表中,用正方形圈出4个数,这4个数的和可以是78吗?请简要计算说明你的理由.例题5:爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说,“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.求小明爷爷的生日.行程问题行程问题种类较多,常见的有追及问题、相遇问题、环形跑道问题、顺流逆流问题、火车过桥问题等等,行程问题中有三个基本量及其关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速度。

例题6:一艘船从甲码头到乙码头顺流而行,用了2h,又从乙码头返回甲码头逆流而行,用了2.5h,船在静水中的平均速度为27km/h,求水流的速度.例题7:从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米,平均车速增加了30千米/时,需要4.5小时即可达到,求长途汽车原来行驶的速度.工程问题工程问题与行程问题一样,是比较经典的类型之一,工程问题中三个量及其关系:工作总量=工作时间×工作效率,工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间。

一元一次方程及其应用问题

一元一次方程及其应用问题

一元一次方程及其应用问题一、一元一次方程的概念1.1 定义:一元一次方程是指只含有一个未知数(元),且未知数的最高次数为1的方程。

1.2 一般形式:ax + b = 0(a、b为常数,且a≠0)1.3 方程的解:能使方程左右两边相等的未知数的值称为方程的解。

二、一元一次方程的解法2.1 代入法:将未知数的值代入方程,使方程成立。

2.2 加减法:对方程进行加减运算,消去方程中的常数项或未知数系数,求解未知数。

2.3 乘除法:对方程进行乘除运算,消去方程中的系数,求解未知数。

三、一元一次方程的应用问题3.1 比例问题:根据比例关系,列出方程求解。

例:已知两个数的比例为3:4,它们的和为24,求这两个数。

3.2 行程问题:根据行程关系,列出方程求解。

例:甲车从A地出发,乙车从B地出发,相向而行,相遇后甲车还需行驶2小时到达B地,乙车还需行驶4小时到达A地。

若甲车每小时行驶40公里,乙车每小时行驶60公里,求A、B两地之间的距离。

3.3 工程问题:根据工程关系,列出方程求解。

例:甲、乙两人共同完成一项工程,甲每小时完成3个单位的工作量,乙每小时完成4个单位的工作量。

若两人合作需6小时完成工程,求工程的总工作量。

四、一元一次方程的实际意义4.1 购物问题:已知商品的原价和折扣,求实际支付的金额。

例:一件商品原价为200元,打8折出售,求实际支付的金额。

4.2 分配问题:已知总量和各部分的比例,求各部分的具体数值。

例:某班级男生和女生的人数之比为3:5,班级总人数为60人,求男生和女生的人数。

五、一元一次方程的拓展5.1 解的判断:判断一个数是否为方程的解。

5.2 方程组:由多个方程构成的方程组,求解未知数的值。

5.3 函数:一元一次方程的图像为直线,了解直线的性质和应用。

以上为一元一次方程及其应用问题的知识点总结,希望对您的学习有所帮助。

习题及方法:1.习题:已知两个数的和为9,差为3,求这两个数。

解题思路:设两个数分别为x和y,根据题意列出方程组:将两个方程相加,消去y,得到2x = 12,解得x = 6。

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳典型例题讲解1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫− ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+−= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值. 【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩, 解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯−=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x 1.1a 中即可求出结论. 【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a ﹣x )元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x+1.04(a ﹣x ),解得:x =213,∴1.43x1.1a =1.43⋅213a1.1a =0.22a1.1a =0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a%.求a 的值.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%), 解得:a =10,答:a 的值为10. 一次方(组)程应用考点归纳1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.。

中考数学专项练习一元一次方程的实际应用计费问题(含解析)

中考数学专项练习一元一次方程的实际应用计费问题(含解析)

中考数学专项练习一元一次方程的实际应用计费问题(含解析)【一】单项选择题1.某城市按以下规定收取每月煤气费:每月所用煤气按整立方米数计算;假设每月用煤气不超过60立方米,按每立方米0.8元收费;假设超过60立方米,超过部分按每立方米1.2元收费.某户人家某月的煤气费平均每立方米0.88元,那么这户人家需要交煤气费〔〕A.60元B.66元C.75元D.78元2.某商场在〝五一〞期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,那么不予优惠;②如果超过500元,但不超过800元,那么按购物总额给予8折优惠;③如果超过800元,那么其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,假设各自单独付款,那么应分别付款480元和520元;假设合并付款,那么她们总共只需付款多少元〔〕A.838B.924C.924或838D.838或9103.某市为提倡节约用水,采取分段收费.假设每户每月用水不超过20 m3 ,每立方米收费2元;假设用水超过20m3 ,超过部分每立方米加收1元.小明家5月份交水费64元,那么他家该月用水〔〕m3 .A.38B.34C.28D.444.某超市推出如下优惠方案:〔1〕购物款不超过200元不享受优惠;〔2〕购物款超过200元但不超过600元一律享受九折优惠;〔3〕购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,那么小明的妈妈应付款〔〕元.A.522.8B.560.4C.510.4D.472.805.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km 加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm,那么x的最大值是()A.11B.8C.7D.56.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,那么超过部分按每立方米2.4元收费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程及其应用
一、选择题
1.
(2019•湖北恩施•3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()
A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元
【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.
【解答】解:设两件衣服的进价分别为x、y元,
根据题意得:120﹣x=20%x,y﹣120=20%y,
解得:x=100,y=150,
∴120+120﹣100﹣150=﹣10(元).
故选:C.
【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
3.(2019•甘肃白银,定西,武威•3分)已知,下列变形错误的是()
A. B. C. D.
【答案】B
【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.
【解答】由得,3a=2b,
A. 由得,所以变形正确,故本选项错误;
B. 由得3a=2b,所以变形错误,故本选项正确;
C. 由可得,所以变形正确,故本选项错误;
D.3a=2b变形正确,故本选项错误.
故选B.
二.填空题
1. (2019•四川成都•3分)已知,且,则a的值为________.
【答案】12
【考点】解一元一次方程,比例的性质
【解析】【解答】解:设则a=6k,b=5k,c=4k
∴6k+5k-8k=6,解之:k=2
∴a=6×2=12
故答案为:12
【分析】设,分别用含k的式子表示出a、b、c的值,再根据,建立关于k的方程,求出k的值,就可得出a的值。

三.解答题
1.
(2019•安徽•分)《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.
【答案】城中有75户人家.
【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.
【详解】设城中有x户人家,由题意得
x+x=100,
解得x=75,
答:城中有75户人家.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.
2.(2019年四川省内江市)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.
(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?
(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.
①该商场有哪几种进货方式?
②该商场选择哪种进货方式,获得的利润最大?
【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用.
【分析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;
(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;
②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.
【解答】解:(1)设A、B两种型号的手机每部进价各是x元、y元,
根据题意得:,
解得:,
答:A、B两种型号的手机每部进价各是2019元、1500元;
(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,
根据题意得:,
解得:≤a≤30,
∵a为解集内的正整数,
∴a=27,28,29,30,
∴有4种购机方案:
方案一:A种型号的手机购进27部,则B种型号的手机购进13部;
方案二:A种型号的手机购进28部,则B种型号的手机购进12部;
方案三:A种型号的手机购进29部,则B种型号的手机购进11部;
方案四:A种型号的手机购进30部,则B种型号的手机购进10部;
②设A种型号的手机购进a部时,获得的利润为w元.
根据题意,得w=500a+600(40﹣a)=﹣100a+24000,
∵﹣10<0,
∴w随a的增大而减小,
∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21700(元).
因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.
答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.
【点评】此题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,找出满足题意的等量关系与不等关系是解本题的关键.。

相关文档
最新文档