初一数学《角》测试题
《第3单元 角的初步认识》单元测试试卷及答案(共六套)
《第3单元角的初步认识》单元测试试卷(一)一、我会填。
(每空2分,共30分)1.标出下图中每个角各部分的名称。
2.一个角有( )个顶点,( )条边。
3.三角尺上最大的角是( )角。
4.正方形有( )个角,都是( )角。
5.红领巾有( )个角,方手帕有( )个角。
6.比直角小的角是( )角,钝角比直角( )。
二、我会判。
(每题2分,共10分)1.正方形有八个角。
( ) 2.角的大小与所画出的边的长短无关。
( ) 3.直角和锐角一定拼成钝角。
( ) 4.数学书封面上的直角比三角尺上的直角小。
( ) 5.每一个三角板上都有两个锐角。
( ) 三、我会辨别,在角的下面画“√”。
(6分)四、我会分。
(8分)五、我会写。
(时针和分针各组成了什么角?)(8分)六、我会从大到小排列。
(6分)________________________________________________________ 七、下面的图形中各有几个角?几个直角?(16分)()个角()个直角()个角()个直角()个角()个直角()个角()个直角八、我会画。
(每题4分,共16分)1.以下面的线为边,画一个锐角和一个直角。
2.在格子图上画一个长方形和一个正方形。
3.画两条线段,使它有4个直角。
4.画一条线,使它有一个直角和一个锐角。
答案一、1.2.一两3.直4.四直5.三四6.锐大二、1.× 2.√ 3.√ 4.× 5.√三、第1个、第4个和第5个画“√”四、直角(③⑦) 钝角(②⑤⑧) 锐角(①④⑥)五、钝直锐钝六、③>①>②七、4 2 4 60 2 2 2八、1.(画法不唯一)2.略。
3. (画法不唯一)4. (画法不唯一)《第3单元角的初步认识》单元测试试卷(二)一、找一找。
(1题8分,2题4分,共12分)1.在角的下面画“√”。
2.下面哪些是直角?在直角的下面画“”。
二、填一填。
(每空1分,共19分)1.一个角有( )个顶点,( )条边。
七年级数学上册《角》练习题及答案
七年级数学上册《角》练习题1.下列说法中正确的是().(A ) 两条射线组成的图形叫做角(B ) 角的两边都可以延长(C) 平角的两边构成一条直线(D) 由射线OA、OB 组成的角,可以记作∠OAB2.下列四个图形中,能用∠1,∠AOB,∠O 三种方法表示同一个角的是(). 3.用三个字母表示图中所标注的∠1,∠2,∠3 和∠4:∠1 是____________;∠2 是____________;∠3 是____________;∠4 是____________.4.计算:(1) 0.4º =______';(2) 0.6ʹ =______ʺ;(3) 36ʹ =_______º;(4) 48ʺ =______ʹ;(5) 57.32º =______º ______ʹ______ʺ;(6) 17º 14ʹ24ʺ=________º =__________ʺ.5.(1)时钟的时针1 小时旋转多少度? 时钟的分针1 分钟旋转多少度?(2) 5 点整时,时钟的时针与分针之间的夹角是多少度?(3)时钟在8:30 时,时针与分针的夹角为多少度?6.如下图,在横线上填上适当的角:(1) ∠AOC=______+______;(2) ∠AOD-∠BOD=______;(3) ∠BOC=______-∠COD;(4) ∠BOC=∠AOC+∠BOD-______.7.按下图填空:(1) ∠ABC = ______+______;(2) ∠BDC=______-______.8.如图,(1)若∠AOB=∠COD,则∠AOC=∠______.(2)若∠AOC=∠BOD,则∠______=∠______.9.在小于平角的∠AOB 的内部取一点C,并作射线OC,则一定存在( ).(A)∠AOC>∠BOC (B)∠AOC=∠BOC(C)∠BOC>∠AOC (D)∠AOB>∠AOC10.不能用一副三角板拼出的角是( ).(A) 120°(B) 105°(C) 100°(D) 75°11.已知α、β 是两个钝角,计算1/6(α+β),四位同学算出了四种不同的答案,分别为24°,48°,76°,86°,其中只有一个答案是正确的,那么你认为正确的是( )(A) 24°(B) 48°(C) 76°(D) 86°12.已知∠AOB=70°,∠BOC=40°,求∠AOC 的度数.13.如图,若OC 是∠AOB 的平分线,则_____=_____=1/2_____;或_____=2_____=2_____.14.如图,OM 是∠AOB 的平分线,且∠AOM=30°,则∠BOM=______;∠AOB=______.15.射线OC 在∠AOB 的内部,下列四个式子中不能判定OC 是∠AOB 的平分线的是( ).(A)∠AOB=2∠AOC (B)∠BOC=∠AOC(C)∠AOC=1/2∠AOB (D)∠AOC+∠BOC=∠AOB16.如图,如果OT 平分∠AOB,同时平分∠COD,那么∠AOT=∠______,∠AOC=∠______,∠AOD=∠______17.如图,射线OD,OE 分别是∠AOC 和∠BOC 的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.解:因为OD 平分∠AOC,OE 平分∠BOC,所以∠AOC=2∠AOD,∠BOC=2∠______.()因为∠AOD=40°,∠BOE=25°,所以∠AOC=____________=______,∠BOC=____________=______.所以∠AOB=∠______+∠______=_______.18.已知:如图,∠ADC=∠ABC,DE 是∠ADC 的平分线,BF 是∠ABC 的平分线. 求证:∠2=∠3.证明:因为DE 是∠ADC 的平分线,所以∠2=______.()所以BF 是∠ABC 的平分线,所以∠3=______.()又因为∠ADC=∠ABC,所以∠2=∠3.()19.已知,AOB 是直线,∠AOC=∠EOD=90°,写出图中互余的角.参考答案:1.C;2.B ;3.∠CAD;∠CAB;∠ACB;∠ACD;4. (1) 24; (2) 36; (3) 0.6; (4) 0.8;(5) 57, 19, 12; (6) 17.24, 62064;5.(1) 30, 6; (2) 150; (3) 75.6. (1)∠AOB,∠BOC;(2)∠AOB;(3)∠BOD;(4)∠AOD;7. (1)∠ABD,∠CBD;(2)∠ADC,∠ADB;8. (1)∠BOD;(2)∠AOB,∠COD;9. D;10. C;11. B;12. 110°或30°.13. (1)∠AOC,∠BOC,∠AOB,∠AOB,∠AOC,∠BOC;14. 30º,60º;15. D;16. ∠BOT, ∠BOD,∠BOC;17. ∠BOE,角平分线的定义,2×40°,80°,2×25°,50°,80°,50°,130°;18. 1/2∠ADC,角平分线的定义,1/2∠ABC,角平分线的定义,等量代换.19. ∠1 与∠2 互余,∠1 与∠4 互余,∠2 与∠3 互余,∠3 与∠4 互余.。
初一上册数学角试题及答案
初一上册数学角试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是角的分类?A. 锐角B. 直角C. 钝角D. 线段答案:D2. 一个角的度数是60°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A3. 一个角的度数是180°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:D4. 一个角的度数是90°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B5. 一个角的度数是360°,这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:D6. 一个角的度数是120°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:C7. 一个角的度数是30°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A8. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 90°C. 135°D. 180°答案:B9. 如果一个角的度数是75°,那么它的余角是:A. 15°B. 45°C. 75°D. 90°答案:A10. 如果一个角的度数是150°,那么它的补角是:A. 30°B. 45°C. 60°D. 90°答案:A二、填空题(每题2分,共20分)1. 一个角的度数是90°,它是一个________。
答案:直角2. 一个角的度数是180°,它是一个________。
答案:平角3. 一个角的度数是360°,它是一个________。
答案:周角4. 如果一个角的度数是120°,那么它的补角是________。
答案:60°5. 如果一个角的度数是45°,那么它的余角是________。
答案:45°6. 锐角是指度数小于________的角。
人教版七年级上册数学角练习题及答案
4.3.1角1、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为B、45°C、55°2、如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A、90°<α<180°B、0°<α<90°C、α=90°D、α随折痕GF位置的变化而变化3、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于()A、30°B、36°C、45°D、72°B、一对同位角的平分线互相平行C、一对内错角的平分线互相平行D、一对同旁内角的平分线互相平行6、如图,AB∥CD,CE⊥BD,则图中与∠1 互余的角有()B、2 个7、如图,已知AB∥CD,直线EF 分别交AB,CD 于点E、F,EG 平分∠AEF,若∠2=40°,则∠1 的度数是()A、70°B、65°C、60°D、50°8、如图,已知l ∥l ,AC、BC、AD 为三条角平分线,则图中与∠1 互为余角的角有()1 2的余角C、∠=∠D、∠AOD与∠COE互补________.11、如图,AB、CD相交于O,OE⊥AB,若∠EOD=65°,则∠AOC=________.12、如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=________度.13、如图,已知直线AE∥BC,AD平分∠BAE,交BC于点C,∠BCD=140°,则∠B的度数为________14、已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.15、如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.16、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.17、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?(1)已知n正整数,且,求的值;(2)如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.20、仅用无刻度的直尺作出符合下列要求的图形.(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上).试过点O作射线OM、ON,使得OM⊥ON.一、单选题1、【答案】A【考点】角平分线的定义,对顶角、邻补角,垂线【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.2、【答案】C【考点】角的计算【解析】【解答】解:∵∠CFG=∠EFG 且FH 平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH= ∠EFC+ ∠EFB= (∠EFC+∠EFB)= ×180°=90°.故选C.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH 平分∠BFE 即可求解.3、【答案】A【考点】角平分线的定义,对顶角、邻补角∴∠AOC= ∠EOC= ×60°=30°,∴∠BOD=∠AOC=30°.故选:A.【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.4、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.5、【答案】D【考点】角平分线的定义,平行线的性质【解析】【解答】解:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;故选:D.【分析】由两条平行线被第三条直线所截,内错角的平分线互相平行、同旁内角的平分线互相垂直、内错角6、【答案】C∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.7、【答案】A【考点】角平分线的定义,平行线的性质【解析】【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF=70°,∴∠1=70°.故选:A.【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG=∠GEF=70°,8、【答案】D【考点】角平分线的定义,平行线的性质12∴∠1与∠2互余,又∵∠2=∠3,又∵∠4=∠5,∴∠1与∠5互余,【分析】根据平行线的性质,以及角平分线的定义,可得∠1与∠2互余,∠1与∠3互余,∠1与∠4互余,∠1【分析】二、填空题10、【答案】50°【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,【考点】余角和补角,对顶角、邻补角【分析】根据垂直的定义可得∠BOE=90°,然后求出∠BOD ,再根据对顶角相等可得∠AOC=∠BOD .12、【答案】56∵∠MFE 是△EOF 的外角,【分析】先根据平行线的性质得出∠NOE=∠FEO ,再根据角平分线的性质得出∠NOE=∠EOF ,由三角形外角 的性质即可得出结论.【考点】角平分线的定义,平行线的性质,三角形内角和定理 【解析】【解答】解:∵∠BCD =140°,∴∠ACB =180°-140°=40°.AE BC ∵ ∥ ∵AD 平分∠BAE , ∴∠ =∠B= ∴∠ 180°-40°-40°=100°.【分析】三、解答题∴∠AOB=60°.【考点】角的计算,垂线【解析】【分析】根据垂直关系知∠AOC=90°,由∠AOB :∠AOC=2:3,可求∠AOB ,根据∠AOB 与∠AOC 的 位置关系,分类求解.【考点】角平分线的定义,对顶角、邻补角,平行线的性质【解析】【分析】运用角平分线的定义、平行线的性质和邻补角的定义进行解答即可.16、【答案】解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.【考点】角平分线的定义,对顶角、邻补角【解析】【分析】根据角的和差,可得∠EOF的度数,根据角平分线的性质,可得∠AOC的度数,根据补角的性质,可得答案.17、【答案】解:∠1=∠2,∴∠EBC=∠ABC,∠2=∠ADC,∴∠EBC+∠2=∠ABC+∠ADC=90°,∵FG⊥BE,∴∠FGB=90°,∴∠1+∠EBC=90°,∴∠1=∠2【考点】余角和补角,角平分线的性质,多边形内角与外角【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论.四、综合题18、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴BF∥DE;(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【考点】余角和补角,垂线【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数19、【答案】(1)解:原式=9a-4a=9(a)-4(a)6n4n2n32n22n3(2)解:∵∠AOE=90°,∴∠AOC+∠EOC=90°,∵∠AOC:∠COE=5:4,=50°,【考点】幂的乘方与积的乘方,角的计算,余角和补角,对顶角、邻补角【解析】【分析】(1)先利用积的乘方计算,再利用积的逆运算化成含有a的形式,再把a=2代入计算2n2n即可;(2)由于∠AOC与∠EOC互余,∠AOC:∠COE=5:4,所以∠AOC的度数可求,再根据邻补角的定义求解即可.20、【答案】(1)解:如图所示(2)解:如图所示【考点】角平分线的定义,垂线,全等三角形的判定与性质,作图—基本作图【解析】【分析】根据题意画出图形,再利用SSS定理证明△ACO≌△BCO,根据全等三角形的性质可得∠AOC=∠BOC,进而得到射线OC就是∠MON的平分线.(2)由(1)可知OM、ON分别是∠POQ、∠QOG的平分线,则∠MON=90°。
七年级数学上册《角》练习题
七年级数学上册《角》练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100'2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D.5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________. 10.如图,写出图中以A 为顶点的角______.三、解答题A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的11.读句画图如图,点,,图形为准):(1)画图:①画射线AB;①画直线BC;=.①连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC12.【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由.参考答案:1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键. 10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。
人教版数学初一上《角》测试题(含答案及解析)
人教版数学初一上《角》测试题(含答案及解析)时间:60分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.一副三角板按如图所示的方法摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A. 20∘B. 22.5∘C. 25∘D. 67.5∘2.如图所示,能用∠AOB,∠O,∠1三种要领表示联合个角的图形是()A. B.C. D.3.下列说法正确的是()A. 平角是一条直线B. 角的边越长,角越大C. 大于直角的角叫做钝角D. 两个锐角的和不一定是钝角4.下列说法中正确的个数有()①议决一点有且只有一条直线;②相连两点的线段叫做两点之间的隔断;③射线比直线短;④ABC三点在联合直线上且AB=BC,则B是线段AC的中点;⑤在联合平面内,两条直线的位置干系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个5.下图中能用一个字母表示的角()A. 三个B. 四个C. 五个D. 没有6.甲、乙两人都从A地出发,分别沿北偏东30∘、60∘的偏向抵达C地,且BC⊥AB,则B地在C地的()A. 北偏东30∘的偏向上B. 北偏西30∘的偏向上C. 南偏东30∘的偏向上D. 南偏西30∘的偏向上第 1 页7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A. 60∘B. 70∘C. 80∘D. 85∘8.下列四个图形中,能同时用∠1,∠ABC,∠B三种要领表示联合个角的图形是()A. B.C. D.9.在8点30分时,时针上的时针与分针之间的夹角为()A. 85度B. 75度C. 70度D. 60度10.在时刻9:30时,时钟上的时针与分针间的夹角是()A. 75∘B. 90∘C. 105∘D. 120∘二、填空题(本大题共10小题,共30.0分)11.如图,∠1=∠2,则∠1+∠3=______度.12.如图,锐角的个数共有______个.13.如图,A岛在B岛的北偏东30∘偏向,C岛在B岛的北偏东80∘偏向,A岛在C岛北偏西40∘偏向,从A岛看B,C两岛的视角∠BAC是______ 度.14.如图,∠AOB=90∘,以O为极点的锐角共有______个.15.如图所示,能用一个字母表示的角有______个,以A为极点的角有______个,图中所有角有______个.16.如图,用字母A、B、C表示∠α、∠β.则∠α=______,∠β=______.17.把一个周角7平分,每一份是______ 度______ 分(准确到1分).18.如图,把一根小棒OC一端钉在点O,旋转小木棒,使它落在不同的位置上形成不同的角,此中∠AOC为______,∠AOD为______,∠AOE为______,木棒转到OB时形成的角为______.(回答钝角、锐角、直角、平角)19.当时针指向2:30时,时针与分针的夹角是______ 度.20.已知一个锐角为(5x−35)∘,则x的取值范畴是______.三、谋略题(本大题共4小题,共24.0分)21.钟面上的角的标题.(1)3点45分,时针与分针的夹角是几多?(2)在9点与10点之间,什么时候时针与分针成100∘的角?22.如图所示,直线AB上有一点O,恣意画射线OC,已知OD,OE分别是∠AOC,∠BOC的中分线,求∠DOE的度数.23.如图所示,OM是∠AOC的中分线,ON是∠BOC的中分线,(1)要是∠AOC=28∘,∠MON=35∘,求出∠AOB的度数;(2)要是∠MON=n∘,求出∠AOB的度数;(3)要是∠MON的巨细改变,∠AOB的巨细是否随之改变?它们之间有怎样的巨细干系?请写出来.24.如图,直线AB、CD相交于点O,∠EOD=∠AOC,OF中分∠AOE,若∠AOC=28∘,求∠EOF的度数.第 3 页四、解答题(本大题共2小题,共16.0分)25. 请将图中的角用不同要领表示出来,并填写下表:∠ABE∠1∠2∠326. 图中,以B 为极点的角有几个?把它们表示出来.以D 为极点的角有几个?把它们表示出来.答案和剖析【答案】 1. B 2. D 3. D 4. C5. A6. C7. C8. B 9. B 10. C11. 180 12. 5 13. 70 14. 515. 0;4;1516. ∠CAB 或∠BAC 表示∠α;∠CBA 或∠ABC 17. 51;2618. 锐角;直角;钝角;平角 19. 10520. 7<x <2521. 解:(1)如图,∵由3点到3点45分,分针转了270∘,时针转了270∘×112,∴时针与分针的夹角是:180∘−270∘×112=157.5∘;(2)设分针转的度数为x ,则时针转的度数为x 12, 得①90∘+x −x12=100∘, 解得,x =12011∘,12011∘÷6∘=2011(分);②90∘+x12−(x −180∘)=100∘,第 5 页解得,x =204011∘,204011∘÷6∘=34011(分);∴9点过2011或34011分钟时,时针与分针成100∘的角.22. 解:∵OD ,OE 分别是∠AOC ,∠BOC 的中分线,∴∠AOD =∠COD =12∠AOC ,∠BOE =∠COE =12∠BOC ,∵∠AOC +∠BOC =180∘,即2∠COD +2∠COE =180∘,∴∠DOE =∠DOC +∠COE =90∘.23. 解:(1)∵OM 是∠AOC 的中分线,∠AOC =28∘, ∴∠COM =12∠AOC =14∘,∵∠MON =35∘,∴∠CON =∠MON −∠COM =35∘−14∘=21∘, ∵ON 是∠BOC 的中分线,∴∠BOC =2∠CON =2×21∘=42∘,∴∠AOB =∠AOC +∠BOC =28∘+42∘=70∘;(2)∵OM 是∠AOC 的中分线,ON 是∠BOC 的中分线, ∴∠COM =12∠AOC ,∠CON =12∠BOC ,∴∠MON =∠COM +∠CON =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12∠AOB , ∵∠MON =n ∘,∴∠AOB =2∠MON =2n ∘;(3)根据(2)的推导,∠AOB 随∠MON 巨细的改变而改变,∠AOB =2∠MON . 24. 解:∵∠AOC =28∘, ∴∠BOD =∠AOC =28∘,∴∠AOE =180∘−56∘=124∘, 又∵OF 中分∠AOE , ∴∠EOF =62∘. 故答案为62∘.25. 解:由图可知,∠ABE =∠α,∠1=∠ABC ,∠2=∠ACB ,∠3=∠ACF . 故答案为∠α,∠ABC ,∠ACB ,∠ACF .26. 解:以B 为极点的角有3个,分别是:∠ABD 、∠ABC 、∠DBC ,以D 为极点的角有6个,分别是∠ADE 、∠EDC 、∠ADB 、∠BDC.∠ADC ,∠BDE 【剖析】1. 【剖析】本题主要考察了余角、补角和角的概念,能根据图形求出∠1+∠2=90∘是解此题的要害.求出∠1+∠2=90∘,根据∠1的度数是∠2的3倍得出4∠2=90∘,即可求出答案. 【解答】解:根据图形得出:∠1+∠2=180∘−90∘=90∘, ∵∠1的度数是∠2的3倍, ∴∠2+3∠2=90∘, 即4∠2=90∘,∴∠2=22.5∘.故选B.2. 解:A、以O为极点的角不止一个,不能用∠O表示,故A选项错误;B、以O为极点的角不止一个,不能用∠O表示,故B选项错误;C、以O为极点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种要领表示联合个角,故D选项正确.故选:D.根据角的四种表示要领和具体要求回答即可.本题考察了角的表示要领的应用,掌握角的表示要领是解题的要害.3. 解:A、平角是两条射线组成的一条直线,故此选项错误;B、角的边越长,与角的巨细无关,故此选项错误;C、大于直角且小于180∘的角叫做钝角,故此选项错误;D、两个锐角的和不一定是钝角,正确.故选:D.直接利用角的定义以及钝角的定义分别剖析得出答案.此题主要考察了角的定义以及钝角的定义,正确把握定义是解题要害.4. 解:①议决两点有且只有一条直线,故本小题错误;②应为相连两点的线段的长度叫做两点的隔断,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在联合直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在联合平面内,两条直线的位置干系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.根据直线的性质,两点间隔断的概念,射线与直线的意义,线段中点的概念,联合平面内两条直线的位置干系,钟面角的谋略,对各小题逐一剖析鉴别后,利用消除法求解.本题考察了直线的性质,两点间隔断的定义,射线与直线的意义,线段中点的定义,两条直线的位置干系,钟面角,是基础题,熟记性质与概念是解题的要害.5. 解:∵只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角,据此鉴别出图中能用一个字母表示的角有几个即可.此题主要考察了角的表示要领,要熟练掌握,解答此题的要害是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.此中极点字母要写在中间,唯有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.6. 解:∵∠1=30∘,BC⊥AB,∴∠2=30∘,∴∠3=∠2=30∘,∴B地在C地的南偏东30∘的偏向上,故选C.此题考察了学生对偏向角的理解及直角三角形的鉴定等知识点的掌握环境.7. 解:10×30+40×0.5−6×40=320−240=80(∘),故选:C.可画出草图,利用钟表表盘的特性解答.本题考察钟表时针与分针的夹角.在钟表标题中,常利用时针与分针转动的度数干系:)∘,而且利用开始时间时针和分针的位置干系建立分针每钟转动6∘,时针每分钟转动(12角的图形.8. 解:A、由于B为极点的角有四个,不可用∠B表示,故本选项错误;B、由于B为极点的锐角有一个,可用∠ABC,∠B,∠1三种要领表示联合个角,故本选项正确;C、由于B为极点的锐角有三个,不可用∠B表示,故本选项错误;D、由于B为极点的有二个,不可用∠B表示,故本选项错误.故选:B.根据角的表示要领对四个选项逐个举行剖析即可.本题考察了角的概念,要熟悉角的三种表示要领所适用的条件.9. 解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30∘,∴8点30分分针与时针的夹角是2.5×30∘=75∘.故选:B.根据钟表上12个数字,每相邻两个数字之间的夹角为30∘谋略得到答案.本题考察了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30∘.−6×30∘=105∘,10. 解:9:30时,时钟上的时针与分针间的夹角9×30∘+30∘×12故选:C.根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,即是分针旋转的角度;再根据时针的角减去分针旋转的角即是时针与分针的夹角,可得答案.本题考察了钟面角,利用了时针的旋转角减去分针的旋转的角即是时针与分针的夹角.11. 解:∵∠2与∠3是邻补角,∴∠2+∠3=180∘,又∵∠1=∠2,∴∠1+∠3=180∘.充分运用邻补角的数量干系及等量代换解题.本题利用了两个补角的和为180∘和等量代换.12. 解:以OA为一边的角∠AOB=20∘,∠AOC=20∘+30∘=50∘,∠AOD=20∘+30∘+ 50∘=100∘(钝角舍去),以OB为一边的角∠BOC=30∘,∠BOD=50∘+30∘=80∘,以OC为一边的角∠COD=50∘.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.分别以OA、OB、OC为一边,数出所有角,相加即可.此题考察了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.13. 解:∵A岛在B岛的北偏东30∘偏向,即∠DBA=30∘,∵C岛在B岛的北偏东80∘偏向,即∠DBC=80∘;第 7 页∵A岛在C岛北偏西40,即∠ACE=40∘,∴∠ACB=180∘−∠DBC−∠ACE=180∘−80∘−40∘=60∘;在△ABC中,∠ABC=∠DBC−∠DBA=80∘−30∘=50∘,∠ACB=60∘,∴∠BAC=180∘−∠ABC−∠ACB=180∘−50∘−60∘=70∘.利用方位角的概念连合图形解答.解答此类题需要从运动的角度,正确画出方位角,再连合三角形的内角和定理与平行线的性质解答.14. 解:以OA为一边的角,∠AOD,∠AOC;以OD为一边的角,∠DOC,∠DOB;以OC为一边的角,∠COB.共5个角.故答案是:5.明确角的概念,依次数出以OA、OD、OC为一边的角的个数即可.此题考察了角的概念,首先要明白图中所示的角,再依次数出图中的角,要注意不要漏数,也不要多数.15. 解:能用一个字母表示的角有0个,以A为极点的角有4个,图中所有角有15个,故答案为:0,4,15.根据角的概念逐个得出即可.本题考察了角的概念,能数出相符的所有角是解此题的要害.16. 解:由图可知,∠α=∠CAB或∠BAC;∠β=∠CBA或∠ABC.故答案为∠CAB或∠BAC,∠CBA或∠ABC.根据角的定义找到图中角,用三个字母表示角时,将表示极点的字母置于三个字母中间.此题考察了角的多种表示要领,当极点处只有一个角时,此角可用多种要领表示,如有多个角,则不能只用一个字母表示,以免混淆.17. 解:由题意,得360∘÷7=51∘26′,故答案为:51,26.根据度分秒的除法,可得答案.本题考察了度分秒的换算,利用度分秒的除法是解题要害.18. 解:根据角的定义,∠AOC为锐角,∠AOD为直角,∠AOE为钝角,木棒转到OB时形成的角为平角.利用角的概念求解.互相垂直时,夹角是直角,即90∘;大于90∘小于180∘是钝角,小于90∘大于0∘是锐角,即是180度叫平角.由一点放射出两条射线,要是两条射线的夹角为90度叫直角,大于90度小于180度的叫钝角,在0度到90度之间的叫锐角,即是180度叫平角.19. 解:2:30时,时针与分针相距3.5份,2:30时,时针与分针的夹角是30∘×3.5=105∘,故答案为:105.根据钟面均匀分成12份,可得每份是30∘,根据时针与分针相距的份数乘以每份的度数,可得答案.本题考察了钟面角,利用了时针与分针相距的份数乘以每份的度数.20. 解:由题意可知:0<5x−35<90解得:7<x<25故答案为:7<x<25根据锐角的概念即可求出x的范畴.本题考察角的概念,解题的要害是根据锐角的定义列出不等式,本题属于基础题型.第 9 页21. (1)由图知,由3点到3点45分,分针转了270∘,时针转了270∘×112,180∘减去时针转的度数,即为夹角;(2)设分针转的度数为x ,则时针转的度数为x12,可根据干系式,①90∘+x −x12=100∘,②90∘+x12−(x −180∘)=100∘,求得x 值,根据分针走1分,其转动6∘,可得到时间; 本题考察了钟表分针所转过的角度谋略.在钟表标题中,常利用时针与分针转动的度数干系:分针每转动1∘时针转动(112)∘,而且利用开始时间时针和分针的位置干系建立角的图形.22. 由OD ,OE 分别为角中分线,利用角中分线定义得到两对角相等,而这四个角之和为一个平角,等量代换即可求出∠DOE 的度数.此题考察了角中分线定义,熟练掌握角中分线定义是解本题的要害.23. (1)根据角中分线的定义求出∠COM 的度数,再求出∠CON 的度数,然后根据角中分线的定义求出∠BOC 的度数,与∠AOC 相加即可得解; (2)根据角中分线的定义,用∠NOC 表示出∠BOC ,用∠COM 表示出∠AOC ,然后即可得解; (3)根据(2)的推导得解.本题考察了角中分线的定义以及角的谋略,熟记角中分线的定义是解题的要害.24. 先根据∠EOD =∠AOC =28∘,连合平角定义,求出∠EOA 的度数,再由角中分线的性质求出∠EOF 的度数即可.本题主要考察角中分线的概念,需要熟练掌握.25. 图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表. 此题考察了角的表示要领,根据图形特点将每个角用合适的要领表示表现了一个别的数学基本功,必须重视这方面的训练.26. 先找到图中角的极点,再找到角的双方,从而找到角,以各极点为切入点,不要漏数也不要多数.此题考察了角的定义,也考察了角的表示,除用三个大写字母表示外,也可用数字或希腊字母来表示,但需在靠近极点处加上弧线.。
(完整版)七年级数学角练习题及答案
七年级数学角练习题及答案一、选择题1.A.15°B.20°C.85°D.105°答案:A 北A?4题图东西?B 南题图题图6、×=×=11°31′26″×3=33°93′78″=34°34′18″15.AOD25. 如图14,将一副三角尺的直角顶点重合在一起.若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.若叠合所成的∠BOC=n°,则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,一个机器人从点O出发,每前进2米就向左转体45°.假设机器人从O点出发时,身体朝向正北方向,试用1厘米代表1米,在图中画出机器人走过6米路程后所处的位置,并指明点A在点O的什么方向上?机器人从出发到首次回到O点,共走过了多远的路程?数学七年级上第4章直线与角检测题一、选择题1.如图,,若∠1=40°,则∠2的度数是AO第1题图A.20°B.40°C.50°D.60°.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是1B第2题图 A BCD3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,?,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点.已知=65°,则的补角等于A.125°B.105°C.115°D.95°.下列说法正确的个数是①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形. A.①②B.①③ C.②③ D.①②③6. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是 A.∠2=∠B.C.D.以上都不对7. 在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝8. 下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有A. ①②B. ①③C. ②④D. ③④9. 如图,下列关系式中与图不符合的式子是 A.C. B.D.第9题图10. 下列叙述正确的是A.180°的角是补角 B.110°和90°的角互为补角 1C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题 11.已知=67°,则的余角等于度.12. 如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=. 13.有下列语句:①在所有连接两点的线中,直线最短;②线段③取直线是点与点的距离;的中点;,得到射线,其中正确的是 .第12题图④反向延长线段14. 要在墙上钉一根木条,至少要用两个钉子,这是因为:. 15. 一个角的补角是这个角的余角的3倍,则这个角的度数是 . 16. 已知直线上有A,B,C三点,其中AB=cm,BC=cm,则AC=_______. 17. 计算:180°2313′6″__________. 18.若线段MN=_______.,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则三、解答题19. 将下列几何体与它的名称连接起来.圆锥三棱锥圆柱正方体球长方体20.如图所示,线段AD=cm,线段AC=BD=cm ,E、F分别是线段AB、CD的中点,求EF.第20题图21.如图,已知画直线画射线三点.;;2找出线段画出的中点,连结的平分线与;相交于,与相交于点.第21题图第22题图22. 如图,的度数.23. 火车往返于A、B两个城市,中途经过4个站点,不同的车站往返需要不同的车票.共有多少种不同的车票?如果共有≥3)个站点,则需要多少种不同的车票?°,°,求、24. 如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?第24题图3第4章直线与角检测题参考答案1.C 解析:∵,∴ ∠∠1∠290°,∴ ∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为,故6条直线最多有=15交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=cm,因为O是线段AC的中点,所以OA=OC= cm.OB=AB-OA=5-4=1. 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,故本选项错误;,正确;,正确.故选C.,而10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确. 11.2312. 121° 解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC?∠BOC=78°?35°?43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.13.④ 解析:∵ 在所有连接两点的线中,线段最短,∴ ①错误;∵ 线段点的距离,∴ ②错误;∵ 直线没有长度,∴ 说取直线向延长线段,得到射线的长是点与的中点错误,∴ ③错误;∵ 反正确,∴ ④正确.故答案为④.14.两点确定一条直线15.45° 解析:设这个角为,所以,根据题意可,所以416.cm或cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,.17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″.18. 解析:.19.分析:正确区分各个几何体的特征. 解:圆锥三棱锥圆柱正方体球长方体20.解:如题图,∵ 线段AD=cm,线段AC=BD=cm,∴ BC?AC?BD?AD?4?4?6?2. ∴ AB?CD?AD?BC?6?2?4. 又∵ E、F分别是线段AB、CD的中点, ∴ EB?112AB,CF?2CD ,∴ EB?CF?1122CD?12?2.∴ EF?EB?BC?CF?2?2?4. 答:线段EF的长为cm.21.分析:根据直线是向两方无限延长的画出直线即可;根据射线是向一方无限延长的画出射线即可;找出的中点,画出线段即可;画出∠的平分线即可.解:如图所示.5。
七年级数学下册《角》单元测试卷(带答案解析)
七年级数学下册《角》单元测试卷(带答案解析)1.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°2.若∠α与∠β互补(∠α<∠β),则∠α与(∠β﹣∠α)的关系是()A.互补B.互余C.和为45°D.和为22.5°3.如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为()A.35°B.45°C.55°D.65°4.如图,∠AOD=120°,OC平分∠AOD,OB平分∠AOC.下列结论:①∠AOC=∠COD;②∠COD=2∠BOC;③∠AOB与∠COD互余;④∠AOC与∠AOD互补.其中,正确的个数是()A.1 B.2 C.3 D.45.如图,直线AB与直线CD交于点O.OE、OC分别是∠AOC与∠BOE的角平分线,则∠AOD为()A.45°B.50°C.55°D.60°6.如图,点P在直线l外,点A、B在直线l上,若PA=4,PB=7,则点P到直线l的距离可能是()A.3 B.4 C.5 D.77.如图,∠AOD=∠DOB=∠COE=90°,互补的角有()A.5对B.6对C.7对D.8对8.计算:1800′=()A.10°B.18°C.20°D.30°9.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或 40°D.80°或 40°10.一个角的余角比这个角的一半大15°,则这个角的度数为()A.70°B.60°C.50°D.35°11.计算:90°﹣44°14′15″=.12.已知∠1与∠2互余,∠2与∠3互补,若∠1=33°27',则∠3=.13.如图,直线AB、CD相交于点O,∠COE是直角,OF平分∠AOD,若∠BOE=42°,则∠AOF的度数是.14.计算:48°47'+53°35'=.15.钟表上的时间是8:30时,时针与分针的夹角为度.16.若∠α的余角比它的补角的一半还少10°,那么∠α=°.17.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE =2 ,∠COD=∠AOD=,∠DOE=°.18.如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.则∠MON的度数为.19.(1)如图1,∠AOC:∠COD:∠BOD=4:2:1,若∠AOB=140°,求∠BOC的度数;(2)如图2,∠AOC:∠COD:∠BOD=4:2:1,OP平分∠AOB,若∠AOB=β,求∠COP的度数(用含β的的代数式表示);(3)如图3,∠AOC=80°,∠BOD=20°,OE平分∠AOD,OF平分∠BOC,求∠EOF的度数.20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.21.如图,已知△ACD和△BCE是两个直角三角形,∠ACD=90°,∠BCE=90°.∠ACB=150°,求∠DCE 的度数.22.如图,点A、O、E在同一直线上,∠AOB=50°,∠EOD=28°42',OD平分∠COE.(1)∠AOB的余角是多少度?(2)求∠COB的度数.23.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=18°,求∠AOC的度数.24.如图,直线AB、CD相交于点O,∠AOD=2∠BOD,OE平分∠BOD,OF平分∠COE.(1)求∠DOE的度数;(2)求∠AOF的度数.参考答案与解析1.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.2.解:因为∠α与∠β互补(∠α<∠β),所以∠α+∠β=180°,所以∠α+(∠β﹣∠α)=,所以∠α与(∠β﹣∠α)的关系是互余.故选:B.3.解:∵两块三角板的直角顶点O重合在一起,∴∠BOD和∠AOC是同角的余角,∵∠BOD=35°,∴∠AOC=35°.故选:A.4.解:①∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=60°,故①正确.②∵OB平分∠AOC,∴∠AOC=2∠BOC,∴∠COD=2∠BOC,故②正确;③∠AOB=∠BOC=∠AOC=30°,∴∠AOB+∠COD=90°,∴∠AOB与∠COD互余,故③正确.④∵∠AOC+∠AOD=60°+120°=180°,∴∠AOC与∠AOD互补,故④正确.故选:D.5.解:∵OE、OC分别是∠AOC与∠BOE的角平分线,∴∠AOE=∠EOC,∠EOC=∠BOC,∴∠AOE=∠EOC=∠BOC,∵∠AOE+∠EOC+∠BOC=180°,∴∠AOE=∠EOC=∠BOC=60°,∴∠AOD=60°.故选:D.6.解:因为垂线段最短,∴点P到直线l的距离小于4,故选:A.7.解:互补的角有:∠AOD与∠BOD,∠AOD与∠COE,∠COE与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE共5对,故选:A.8.解:1800′=(1800÷60)°=30°,故选:D.9.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.10.解:设这个角为x°,则这个角的余角为(90°﹣x°),根据题意,得90﹣x=x+15,解得:x=50.所以这个角的度数为50°,故选:C.11.解:90°﹣44°14′15″=89°59′60″﹣44°14′15″=45°45′45″.故答案是:45°45′45″.12.解:∵∠1与∠2互余,∴∠2=90°﹣∠1,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1,∵∠1=33°27',∴∠3=123°27',故答案为:123°27'.13.解:∵∠COE是直角,∴∠COE=90°,∴∠DOE=180°﹣90°=90°,∵∠BOE=42°,∴∠BOD=∠DOE﹣∠BOE=90°﹣42°=48°,∴∠AOD=180°﹣∠BOD=180°﹣48°=132°,∵OF平分∠AOD,∠AOF=∠AOD=×132°=66°.故答案为:66°.14.解:48°47'+53°35'=101°82′=102°22′,故答案为:102°22′.15.解:8:30时,钟表的时针与分针相距2.5份,8:30时,钟表的时针与分针所夹小于平角的角为30°×2.5=75°.故答案为:75.16.解:由题意得,90°﹣∠α=(180°﹣∠α)﹣10°,解得:∠α=20°,故答案为:20°.17.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.18.解:∵∠AOC=∠AOB+∠BOC=90°+30°=120°.∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°.故答案为:45°.19.解:(1)由∠AOC:∠COD:∠BOD=4:2:1,设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∵∠AOB=140°,∴x+2x+4x=140,解得:x=20,∴∠BOD=20°,∠COD=40°,∠AOC=80°,∴∠BOC=20°+40°=60°;(2)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∴x+2x+4x=β,∴x=β,∴∠AOC=β;∵OP平分∠AOB,∴∠AOP=,∴∠COP=β﹣=β;(3)∵OF平分∠BOC,∠BOD=20°,∴∠COF=(∠BOD+∠COD)=10°+COD,∵OE平分∠AOD,∠AOC=80°,∴∠AOE=(∠AOC+∠COD)=40°+COD,∴∠COE=∠AOC﹣∠AOE=80°﹣(40°+COD)=40°﹣COD,∴∠EOF=∠COE+∠COF=40°﹣COD+10°+COD=50°.20.解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOB=42°,∠DOE=36°,∴∠AOB=∠BOC==42°,∠COD=∠DOE=36°,∴∠BOD=∠BOC+∠DOC=42°+36°=78°;(2)∵∠AOD与∠BOD互补,∠BOC=,∴∠AOD+∠BOD=180°,∴∠AOC+∠COD+∠AOC+∠COD=180°,∵∠DOE=30°,∴∠COD=30°,∴,∴=180°,∴∠AOC=80°.21.解:∵∠ACD=90°,∠ACB=150°,∴∠BCD=∠ACB﹣∠ACD=150°﹣90°=60°,∴∠DCE=∠BCE﹣∠BCD=90°﹣60°=30°.∴∠DCE的度数为30°.22.解:(1)∵∠AOB=50°,∴∠AOB的余角为:90°﹣50°=40°;(2)∵OD平分∠COE,∴∠EOC=2∠EOD=2×28°42'=57°24',又∵∠AOE=∠AOB+∠COB+∠EOC,而且点A、O、E在同一直线上,∴∠AOE=180°,∴∠COB=∠AOE﹣∠AOB﹣∠EOC=180°﹣57°24'=72°36'.23.解:因为OE为∠BOD的平分线,所以∠BOD=2∠BOE,因为∠BOE=18°,所以∠BOD=36°,又因为∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,所以∠AOC=360°﹣∠AOB﹣∠COD﹣∠BOD(4分)=360°﹣90°﹣90°﹣36°=144°.24.解:(1)∵∠AOD+∠BOD=180°,∠AOD=2∠BOD,∴∠AOD=180°×=120°,∠BOD=180°×=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,(2)∵∠COE+∠DOE=180°,∴∠COE=180°﹣∠DOE=190°﹣30°=150°,∵OF平分∠COE,∴∠COF=∠EOF=∠COE=×150°=75°,又∵∠AOC=∠BOD=60°,∴∠AOF=∠AOC+∠COF=60°+75°=135°。
七年级数学下册《角》单元测试卷(含答案)
七年级数学下册《角》单元测试卷(含答案)一.选择题(共6题,共12分)1.把0.01乘1000后再除以10,结果是原数的()。
A.1倍B.10倍C.100倍D.1000倍2.在一个小数的末尾添上一个0,小数的数值()。
A.扩大10倍B.缩小10倍C.不变D.扩大100倍3.连接两点的线中,()最短。
A.折线B.射线C.直线段D.弧线4.东东把719﹣102错算成了719﹣100+2,计算结果比正确结果()。
A.多2B.多4C.少25.在“HONG”这几个子母中,有()个轴对称字母。
A.2B.3C.1D.46.小强从镜子看到的电子表的读数如图所示,则电子表的实际读数是()。
A.15:01B.21:10C.10:51D.10:21二.判断题(共6题,共12分)1.三角形的内角和是180°,四边形的内角和也是180°。
()2.如果○÷△=□,那么○=△×□。
()3.大于0.1而小于0.3的小数只有0.2一个。
()4.一个小数先扩大到原来的10倍,再缩小到它的十分之一,这个数大小不变。
()5.42÷6=7,这个算式表示把42分成6份,每份是7。
()6.保留一位小数要先看商的百分位上的数字。
()三.填空题(共6题,共14分)1.12×(4+10)=12×4+12×10,这是运用了()。
2.验算没有余数的除法时,用()乘(),看结果是不是等于();验算有余数的除法时,用()乘()再加上(),看结果是不是等于()。
3.小明将36×(□+4)错算成36×□+4,这样比正确的得数少()。
4.计算,怎样简便怎样算,28.4-6.35-3.65=()。
5.一道减法算式中,被减数、减数、差的和是60,那么被减数是()。
6.小数的()添上0或去掉0,小数的大小()。
四.计算题(共3题,共22分)1.计算。
2.32+5.63= 1.57-0.4= 0.65+3.24= 2.72-1.41=2.用竖式计算。
初一数学角与角的度量试题
初一数学角与角的度量试题1.下列各图中表示角的是()【答案】D【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,依次分析各项即可。
根据角的定义:有公共端点的两条射线组成的图形叫做角,可知只有D选项中的图表示角,故选D.思路拓展:有公共端点的两条射线组成的图形叫做角,注意不要忽略“公共端点”.2.钟面上时针1小时转______度,分针每分钟转_______度。
【答案】30,6【解析】本题考查的是钟表表盘与角度相关的特征钟表表盘被分成12大格,每一大格所对角的度数为30°,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°,根据时针1小时转一大格,分针每分钟转一小格即可得到结果。
钟面上时针1小时转30度,分针每分钟转6度。
思路拓展:钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°,逆过来同理.3.14400"等于多少分?等于多少度?【答案】240¹,4º【解析】本题考查的是度、分、秒的转化运算进行度、分、秒的转化运算,注意以60为进制.先将秒的部分除以60化为分,再将分的部分除以60化为度.根据1°=60′,1′=60″得,14400"÷60=240′,240′÷60=4°,所以14400"等于240¹,等于4º.思路拓展:由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由小单位化大单位要除以60,由大单位化小单位要乘以60.4.下列语句正确的是()A.两条直线相交组成的图形叫角;B.一条直线可以看成一个平角;C.一个平角的两边可以看成一条直线;D.周角就是一条射线【答案】C【解析】此题考查了角的定义根据角的组成、平角、周角的定义解答,只要举出一个反例即可证明命题错误.A、有公共端点的两条射线组成的图形叫做角,故本选项错误;B、直线和平角是两个概念,平角是由处在同一直线上方向相反的两条射线构成的角,不能将直线和射线混为一谈,故本选项错误;C、平角等于180 º,故一个平角的两边可以看成一条直线,本选项正确;D、有公共端点的两条射线组成的图形叫做角,周角等于360 º,周角的两边重合,故本选项错误;思路拓展:解答此题,必须明确角的边、顶点、平角与直线的区别与联系,侧重于对基本概念的理解.5.下列四个图形中,能同时用∠1,∠ABC,∠B三种方法表示同一个角的图形是()【答案】B【解析】本题考查的是角的表示方法根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.A、因为顶点B处有四个角,所以这四个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有一个角,所以这个角能用∠1,∠ABC,∠B表示,故本选项正确;C、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误;D、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误.故选B.思路拓展:角的表示方法一般有以下几种:①一个大写字母,②一个希腊字母,③一个阿拉伯数字,④三个大写字母且表示顶点的字母写在中间.要注意,当顶点处有多个角时,不能用一个大写字母表示,以免混淆.6.下列关于角的描述正确的是:()A.角的边是两条线段;B.角是由两条射线组成的图形C.角可以看成一条射线绕着它的端点旋转而成图形;D.角的大小与边的长短有关【答案】C【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,角的大小与边的长短无关,只与两边张开的程度有关,依次分析各项即可。
(完整版)七年级数学《角》练习题及答案
七年级数学《角》练习题及答案一、选择题1.下列说法正确的是( )A.两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2. 下列4个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )3.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角4、右图中,小于平角的角有( )A.5个B.6个C.7个D.8个5. 如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=( )A.155 °B.205 °C.85°D.105°6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=( )A .60°B .15° C.45° D.70°二、填空题:7. 角也可以看作由 旋转面形成的图形。
8. 2周角= 1平角=9. 1°的_____ 是1′10. 1周角= 平角= 直角= ;南东75︒40︒O A 4题图 5题图 6题图11. 换算:42°27′= °,68°45′36″= °;12.2点15分,钟表的时针与分针所成的锐角是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。
七年级上册数学角试卷【含答案】
七年级上册数学角试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 角是由两条具有公共端点的射线组成的图形,这个公共端点称为角的()。
A. 顶点B. 边C. 射线D. 直线2. 下列哪种角是锐角?A. 30°B. 90°C. 120°D. 180°3. 两条直线相交,如果形成的两个相邻角相等,那么这两个角是()。
A. 钝角B. 锐角C. 直角D. 对顶角4. 一个角的补角比这个角的余角大()。
A. 30°B. 45°C. 60°D. 90°5. 如果一个角的度数是另一个角的2倍,那么这两个角的关系是()。
A. 补角B. 余角C. 对顶角D. 无法确定二、判断题(每题1分,共5分)1. 所有的角都可以分为锐角、直角和钝角。
()2. 如果两个角的和为180°,那么这两个角互为补角。
()3. 任何角都有对应的余角和补角。
()4. 一个角的补角和余角的和为90°。
()5. 对顶角相等。
()三、填空题(每题1分,共5分)1. 一个角的补角比这个角的余角大______。
2. 如果两个角的和为______,那么这两个角互为补角。
3. 任何角都有对应的余角和补角,余角和补角的和为______。
4. 对顶角是指两个角的顶点相同,且两个角的边分别是另两个角的______。
5. 一个角的度数是另一个角的2倍,那么这两个角的关系是______。
四、简答题(每题2分,共10分)1. 请简述角的概念。
2. 什么是补角?什么是余角?它们之间的关系是什么?3. 如何判断两个角是对顶角?4. 什么是锐角?什么是钝角?什么是直角?5. 如何计算一个角的补角和余角?五、应用题(每题2分,共10分)1. 已知一个角的度数是60°,求它的补角和余角。
2. 如果两个角的和为120°,求这两个角的补角。
3. 画出两个对顶角,并标出它们的度数。
七年级数学上册《角》练习题及答案
七年级数学上册《角》练习题及答案一、选择题(共11小题)1. 用100倍的放大镜看一个60∘的角,这时这个角是( )A. 6∘B. 60∘C. 600∘D. 6000∘2. 如图,某轮船在O处,测得灯塔A在它北偏东40∘的方向上,渔船B在它的东南方向上,则∠AOB的度数是( )A. 85∘B. 90∘C. 95∘D. 100∘3. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A. 45∘B. 55∘C. 125∘D. 135∘4. 甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是( )A. 甲说 3 点时和 3 点 30 分B. 乙说 6 点 15 分和 6 点 45 分C. 丙说 9 时整和 12 时 15 分D. 丁说 3 时整和 9 时整5. 如图,图中锐角共有( )A. 4个B. 6个C. 7个D. 8个6. 下列语句正确的是( )A. ∠A就是∠BACB. 在∠BAC的边AB延长线上取一点DC. 对一个角的表示没有要求,可任意书写D. 角可以看作是由一条射线绕角的端点旋转而成7. 下面等式成立的是( )A. 83.5∘=83∘50ʹB. 37∘12ʹ36ʺ=37.48∘C. 24∘24ʹ24ʺ=24.44∘D. 41.25∘=41∘15ʹ8. 如图,射线OA的方向是北偏东30∘,若∠AOB=90∘,则射线OB的方向是( )A. 北偏西30∘B. 北偏西60∘C. 东偏北30∘D. 东偏北60∘9. 下面四幅图中,用量角器测得∠AOB的度数是40∘的是( )A. B.C. D.10. 若∠A=20∘18ʹ,∠B=20∘15ʹ30ʺ,∠C=20.25∘,则( )A. ∠A>∠B>∠CB. ∠B>∠A>∠CC. ∠A>∠C>∠BD. ∠C>∠A>∠B11. 钟面上4点10分,时针与分针所夹的角为( )A. 55∘B. 65∘C. 75∘D. 以上结论都不对二、填空题(共7小题)12. 45∘=直角=平角=周角.13. 将18.25∘换算成度、分、秒的结果是 .14. 57.32∘=∘ʹʺ.15. 由2点30分到2点55分,时钟的时针旋转了度,分针旋转了度,此刻时针与分针的夹角是度.16. 如图,圆规的张角(即∠α)的度数约为∘.17. 如图,OA的方向是北偏东15∘,OB的方向是北偏西40∘,若∠AOC=∠AOB,则OC的方向是.18. 24.29∘=.三、解答题(共5小题)19. 仿照左图,在右图上画角,并根据图形填空,已知∠α,用直尺和圆规作∠AOB,使∠AOB=∠α.解:作射线OA;以∠α的顶点为圆心,以任意长a为半径作弧,分别交∠α的两边于点E,F;以为圆心,以为半径作弧,交OA于点C;以为圆心,以长为半径作弧,交前弧于点D;经过点D作射线OB,∠AOB就是所求作的角.20. 用计算器计算:(1)4∘4ʹ4ʺ+2∘56ʹ56ʺ.(2)15∘15ʹ24ʺ+55∘14ʹ35ʺ−32∘28ʹ19ʺ.21. 如图,以B为顶点的角有几个?把它们表示出来.以D为顶点的角有几个(不包括平角)?把它们表示出来.22. 已知∠α,∠β,如图,用量角器求作∠α+∠β.23. 如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26∘方向,从B处测得灯塔C在北偏西52∘方向,求B处到达塔C的距离.参考答案1. B2. C3. B【解析】由题图可知,∠AOB的边OA在0刻度线上,边OB在55∘对应的刻度线上,所以∠AOB的度数应为55∘.4. D【解析】A、3 点 30 分不到90∘,故 A 错误;B、6 点 15 分比90∘多,故 B 错误;C、12 时 15 分不到90∘,故 C 错误;D、3 时整和 9 时整钟面角都是90∘,故 D 正确.5. A6. D7. D8. B 【解析】如图所示:∵OA 是北偏东 30∘ 方向的一条射线,∠AOB =90∘,∴∠1=90∘−30∘=60∘,∴OB 的方向角是北偏西 60∘.9. A【解析】用量角器度量角的度数时,需要把量角器的中心和角的顶点重合,量角器的零刻度线和角的一边重合,角的另一边在量角器上所指示的读数就是角的度数,故选A .10. A11. B12. 12,14,1813. 18∘15ʹ14. 57,19,1215. 12.5,150,117.5【解析】∵ 时针在钟面上每分钟转 0.5∘,分针每分钟转 6∘,又从 2 点 30 分到 2 点 55 分经过了 25 分钟,∴ 时钟的时针旋转了 0.5∘×25=12.5∘,时钟的分针旋转了 6∘×25=150∘.∵2 点 55 分时时针距离 3 还有 5×0.5∘,分针指向 11,中间相差 3 个数字,钟表 12 个数字,每相邻两个数字之间的夹角为 30∘,∴ 此时分针与时针的夹角是 4×30∘−5×0.5∘=117.5∘.16. 35【解析】可用量角器测量约为 35∘.17. 北偏东 70∘18. 24∘17ʹ24ʺ19. 图略;O ;a ;C ;EF20. (1)7∘1ʹ.(2)38∘1ʹ40ʺ.21. B为顶点的角有3个,分别是∠ABD,∠CBD,∠ABC.以D为顶点的角有4个,分别是∠ADB,∠ADM,∠BDC,∠MDC.22. 用量角器量得∠α=66∘,∠β=30∘,∴∠α+∠β=96∘.用量角器作∠AOB=96∘,则∠AOB就是所求作的角(如图).23. 据题意得∠A=26∘,∠DBC=52∘,∵∠DBC=∠A+∠C,∴∠A=∠C=26∘,∴AB=BC,=35,∵AB=20×74∴BC=35(海里).∴B处到达塔C的距离是35海里.。
2022-2023学年七年级上数学:角(附答案解析)
一.选择题(共5小题)
1.如果A看B的方向是南偏西20°,那么B看A的方向是( )
A.北偏东70°B.南偏西70°C.北偏东20°D.北偏西20°
2.如图,点B在点A的( )方向.
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
【分析】先求出55°的余角,再根据方向角的定义,即可解答.
【解答】解:由题意得:
90°﹣55°=35°,
∴如图,点B在点A的北偏西35°方向,
故选:C.
【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
∴∠COD=∠AOD,
∵∠AOE+∠BOE=180°,
当∠COD与∠BOE互补时,
∴∠AOE=∠COD,
∴∠COE=3∠COD,
∵∠COE=∠BOE,
∴∠BOE=3∠COD,
∵∠AOE+∠BOE=180°,
∴4∠COD=180°,
∴∠COD=45°,
∴∠AOC=90°.
故答案为:90.
【点评】本题考查有关角的计算,关键是由条件推出∠BOE=3∠COD.
【分析】由图可知∠AOC=∠AOB+∠BOC,根据已知可求出∠AOC,再根据角平分线的性质可求出∠COD.
【解答】解:∵∠AOB=84°,∠BOC=44°,
∴∠AOC=∠AOB+∠BOC=84°+44°=128°,
∵OD平分∠AOC,
∴∠COD=∠AOD= ∠AOC= 128°=64°.
北师大七年级数学上册角练习题
4.3 角1.如图,下列说法错误的是()A.∠B也可以表示为∠ABCB.∠BAC也可以表示为∠AC.∠1也可以表示为∠CD.以C为顶点且小于180º的角有3个2.如图,以O为顶点且小于180º的角有()A.7个B.8个C.9个D.10个3.如图,必须用三个大写字母表示且小于180º的角共有()A.10个B.15个C.20个D.25个4.36.33º可化为()A.36º30´3" B.36º33´C.36º30´30"D.36º19´48"5.如图,下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠DGB是同一个角;③∠DOF 和∠EOG是同一个角;④∠ABC和∠CBD是同一个角。
其中正确的说法有()A.1个 B.2个 C.3个 D.4个6.如图,其中以已标注大写字母的点为顶点的角(小于180º)共有()A.12个B.16个C.20个D.24个7.21.21º可化为()A.21º21´ B.21º20´1" C.21º12´6" D.21º12´36"8.中午12点15分时,钟表上的时针和分针所成的角是()A.90º B.75º C.82.5º D.60º9.如图,∠1、∠2表示的角可分别用大写字母表示为_____,______;∠A也可表示为______,还可以表示为_______。
10.(1)0.45度=____分;(2)3.2分=______秒;(3)624秒=_____分;(4)96分=______度。
11.(1)钟表上分针每转动一周,时针转动_______度;(2)秒针每转动一周,分针转动_____度,时针转动______度。
初一数学角度题30道
初一数学角度题30道1. 一个角的补角比这个角大30°,求这个角的度数。
- 咱设这个角是x度哦。
那它的补角就是180 - x度。
题目说补角比这个角大30°,那就可以列方程啦,180 - x=x + 30。
移项可得180 - 30 = x+x,也就是150 = 2x,解得x = 75度。
2. 已知∠A = 50°,它的余角是多少度呢?- 余角的定义就是两个角加起来等于90°嘛。
那∠A的余角就是90 - 50 = 40°,简单吧。
3. 一个角是它的余角的2倍,这个角是多少度?- 设这个角的余角是x度,那这个角就是2x度。
因为它们是余角关系,所以x+2x = 90。
3x = 90,解得x = 30度,那这个角就是2x = 60度。
4. 若∠α和∠β互为补角,且∠α - ∠β = 40°,求∠α和∠β的度数。
- 因为∠α和∠β互为补角,所以∠α+∠β = 180°。
又知道∠α - ∠β = 40°。
把这两个方程相加,就是2∠α=180 + 40 = 220°,所以∠α = 110°,那∠β = 180 - 110 = 70°。
5. 一个角的补角与这个角的余角的和是120°,求这个角。
- 设这个角是x度,它的补角是180 - x度,余角是90 - x度。
根据题意,(180 - x)+(90 - x)=120。
化简一下就是270 - 2x = 120,移项得到2x = 270 - 120 = 150,解得x = 75度。
6. 在一个直角三角形中,一个锐角是另一个锐角的3倍,求这两个锐角的度数。
- 直角三角形里,两个锐角和是90°。
设小的锐角是x度,那大的锐角就是3x度。
x + 3x = 90,4x = 90,解得x = 22.5度,3x = 67.5度。
7. 已知∠AOB = 80°,OC是∠AOB内的一条射线,∠AOC = 30°,求∠BOC的度数。
七年级数学关于角的试卷
一、选择题(每题2分,共20分)1. 下列哪个图形不是角?A. 等腰三角形B. 直角三角形C. 平行四边形D. 直线2. 下列哪个角的度数是45°?A. 锐角B. 钝角C. 直角D. 平角3. 一个角的补角是60°,那么这个角的度数是:A. 120°B. 30°C. 90°D. 150°4. 下列哪个角的余角是30°?A. 60°B. 120°C. 90°D. 150°5. 下列哪个角的度数大于直角小于平角?A. 90°B. 120°C. 180°D. 360°6. 下列哪个图形的四个角都是直角?A. 长方形B. 正方形C. 梯形D. 三角形7. 下列哪个图形的两组对边分别平行?A. 等腰三角形B. 等边三角形C. 平行四边形D. 矩形8. 下列哪个图形的对角线互相平分?A. 等腰三角形B. 等边三角形C. 平行四边形D. 矩形9. 下列哪个图形的对边互相垂直?A. 长方形B. 正方形C. 梯形D. 三角形10. 下列哪个图形的对角线互相垂直?A. 长方形B. 正方形C. 梯形D. 三角形二、填空题(每题2分,共20分)11. 一个锐角的度数是______°,那么它的补角的度数是______°。
12. 一个钝角的度数是______°,那么它的余角的度数是______°。
13. 一个角的补角是120°,那么这个角的度数是______°。
14. 一个角的余角是45°,那么这个角的度数是______°。
15. 一个直角的度数是______°,那么它的补角和余角的度数分别是______°和______°。
16. 一个等腰三角形的顶角是60°,那么它的底角的度数是______°。
七年级 角 的专题训练试题
七年级角的专题训练副标题一、选择题(本大题共17小题,共51.0分)1.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A. B.C. D.2.如图,已知∠MON,在∠MON内逐一画射线,下面三个图中分别有3个、6个、10个角(不大于平角的角).当∠MON内有n条射线时,角的个数为()A. B. C. D.3.下列说法中正确的个数是()①在同一图形中,直线AB与直线BA不是同一条直线②两点确定一条直线③两条射线组成的图形叫做角④一个点既可以用一个大写字母表示,也可以用一个小写字母表示⑤若AB=BC,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个4.下列说法中,正确的个数有()①两条射线组成的图形是角;②角的大小与边的长短有关;③角的两边可以画的一样长,也可以一长一短;④角的两边是两条射线;⑤因为平角的两边也成一条直线,所以一条直线可以看作一个平角.A. 1个B. 2个C. 3个D. 4个5.已知α与β是钝角,甲、乙、丙、丁四个人计算(α+β)的结果依次为28°,48°,60°,88°其中只有一个结果正确,那么并得到正确的结果的是()A. 甲B. 乙C. 丙D. 丁6.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A. B. C. D.7.时钟显示为8:20时,时针与分针所夹的角是()A.B. C. D.8. 某人下午6点到7点之间外出购物,出发和回来时发现表上的时针和分针的夹角都为110°,此人外出购物共用了( )分钟. A. 16 B. 20 C. 32 D. 409. 若∠A =20°18′,∠B =20°15′,∠C =20.25°,则有( )A. B. C. D.10. 如图所示,一个人从A 点出发,沿着北偏东55°方向走到B 点,再从点B 出发沿着南偏东35°方向走到C 点,则∠ABC 的度数为( )A.B.C.D.11. 如图,O 为直线AB 上一点,OM 平分∠AOC ,ON 平分∠BOC ,则图中互余的角有( )A. 4对B. 3对C. 2对D. 1对12. 如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE ,则∠GFH 的度数α是( )A. B.C. D. 随折痕GF位置的变化而变化13. 如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB =155°,那么∠COD 等于( )A.B. C. D.14. 如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于( )A. B. C.D.15. 下列说法正确的是( )(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角; (2)如果∠A +∠B =90°,那么∠A 是余角; (3)互为补角的两个角的平分线互相垂直; (4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A. 1个B. 2个C. 3个D. 4个16.下列说法中正确的有①一个角的余角一定比这个角大;②同角的余角相等;③若,则,,互补;④对顶角相等.A. 1个B. 2个C. 3个D. 4个17.已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是()A. B. C. 或 D. 或二、填空题(本大题共4小题,共12.0分)18.(1)34.37°=______度______分______秒;(2)36°17'42''=______度;(3)62.125°=______度______分______秒;(4)41°18'36''=______度.19.如图,AOB为一直线,OC,OD,OE是射线,则图中大于0°小于180°的角有______个.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数______.21.如图,将一张纸条折叠,若∠1=54°,则∠2的度数为______.三、计算题(本大题共5小题,共30.0分)22.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3-32°5′31″.23.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.24.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.25.已知:如图,OB、OC分别为定角∠AOD内的两条动射线(1)当OB、OC运动到如图的位置时,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD的度数;(2)在(1)的条件下,射线OM、ON分别为∠AOB、∠COD的平分线,当∠COB绕着点O旋转时,下列结论:①∠AOM-∠DON的值不变;②∠MON的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.26.如图,点O是直线EP上一点,射线OA,OB,OC在直线EF的上方,射线OD在直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=30°,求∠AOB的度数;(2)若OA平分∠BOE,则∠DOF的度数是______(直接写出答案)四、解答题(本大题共24小题,共192.0分)27.如图,在已知角内画射线,画1条射线,图中共有______ 个角;画2条射线,图中共有______ 个角;画3条射线,图中共有______ 个角,求画n条射线所得的角的个数为______ (用含n的式子表示).28.(1)若直线l上有2个点,一共有______条线段;若直线l上有3个点,一共有______条线段;若直线l上有4个点,一共有______条线段;…若直线l上有n个点,一共有______条线段;(2)有公共顶点的2条射线可以组成______个小于平角的角;有公共顶点的3条射线最多可以组成______个小于平角的角;有公共顶点的4条射线最多可以组成______个小于平角的角;…有公共顶点的n条射线最多可以组成______个小于平角的角;(3)你学过的知识里还有满足类似规律的吗?试着写一个.29.计算(1)90°-78°19′40″;(2)11°23′26″×3.30.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是______ ;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.31.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.32.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.33.如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.求:(1)∠AOC的度数;(2)∠MON的度数.34.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为______(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.35.如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图①放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)直接写出∠DPC的度数.(2)若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度(如图②),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当2∠CPD=3∠BPM,求旋转的时间是多少.36.如图,∠AOC=90°,∠BOC=60°,OE平分∠BOC,OD平分∠AOB.求:(1)∠DOE度数;(2)若∠BOC=α(0<α<90°),其他条件不变,∠DOE的度数是多少?37.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.38.已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.①若∠AOC=60°,求∠DOE的度数;②若∠AOC=α,直接写出∠DOE的度数(含α的式子表示);(2)将图1中的∠DOC绕点O顺时针旋转至图2的位置,试探究∠DOE和∠AOC 的度数之间的关系,写出你的结论,并说明理由.39.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线.求:(1)∠COD的度数;(2)求∠MON的度数.40.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.41.探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线______这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=______;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.42.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=28°,则∠BOE= ______ °,有∠BOE=______ ∠COF;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD+∠AOF=(∠BOE-∠BOD)?若存在,请求出∠BOD的度数;若不存在,请说明理由.43.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.44.将一副三角尺叠放在一起.(1)如图(1),若∠1=25°,求∠2的度数;(2)如图(2),若∠CAE=3∠BAD,求∠CAD的度数.45.如图,已知直线AB上有一点O,射线OD平分∠AOE,∠AOC:∠EOC=1:4,且∠COD=36°.(1)求∠AOC的度数;(2)求∠BOE的度数.46.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为______ ,∠COF和∠DOE的数量关系为______;(2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF和∠DOE之间的数量关系.47.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.(1)求∠DOE的度数;(2)如果∠AOD=51°17′,求∠BOE的度数.48.如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=40°,求∠DOE的度数;(2)将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.49.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)直接写出∠NOC的度数;(2)将图1中的三角板绕点O按逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(3)将图1中的三角板绕点O按顺时针旋转至图3的位置,使ON在∠AOC的内部,试求∠AOM-∠NOC的值,请说明理由.50.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.答案和解析1.【答案】D【解析】【分析】本题考查了角的表示方法的应用,掌握角的表示方法是解题的关键.根据角的四种表示方法和具体要求回答即可.【解答】解:A.以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B.以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C.以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D.能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选D.2.【答案】D【解析】解:画n条射线所得的角的个数为:1+2+3++(n+1)=.故选D.画1条、2条、3条射线时可以数出角的个数分别有3个、6个、10个角,当画n条时,角的个数为S=1+2+3++(n+1),则可得到①②,①+②首尾相加得,2S=(n+2)+(n+2)+(n+2)++(n+2)=(n+1)(n+2),即2S =(n+1)(n+2),所以角的个数的表达式为S= .本题考查了对角的概念的应用,关键是能根据求出结果得出规律.3.【答案】A【解析】【分析】本题考查了角的概念、直线、射线、线段,直线的性质:两点确定一条直线,要根据定义和性质解题.①根据直线的表示方法,可得答案;②根据两点确定一条直线,可得答案;③根据角的定义,可得答案;④根据点的表示方法,可得答案;⑤根据线段中点的性质,可得答案.【解答】解:①在同一图形中,直线AB与直线BA是同一条直线,原来的说法是错误的;②两点确定一条直线是正确的;③有公共端点是两条射线组成的图形叫做角,原来的说法是错误的;④一个点可以用一个大写字母表示,不可以用一个小写字母表示,原来的说法是错误的;⑤若AB=BC,则点B是线段AC垂直平分线上的点,原来的说法是错误的.故选A.4.【答案】A【解析】解:①、有公共端点的两条射线组成的图形叫做角,故错误;②、角的大小与边的长短无关,故错误;③、角的两边是两条射线,射线不能度量,所以不能说长或短,故错误;④有公共端点的两条射线组成的图形叫做角,故角的两边是两条射线此说法正确;⑤平角的两边在同一直线上,平角有顶点,而直线没有,故选项错误.以上5种说法正确的有1个,故选:A.根据角的概念,对选项进行一一分析,排除错误答案.此题考查了角的定义,有公共端点的两条射线组成的图形叫做角,注意不要忽略“公共端点”.还应注意角的大小与边的长短无关,与度数的大小一致.5.【答案】B【解析】【分析】此题主要考查了角的计算的知识点,理解钝角的概念,大于直角(90°)小于平角(180°)的角叫做钝角,本题比较基础,需要牢固掌握.根据钝角的概念进行解答,大于直角(90°)小于平角(180°)的角叫做钝角,求出范围,然后作出正确判断.【解答】解:∵大于直角(90°)小于平角(180°)的角叫做钝角,∴90°<α<180°,90°<β<180°,∴30°<<60°,∴满足题意的角只有48°,故选B.6.【答案】C【解析】【分析】本题考查钟表时针与分针的夹角.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出12点40分时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵10点40分时,时针指向10点与11点之间,此时时针超过10点与10点相距格,分针指向8,8与10之间相距2格,∴10时40分,时针与分针相距格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点40分时,分针与时针的夹角是30°×=80°.故选C.7.【答案】A【解析】【解答】本题考查了钟面角的计算,确定时针与分针相距的分数是解题关键.根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:8:20时,时针与分针相距4+=份,8:20时,时针与分针所夹的角是30°×=130°.故选A.8.【答案】D【解析】【分析】本题考查钟表时针与分针的夹角.本题关键是根据两个时刻的夹角找到等量关系建立方程求解.这是一个追及问题,分针走一分走了6度,即分针的角速度是:6度/分,时针一分走0.5度,即角速度是:0.5度/分;由于开始时分针在时针后面110度,后来是分针在时针前面110度,依此列出方程求解即可.【解答】解:设此人外出购物共用了x分钟,则(6-0.5)x=110+110,5.5x=220,x=40,答:此人外出购物共用了40分钟.故选D.9.【答案】C【解析】解:∵∠C=20.25°=20°15′,∴∠A>∠C=∠B,故选:C.根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.10.【答案】B【解析】【分析】本题考查了方向角,利用方向角得出A位于B的南偏西55°是解题关键.根据方向角的表示方法,可得A位于B的方向,根据角的和差,可得答案.【解答】解:由一个人从A点出发,沿着北偏东55°方向走到B点,得A位于B的南偏西55°.由角的和差,得∠ABC=55°+35°=90°,故选:B.11.【答案】A【解析】【分析】本题考查的是余角和补角的概念,掌握如果两个角的和等于90°,这两个角互为余角是解题的关键.根据角平分线的定义和平角的概念求出∠MOC+∠NOC=90°,根据余角的概念判断即可. 【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴ MOC AOM12 AOC, NOC BON12BOC,∴,∴∠AOM+∠BON=180°-90°=90°,∴∠MOC+∠BON=90°,∠MOA+∠NOC=90°,∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余.故选A.12.【答案】C【解析】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°.故选:C.根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.本题主要考查了折叠的性质,注意在折叠的过程中存在的相等关系.13.【答案】B【解析】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.利用直角和角的组成即角的和差关系计算.本题是对三角板中直角的考查,同时也考查了角的组成.14.【答案】A【解析】【分析】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD-∠AOD=90°+90°-150°=30°.故选:A.15.【答案】A【解析】【分析】根据定义及定理分别判断各命题,即可得出答案.本题考查对顶角及邻补角的知识,难度不大,注意熟练掌握各定义定理.【解答】解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.16.【答案】B【解析】解:一个角的余角不一定比这个角大,如60°,①错误;同角的余角相等,②正确;两个角的和是180°,这两个角互补,所以互补是指两个角的关系,③错误;对顶角相等,④正确,故选:B.根据余角和补角的概念、对顶角相等进行判断即可.本题考查的是余角和补角的概念、对顶角的性质,掌握对顶角相等、余角和补角的概念是解题的关键.17.【答案】A【解析】【分析】根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差,以及分类思想的运用.【解答】解:如图1,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°.∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×150°=75°,∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE-∠COF=75°-30°=45°.如图2,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB-∠BOC=30°.∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×30°=15°,∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE+∠COF=15°+30°=45°.故选A.18.【答案】(1)34,22,12;(2)36.295;(3)62,7,30;(4)41.31【解析】解:(1)∵34.37°中,0.37°×60=22.2',又0.2'×60=12'',∴34.37°=34度22分12秒,故答案为:34、22、12;(2)∵36°17'42''中,42''÷60=0.7',17.7'÷60=0.295°,∴36°17'42''=36.295度,故答案为:36.295;(3)∵62.125°中,0.125°×60=7.5',又0.5'×60=30'',∴62.125°=62度7分30秒,故答案为:62、7、30;(4)∵41°18'36''中,36''÷60=0.6',18.6'÷60=0.31°,∴41°18'36''=41.31度.故答案为:41.31.根据1°=60'=3600'',1'=60''求解即可.由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.19.【答案】9【解析】解:大于0°小于180°的角有∠AOE,∠AOD,∠AOC,∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠COB.共9个.故答案为:9.大于0°小于180°的角有∠AOE,∠AOD,∠AOC,∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠COB.共9个.此题主要考查了角的定义,即由一个顶点射出的两条射线组成一个角.20.【答案】73°【解析】【分析】本题考查了折叠变换的知识,这道题目比较容易,根据折叠的性质得出∠ABC=∠ABE=∠CBE是解答本题的关键.根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC的度数.【解答】解:如图:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故答案为73°.21.【答案】72°【解析】【分析】本题考查角的计算,翻折变换,解题的关键是明确题意,翻折前后的对应角是相等的.根据折叠后,相对应的角相等,可知∠1+∠2=180°-∠1,由∠1=54°,从而可以得到∠2的度数,本题得以解决.【解答】解:∵将一张纸条折叠,∠1=54°,∴∠1+∠2=180°-∠1即54°+∠2=180°-54°,得∠2=72°.故答案为72°.22.【答案】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3-32°5′31″==39°159′-32°5′31″=41°39′-32°5′31″=41°38′60″-32°5′31″=9°33′29″.【解析】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.(1)先进行度、分、秒的除法计算,再算加法;(2)先进行度、分、秒的乘法计算,再算减法.23.【答案】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°.∵OM平分∠BOC,ON平分∠AOC,∴∠COM=60°,∠CON=15°,∴∠MON=∠COM-∠CON=45°;(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°.∵OM平分∠BOC,ON平分∠AOC,∴∠COM=α+15°,∠CON=15°,∴∠MON=∠COM-∠CON=α;(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β.∵OM平分∠BOC,ON平分∠AOC,∴∠COM=45°+β,∠CON=β,∴∠MON=∠COM-∠CON=45°.【解析】(1)要求∠MON,即求∠COM-∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.本题主要考查的是角的计算、角平分线的定义,能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.24.【答案】解:∵∠AOC=75°,∠BOC=30°,∴∠AOB=∠AOC-∠BOC=75°-30°=45°,又∵∠BOD=75°,∴∠AOD=∠AOB+∠BOD=45°+75°=120°.故答案为120°.【解析】根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.此题主要考查了角相互间的和差关系,比较简单.25.【答案】解:(1)∵∠AOC+∠BOD=∠AOB+∠COD+2∠BOC,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,∴110°=2∠BOC+50°,∴∠BOC=30°,∴∠AOD=∠BOC+∠AOB+∠COD=80°;(2)②正确,∠MON=55°,∵OM、ON分别为∠AOB、∠COD的平分线,∴∠CON+∠BOM=(∠AOB+∠COD)=25°,∴∠MON=∠CON+∠BOM+∠BOC=25°+30°=55°.【解析】(1)根据角的定义可知∠AOC+∠BOD=∠AOB+∠COD+2∠BOC,根据题意得出2∠BOC+50°=110°,求出∠BOC的度数,即可求出∠AOD的度数,(2)根据角平分线的定义得出∠MON=∠CON+∠BOM+∠BOC=25°+30°=55°.本题考查了角的计算以及角平分线的定义,须根据已知条件一步步计算,难度较大.26.【答案】(1)60°(2)30°【解析】解:(1)∵OF平分∠COD,∴∠COD=2∠DOF=60°,∵OB⊥OD,∴∠BOD=90°,∴∠BOC=90°-60°=30°,∵OA⊥OC,∴∠AOC=90°,∴∠AOB=90°-30°=60°;(2)∵OA平分∠BOE,∴∠AOB=∠AOE,∵OA⊥OC,∴∠AOC=90°,∴∠BOC=90°-∠AOB,∠COF=90°-∠AOE,∴∠BOC=∠COF,∵OF平分∠COD,∴∠COF=∠DOF,∴∠DOF=∠BOD=×90°=30°.故答案为30°.(1)利用角平分线定理得到∠COD=2∠DOF=60°,再利用垂直定义得到∠BOD=90°,则∠BOC=30°,接着由OA⊥OC得到∠AOC=90°,然后利用互余计算∠AOB的度数;(2)由角平分线定义得到∠AOB=∠AOE,再利用等角的余角相等得到∠BOC=∠COF,加上∠COF=∠DOF,于是得到∠DOF=∠BOD=30°.本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.也考查了角平分线的定义和邻补角.27.【答案】3;6;10;【解析】解:∵画1条射线,图中共有3个角,即1+2=3个角;画2条射线,图中共有6个角,即1+2+3=6个角;画3条射线,图中共有10个角,即1+2+3+4=10个角∴画n条射线所得的角的个数为:1+2+3+…+(n+1)=.故答案为:3,6,10,.当画1条、2条、3条射线时可以数出角的个数当画n条时,由规律得到角的个数.本题主要考查角的概念,基础题需要掌握.28.【答案】1 3 6 n(n-1) 1 3 6 n(n-1)【解析】解:(1)若直线l上有2个点,一共有1条线段;若直线l上有3个点,一共有1+2=3条线段;若直线l上有4个点,一共有1+2+3=6条线段;…若直线l上有n个点,一共有n(n-1)条线段;故答案为:1,3,6,n(n-1);(2)有公共顶点的2条射线可以组成1个小于平角的角;有公共顶点的3条射线最多可以组成1+2=3个小于平角的角;有公共顶点的4条射线最多可以组成1+2+3=6个小于平角的角;…有公共顶点的n条射线最多可以组成n(n-1)个小于平角的角;故答案为:1,3,6,n(n-1);(3)例如:平面上有n个点,最多能画出n(n-1)条直线.比赛时有n个球队,每两个球队打一场,最多能打n(n-1)场比赛.(1)依据直线上点的个数,即可数出线段的条数,进而得到规律;(2)依据射线的条数,即可数出角的个数,进而得到规律;(3)根据规律可得其它的例子.本题主要考查了图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.29.【答案】解:(1)原式=89°59′60″-78°19′40″=11°40′20″.(2)原式=33°69′78″=34°10′18″.【解析】(1)根据度分秒的减法,相同单位相减,可得答案;(2)根据度分秒的乘法,从小单位算起,满60时向上一单位进1,可得答案.本题考查了度分秒的换算,利用度分秒的乘法,从小单位算起,满60时向上一单位进1是解题关键.30.【答案】(1)北偏东70°(2)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.又∵射线OD是OB的反向延长线,∴∠BOD=180°.∴∠COD=180°-110°=70°.(3)∵∠COD=70°,OE平分∠COD,∴∠COE=35°.∵∠AOC=55°.∴∠AOE=90°.【解析】解:(1)∵OB的方向是北偏西40°,OA的方向是北偏东15°,∴∠NOB=40°,∠NOA=15°,∴∠AOB=∠NOB+∠NOA=55°,∵∠AOB=∠AOC,∴∠AOC=55°,∴∠NOC=∠NOA+∠AOC=70°,∴OC的方向是北偏东70°;故答案为:北偏东70°;(2)见答案(3)见答案(1)先求出∠AOB=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOB=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COD的度数;(3)根据射线OE平分∠COD,即可求出∠COE=35°再利用∠AOC=55°求出答案即可.此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.31.【答案】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°-x,∴∠AOB=90°+60°-x=150°-x,∵∠AOB是∠DOC的3倍,∴150°-x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【解析】本题考查了一元一次方程的应用及角的计算,会利用角的倍、分、差进行角度计算是解决本题的关键.设∠COD=x,则∠AOD可表示为60°-x,于是∠AOB=90°+60°-x=150°-x,再根据∠AOB是∠DOC的3倍得到150°-x=3x,解得x=37.5°,然后计算3x即可.32.【答案】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON-∠BOC=∠AOC+∠BOD-∠BOC=(∠AOC+∠BOD)-∠BOC=(∠AOD+∠BOC)-∠BOC=×180°-20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD-∠BOA,∠AOD=160°,∴∠BOD=150°-2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°-t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75-t)=2:3,解得t=21.答:t为21秒.【解析】此题主要考查角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化,然后根据已知条件求解.(1)因为∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.若OM平分∠AOB,ON平分∠BOD,则∠MOB=∠AOB,∠BON=∠BOD.然后根据关系转化求出角的度数;(2)利用各角的关系求解:∠MON=∠MOC+∠BON-∠BOC=∠AOC+∠BOD-∠BOC=(∠AOC+∠BOD)-∠BOC;(3)由题意得,,由此列出方程求解即可.33.【答案】解:(1)∵∠AOC=∠AOB+∠BOC,又∠AOB=90°,∠BOC=30°,∴∠AOC=120°;(2)∵OM平分∠AOC,∴∠MOC=∠AOC,∵∠AOC=120°,∴∠MOC=60°,∵ON平分∠BOC,∴∠NOC=∠BOC,∵∠BOC=30°,∴∠NOC=15°,∵∠MON=∠MOC-∠NOC,∴∠MON=45°.。
七年级初一数学角测试题
角的单元练习角的概念填空题:1.在∠AOB的内部引出OC、OD两条射线,图中共有_________角。
2.在图1-13中,以C为顶点的角共有___________个。
3.在图1-14中,共有__________个角,以A为顶点的角分别是__________________。
选择题:4.下列说法中正确的是()(A)由两条射线组成的图形叫做角(B)有公共端点的两条射线所组成的图形叫做角(C)角是两条射线(D)角是射线旋转而成5.如图1-15中,下列表示∠A方法不正确的是()(A)∠1 (B)∠BAC(C)∠ADC(D)∠DAC6.一条射线绕它的端点旋转一圈的过程中,你可能得到所学过的角有()。
(A)1种(B)4种(C)5种(D)6种7.下列说法中正确的是()(A)一条直线是一个平角(B)角的两边越长,角的度数越大(C)周角的两边重合成一条射线(D)在∠AOB内部引一条射线,则该图中共有两个角解答题:*8.已知在∠AOE的内部从O引出3条射线,求图中共有多少个角,如果引出99条射线有多少个角?角的比较选择题:1.图1-16中,小于平角的角共有() (A )7个(B )6个 (C )5个 (D )4个2.已知OC 平分∠AOB ,下列各式:①∠AOC =21∠AOB ②∠AOC =∠COB③∠AOB =2∠AOC ,其中正确的是( )(A )只有① (B )只有①、② (C )只有②、③ (D )只有①、②和③3.已知∠AOB =30°,∠BOC =80°,∠AOC =50°,那么() (A )射线OB ∠AOC 内(B )射线OB 在∠AOC 外 (C )射线与射线OA 重合 (D )射线OB 与射线OC 重合4.OB 在∠AOC 的平分线,且∠AOB =30°,则∠BOC =___________度,∠AOC =_______度。
5.如图1-17中,若∠AOB =2∠AOC ,则OC 是∠AOB 的_____________线,若∠AOC = 25°,则∠BOC =______________度,∠AOB =________________度。
七年级数学角的运算试卷
一、选择题(每题2分,共20分)1. 下列各对角中,互为补角的是()A. 30°和60°B. 45°和135°C. 90°和180°D. 120°和60°2. 在一个直角三角形中,若一个锐角的度数是45°,则另一个锐角的度数是()A. 45°B. 90°C. 135°D. 180°3. 若∠A和∠B是补角,∠A的度数是x,则∠B的度数是()A. 90°-xB. 180°-xC. 360°-xD. 270°-x4. 一个圆的圆心角是360°,则这个圆心角所对的弧的度数是()A. 360°B. 180°C. 90°D. 30°5. 在一个等腰三角形中,底角的度数是40°,则顶角的度数是()A. 40°B. 80°C. 100°D. 120°6. 下列各对角中,互为对顶角的是()A. 30°和150°B. 45°和135°C. 90°和180°D. 120°和60°7. 若∠A和∠B是相邻补角,∠A的度数是x,则∠B的度数是()A. 90°-xB. 180°-xC. 360°-xD. 270°-x8. 一个圆的周角是()A. 360°B. 180°C. 90°D. 45°9. 在一个等边三角形中,每个内角的度数是()A. 60°B. 90°C. 120°D. 180°10. 下列各对角中,互为补角的是()A. 30°和60°B. 45°和135°C. 90°和180°D. 120°和60°二、填空题(每题2分,共20分)11. 两个锐角相加,和为90°,则这两个锐角互为();两个锐角相加,和为180°,则这两个锐角互为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学单元检测
一、单选题(只要你细心,一定选得又快又准!) 1、下面表示ABC ∠的图是 ( )
A
(A ) (B ) (C ) (D ) 2、已知α、β都是钝角,甲、乙、丙、丁四人计算)(4
1βα+的结
果依次是45°,60°,90°,120°,其中只有一人计算正确,他是谁呢?( )
A .甲
B .乙
C .丙
D .丁
3、小明看钟表上时间为3:30,则时针、分针成的角是 ( )
A 70度 B 75度 C 85度 D 90度 4、下面四个图形中,∠1与∠2是对顶角的图形的个数是
( )
A .0
B .1
C .2
D .3
1
2
1
2
1
2
1
2
5、三条直线两两相交于同一点时,对顶角有m 对,交于不同三
点时,对顶角有n 对,则m 与n 的关系是( ) A .m = n B .m >n C .m <n D .m + n = 10
A
C A
B B
A
6、若∠1与∠3互余,∠2与∠3互补,则∠1与∠2的关系是
( )
(A)∠1=∠2 (B)∠1与∠2互余 (C)∠1与∠2互补 (D)∠2-∠1=90° 7、如下图OA ⊥OB,OC ⊥OD,则( ) A 、AOD AOC ∠=∠ B 、DOB AOD ∠=∠ C 、BOD AOC ∠=∠ D 、以上结论都不对 8、如上图,直线AB 、CD 相交于点O,OE ⊥AB 于O,∠COE=55°,则∠BOD 的度数是( ).
A 、40°
B 、45°
C 、30°
D 、35° 9、从A 地测得B 地在南偏东52°的方向上,则A 地在B 地的( )方向上。
A.北偏西52°
B.南偏东52°
C.西偏北52°
D.北偏西38° 10.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个
B.4个
C.3个
D.2个
D
C
B
A 1
E
D
C
B
A
O
F
E D C B
A
(1) (2) (3)
11.如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,
∠ACB=40°,•那么∠BDC 等于( )
C
A D
B O
A
B D C
E O
A.78°
B.90°
C.88°
D.92°
12.下列说法:①两条直线平行,同旁内角互补;②同位角相等,
两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )
A.①
B.②和③
C.④
D.①和④
13.若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直
B.平行
C.重合
D.相交
14.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( )
A.35°
B.30°
C.25°
D.20°
15.如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )
A.180°
B.360°
C.540°
D.720°
F
E
D
C B
A
(4)
二、填空题(相信自己,一定能填对!)
1、 2.42º= º′″ 15°48′36″= °
2、经过一点_ _一条直线垂直于已知直线。
3、如图(1),直线AB、CD相交于O,∠1-∠2=640,则∠AOC= °
图(2)
4、 如图(2),点D 在直线AB 上,当∠1=∠2时,CD 与AB 的位置关系是 。
5.如下图,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接
通, 则乙地所修公路的走向是_________,因为_ __
6、如上图所示,AB ∥CD,AD ∥BC,∠A 的2倍与∠C 的3倍互补, 则∠A= ∠D= .•
7、如图a 所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______。
B D C
B
A
G
F E
D
C
B
A 1
2
F
E
D
C
B A
1
2
(a) (b)
8、如图b 所示,已知直线AB,CD 被直线EF 所截,若∠1=∠2,•则∠AEF+∠CFE=________.
9、上午九点时分针与时针互相垂直,再经过 分钟后分针与时针第 一次成一条直线.
10、如图所示,已知AB ∥CD,∠ABE=130°, ∠CDE=152°,∠BED 的度数是 .
三、解答题(认真解答,一定要动脑思考哟!) 1、如图,P 是∠AOB 的边OB 上一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H.
你能否不通过度量比较出PH 与PC 、PC 与CO 的长短吗?说明你的理由.
A
O
E
D
C B A
第23题图
2、如图,直线AB 、CD 、EF 都经过点O ,且AB ⊥CD ,∠COE=350
,
求∠DOF 、∠BOF 的度数。
3、如图,已知∠AOB=2
1
∠BOC, ∠COD=∠AOD=3∠AOB, 求∠AOB 和∠COD 的度数。
A
4.如图,已知B、E分别是AC、DF上的点,∠1=∠2∠C=∠D.
(1)∠ABD与∠C相等吗?为什么.(2)∠A与∠F相等吗?请说明
理由.
F
E
2
1
D
C
B
A
5.如图:DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.
(1)∠A的度数;
(2)∠A+∠B+∠C的度数.
四、探索发现:
16. 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与 ∠A 、∠C 的关系,•请你从所得的四个关系中任选一个加以说明.
P
D C
B
A P D
C
B
A
P D
C
B A P
D
C
B A
(1) (2) (3) (4)。