医学统计学抽样误差及t分布

合集下载

医学统计学重点知识总结 (2)

医学统计学重点知识总结 (2)

一、平均数应用的注意事项1.同质的资料计算平均数才有意义。

2.均数适用于:单峰对称分布的资料3.几何均数适用于:对数变换后单峰对称的资料:等比资料、滴度资料、对数正态分布资料4.中位数:理论上可用于任何分布资料,但当资料适合计算均数或几何均数时,不宜用中位数:偏态分布、分布不明资料、有不确定值的资料二、抽样误差1.由抽样引起的样本统计量与总体参数间的差别。

2.原因:个体变异+抽样3.表现:样本统计量与总体参数间的差别;不同样本统计量间的差别4.抽样误差是不可避免的!5.抽样误差是有规律的!三、中心极限定理(central limit theorem)1.Case 1:从正态分布总体N(,2),中随机抽样(每个样本的含量为n),可得无限多个样本,每个样本计算样本均数,则样本均数也服从正态分布。

2.Case 2:从非正态(nonnormal)分布总体(2)中随机抽样(每个样本的含量为n),可得无限多个样本,每个样本计算样本均数,则只要样本含量足够大(n>50),样本均数也近似服从正态分布。

四、统计推断的内容1.参数估计:由样本统计量估计总体参数 (1)点估计(2)区间估计:按一定的概率或可信度(1- α )用一个区间估计总体参数所在范围,这个范围称作可信度为1- α的可信区间(confidence interval, CI),又称置信区间 。

这种估计方法称为区间估计。

2.假设检验五、正确理解可信区间的涵义1.可信区间一旦形成,它要么包含总体参数,要么不包含总体参数,二者必居其一,无概率可言。

所谓95%的可信度是针对可信区间的构建方法而言的。

2.以均数的可信区间为例,其涵义是:如果重复100次抽样,每次样本含量均为n ,每个样本均按构建可信区间,则在此100个可信区间内,理论上有95个包含总体均数,而有5个不包含总体均数。

3.在区间估计中,总体参数虽未知,但却是固定的值(且只有一个),而不是随机变量值 。

医学统计学总结

医学统计学总结

医学统计学总结医学统计学总结1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。

2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。

3、变异:同质基础上各观察单位某变量值的差异。

数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。

变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4总体和无限总体。

5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。

样本代表性的前提:同质总体,足够的观察单位数,随机抽样。

统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。

6、概率:描述随机事件发生的可能性大小的一个度量。

若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。

统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。

频数分布有对称分布和偏态分布之分。

后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。

2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。

均数:适用于正态或近似正态的分布的数值变量资料。

样本均数用_表示,总体均数用μ几何均数:适用于等比级数资料和对数呈正态分布的资料。

注意观察值中不能有零,一组观察值中不能同时有正值和负值。

中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。

3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。

全距:任何资料,一组中最大值与最小值的差。

四分位数间距:适用于偏态分布以及分布的一端或两端无确切数据资料。

标准误、t 分布

标准误、t 分布

教 学 内 容 标准误 t分布
二、 t 分布: 三)、应用: 2、t 检验--- 3)、两样本均数的比较: A)、两小样本比较: 检验步骤: 1、建立假设,确定检验水准α 及单双侧 H0:无效假设:(两总体相同)该地急性克山病患者和健康人 的血磷值是否相同, μ 1= μ 2 H1:备择假设:(两总体不同) μ 1 ≠ μ 2 α =0.05 (双侧) 2、选择和计算统计量值: SX1-X2 = t = ( X1-X2 )/SX1-X2 [SC2(1/n1+1/n2)]1/2 = (1.521-1.085)/0.1729 =2.522 3、确定P值:按 v = v1+v2 = n1+n2-2 = 11+13-2 = 22 查t界值 表,得: P < 0.02 4、判断结果: P < 0.05 (α ), 故H1成立, 即该地急性克山病患者和健康人 的血磷值不同。
教 学 内 容 标准误 t分布
二、 t 分布: 三)、应用: 2、t 检验: 3)、两样本均数的比较: A)、两小样本比较: t = (X1-X2)/SX1-X2 B)、两大样本比较: t = (X1-X2)/SX1-X2
v=n1+n2-2 v=n1+n2-2
SX1-X2 = ( S12/n1+S22/n2 )1/2 例: 抽查了25--29岁正常人群的RBC数(mmol/L) 其中男性156人,得均数为4.561,标准差为0.548 ;女性74人,得均数为4.222,标准差为0.442。问 该人群男、女的RBC数有无不同? 已知样本1 已知样本2 问题: 两样本所属总体 均数是否相同?(μ 1= μ 是否成立 ?)
教 学 内 容 标准误 t分布
二、 t 分布: 三)、应用: 2、t 检验--- 1)、样本均数与总体均数比较:

医学统计学重点概要

医学统计学重点概要

第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。

总体包括有限总体和无限总体。

样本:从总体中随机抽取的部分观察单位,其实测值的集合。

获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。

资料的类型计量资料、计数资料和等级资料。

误差包括随机误差、系统误差和非系统误差。

抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。

概率:是描述随机事件发生可能性大小的一个度量。

取值范围0≤P ≤1。

小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。

P ≤0.05或P ≤0.01。

医学统计学的步骤:设计、收集资料、整理资料和分析资料。

统计分析包括:统计描述和统计推断。

统计推断包括:参数估计和假设检验。

第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。

对称分布:集中位置在中间,左右两侧頻数基本对称。

偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。

(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。

计量资料集中趋势包括算术均数、几何均数和中位数。

算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。

中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。

标准误、t 分布

标准误、t 分布

教 学 内 容 标准误 t分布
二、 t 分布: 三)、应用: 2、t 检验: 2)、配对计量资料的比较: t = ( d-0)/Sd v=n-1
例: 某药对Hb的影响研究结果 病人编号 治疗前 治疗后 差数 d 1 140 113 27 2 138 150 -12
3 140 150 … … .. 10 120 123 问:某药对Hb有无影响? -10 … -3
t = (X1-X2)/SX1-X2
P = 95% f
-t0.05,v -t0.01,v
0
t0.05,v tt0 Nhomakorabea01,v
(-t0.05,v , t0.05,v) 有 95%的 t 值,P=95%=0.95 (-t0.01,v , t0.01,v) 有 99%的 t 值,P=99%=0.99
P > 0.1
教 学 内 容 标准误 t分布
P 值含义与两类错误:
P 值含义:由H0所规定的总体做随机抽样,获得等于及大
于(或等于及小于)依据现有样本信息所计算得到的检验统 计量的概率。 I类错误:H0正确,但由于抽样的偶然性得到 t>=tα , P<=α 的检验结果,拒绝了H0 (即“弃真”) ,接受了H1, 这种错误称I类错误(“弃真”错误),其概率大小为α ; II类错误:H0不正确,但由于抽样的偶然性得到 t<tα , P>α 的检验结果,接受了H0 (即“存伪”) ,拒绝了H1, 这种错误称I类错误(“弃真”错误),其概率大小为 。

教 学 内 容 标准误 t分布
教 学 内 容
一、样本均数的标准误:样本均数的标准差。其大小与标 准差成正比,与样本含量n的算术平方根成反比。 σ X =σ /n1/2 或 SX = S/n1/2

医学统计学名词解释

医学统计学名词解释

统计学(Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学。

总体(population):大同小异的研究对象全体。

更确切的说,总体是指根据研究目的确定的、同质的全部研究单位的观测值。

样本(sample):来自总体的部分个体,更确切的说,应该是部分个体的观察值。

样本应该具有代表性,能反映总体的特征。

利用样本信息可以对总体特征进行推断。

抽样误差(sampling error)在抽样过程中由于抽样的偶然性而出现的误差。

表现为总体参数与样本统计量的差异,以及多个样本统计量之间的差异。

可用标准误描述其大小。

标准误(Standard Error) 样本统计量的标准差,反映样本统计量的离散程度,也间接反映了抽样误差的大小。

样本均数的标准差称为均数的标准误。

均数标准误大小与标准差呈正比,与样本例数的平方根呈反比,故欲降低抽样误差,可增加样本例数区间估计(interval estimation):将样本统计量与标准误结合起来,确定一个具有较大置信度的包含总体参数的范围,该范围称为置信区间(confidence interval,CI),又称可信区间。

参考值范围描述绝大多数正常人的某项指标所在范围;正态分布法(标准差)、百分位数法,参考值范围用于判断某项指标是否正常置信区间揭示的是按一定置信度估计总体参数所在的范围。

t分布法、正态分布法(标准误)、二项分布法。

置信区间估计总体参数所在范围参数统计(parametric statistics)非参数统计(nonparametric statistics)是指在统计检验中不需要假定总体分布形式和计算参数估计量,直接对比较数据(x)的分布进行统计检验的方法。

变异(variation):对于同质的各观察单位,其某变量值之间的差异同质(homogeneity):研究对象具有的相同的状况或属性等共性。

回归系数有单位,而相关系数无单位β为回归直线的斜率(slope)参数,又称回归系数(regression coefficient)。

医学统计知识点整理

医学统计知识点整理

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。

统计推断:是使用样本信息来推断总体特征。

统计推断包括区间估计和假设检验。

第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。

标目:横标目和纵标目。

线条:通常采用三线表和四线表的形式。

没有竖线或斜线。

数字:表内数字一律用阿拉伯数字。

同一指标,小数位数应一致,位次对齐。

无数字用“—”表示。

暂缺用“…”表示。

“0”为确切值。

备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。

一张统计表的备注不宜太多。

二、制表原则1.(7理分布。

【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。

医学统计学计量资料的统计推断

医学统计学计量资料的统计推断

医学统计学计量资料的统计推断主要内容:标准误t 分布总体均数的估计假设检验均数的 t检验、u 检验、方差分析几个重要概念的回顾:计量资料:总体:样本:统计量:参数:统计推断:参数估计、假设检验第一节均数的抽样误差与总体均数的估计欲了解某地2000年正常成年男性血清总胆固醇的平均水平,随机抽取该地200名正常成年男性作为样本。

由于存在个体差异,抽得的样本均数不太可能恰好等于总体均数。

一、均数的抽样误差与标准误一、均数的抽样误差与标准误抽样误差:由于抽样引起的样本统计量与总体参数之间的差异X数理统计推理和中心极限定理表明:1、从正态总体N(??,??2)中,随机抽取例数为n的样本,样本均数??X 也服从正态分布;即使从偏态总体抽样,当n足够大时??X也近似正态分布。

2、从均数为??,标准差为??的正态或偏态总体中抽取例数为n的样本,样本均数??X的总体均数也为??,标准差为X标准误含义:样本均数的标准差计算:(标准误的估计值)注意: X 、S??X均为样本均数的标准误标准误意义:反映抽样误差的大小。

标准误越小,抽样误差越小,用样本均数估计总体均数的可靠性越大。

标准误用途:衡量抽样误差大小估计总体均数可信区间用于假设检验二 t 分布对正态变量样本均数??X做正态变换(u变换):X 常未知而用S??X估计,则为t变换:二、 t 分布t值的分布即为t分布t 分布的曲线:与??有关t分布与标准正态分布的比较1、二者都是单峰分布,以0为中心左右对称2、t分布的峰部较矮而尾部翘得较高说明远侧的t值个数相对较多即尾部面积(概率P值)较大。

当ν逐渐增大时,t分布逐渐逼近标准正态分布,当ν→??时,t分布完全成为标准正态分布t 界值表(附表9-1 )t??/2,??:表示自由度为??,双侧概率P为??时t的界值t分布曲线下面积的规律:中间95%的t值:- t0.05/2,?? ?? t0.05/2,??中间99%的t值:- t0.01/2,?? ?? t0.01/2,??单尾概率:一侧尾部面积双尾概率:双侧尾部面积(1) 自由度(ν)一定时,p与t成反比;(2) 概率(p)一定时,ν与t成反比;三总体均数的估计统计推断:用样本信息推论总体特征。

医学统计学重点要点

医学统计学重点要点

医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取部分个体的某个变量值的集合.总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。

称m/n为事件A在n次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计.用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3。

资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料.是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位.(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容.多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析.第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2。

误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。

3。

实验设计的三个基本原则:对照原则、随机化分组原则、重复原则.4。

医学统计学-t检验

医学统计学-t检验

单样本t检验概述
1
定义和用途
单样本t检验是将一个样本的平均值与一个已知的总体平均值进行比较。该方法可用于检测某 一群体的平均数是否与已知平均数有显著差异。
2
计算公式
计算t值的公式为 (样本平均值-总体平均值) / 标准误差。
3
实例分析
例如,医生想检查其患者的平均血压是否与总体平均血压相同。医生可以采取一些患者的随 机抽样,进行平均血压值的估计。利用单样本t检验,医生可以比较患者平均血压和已知的总 体平均数的数量差异。
t检验在药物研发中的应用
1 疗效检验
t检验在药物研发中被广泛用于检验不同药物、不同剂量和不同给药方式的疗效。
2 药物毒性检测
t检验可用于检测药物给药对器官功能和生理指标的影响和损伤。
3 剂量选定
t检验可用于评估药物的安全性和有效性,并确定剂量的选择。
t检验在生物医学研究中的应用
基础研究
t检验在生物医学基础研究中应用 广泛,可用于比较不同基因型、 不同表观遗传信息和不同环境因 素对生物体的影响。
t检验和方差分析
方差分析
方差分析是一种用于比较三个或 更多群体之间差异的方法。它可 以用于比较顺序数据、类别数据 和等间隔数据。
t检验和方差分析的不同
t检验是用于比较两个群体之间差 异的方法,适用于均值分布差异 较小、样本较小的数据。而方差 分析适合适用于比较多个群体之 间差异的情况、以及数据间的交 互作用。
配对t检验概述
1 定义和用途
配对t检验是用于比较同一组受试者在两个不同时间点或两种不同条件下的差异。
2 计算公式
计算配对t值需用到每个块对的平均值和标准差。平均值差值除以标准误差的公式表示 t值。

研统计3抽样误差t分布41923

研统计3抽样误差t分布41923
总体参数的估计值(μ) 。比如均数的估计。
• 区间估计(interval estimation):根据选定的置信 度估计总体均数所在的区间(a<μ <b) . a, b 为 置信限(可信限)。
• 置信度(confidence level):
• 在估计总体均数的置信区间时,如果可能估 计错误的概率为α ,那么估计正确的概率为1α , 即为置信度. 常用: 95%, 99%.
但是,条件发生了变化
• 我们通常用 SX 代替 X
u X X
X X
t
SX
S/ n
• 然而,SX 随着样本量的变化而变化,所以,我
们称之为 t-分布,虽然它是正态分布,但只有 当样本量(自由度)无穷大的时候,它才是标
准正态分布,此时,u=t
t分布曲线
• t分布是一簇对称于0的单峰分布曲线。 • 自由度越小(相当于标准差大),曲线的中间越
• t0.05/2(20)=±2.086, • 单侧概率为0.05时,对应的t值: • t0.05(20)=1.725,
• 一般, t 0.05/2(v)≥1.96 ,t 0.01/2(v) ≥ 2.58
• 自由度越小,曲线越低平,t 比1.96,2.58大 的多;自由度变大,t接近于1.96,2.58;自 由度无穷大,t=1.96,2.58

按:求u值, u
X
110 119.95 2.11 4.72
• 查表:找到-2.1,上方找到0.01,二者相交处为 0.0174,概率为0.0174=1.74%,即该地7岁男童 身高在110厘米以下者,估计占1.74%,不到2%。
• 三、质量控制:
• 实验中,常以 X 2S 作为上下警戒值,

医学统计学重点知识总结

医学统计学重点知识总结

医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。

定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。

等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。

总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。

概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。

定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。

同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。

第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。

【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。

变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。

如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。

2,分析时不能以构成比代替率。

3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。

4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。

医学统计学t分布特征

医学统计学t分布特征

医学统计学t分布特征
医学统计学中的t分布具有以下特征:
1. 以0为中心,左右两侧对称。

这意味着t分布曲线在y轴上的值围绕0点分布,左侧和右侧的值是相等的。

2. 单峰分布。

t分布的形状就像一个山峰,只有一个峰值,表示数据的概率密度从两边向中间递增。

3. t分布的形态与自由度v的大小有关。

自由度v越小,t值越分散,曲线越低平;自由度v逐渐增大时,t分布逐渐逼近标准正态分布。

当v=∞时,t分布就完全成为标准正态分布。

综上所述,医学统计学中的t分布具有以0为中心、左右对称、单峰、与自由度v有关的特征。

如需了解更多关于t分布的特征,建议咨询统计学专家或查阅统计学专业书籍。

医学统计学--第三章 总体均数的估计与假设检验

医学统计学--第三章  总体均数的估计与假设检验
的 95%可信区间。
32
本例 n=10,按公式(3-2)算得样本均数的标准误为
S1=101=9,双尾 =0.05,
查附表 2 的 t 界值表得 t0.05 2,9 2.262 。 按公式(3-5) (166.95 2.262 1.1511) 即(164.35, 169.55)cm 故该地 18 岁男生身高均数的 95%可信区间 为(164.35, 169.55)cm。
X
2 X

) ,则 通
过同样方式的 u 变换( X
2
)也 可 将 其 转 换 为
标 准 正 态 分 布 N (0 , 1 ), 即 u 分 布 。
17
3.实际工作中,由于 X 未知,用S X 代替,
则(X
) / SX
不再服从标准正态分布,而
服从t 分布。
t X SX X S n , n 1
2
第一节 均数的抽样误差与标准误
3
统计推断:由样本信息推断总体特征。
样本统计指标 (统计量)
总体统计指标 (参数)
2
正态(分布)总体:N 说明!
~ ( , )
推断 !
为说明抽样误差规律,先用一个实例,后 引出理论。
4
例 3-1 若某市 1999 年 18 岁男生身高服从均 数μ =167.7cm、标准差 =5.3cm 的正态分布。对 该总体进行随机抽样,每次抽 10 人, n =10) ( , 共抽得 100 个样本( g =100) ,计算得每个样本均 数 X 及标准差 S 如图 3-1 和表 3-1 所示。

1 2 3 4 5 6 7 8 9 10 21 22 23 24 25
单侧 双侧

医学参考值-T分部

医学参考值-T分部
(2)t分布曲线不是一条曲线,而是
一簇曲线(如图3.2)。其分布曲线的
形态变化与自由度 υυ与n有联系, 这里υn-1有关。
(3)自由度υ越大,t分布越接近 于正态分布;当自由度υ逼近∞, t分布趋向于标准正态分布。
(4) 曲线下面积的分布规律: 附表2
方法: (1)百分位数法 ▪ 应用:适用于任何分布,特别是偏态
分布的资料。 ▪ 公式:双侧1-α参考值范围
P100α/2 ~P100-100α/2
单侧1-α参考值范围 >P100α 或 <P100-100α
表2.5 参考值范围所对应的百分位数
百分 范围
%
单侧
只有 只有 下限 上限
双侧 下限 上限
95 P5
只有 上限
双侧(对称)
下限
上限
95 99
第三章 计量资料的 统计推断1
总体均数的估计和假设检验
统计推断(statistical inference): 样本 推断 总体
(1)参数估计 (2)假设检验
第一节 均数的抽样误差
一、均数的抽样误差:在统计学上
把由抽样造成的样本均数与总体均 数间的差异或各个样本均数间的差 异统称为均数的抽样误差。
原分布 x~N(167.7,5.32)
总体


X= 新分布 x~N(167.69,1.692)
标准误(standard error,简写为SE): 统计量的标准差称为标准误。
标准误计算公式:

第二节 分布

服从自由度υ=n-1的t分布
(t distribution)。
பைடு நூலகம்
t 分布特征:
(1)单峰分布,以0为中心,左右两 侧对称。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SX
由W.S. Gosset提出
t= x- s/ n
对于不同的n,有不同的t分布曲线。 X (n-1)称为 t分布的自由度
抽样试验(n=10)
抽样试验(n=30)
1000份样本抽样计算结果
总体的 总体标 均数的 均数 准差 均数
n=5 5.00 0.50 4.99
n=10 5.00 0.50 5.00
n=30 5.00 0.50 5.00
均数标准差
Sn
0.2212
0.1580
0.0920
n
0.2236 0.1581 0.0913
x 标准误 x = / n sx = s / n
n 100, 4.38cm
x


n


4.38 100
0.438cm
标准误的意义
反映了样本统计量(样本均数,样本率)分布的 离散程度,体现了抽样误差的大小。
标准误越大,说明样本统计量(样本均数,样本率) 的离散程度越大,即用样本统计量来直接估计总体 参数越不可靠。反之亦然。
用样本的信息去推断总体特征,这种分析方法称 为统计推断。
基本手段
直接推断(参数估计) 间接推断(假设检验)
总体参数的估计
• 均数的抽样误差 • t分布 • 总体均数的估计
抽样误差的定义
• 假如事先知道某地七岁男童的平均身高为119.41cm。为了 估计七岁男童的平均身高(总体均数),研究者从所有符 合要求的七岁男童中每次抽取100人,共计抽取了三次。
从均数为 ,标准差为的正态总体中随机
抽取例数为n的样本,样本均数的总体均数
为 ,标准差为x
中心极限定理
标准误的定义
样本统计量(如均数)也服从一定的分布。
与描述观测值离散趋势的指标类似,样本统 计量的标准差就反映了从某个总体中随机抽 样所得样本之均数分布的离散程度。
用样本统计量的标准差来反映抽样误差的大 小。又称标准误(standard error)。
均数
非正态分布抽样
• 分别从各总体中抽取10000个样本含量为 n的样本,计算每个样本的均数,并绘制 频数分布图。
• n分别取2、4、10、25。
偏三角分布抽样
均匀分布
指数分布
双峰分布
• 从正态总体中随机抽样,其样本均数服从正 态分布;
• 从任意总体中随机抽样,当样本含量足够大 时,其样本均数的分布逐渐逼近正态分布;
μ=119.41cm σ= 4.38cm
X 118.21cm s=4.45cm
X 120.81cm s=4.33cm
X 120.18cm s=4.90cm
三次抽样得到了不同的结果!!!! 原因何在????
No Variation! No Sampling Error!
如果没有个体变异……
• 样本均数之均数的位置始终在总体均数的附 近;
• 随着样本含量的增加,样本均数的离散程度 越来越小,表现为样本均数的分布范围越来 越窄,其高峰越来越尖。
中心极限定理
从正态总体中随机抽取例数为n的样本,样 本均数x也服从正态分布,即使从偏态总体 中抽样,只要样本例数足够大,如n>50, 样本均数x也近似正态分布。
从正态分布总体N(5.00,0.502)中,每 次随机抽取样本含量n=5,并计算其均数与
标准差;重复抽取1000次,获得1000份样本 ;计算1000份样本的均数与标准差,并对 1000份样本的均数作直方图。
按上述方法再做样本含量n=10、样本含 量n=30的抽样实验;比较计算结果。
抽样试验(n=5)
3个抽样实验结果图示
频数
450
400 350 300
n 5; SX
0.2212
250
200
150
100
50
0 3.71 3.92 4.12 4.33 4.54 4.74 4.95 5.15 5.36 5.57 5.77 5.98 6.19
均数
频数
450
400
350 300
n 10; SX
第三章 抽样误差与t分布
统计推断
总体
抽取部分观察单位
样本
参数
统计推断
统计量
如:总体均数 总体标准差
如:样本均数 X 样本标准差S
在医疗卫生实践和医学研究中,往往难以对所要 研究的总体进行全部观察,通常从总体中随机抽 取样本进行观察,然后由样本的信息去推断总体 特征,这种研究方法叫做抽样研究方法。
u X
u变换
均数 X
N(, 2) x
u X n
t X X , v n1
S n SX
t变换
标准正态分布
N(0,12)
标准正态分布
N(0,12) Student t分布 自由度ν=n-1
t X X , v n 1
Sn
如果没有抽样研究…… No Random sampling!
No Sampling Error!
• 三次抽样得到了不同的结果,原因何在?
不同男童的 身高不同
每次抽到的 人几乎不同
个体变异
随机抽样
抽样误差
【定义】由于个体变异的存在,在抽 样研究中产生样本统计量和总体参数 之间的差异,称为抽样误差 (sampling error)。
各种参数估计都有抽样误差,这里我们以 均数为研究对象
抽样误差产生的条件
• 抽样研究 • 个体变异
样本均数和

总体均数间

的差别 Xi




样本均数和

样本均数间
的差别 Xi X j
抽样误差是不可避免的,可以通过保证总体 的同质性及增大样本含量来缩小抽样误差。
抽样误差的规律 性—正态分布抽样
标准误的大小与标准差有关,在例数n一定时,从 标准差大的总体中抽样,标准误较大;而当总体一 定时,样本例数越多,标准误越小。说明我们可以 通过增加样本含量来减少抽样误差的大小。
用途:
(1)衡量样本均值的可靠性 (2)估计总体均值的可信区间 (3)用于均数的假设检验
t分布
随机变量X N(,2)
0.1580
250
200
150
100
50
0 3.71 3.92 4.12 4.33 4.54 4.74 4.95 5.15 5.36 5.57 5.77 5.98 6.19
均数
频数
450 400 350
n 30; SX 0.0920
300
250
200
150
100
50
0
3.71 3.92 4.12 4.33 4.54 4.74 4.95 5.15 5.36 5.57 5.77 5.98 6.19
相关文档
最新文档