常见气体的爆炸极限完整版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见气体的爆炸极限
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
常见气体的爆炸极限
气体名称化学分子式/在空气中的爆炸极限 (体积分数) / %
下限(V/V) 上限(V/V)
乙烷 C2H6
乙醇 C2H5OH
19
乙烯 C2H4
32
氢气 H2 75
硫化氢 H2S
45
甲烷
CH4
15
甲醇 CH3OH
44
丙烷 C3H8
甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2
乙炔 C2H2
100
氨气 NH3 15 苯 C6H6
8
丁烷 C4H10
一氧化碳 CO
74
丙烯 C3H6
丙酮 CH3COCH3
13
苯乙烯 C6H5CHCH2
时,遇到明火或一定的引爆能量立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。
可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。
可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。
可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。
可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措
施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。
(二)爆炸反应当量浓度的计算
爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的反应当量浓度。当混合物中可燃物质超过化学反应当量浓度时,空气就会不足,可燃物质就不能全部燃尽,于是混合物在爆炸时所产生的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的浓度增加到爆炸上限,那么其爆炸现象与在爆炸下限时所产生的现象大致相同。因此,我们说的可燃物质的化学当量浓度也就是理论上完全燃烧时在混合物中该可燃物质的含量。
根据化学反应计算可燃气体或蒸气的反应当量浓度。
例如,求一氧化碳在空气中的反应当量浓度。
解:写出一氧化碳在空气中燃烧的反应式:
2C0+02+3.76N2=2C02+3.76N2
根据反应式得知,参加反应的物质的总体积为
2+1+3.76=6.76。若以这个总体积为100,则2个体积的一氧化碳在总体积中所占比例为
X=2/×100%=29.6%
(三)爆炸极限的影响因素
爆炸极限通常是在常温常压等标准条件下测定出来的数据,它不是固定的物理常数。同一种可燃气体、蒸气的爆炸极限也不是固定不变的,它随温度、压力、含氧量、惰性气体含量、火源强度等因素的变化而变化。
1.初始温度
混合气着火前的初温升高,会使分子的反应活性增加,导致爆炸范围扩大,即爆炸下限降低,上限提高,从而增加了混合物的爆炸危险性。
2.初始压力
增加混合气体的初始压力,通常会使上限显着提高,爆炸范围扩大。增加压力还能降低混合气的自燃点,这样使得混合气在较低的着火温度下能够发生燃烧。原因在于,处在高压下的气体分子比较密集,浓度较大,这样分子间传热和发生化学反应比较容易,反应速度加快,而散热损失却显着减少。压力对甲烷爆炸极限的影响。在已知的气体中,只有CO的爆炸范围是随压力增加而变窄的。
混合气在减压的情况下,爆炸范围会随之减小。压力降到某一数值,上限与下限重合,这一压力称为临界压力。低于临界压力,混合气则无燃烧爆炸的危险。在一些化工生产中,对爆炸危险性大的物料的生产、贮运往往采用在临界压力以下的条件进行,如环氧乙烷的生产和贮运。
3.含氧量
混合气中增加氧含量,一般情况下对下限影响不大,因为可燃气在下限浓度时氧是过量的。由于可燃气在上限浓度时含氧量不足,所以增加氧含量使上限显着增高,爆炸范围扩大,增加了发生火灾爆炸的危险性。若减少氧含量,
则会起到相反的效果。例如甲烷在空气中的爆炸范围为5.3%~14%,而在纯氧中的爆炸范围则放大到5.O%~61%。甲烷的极限氧含量为12%,若低于极限氧含量,可燃气就不能燃烧爆炸了。
4.惰性气体含量
爆炸性混合气体中加入惰性气体,如氮、氧、水蒸气、二氧化碳、四氯化碳等,可以使可燃气分子和氧分子隔离,在它们之间形成一层不燃烧的屏障。这层屏障可以吸收能量,使游离基消失,链锁反应中断,阻止火焰蔓延到其他可燃气分子上去,抑制燃烧进行,起到防火和灭火的作用。
混合气体中增加惰性气体含量,会使爆炸上限显着降低,爆炸范围缩小。惰性气体增到一定浓度时,可使爆炸范围为零,混合物不再燃烧。惰性气体含量对上限的影响较之对下限的影响更为显着的原因,是因为在爆炸上限时,混合气中缺氧使可燃气不能完全燃烧,若增加惰性气体含量,会使氧量更加不足,燃烧更不完全,由此导致爆炸上限急剧下降。
5.点火源与最小点火能量
点火源的强度高,热表面的面积大,火源与混合物的接触时间长,会使爆炸范围扩大,增加燃烧、爆炸的危险性。最小点火能量是指能引起一定浓度可燃物燃烧或爆炸所需要的最小能量。混合气体的浓度对点火能量有较大的影响,通常可燃气浓度稍高于化学计量浓度时,所需的点火能量为最小。若点火源的能量小于最小能量,可燃物就不能着火。所以最小点火能量也是一个衡量可燃气、蒸气、粉尘燃烧爆炸危险性的重要参数。对于释放能量很小的撞击摩擦火花、静电火花,其能量是否大于最小点火能量,