药物代谢动力学PPT精选课件

合集下载

药物代谢动力学课件

药物代谢动力学课件

药物吸收(二)
一、口服给药 吸收部位:胃和小肠(面积大,小肠pH5~8,简单扩散) 影响因素:是否空腹、胃肠蠕动、胃肠 道的pH值、药物溶解释放速率、 与胃肠道内容物的理化性相互作用 胃肠道分泌的酸和酶 首关消除(first pass elimination) 二、舌下给药、直肠给药:可一定程度避免 首关消除
载体转运特点
选择性(selectivity) 饱和性(saturation) 竞争性(competition) 竞争性抑制 &主动转运:耗能、逆电化学差 &易化扩散:不耗能、顺电化学差 意义:
影响药物通透细胞膜的因素
※可利用膜面积大小 ※Fick定律 通透量(单位时间分子数) =(C1-C2)×(面积×通透系数) 厚度 ※血流量的改变
各药都有固定的pka。药物的pka与药物本身属于弱酸或弱碱无关,弱 酸性药pka可>7,如弱酸性药苯巴比妥pka=7.4.弱碱也一样。
弱碱性药 [BH]/B= 10pka-PH 离子障(ion-trapping)非离子型药物可以自由穿透细胞
膜,而离子型的药物被限制在膜的一侧,这种相象称
主动转运与被动转运
药物吸收(三)
三、注射给药 静脉注射(iv) 肌内注射(im) 皮下注射(H) 动脉内和鞘内注射 四、吸入给药(气体,气化药物,难溶剂型) 五、局部给药(眼,粘膜,皮肤)
二 分布
定义:
药物吸收后随血液循环到各组织器官的过程。
影响因素
药物与血浆蛋白结合 器官血流量 药物与组织细胞亲和力 体液PH值 特殊屏障:血脑屏障、胎盘屏障 血眼屏障
组织库 结合
结合
游离
游离
结合
分布
体循环
吸收
游离型药 结合药物 代谢药

抗菌药物的药物代谢动力学.课件

抗菌药物的药物代谢动力学.课件
② 当40%-60%时间体内血药浓度超过了MIC时,药物的疗效达到最 佳。
❖ 代表药:β-内酰胺类、大环内酯类、磺胺类及林可霉素等。
❖ PK/PD评价指标:T>MIC
第6页,共30页。
一、抗菌药物根据PK/PD特点分类
3、时间依赖性且后效应(PAE)较长的抗菌药物
❖ 由于PAE较长,给药间隔时间可以适当延长,也可通 过增加给药剂量来提高PK/PD。
❖ 体液和组织中的药物浓度又与血药浓度呈平行关系。 ➢ 因此,传统上对抗菌药物治疗的药效参数指标主要以MIC(最
低抑菌浓度)、MBC(最低杀菌浓度)等为指导。
第3页,共30页。
第一节 抗菌药物PK/PD与双向个体化给药
药物 人体
致病菌
❖ 双向个体化给药(dual individualization)就是将 药物的药代动力学和药效学参数整合起来进行给药 方案设计的方法。
第14页,共30页。
第三节 头孢菌素类的药物代谢动力学
头孢菌素类(cephalosporins)属于β-内酰胺类抗生素。 时间依赖性
PK/PD参数:T>MIC
➢ 第一代:头孢唑啉、头孢氨苄 ➢ 第二代:头孢呋辛、头孢西丁 ➢ 第三代:头孢哌酮、头孢曲松、头孢他啶 ➢ 第四代:头孢吡肟
第15页,共30页。
【给药方案优化】
❖ 例:在对头孢唑啉对金黄色葡萄球菌感染的治疗中,当T>MIC为 55%时(即高于MIC的时间占24小时疗程的55%时),可达到最 大细菌清除率。
❖ 为了获得较好的T >MIC,可增加给药次数,以增强临床疗 效。
❖ 注:半衰期长、PAE比较长的此类药物,如头孢曲松,半衰期8.5小 时,再12-24小时中,给药1次就能维持血药浓度,而且治疗效果也不 会降低。

药物代谢动力学ppt课件

药物代谢动力学ppt课件
4、经皮给药 脂溶性 促皮吸收剂
精选课件
15
精选课件
16
吸收速度与程度主要取决于药物的理
化性质、剂型、剂量和给药途径。 1)消化道吸收 (1)口腔粘膜:脂溶性药物如硝酸甘油 (舌下给药)以简单扩散方式被吸收。 (2)胃:小的水溶性分子如酒精可自胃
粘膜吸收。 (3)小肠、大肠:大多数药物在小肠被
吸收。
精选课件
44
静脉注射2g磺胺药,其血药浓度为 10mg% , 经 计 算 其 表 观 分 布 容 积 为
D
A、0.5L B、2L
C、5L
D、20L
E、200L
精选课件
45
(三)血浆清除率
每单位时间内能将多少升血中的某药全 部消除(L/min或h)。
消除速率常数(K)
某单位时间内药物被消除的百分速率数。
(2)时量曲线用普通坐标时为曲线,血 药浓度改为对数尺度时呈直线。
精选课件
39精选课件ຫໍສະໝຸດ 40四、药代动力学重要参数
• 生物利用度 • 表观分布容积 • 血浆清除率 • 血浆半衰期
精选课件
41
(一)生物利用度:
不同剂型的药物能吸收并经首过消除 后进入体循环的相对份量及速度。
A(进入体循环药物量) F(生物利用度)=
由于有特殊的转运系统,所以水溶性大分子 物质也能选择性地通过生物膜。
精选课件
7
精选课件
8
(2)影响扩散速度的因素:
①膜两侧的药物浓度差。
②药物的理化性质:分子量小、脂 溶性大、极性小、非解离型的药物易 通过生物膜转运,反之难跨膜转运。
精选课件
9
2、主动转运:是一种逆浓度(或电位) 差的转运。
特点:需要载体,消耗能量,有饱和 现象和竞争性抑制。

第三章 药物代谢动力学

第三章 药物代谢动力学

一、药物的跨膜转运
(一) 被动转运 (passive transport)
顺浓度梯度转运或下山转运(down-hill transport)
• 简单扩散(脂溶扩散) 脂溶性药物,大多数药物的转运方式。
• 膜孔转运(水溶扩散) 水溶性的药物,借助膜两侧流体静压
或渗透压而进行的跨膜转运。
如:尿素、乙醇、锂离子
血眼屏障 (blood-ocular barrier)
血-房水 血-视网膜 血-玻璃体
大部分治疗眼病的药物 采用局部给药
胎盘屏障 (placental barrier)
胎儿胎盘绒毛-孕妇子宫血窦
临床意义: 妊娠期禁止使用对胎儿生长发育有影响的药物
妊娠期尽量避免用药
四、代谢(metabolism)
横坐标围成的面积,与药物吸收总量成正比。
三、药动学模型
隔室模型(compartment model)
又称房室模型
把机体假设为一个系统,药物进入体内分 布于其中,根据转运速率的快慢可区分为若干 隔室。
房室被视为一个假设空间,只要体内某些 部位的转运速率相同,均视为同一室。
一室模型
机体
药物
吸收 中央室
解离度 非离子型(脂溶)—— 自由跨膜,容易吸收 离子型(脂不溶) —— 带电荷,不易转运
解离度 pKa
弱酸性或弱碱性有机化合物,在体液中的解离程度 取决于体液的pH值。
• 解离常数Ka的负对数值为pKa,表示药物的解离度。
• pKa指药物解离50%时所在体液的pH值。
• pKa与药物本身属于弱酸性或弱碱性无关 • 离子障:pKa < 3 和 pKa >10 的药物,几乎全部解
➢ 非专一性酶: 微粒体酶: 微粒体混合功能氧化酶系统

药物代谢动力学

药物代谢动力学

36
人类细胞色素P450家族
目前已证实的人CYP家族:
CYP 1-5, 7, 8, 11, 17, 19, 21, 24, 26, 27, 39, 46, 51
功能:
CYP 1, 2A, 2B, 2C, 2D, 2E, 3 外来物代谢 CYP 2G1, 7, 8B1, 11, 17, 19, 21, 27A1, 46, 51 内源性类固醇 激素的代谢 CYP 2J2, 4, 5, 8A1 脂肪酸代谢
8
解离性和离子障 (ion trapping)现象
解离性是指水溶性药物在溶液中溶解后 可生成离子型或非离子型。非离子型药物疏 水而亲脂,易通过细胞膜,容易吸收。 离子型分子带有正电荷或负电荷不易跨 膜转运,被限制在膜的一侧,形成离子障(ion trapping)现象。 临床应用的药物多属于弱酸性或弱碱性 药物,它们在不同pH值的溶液中的解离状态 不同。
P.O 门静脉入肝脏 如硝酸甘油不宜口服 药物浓度
首过效应愈强,药物被代谢越多,其血药 浓度也愈低,药效会受到明显的影响。
19
药物的首过效应
药物口服后,经胃肠道到达肝脏,一部分药物将在代 谢酶作用下被代谢
20


① ②
舌下给药(sublingual) 直肠给药(per rectum) 注射给药 静注(intravenous injection,iv) 静滴(intravenous infusion)
30
四、药物代谢
指药物进入机体后,在体内各种酶以及 体液环境作用下,可发生一系列生化反应, 导致药物化学结构发生转变的过程,又称生 物转化(biotransformation)。 药物发生转化的器官主要是肝脏,此外 肠黏膜、肾、肺、体液和血液等组织的酶参 与某些递质和药物的转化或灭活作用。

药物代谢动力学(第六章)非房室模型PPT课件

药物代谢动力学(第六章)非房室模型PPT课件

02
房室模型适用于药物分布较为局限、消除较快的情况,而非房室模型则更适用 于药物分布广泛、消除缓慢的情况。
03
非房室模型可以更准确地描述药物在体内的实际过程,因为它避免了房室模型 对药物分布的简化假设。
应用场景与优势
应用场景
非房室模型适用于研究那些在体内分布广泛、消除缓慢的药物,如某些抗生素、抗癌药 物等。它也适用于研究药物在特殊生理状态下的动力学行为,如新生儿、老年人、疾病
03
非房室模型的数学表达
微分方程与差分方程
微分方程
描述药物在体内的动态变化,通过建立药物浓度与时间的关系式来描述药物在体内的吸收、分布、代谢和排泄过 程。
差分方程
将时间离散化,通过建立药物浓度在不同时间点的关系式来描述药物在体内的动态变化。
模型的数值解法
离散化方法
将微分方程或差分方程进行离散化,将连续的时间变量转换为离散 的数值,通过迭代或直接计算求解模型。
03
02
分布容积
描述药物在体内的分布情况,反映 药物在体内的分布范围。
排泄速率常数
描述药物从体内排出的速率,反映 药物的排泄能力。
04
04
非房室模型在药常数(Ka): 预测药物在体内的吸收速 度。
药物消除速率常数(Ke): 预测药物在体内的消除速 度。
复杂药物制剂的模型建立
1 2 3
概述
复杂药物制剂如纳米药物、脂质体等具有特殊的 物理化学性质,其药物代谢动力学行为与传统药 物有所不同。
具体方法
针对复杂药物制剂的特点,需要建立特定的药物 代谢动力学模型,以准确描述其在体内的吸收、 分布、代谢和排泄过程。
发展趋势
随着新药研发中对药物制剂的要求越来越高,复 杂药物制剂的模型建立将成为研究热点。

药物代谢动力学研究基本理论PPT课件

药物代谢动力学研究基本理论PPT课件

要点二
早期临床试验阶段
通过药物代谢动力学研究,评估药物的疗效和安全性,为 后续临床试验的设计和实施提供指导。
药物剂型设计与优化
剂型设计
根据药物代谢动力学研究结果,设计适合不同给药途径 和剂型的药物制剂,以提高药物的生物利用度和治疗效 果。
剂型优化
通过药物代谢动力学研究,对现有药物剂型进行优化, 改善药物的释放特性和稳定性,提高药物的疗效和安全 性。
机遇
随着新技术和新方法的不断涌现,药物代谢动力学研究将迎来更多发展机遇,如拓展研究领域、提高研究效率等。 同时,与其他学科的交叉融合也将为药物代谢动力学研究带来新的突破和进展。
感谢您的观看
THANKS
个体化用药与精准医疗
个体化用药
药物代谢动力学研究有助于了解不同个体对药物的反 应差异,为个体化用药方案的制定提供科学依据。
精准医疗
结合基因组学、蛋白质组学等多学科研究成果,通过药 物代谢动力学研究,实现精准医疗,提高治疗效果并降 低不良反应的发生率。
05
药物代谢动力学研究展望
药物代谢动力学与其他学科的交叉融合
表观分布容积(Vd)
总结词
表观分布容积是描述药物在体内分布程度的参数。
详细描述
表观分布容积(Vd)是指在生理学条件下,药物在体内达到动态平衡时,按血浆中药物浓度计算应占的 容积。Vd值越大,表明药物在体内的分布越广泛。Vd的大小与药物的脂溶性、组织亲和力以及血流灌注 等因素有关。了解药物的Vd有助于预测药物在不同个体内的分布情况。
清除率(Cl)
总结词
清除率是描述药物从体内消除速度的参数。
详细描述
清除率(Cl)是指单位时间内从体内清除的 药物量与血浆药物浓度的比值。清除率是评 价药物从体内消除速度的重要参数,反映了 肝脏、肾脏等排泄器官的功能。药物的清除 率受到多种因素的影响,如肝肾功能、年龄、 疾病状态等。了解药物的清除率有助于预测

第二章 药物代谢动力学

第二章 药物代谢动力学

肾脏排泄
肾小球滤过; 肾小管分泌(主动分泌通道, 竞争性抑制);
肾小管重吸收(被动扩散,尿液pH)、
消化道排泄 肝肠循环:胆汁排入肠腔的药物部分可再经小肠上皮细胞吸收经
肝脏进入血液循环,形成的肝—胆汁—小肠间的循环。
其他途径 汗液、泪液、唾液、乳汁、呼吸道、头发和皮肤。
第三节 药物的速率过程
一、一次给药的药—时曲线下面积
内转运的药物量随时间而下降;
t1/2恒定,与剂量或血药浓度无关, t1/2=0.693/ ke
消除 5单位/h
2.5单位/h
1.25单位/h
零级动力学消除
单位时间内消除恒定量的药物(超过机体的消除能力),
即血药浓度按恒定消除速度进行消除,也称恒量消除。
过量用药时出现;
单位时间消除恒量的药物;
消除速率与药量或浓度无关,与初始浓度无关;
特点 通过毛细血管壁吸收(简单扩散、滤过); 可避免胃肠液中酸碱及消化酶对药物的影响; 可避免首过消除现象; 给药剂量准确; 药物效应快速显著.
影响因素 药物在组织间液的溶解度; 注射部位血流量。
血管内给药
无吸收过程,可迅速起效; 静脉注射、静脉滴注; 静脉滴注适用于治疗指数小、药物容积大、不易吸收或刺激性
代第 谢二 动章 力药 学物
药物代谢动力学
研究机体对药物的处置过程,即药物在体内吸收、分布、生
物转化(代谢)及排泄的过程,以及血药浓度随时间变化而 变化的规律的科学。
第一节 药物的跨膜转运
药物分子的跨膜转运方式
被动转运(passive transport):滤过、简单扩散 载体转运(active transport):主动转运、易化扩散 膜动转运:胞吐、胞饮

药代动力学PKPDDMPK-PPT医学课件

药代动力学PKPDDMPK-PPT医学课件

解离度的影响
Bronsted-Lowry理论:产生H+酸,接受H+为碱 药物大多为弱酸或弱碱性,在人体pH 7.4环境中可部分解离,解离度由化合物的 解离常数pKa和介质的pH决定
非离子型的有机弱酸和有机碱易吸收,解离度小的药物易透过细胞膜被吸收
@生理pH
O H 3C
H
N
O
NH
O
弱酸性药物在胃液(pH=1)中解离度小,容易被吸收,如Aspirin (pKa=3.5)在胃中 99%呈分子型 弱碱性药物在肠道(pH=7~8)中解离度小,如quinine (pKa=8.4),在胃中几乎 100%呈离子型,无法吸收,进入肠中吸收良好 完全离子化的化合物如季铵盐,在胃肠道均不易吸收,不能进入神经系统,引入 季铵可降低中枢副作用
离子型化合物肠内吸收慢,肾脏较快
Na+
OOS
NN
CH3 N
O
CH3
Methyl orange: 无致癌作用
hard to penetrate cell membrane
3.3 结构与消除(Excretion)
1. 药物经肾排出(尿)
肾小球过滤(游离态药物),无特异性
近端小管的主动分泌(和logP相关)
3.4.1 芳环和烯烃的氧化羟化
CYP450
• 符合芳环亲电取代反 应的原理(给电子邻 对位;吸电子间位)
• 立体位阻较小的部位 • 两个苯环相同只氧化
一个,不同则氧化电 子云丰富的芳环
与烯烃相同
致突变
H O
C H 3
H O
H 3C
diethylstilbestrol
O H
O C H 3
H 3C
一般具有最适度解离度的药物,具有最佳的活性

药物代谢动力学ppt课件精选全文完整版

药物代谢动力学ppt课件精选全文完整版
• 主动转运(active transport) • 易化扩散(facilitated diffusion)
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。

药物代谢动力学

药物代谢动力学

生物转化
图 肝微粒体药物-代谢酶系统的主要组份
*示e 和 2H+来自NADH-黄素蛋白-细胞色素b5或来自NADPH-黄素蛋白
生物转化
肝药酶的特点: (1)专一性低:不仅可对许多脂溶性高的药物发挥 酶促作用,也能对一些内源性生理物质起酶促作 用。 (2)活性有限:数种药物合用后易达饱和,会发生 竞争抑制现象。 (3)个体差异很大,除先天性遗传性的差异外,生 理因素(年龄、营养状态、应激反应等)、病理 因素(肝脏疾病等)均可影响它的活性。 (4)可以受某些药物的诱导:活性增加(肝药酶诱 导)或活性减弱(肝药酶抑制剂)。
体内药量的时-量(效)关系
时-量(效)关系曲线
时-量(效)关系曲线
图 多次静脉注射或静脉滴注后的时-量曲线
a.静脉注射;b.静脉注射(D/t1/2);c.静脉注射(2D/t1/2);d.静脉注射首次量2D、后D/t1/2
被动转运
简单扩散 又称为下山转运,即药物从浓度高的一侧 向浓度低的一侧扩散。 特点: ① 不消耗能量不需载体 ② 不受饱和限速与竞争性抑制的影响 ③ 受药物分子大小、脂溶性、极性等因素 的影响。当细胞膜两侧药物浓度达到平衡 状态时就停止转运。
第三节 药物代谢动力学的一些基本 参数及其概念
药物代谢动力学:研究药物及其代谢产物在体内的吸收、分布、 代谢、排泄的时间过程。 房室模型: 用抽象的数学模型即房室模型来模拟机体,把机体 看作由许多房室构成的体系,将药物转运速度相似的都归为 同一房室,如:一室、二室、多室模型。 表观分布容积: 用来测定药物在体内的表观空间,是通过药 物在体内的总量(A)除以初始血药浓度(C0)计算出来的 参数(Vd)。 Vd = A(总药量)/C0(初始血药浓度) 生物利用度:服用某种药剂后,药剂中主药到达体循环的相对 量和相对速率。F 半衰期: 一般是指血浆半衰期(t1/2),指血浆药物浓度下降 一半所需的时间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
8
药物的跨膜转运方式,按其性质不 同可分为三大类:
1、被动转运(下山转运或顺流转运): 是指药物借助细胞膜两侧存在的药物
浓度梯度或电位差,以电化学势能差为 驱动力,从高浓度侧向低浓度侧扩散。
分类:简单扩散和易化扩散两种。
9
(1)简单扩散
①脂溶扩散(lipid diffusion):即药物
通过溶于脂质膜而被动扩散。绝大多数药 物是通过该方式转运,是药物转运最常见 、最重要的形式。
①膜两侧浓度差:药物在脂质膜的一侧浓
度越高,扩散速度越快,当膜两侧浓度相 同时,扩散即停止。
②药物的脂溶性:药物的脂溶性用油/水分
配系数表示,分配系数越大,药物扩散就越 快。
注:油/水分配系数是指药物在有机溶媒中 的溶解度/药物在水中的溶解度。
12
③药物的解离度 :非解离型药物因其脂
溶性大,能溶入脂质膜中,才易于通过 生物膜 。而解离型一般较难通过,被限 制在膜的一侧,称其为离子障(ion trapping)现象。
20
经通道易化扩散的特点: ①速度极快;(可达每秒106~108个离子) ②具有明显的离子选择性; ③门控(gating)特性:通道“闸门(gate)”
可受某些因素的调控而开闭。
21
门控通道的种类:
A.电压门控通道——受膜两侧电位差变化来 控制开闭的通道。
B.化学门控通道——受膜两侧某些化学分子 浓度变化来控制开闭的通道。也称配体门控
②水溶扩散(aqueous diffusion)也称膜
孔扩散、滤过扩散或限制扩散:指分子量 小、分子直径小于膜孔的水溶性物质如尿 素、水、乙醇等,借助膜两侧的流体静压 和渗透压差被水携带到低压一侧的过程。
10
简单扩散的特点:Байду номын сангаас
①不消耗能量; ②不需要载体; ③无饱和现象; ④无竞争性抑制现象。
11
影响因素:
26
主动转运方式影响药物的排泄较大 ,与药物的吸收关系不大。如丙磺舒和 青霉素在肾小管的主动排泌等都属于这 种转运类型。由于两者在肾小管经同一 分泌型转运体转运,当两者合用时,前 者竞争抑制后者在肾小管的分泌,从而 使青霉素的消除减慢,血中浓度升高, 因此增强了青霉素的疗效。
27
主动转运的分类:
药物代谢动力学
------机体对药物的作用
1
第二章 药物代谢动力学
主要研究药物在体内的吸收、 分布、代谢及排泄过程的动态变化 及体内药物浓度随时间变化的规律 (运用数学原理和方法研究药物在 体内的量变)。
2
第二章 药物代谢动力学
第一节 药物的体内过程 一、 药物分子的跨膜转运 二 、 药物的吸收及给药途径 三、 药物的分布及药物与血浆蛋白结合 四、 药物的代谢 五、 药物的消除
第二节 药物的速率过程 一、药动学基本原理 二、药动学参数及其基本计算方法
3
药物要产生特有的效应,必须在 作用部位达到适当浓度。要达到适当 浓度,与药物剂量及药动学有密切相 关,它对药物的起效时间、效应强度、 持续时间有很大影响。
本章主要掌握药物吸收、分布、代 谢和排泄的基本规律,熟悉常用药动 学参数的意义。
18
19
②经通道介导的易化扩散 (facilitated diffusion via channel)
• 通道介导的易化扩散: 离子顺浓度梯度差移动。 • 通道:与离子扩散有关的膜蛋白质,通道可瞬间
激活与失活, • 跨膜电流 (transmembrane current):当通道开放
引起带电离子跨膜移动形成的电流
包括载体介导的易化扩散和通道介导的易化扩散。
17
①载体介导的易化扩散: 在膜高浓度侧载体选 择性的与某物结合,引起构象发生变化,载 体移向细胞膜低浓度一侧,与结合物分离。
• 特点: –高度结构特异性 (specificity) –饱和现象 (saturation) –竞争性抑制 (competition) –顺浓度梯度,不需额外供能
(1)原发性主动转运(primary active transport):又称一次性主动转运。即直接利 用ATP分解成ADP释放出的游离自由能来转运 物质的方式。
通道。 C.机械门控通道——受膜两侧的机械力学因
素变化来控制开闭的通道。
22
电 压 门 控 通 道
23
化学门控通道
(配体门控通道)
24
机 械 门 控 通 道
25
2、主动转运(active transport): 药物从低浓度一侧跨膜向高浓度一
侧的转运,又称逆流转运、上山运动。
主动转运的特点: (1)药物逆浓度差转运 (2)耗能 (3)需要载体 (4)有饱和现象及竞争性抑制
例如,临床上口服苯巴比妥等弱酸性药
物中毒时,用碳酸氢钠洗胃,就是因为
碳酸氢钠碱化中毒药物的吸收环境,使
苯巴比妥的解离型增多,减少其吸收而
解毒。
16
(2)易化扩散(facilitated diffusion)
易化扩散指顺浓度差的载体转运,故又称载体 转运。一些亲水性物质(葡萄糖、氨基酸等)和 带电荷的离子(K+、Na+、Ca2+等)不能透过 细胞膜上的脂质双分子层,必须借助膜上的一种 特殊的蛋白质作为载体进行转运,其转运的速度 比脂溶扩散要快。
4
第一节 药物的体内过程
一、药物的跨膜转运及药物转运体 药物的体内过程(ADME),必须
跨越多层生物膜,进行多次转运。 转运:药物吸收、分布、消除的过程。
5
6
(一)药物的转运方式 生物膜是由蛋白质和液态的脂
质双分子层(主要是磷脂)所组成。 由于生物膜的脂质性的特点,故只 有脂溶性大、极性小的药物较易通 过。
14
当药物pKa不变时,改变溶液的pH,可 明显影响药物的解离度,从而影响药物 的跨膜转运。
归纳:弱酸性药物在酸性环境中,解离 少,吸收多,排泄少;而在碱性环境中, 解离多,吸收少,排泄多。
15
归纳为:“酸酸少易,酸碱多难”。
解释为:“酸酸少易”-弱酸性药物在 酸性体液中解离少,容易透过细胞膜; “酸碱多难”- 弱酸性药物在碱性体液 中解离多,则很难透过细胞膜。
④药物所在环境的pH。决定药物的解离
度。
13
pH 对弱酸或弱碱类药物的影响,可用数学 公式进行定量计算。
对弱酸性药物: 10pH-pKa =[解离型]/[非解离型] ① 10pH-pKa =[A-]/[HA] 对弱碱性药物: 10pKa-pH =[解离型药]/[非解离型] ② 10pKa-pH =[BH+]/[B]
相关文档
最新文档