恒定电流的电场与磁场参考PPT

合集下载

恒定磁场ppt

恒定磁场ppt

恒定磁场研究的前沿进展
01
恒定磁场作为一种独特的物理场,具有无辐射、无污染、易于调控等优势,在 基础科学、应用科学和工程技术等领域具有广泛的应用前景。
02
近年来,研究者们在恒定磁场相关的物理、材料、生物医学等领域取得了许多 前沿进展,如在磁性材料研究方面,发现了多种新型磁性材料,提高了磁性材 料的性能和稳定性。
光学性质
恒定磁场可以影响物质的光学性质,如折射率、吸收光谱等。
恒定磁场对物质化学性质的影响
电子结构
恒定磁场可以影响物质的电子结构,从而影响化学键的形成 和断裂。
反应速率
恒定磁场可以影响化学反应速率,从而影响化学反应的能量 转换和物质转化。
04
恒定磁场的应用实例
恒定磁场在医学领域的应用
核磁共振成像(MRI)
恒定磁场的基本特征
恒定磁场是一种非均匀场,其 强度和方向随空间位置的变化
而变化。
恒定磁场具有旋度,因此不会 产生电场。
恒定磁场与电场不同,其强度 不与电流密度成正比,而是与 电流密度和磁导率成正比。
恒定磁场的应用场景
ቤተ መጻሕፍቲ ባይዱ磁性材料制备
磁记录
利用恒定磁场可以控制磁性材料的磁性能参 数,如磁化强度、磁晶各向异性等,从而制 备高性能的磁性材料。
利用恒定磁场将人体中的氢原子磁化,通过检测这些原子核产生的信号,生 成人体内部的高分辨率图像。
磁分离技术
恒定磁场可用于分离血液中的肿瘤细胞、细菌等有害物质,提高疾病诊断和 治疗的准确性。
恒定磁场在材料科学领域的应用
磁性材料制造
恒定磁场可以用于制造高性能的磁性材料,如稀土永磁材料、铁氧体材料等。
磁记录
未来,恒定磁场的研究和应用将会有更多的创新和发 展,为人类的生产和生活带来更多的便利和效益。

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势

第5章 恒定电流的电场和磁场

第5章 恒定电流的电场和磁场

dl '×R ∫C ' R 3 ⋅ dl −R ∫C ' R 3 ⋅ (−dl × dl ' )
假设回路C′对P点的立体角为 ,同时P点位移dl引起的立体角增量 为d ,那么P点固定而回路C′位移dl所引起的立体角增量也为d ′。 -dl×dl′是dl′位移-dl所形成的有向面积。注意到R=r-r′,这个立体 角为
z ' = z − r tan α , dz ' = r sec 2 α dl ' = ez dz ' = −ez r sec 2 α R = r sec α
dl '×R = ez dz '×[rer + ( z − z ' )ez ]
所以
= −eφ rdz ' = −eφ r 2 sec 2 α
∆P = ∆U∆I = E∆l∆I = EJ∆l∆S = EJ∆V
当∆V→0,取∆P/∆V的极限,就得出导体内任一点的热功 热功 率密度,表示为 率密度
∆P p = lim = EJ = σE 2 ∆V →0 ∆V

p = J ⋅E
此式就是焦耳定律 焦耳定律的微分形式。 焦耳定律 应该指出,焦耳定律不适应于运流电流 不 运流电流。因为对于运流电 运流电流 流而言,电场力对电荷所作的功转变为电荷的动能,而不 是转变为电荷 晶格碰撞 电荷与晶格碰撞 电荷 晶格碰撞的热能。
对于无限长直导线(l→∞),α1=π/2, α2=-π/2,其产生的磁场为
µ0 I B = eφ 2πr
5.3 恒定磁场的基本方程
5.3.1 磁通连续性原理 磁感应强度在有向曲面上的通量简称为磁通量 磁通量(或磁通),单 磁感应强度 磁通量 位是Wb(韦伯),用Φ表示:

恒定电流的电场和磁场课件

恒定电流的电场和磁场课件
恒定电流的电场和磁场 课件
目录
• 恒定电流的基本概念 • 电场与电场力 • 磁场与磁场力 • 恒定电流的磁场效应 • 恒定电流的应用 • 实验与实践
01
恒定电流的基本概念
电流的定义与性质
电流
电荷在导体中定向移动形成电流 ,单位时间内通过导体横截面的 电荷量称为电流强度,简称电流 。
电流的性质
电荷的定向移动形成电流,其方 向由正电荷定向移动的方向决定 ,而与导体内自由电荷的运动方 向无关。
电场力是电荷在电场中受到的力,其大小与电荷的电量成正比,与电场强度成正比 。
电场强度是描述电场强弱和方向的物理量,等于单位正电荷在电场中受到的力。
电场强度具有方向性,规定正电荷受力方向为电场强度的方向。
电势与电场能量
电势是描述电场能的物理量,等于单 位正电荷在电场中具有的电势能。
电场能量是电场中储存的能量,与电 势能密切相关。
电阻
导体对电流的阻碍作用,由导体的材 料、长度、横截面积和温度等因素决 定。
02
电场与电场力
电场的概念与性质
电场是由电荷产生的 ,对放入其中的电荷 有力的作用。
电场的性质包括对放 入其中的电荷有力的 作用、静电感应现象 等。
电场具有物质性,是 传递电荷间相互作用 的一种特殊物质形态 。
电场力与电场强度
详细描述
电磁感应现象是当导体在磁场中发生相对运动时,会在导体中产生电动势或电流的现象。这个现象由英国物理学 家迈克尔·法拉第于19世纪30年代发现,是电磁化的电场和磁场相互激发,形成电磁波并传播出去。
详细描述
电磁波是由变化的电场和磁场相互激发而形成的。当电场或磁场发生变化时,就会产生电磁波,并传 播出去。电磁波的传播速度等于光速,在真空中传播不受影响,但在介质中传播速度会减慢。

《大学物理磁学》ppt课件

《大学物理磁学》ppt课件
《大学物理磁学》 ppt课件
目录
• 磁学基本概念与原理 • 静电场中的磁现象 • 恒定电流产生磁场及应用 • 电磁波与光波在磁学中的应用 • 铁磁物质及其性质研究 • 现代磁学发展前沿与挑战
01
磁学基本概念与原理
磁场与磁力线
01 磁场
由运动电荷或电流产生的特殊物理场,具有方向 和大小,可用磁感线描述。
通过分析带电粒子在静电场中的运动规律,可以 03 了解电场分布和粒子性质等信息。
静电场和恒定电流产生磁场比较
静电场和恒定电流都可以产生磁场,但它们产 生的磁场具有不同的特点。
静电场产生的磁场是瞬时的,随着静电场的消 失而消失;而恒定电流产生的磁场是持续的, 只要电流存在就会一直产生磁场。
此外,静电场和恒定电流产生的磁场在分布、 强度和方向等方面也存在差异。
02 磁力线
形象描述磁场分布的曲线,其切线方向表示磁场 方向,疏密程度表示磁场强度。
03 磁场的基本性质
对放入其中的磁体或电流产生力的作用。
磁感应强度与磁通量
磁感应强度
描述磁场强弱和方向的物理量,用B表示, 单位为特斯拉(T)。
磁通量
描述穿过某一面积的磁感线条数的物理量,用Φ表 示,单位为韦伯(Wb)。
电磁铁
利用恒定电流产生的磁场来制作电磁 铁,用于吸附铁磁性物质或作为电磁
开关等。
电磁炉
利用恒定电流产生的交变磁场来加热 铁质锅具,从而实现对食物的加热和
烹饪。
电机与发电机
电机是将电能转换为机械能的装置, 而发电机则是将机械能转换为电能的 装置。它们的工作原理都涉及到恒定 电流产生的磁场。
磁悬浮列车
利用恒定电流产生的强磁场来实现列 车的悬浮和导向,具有高速、安全、 舒适等优点。

第4章 恒定电场和恒定磁场

第4章 恒定电场和恒定磁场

故两种介质中的电流密度和电场强度分别为
J e
E1 e
[ 2 ln(b a) 1 ln(c b)]
2U 0 [ 2 ln(b a) 1 ln(c b)]
(a c)
( a b)
E2 e
1U 0 [ 2 ln(b a) 1 ln(c b)]
1 2 , 1
D1n D2 n
1 n 2 2 n
E1t E2 t
1 2 , 1
J1n J 2 n
1 n 2 2 n
电磁场
第4章 恒定电场和恒的场量之间有一一对应 的关系; 静电场 对应物理量 恒定电场
2 1U 0
c[ 2 ln(b a) 1 ln(c b)]
2 2
b
两种介质分界面上的电荷面密度为
S 12
(1e E1 2 e E2 ) (1 2 2 1 )U 0
1 1
b[ 2 ln(b a ) 1 ln(c b)]
a b
(1)设同轴电缆中单位长度的径向电流为I ,则由
J e I 2π (a c)
J dS I ,
S
介质中的电场
E1
J
1
e
I 2π 1 I 2π 2
( a b) (b c)
E2
J
2
E
D
E
J

q
I

C
G
2. 两种场的电位函数定义相同, 都满足拉普拉斯方程,若处于相 同的边界条件下,根据唯一性定理, 电位函数必有相同的解. 所以两种场的等位面及电场强度分布相同,J和D矢量线的分布 也相同; 恒定电场与静电场是可比拟的

静态电磁场I恒定电流的电场和磁场.pptx

静态电磁场I恒定电流的电场和磁场.pptx

5. 矢量磁位的泊松方程和拉普拉斯方程
1. 恒定磁场的矢量磁位 矢量磁位的定义
矢量磁位或称磁矢位
由 B 0
B A
即恒定磁场可以用一个矢量函数的旋度来表示。
3.利用矢量磁位A计算磁场
体电流分布:
A(r) 0 Jc (r' )dV '
4 V ' r r'
面电流分布:
A(r) 0 K (r' )dS '
4 S' r r'
线电流分布:
A(r) 0 I dl'
4 l' r r'
由于元电流矢量产生相同方向的元矢量磁位,故与基于B的分析计算相比,相 对较为简单,尤其在二维磁场(平行平面或轴对称磁场)。
dV
'
毕奥-萨伐尔定律(矢量积分关系式)
第21页/共59页
3.3.4 毕奥-萨法尔定律(矢量磁位)
根据导体中电流分布的不同形态:
体电流密度矢量 Jc v 面电流密度矢量 K v 线电流密度矢量 I v
元电流密度矢量 dqv
JcdV KdS Idl dq
因此,面、线电流分布情况下的磁感应强度为:
Jc dS 0
S
J1n J2n
E dl 0
l
E1t E2t
对线性各向同性媒质, J1 1E1 J2 2E2 (2) 良导体与不良导体分界面上的边界条件
tg1 1 tg2 2
1 2 1 90 o
2 0o
J2
n
例如,钢的电导率 1 = 5106 S/m,周围
2
土壤的电导率2 = 10-2 S/m,1 = 89, 可知,2 8。
sin2
e

电磁学全套ppt课件

电磁学全套ppt课件
感生电动势
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流

电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。

第四章-恒定电流的电场和磁场

第四章-恒定电流的电场和磁场

第四章 恒定电流的电场和磁场§4.1 恒定电流的电场§4.2 恒定电场与静电场的比拟§4.3 恒定磁场的基本方程§4.4 恒定磁场的矢量磁位§4.5 介质中的磁场§4.6 恒定磁场的边界条件§4.7 电感的计算§4.8 恒定磁场的能量和力§4.1 恒定电流的电场图 4-1 导体中的恒定电流4.1.1 微分形式的欧姆定律和焦耳定律它的定义是: 单位时间内通过导体任一横截面的电荷量, 数学表示式为所以恒定电流的电流强度定义为上式中Q 是在时间t 内流过导体任一横截面的电荷, I 是常量。

电流强度的单位为(A =C/s )。

图 4-2 电流密度矢量dtdQ t Q i t =∆∆=→∆0lim tQ I =式中J 是体传导电流密度, 单位为A/m2。

如果所取的面积元的法线方向 与电流方向不平行, 而成任意角θ, 如图4-2(b )所示, 则通过该面积的电流是所以通过导体中任意截面S 的电流强度与电流密度矢量的关系是1.欧姆定律的微分形式由实验已知, 当导体温度不变时, 通过一段导体的电流强度和导体两端的电压成正比, 这就是欧姆定律式中R 称为导体的电阻, 单位为Ω, 表示式为或上式中, l 为导体长度; S 为导体横截面; σ称为导体的电导率, 它由导体的材料决定, 单位为1/Ω·m=S/m 。

表 4-1 几种材料在常温下的电阻率和电导率 dS dIS I J S =∆∆=→∆0lim θcos Jds s d J dI =⋅= ⎰⎰⋅=⋅=S S ds n J s d J I 0 0n RI U =S l R σ=Sdl R lσ⎰=图 4-3 推导欧姆定律微分形式所以J =σE 。

在各向同性媒质中, 电流密度矢量J 和电场强度E 方向一致, 都是正电荷运动方向, 故有运流电流不服从欧姆定律, 所谓运流电流, 是指电荷在真空或气体中由于电场的作用而运动时形成的电流。

恒定电流的电场与磁场

恒定电流的电场与磁场

电源电路的分析需要掌握电 路的基本原理,如欧姆定律、 基尔霍夫定律等,以及各种
电子元件的特性。
电源电路的设计与分析对于保 证电力系统的稳定运行和节能
减排具有重要意义。
电磁感应在日常生活中的应用
例如,变压器利用电磁感应原理实现电压的变换,电 动机利用电磁感应将电能转换为机械能,发电机利用 电磁感应将机械能转换为电能。
电流的性质
电流具有连续性,电荷在 导体中不会积累或消失, 而是以一定的速度不断通 过导体。
电流的方向
规定正电荷定向移动的方 向为电流方向,与负电荷 定向移动的方向相反。
欧姆定律与基尔霍夫定律
欧姆定律
导体中的电流与导体两端的电压成正 比,与导体的电阻成反比。
基尔霍夫定律
电路中任一节点上流入的电流之和等 于流出的电流之和,即节点电流定律 ;任意回路上,电压降之和等于电压 升之和,即回路电压定律。
描述磁场中磁通量变化产生电动势的物理定律,指出当磁场中的磁通量发生变化 时,会在导体中产生电动势。
03
恒定电流产生的电场与 磁场
恒定电流的电场特性
恒定电流的电场是静电场的一种特殊形式,其电场线不随时间变化,只与导体的位 置和形状有关。
恒定电流的电场具有高斯定理和环路定理等基本性质,这些性质与静电场相同。
电源与电阻
电源
提供电能并维持电路中恒定电流 的装置,分为直流电源和交流电 源两类。
电阻
导体对电流的阻碍作用,由导体 的材料、长度、横截面积和温度 等因素决定。
02
电场与磁场的基本理论
电场强度与电位
电场强度
描述电场中电场力作用强弱的物理量,单位为伏特/米(V/m)或牛顿/库仑 (N/C)。
电位

大学物理电与磁的相互关系PPT课件

大学物理电与磁的相互关系PPT课件
第十一章 电与磁的相互作用
和相互联系
精选ppt课件2021
1
• 熟悉电磁感应现象; • 掌握电磁感应定律、 感应电动势; • 掌握互感现象、 自感现象、 *磁场的能量。

精选ppt课件2021
2
§11-1 电磁感应及其基本规律
• 一、电磁感应现象 (electromagnetic induction phenomenon
精选ppt课件2021
18
解: 无限长直导线在离开它的距离 处产生的磁场大小为 B 0I 2x
• 方向垂直纸面向里,长为 的金属棒 上的任一元段的元电动势为
di (vB)dx2Ixvdv
由右旋关系, d i 由 B 指向 A ,所以
idid来自0Ivdxdl 2x
0I 2
vln(d l) d
i 的指向是从B到A,也就是A点的电势比B点高,即
• 感应电动势的方向,总是使得感应电流的 磁场去阻碍引起感应电动势(或感应电流)的 磁通量变化.感应电流的效果总是反抗引起 感应电流的原因的。
精选ppt课件2021
7
• 楞次定律的后一种表述可以方便判断感应电流所 引起的机械效果的问题。“阻碍”或“反抗”是 能量守恒定律在电磁感应现象中的具体体现。磁 棒插入线圈回路时,线圈中感应电流产生的磁场 阻碍磁棒插入,若继续插入则须克服磁场力作功。 感应电流所释放出焦耳热,是插入磁棒的机械能
精选ppt课件2021
3
• 磁场相对于线圈或导体回路改变大小或方向, 会在回路中产生电流,并且改变得越迅速, 产生的电流越大
• 导体回路相对于磁场改变面积和取向会在回 路中产生电流,并且改变得越迅速,产生的 电流越大。
精选ppt课件2021

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件•电磁学基本概念与原理•静电场中的导体和电介质•恒定电流及其应用•磁场性质与描述方法•电磁感应原理及技术应用•电磁波传播特性及技术应用目录CONTENTS01电磁学基本概念与原理电场强度描述电场强弱的物理量,其大小与试探电荷所受电场力成正比,与试探电荷的电荷量成反比。

静电场由静止电荷产生的电场,其电场线不随时间变化。

电势与电势差电势是描述电场中某点电势能的物理量,电势差则是两点间电势的差值,反映了电场在这两点间的做功能力。

欧姆定律描述导体中电流、电压和电阻之间关系的定律。

恒定电流电流大小和方向均不随时间变化的电流。

静电场与恒定电流磁场磁感应强度磁性材料磁路与磁路定律磁场与磁性材料由运动电荷或电流产生的场,其对放入其中的磁体或电流有力的作用。

能够被磁场磁化并保留磁性的材料,分为永磁材料和软磁材料。

描述磁场强弱的物理量,其大小与试探电流所受磁场力成正比,与试探电流的电流强度和长度成反比。

磁路是磁性材料构成的磁通路径,磁路定律描述了磁路中磁通、磁阻和磁动势之间的关系。

描述变化的磁场产生感应电动势的定律。

法拉第电磁感应定律描述感应电流方向与原磁场变化关系的定律。

楞次定律描述磁场与变化电场之间关系的定律。

麦克斯韦-安培环路定律由变化的电场和磁场相互激发而产生的在空间中传播的电磁振荡。

电磁波电磁感应与电磁波麦克斯韦方程组及物理意义麦克斯韦方程组由四个基本方程构成的描述电磁场基本规律的方程组,包括高斯定理、高斯磁定理、法拉第电磁感应定律和麦克斯韦-安培环路定律。

物理意义麦克斯韦方程组揭示了电磁现象的统一性,预测了电磁波的存在,为电磁学的发展奠定了基础。

同时,该方程组在物理学、工程学等领域具有广泛的应用价值。

02静电场中的导体和电介质导体在静电场中的性质静电感应当导体置于外电场中时,导体内的自由电子受到电场力的作用,将重新分布,使得导体内部电场为零。

静电平衡当导体内部和表面的电荷分布不再随时间变化时,称导体达到了静电平衡状态。

《电磁学》PPT课件

《电磁学》PPT课件

磁场
由运动电荷(电流)产生的特 殊物理场,描述磁极间的相互
作用。
电场性质
对放入其中的电荷有力的作用, 且力的方向与电荷的电性有关。
磁场性质
对放入其中的磁体或通电导线 有力的作用,且力的方向与电
流方向及磁场方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相 互作用力,与电荷量的乘积成正比, 与距离的平方成反比。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性Fra bibliotek02超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
05
电磁波传播与辐射理论
麦克斯韦方程组内容解读
麦克斯韦方程组的四个基本方程
01
高斯定律、高斯磁定律、麦克斯韦-安培定律、法拉第感应定律。
方程组的物理意义
02
揭示了电荷、电流与电场、磁场之间的内在联系,描述了电磁
场的产生、传播和变化规律。
方程组在电磁学中的地位
03
是电磁学的基石,为电磁波理论、电磁辐射和天线设计等领域
实例分析
通过具体磁路实例,如电磁铁、变压器等,分析磁路的结构、工作原理和性能特点。
铁磁材料特性及应用领域
铁磁材料特性
具有高磁导率、低矫顽力、高饱和磁感应 强度等特点,易于实现磁化和退磁。
VS
应用领域
广泛应用于电机、变压器、继电器、扬声 器等电气设备中,以及磁记录、磁放大等 领域。

恒定电流的电场与磁场参考PPT

恒定电流的电场与磁场参考PPT

R 1 G
如果同轴线的长度为l,总的漏电阻为R/l
18
二、特定等位面之间导体材料电阻的计算 计算步骤: (1) 假设两电极间流过的电流I,然后按
I J E U R 的步骤计算。
(2) 假设两电极的电压U,然后按
U E J I R 的步骤计算。
19
例2 设一段环形导电媒质,其形状及尺寸如图示。计
13
当恒定电流场与静电场的边界条件相同时,电 流密度的分布与电场强度的分布特性完全相同
可以利用已经获得的静电场 的结果直接求解恒定电流场
可用边界条件与静电场相同的 电流场来研究静电场的特性
静电比拟
14
例如,两电极间的电流场与静电场对应分布如下图示:
P
N
P
N
电流场
静电场
那么,利用已经获得的静电场结果可以求解恒定电流场。
2U
导电媒质中的电流密度 J 为
JE er e2 r U
那么由 的端面流进该导电媒质的电流 I 为
2IS JdSS e2 πr U ( etdr)
2πUtabdrr2πUltnb a
因此该导电块的两个端面之间的电阻 R 为
RV π
I 2t ln b
a
21
例:电导率为的无界均匀电介质内,有两个半径分别为R1 和R2的理想导体小球,两球之间的距离为d(d>> R1 ,d>> R2),试求两小导体球面间的电阻。
解: 此题可采用静电比拟的方法求解。 ❖假设两小球分别带电荷q和-q,由于两球间的距离d>>R1 、 d>>R2 ,可近似认为小球上的电荷均匀分布在球面上。 ❖由电荷q和-q的电位叠加求出两小球表面的电位差,即可求 得两小导体球面间的电容, ❖再由静电比拟求出两小导体球面间的电阻。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w e2
1 2
2
E
2 2
p l1
E
2 1
pl2
E
2 2
12
§4.3. 恒定电流场与静电场的比拟 静电场和恒定电场性质比较:
相同点:场性质相同,均为无旋场; 场均不随时间改变; 均不能存在于理想导体内部;
不同点:源不同。静电场的源为静止电荷,恒定电场 的源为运动电荷。 存在区域不同。静电场只能存在于导体外, 恒定电场可以存在于非理想导体内。
1 1 2 2
电流由内导体流向外导体,在分界面上只有法向分量,所以
电流密度成轴对称分布。
先假设电流为I
求出电流密度J的表达式
求出E1和E2
确定出电流
b
c
UaE 1drbE2dr
4
由边界条件,边界两边电流连续。
设单位长度内从内导体流向外导体电流为I。
I
I
J S e r 2rer (arc)
由导电媒质内电场本构关系,可知媒质内电场为:
JI
E 1121rer (arb) E 2J22 I2rer (brc)
b
c
UaE 1drbE2dr
2I1(lnblna)2I2(lnclnb) 5
I2ln(b2/a)1 2U 1l0n(c/b)
J
12 U 0
(a r c )
[2 ln (b /a )1 ln (c /b )]r
E 1 J 1 [2 ln ( b /a ) 2 U 0 1 ln ( c /b ) ] r e r ( a r b )
E 2 J 2 [2 ln ( b /a ) 1 U 0 1 l n ( c /b ) ] r e r ( b r c )
c 2rE 2d r (b r c )
3
例题:
例:同轴线填充两种介质,结构如图所示。两
种介质介电常数分别为 1 和 2 ,导电率分别
为 1 和 2,设同轴线内外导体电压为U。
求:(1)导体间的E ,J , ;
(2)分界面上自由电荷分布。
解:这是一个恒定电场边值问题。不能直接 应用高斯定理求解。
2c 2b 2a
1 1 2 2Leabharlann EJ a13当恒定电流场与静电场的边界条件相同时,电 流密度的分布与电场强度的分布特性完全相同
可以利用已经获得的静电场 的结果直接求解恒定电流场
可用边界条件与静电场相同的 电流场来研究静电场的特性
静电比拟
14
例如,两电极间的电流场与静电场对应分布如下图示:
P
N
P
N
电流场
静电场
那么,利用已经获得的静电场结果可以求解恒定电流场。
电流由理想导电体流出进入一般导电媒质时,电流
线总是垂直于理想导电体表面。
2
关于边界条件的说明: 1、由于导体内存在恒定电场,根据边界条件可知,在导体表 面上的电场既有法向分量又有切向分量。电场并不垂直于导 体表面,因而导体表面不是等位面。 2 、若媒质2是良导体,媒质1是极不良导电媒质,只要不接 近,就可以近似地把良导体表面看作等位面。
15
静电场与恒定电场的对偶关系
导电媒质中的恒定电场 (电源外)
E 0 E
介质中的静电场 (无源区域)
E 0 E
对偶量
EE
•J 0 J E
•D 0 DE
JD
2
1 E • dl 1 2
SJ • dS I
2 0
2
1 E • dl 1 2
SD • dS q
2 0
I q
时,试求两层介质中的电场强度,单位体积中的电场储
能及功率损耗。
解: 由于电容器外不存在电流,
可以认为电容器中的电流线与边
界垂直,求得
U
1 1 d1 2 2 d2
J1n J2n
J1 J2
E11E22
E1
2 U d12 d21
E1d1E2d2U
E2
1 U d12 d21
11
w e1
1 2
1E
2 1
J1n J 2n J1t J 2t
1 2
D1n D2n D1t D2t
1 2
G=I/U
C=q/U
G C
16
§4.4 电阻的计算
第四章 恒定电流场 Steady electric currents field
恒定电场:恒定电流(运动电荷)产生的电场。恒定电流周围
存在恒定电场和磁场
恒定磁场
恒定电场
恒定电流场的边界条件 恒定电流场的能量损耗 恒定电流场与静电场的 比拟
矢量磁位与标量磁位 媒质磁化 媒质中的恒定磁场方程式 电感与互感 磁场能量与磁场力
d W d q E d l E d q d l
8
电场损失的功率 P 为
Pd W Ed qd lEd lIEd S J d l d t d t
单位体积中的功率损失为
pl
EJE2
J2
当J和E的方向不同时,上式可以表示为下面一般形式
pl EJ
焦耳定律的微分形式
表示某点的功率损耗等于该点的电场强度与电流密度
§4.2 恒定电场的能量损耗 在导电媒质中,自由电子移动时要与原子晶格发生碰
撞,结果产生热能,这是一种不可逆的能量转换。这种 能量损失将由外源不断补给,以维持恒定的电流。
d
lJ dS U
圆柱体的端面分别为两个等位面。若在电场力作用下,d t 时间内有d q电荷自圆柱的左端面移至右端面,那么电场力 作的功为
1
§4.1 恒定电流场的边界条件 Boundary condition
1、恒定电场在分界面上的折射关系为
J1t J1n
E1t E1n
tan1
J2t J2n
E2t E2n
tan2
tan1 1 tan2 2
n
J
1 1
E1
1
E
2
2
J
2
2
若 2 ,则 1 0 。
在理想导体表面上, J 和 E 都垂直于边界面。当
的标积。
9
设圆柱体两端的电位差为U,则 E U
dl
,又知 J I ,那
dS
么单位体积中的功率损失可表示为
pl
UI dSdl
UI dV
可见,圆柱体中的总功率损失为
PpldVUI
这就是电路中的焦耳定律。
10
例1 已知一平板电容器由两层非理想介质串联构成,如
图示。其介电常数分别为 1 和 2 ,电导率分别为 1 和 2 ,厚度分别为 d1 和 d2 。当外加恒定电压为 V
b
c
1 rE 1 d r b E 2 d r ( a r b )
6
2)由边界条件:
在 r a面上: S1D1 n [2ln(b/a1 )2 U10ln(c/b)]a
在 r b 面上: S 2 (D 2 D 1 )e r
[2ln((b2/a1)112ln )U (c0/b)]b
在 r c 面上:S3 [D 22lenr(b/a )21U 10ln(c/b)]c 7
相关文档
最新文档