初中数学人教版八年级下册第二十章 数据的分析20.2 数据的波动程度-章节测试习题(2)

合集下载

初中数学人教版八年级下册第二十章 数据的分析20.2 数据的波动程度-章节测试习题(8)

初中数学人教版八年级下册第二十章 数据的分析20.2 数据的波动程度-章节测试习题(8)

章节测试题1.【答题】(2019山东菏泽中考,12,★★☆)一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是______.【答案】【分析】【解答】若众数为4,则这组数据从小到大排列为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据从小到大排列为4,5,5,6,此时中位数为5,符合题意,则平均数为,方差为;若众数为6,则这组数据从小到大排列为4,5,6,6,此时中位数为5.5,不符合题意.故答案为.2.【题文】(2019江苏南京中考,20,★★☆)图3-4-8是某市连续5天的天气情况.(1)利用方差判断该市这5天的最高气温波动大还是最低气温波动大;(2)根据图中提供的信息,请再写出两个不同类型的结论.【答案】见解答【分析】【解答】(1),,,,,∴该市这5天的最低气温波动大.(2)答案不唯一.①25日、26日、27日的天气现象依次为大雨、中雨、晴,空气质量依次为良、优、优,说明下雨后空气质量改善了.②温差最大的一天是5月28日,温差为10℃.3.【题文】(2019湖南怀化中考,21,★★☆)某射箭队准备从王方、李明二人中选拔1人参加射箭比赛,在选拔赛中,两人各射箭10次的成绩(单位:环)如下:次序 1 2 3 4 5 6 7 8 9 10王方7 10 9 8 6 9 9 7 10 10李明8 9 8 9 8 8 9 8 10 8(1)根据以上数据,将下面两个表格补充完整:王方10次射箭得分情况李明10次射箭得分情况(2)分别求出两人10次射箭得分的平均数;(3)从两人成绩的稳定性角度分析,应选派谁参加比赛更合适.【答案】见解答【分析】【解答】(1)补全表格如下:王方10次射箭得分情况李明10次射箭得分情况(2)王方射箭得分的平均数环,李明射箭得分的平均数环,(3);,,∴应选派李明参加比赛更合适.4.【题文】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行测验,两个人在相同条件下各射靶10次.为了比较两人的成绩,制作了不完整的统计表和如图3-4-9所示的统计图.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲7 0乙 1甲、乙射击成绩折线统计图(1)请补全上述图表,并写出甲乙两人成绩的平均数和方差的计算过程和结果;(2)如果规定成绩较稳定者胜出,那么你认为谁胜出?说明你的理由.【答案】见解答【分析】【解答】(1)根据题中折线统计图得,乙的射击成绩(单位:环)按从小到大的顺序排列为2,4,6,7,7,8,8,9,9,10,则其平均数为(环),中位数为7.5环,方差为;由题表知,甲的射击成绩的平均数为7环,则甲第8次的射击成绩为(环),故10次射击成绩(单位:环)按从小到大的顺序排列为5,6,6,6,7,7,7,8,9,9,中位数为7环,方差为,补全图表如下:甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲7 7 1.6 0乙7 7.5 5.4 1(2)甲.理由:因为两人射击成绩的平均数相同,甲成绩的方差小于乙成绩的方差,所以甲的成绩较稳定,所以甲胜出.5.【答题】某校随机抽查了10名学生初中学业水平考试的体育成绩,得到的结果如下表:成绩/分46 47 48 49 50人数 1 2 1 2 4下列说法中正确的是()A. 这10名同学体育成绩的众数为50分B. 这10名同学体育成绩的中位数为48分C. 这10名同学体育成绩的方差为50分D. 这10名同学体育成绩的平均数为48分【答案】A【分析】【解答】6.【答题】甲、乙、丙、丁四人参加体育训练,近期10次百米测试的平均成绩是13.2s,方差如下表:则这四人中发挥最稳定的是()A. 甲B. 乙C. 丙D. 丁【答案】B【分析】【解答】7.【答题】若某同学在一次综合性测试中,语文、数学、英语、科学、社会5门学科成绩的名次在其所在班级里都不超过3(记第一名为1,第二名为2,第三名为3,以此类推且没有并列名次情况),则称该同学为超级学霸.现根据对不同班级的甲、乙、丙、丁四位同学一次综合性测试名次数据的描述,可以推断一定是超级学霸的是()A. 甲同学:平均数为2,中位数为2B. 乙同学:中位数是2,唯一的众数为2C. 丙同学:平均数是2,标准差为2D. 丁同学:平均数为2,唯一的众数为2【答案】D【分析】8.【答题】甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差的大小关系为______(填“”或“").(第1题)【答案】>【分析】【解答】9.【答题】下面是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人中成绩比较稳定的是______.甲乙(第2题)【答案】甲【分析】10.【题文】甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击成绩如图所示.根据图中信息回答下列问题:(1)甲射击成绩的平均数是______环,乙射击成绩的中位数是______环;(2)分别计算甲、乙射击成绩的方差,并通过计算结果分析,哪位运动员的射击成绩更稳定?【答案】解:(1)8 7.5(2),,.∵,∴乙运动员的射击成绩更稳定.【分析】【解答】11.【答题】一组数据,,,…,的极差是8,另一组数据,,,…,的极差是()A. 8B. 9C. 16D. 17【答案】C【分析】【解答】12.【答题】某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔测试中每名学生的平均成绩及其方差如下表所示.如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9x0.92 0.92 1.01 1.03A. 甲B. 乙C. 丙D. 丁【答案】B【分析】【解答】13.【答题】某科普小组有5名成员,身高分别为(单位:cm);160,165,170,163,167.增加1名身高为165cm的成员后,现在科普小组成员的身高与原来相比,下列有关说法中正确的是()A. 平均数不变,方差不变B. 平均数不变,方差变大C. 平均数不变,方差变小D. 平均数变小,方差不变【答案】C【分析】【解答】14.【答题】某工厂共有50名员工,他们月工资的方差是.现在给每个员工的月工资增加200元,那么他们新工资的方差()A. 变为B. 不变C. 变大了D. 变小了【答案】B【分析】【解答】15.【答题】若一组数据,,…,的方差是5,则一组新数据,,…,的方差是()A. 5B. 10C. 20D. 50【答案】C【分析】【解答】16.【答题】若数据,,,的方差是2,则,,的方差是______.【答案】18【分析】【解答】17.【答题】甲、乙两人射击10次,他们的平均成绩均为7环,10次射击成绩的方差分别是:,.成绩较为稳定的是______(填“甲”或“乙”).【答案】乙【分析】【解答】18.【答题】如果一组数据,,,…,的方差是m,那么一组新数据,,,…,的方差是______.【答案】【分析】【解答】19.【题文】某学生在一学期六次测验中数学和英语两科的成绩(单位:分)如下.数学:80,75,90,64,88,95;英语:84.80,88,76,79,85.试估计该学生:是数学成绩稳定还是英语成绩稳定.【答案】解:(分),(分);,.∵,∴英语成绩比较稳定.【分析】【解答】20.【答题】极差是指--组数据中最大数据与最小数据的______.极差的单位与数据的单位一致,极差能反映一组数据的变化范围,是最简单的一种描述数据波动情况的量.一般而言,极差小,各个数据的波动就小,它们的平均数对这组数据一般水平的代表性就大;极差大,数据的波动大,平均数的代表性就小,但极差的值是由数据中的两个极端值决定的,当个别极端值远离其他数据时,极差往往不能充分反映全体数据的实际离散程度.【答案】【分析】【解答】。

八下 第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】

八下  第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】

第二十章《数据的分析》《知识点教案》课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。

本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。

为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。

人教版八年级数学下册第二十章-数据的分析章节训练试卷(含答案详解)

人教版八年级数学下册第二十章-数据的分析章节训练试卷(含答案详解)

人教版八年级数学下册第二十章-数据的分析章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的()A.平均数B.中位数C.众数D.方差2、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是()A.4,5,4 B.4.5,5,4.5 C.4,5,4.5 D.4.5,5,43、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.对于小强做引体向上的个数,下列说法错误的是()A.平均数是12 B.众数是13C.中位数是12.5 D.方差是8 74、用计算器计算方差时,要首先进入统计计算状态,需要按键()A.B.C.D.5、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A.20m3B.52m3C.60m3D.100m36、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.最高分与最低分的差7、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是a元/千克,且这4个单价的中位数与众数相同,则a 的值为()A.5 B.4 C.3 D.28、已知一组数据的方差s2=15[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为()A.5 B.7 C.10 D.119、2020年6月1日《苏州市生活垃圾分类管理条例》正式实施.为了配合实施垃圾分类,让同学们了解垃圾分类的相关知识.八年级某班甲、乙、丙、丁四个小组的同学参加了年级“垃圾分类知识”预赛,四个小组的平均分相同,下面表格为四个小组的方差.若要从中选出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选()A.甲组B.乙组C.丙组D.丁组10、为庆祝中国共产党建党100周年,班级开展了以“学党史知识迎建党百年”为主题的党史知识竞赛,该班得分情况如下表:全班41名同学的成绩的众数和中位数分别是()A.76,78 B.76,76 C.80,78 D.76,80第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.2、若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a,b,c的中位数是_____3、某校组织一次实验技能竞赛,测试项目有理论知识测试、实验技能操作A、实验技能操作B,各项满分均为100分,并将这三项得分分别按4:3:3的比例计算最终成绩.在本次竞赛中张同学的三项测试成绩如下:理论知识测试:80分;实验技能操作A:90分;实验技能操作B:75分;则该同学的最终成绩是______分.4、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是 ____分.5、数据1、2、4、4、3、5、l、4、4、3、2、3、4、5,它们的众数是____、中位数是____、平均数是_______.三、解答题(5小题,每小题10分,共计50分)1、下面是我国近几届奥运会所获金牌数,请指出其中的众数.2、-1,0,3,6,-1的众数是什么?3、已知一组数据:0,1,3 ,6,a,4.其唯一众数为4,求这组数据的中位数.4、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,补全条形统计图;(2)各组得分的中位数是分,众数是分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?5、某校春季运动会计划从七年级三个班中评选一个精神文明队,评比内容包括:“开幕式得分”,“纪律卫生”和“投稿及播稿情况”三项(得分均为整数分),三个班的各项得分(不完整)如图所示.(1)“开幕式”三个班得分的中位数是;“纪律卫生”三个班得分的众数是;(2)根据大会组委会的规定:“开幕式”,“纪律卫生”,“投稿及播稿情况”三项按4:4:2的比例确定总成绩,总成绩高的当选精神文明队,已知七年级一班的总成绩为79分.①请计算七年级二班的总成绩;②若七年级三班当选精神文明队,请求出七年级三班在“投稿及播稿情况”方面的最少得分?---------参考答案-----------一、单选题1、B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B.【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.2、C【解析】【分析】根据平均数的计算公式、众数的定义、中位数的定义解答.【详解】解:平均数=2556454621410+++++++++=,数据有小到大排列为1、2、2、4、4、5、5、5、6、6,则这组数据的众数为5,中位数为454.52+=,故选:C.【点睛】此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键.3、C【解析】【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:11121013131312127x ++++++==,故选项A 不符合题意; ∵13出现的次数最多,∴众数是13,故B 选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C 选项符合题意; 方差:()()()()222221810121112212123131277s ⎡⎤=-+-+⨯-+⨯-=⎣⎦,故D 选项不符合题意; 故选C .【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.4、B【解析】【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求2x S 的功能键,即可得出结果.故选:B .【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.【解析】【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】30.5213 1.5223 1.310m ⨯+⨯+⨯+⨯=, 由此可估计全班同学的家庭一个月节约用水的总量是340 1.352m ⨯=.故选:B .【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.6、C【解析】【分析】根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.【解析】【分析】根据统计图中的数据和题意,可以得到a的值,本题得以解决.【详解】解:由统计图可知,前3次的中位数是3,第4次买的西瓜单价是a元/千克,这四个单价的中位数恰好也是众数,3a∴=,故选:C.【点睛】本题考查条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.8、D【解析】【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,则15×(6+10+a+b+8)=7,∴a+b=11,故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.9、D【解析】【分析】在平均分数相同的情况下,方差越小,波动越小,成绩越稳定,即可得出选项.【详解】解:由图标可得:2222S S S S <<<丁乙甲丙,∵四个小组的平均分相同,∴若要从中选出一个实力更平均的小组代表年级参加学校决赛,应选择丁组,故选:D .【点睛】题目主要考查了方差,理解方差反映数据的波动程度,当平均数相同时,方差越大,波动性越大是解题关键.10、D【解析】【分析】根据众数和中位数的定义,结合表格给出的数据,即可求出结果.【详解】∵成绩为76分的有13人,人数最多,∴众数为76分,∵把41人的成绩按从小到大的顺序排列后,第21名的成绩为80分,∴中位数为:80分,故选:D .【点睛】本题考查了众数和中位数,掌握众数和中位数的定义是解决本题的关键.二、填空题1、乙【解析】【分析】分别求出两人的成绩的加权平均数,即可求解.【详解】解:甲候选人的最终成绩为:329085883232⨯+⨯=++,乙候选人的最终成绩为:329580893232⨯+⨯=++,∵8889<,∴乙将被录取.故答案为:乙【点睛】本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.2、4【解析】【分析】首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值.【详解】利用十字交乘法将5x2+17x-12因式分解,可得:5x 2+17x -12=(x +4)(5x -3)=(x +a )(bx +c ).∴4,5,3a b c ===-,∵453-、、的中位数是4 ∴a ,b ,c 的中位数是4故答案为:4.【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a 、b 、c 的值是得出正确答案的关键.3、81.5【解析】【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】 解:该同学的最终成绩是:80490375381.5433⨯+⨯+⨯=++(分). 故答案为:81.5.【点睛】此题考查了加权平均数,熟记加权平均数的计算公式是解题的关键.4、78【解析】【分析】由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式431728096888⨯+⨯+⨯,即可得到答案.【详解】解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩∴431728096888⨯+⨯+⨯=78(分).则该应聘者的总成绩是78分.故答案为:78【点睛】本题考查加权平均数的应用,牢记相关的知识并能准确计算是解题关键.5、 4; 3.5; 3.21;【解析】【分析】根据平均数、众数与中位数的定义求解.所有数据的和除以14得平均数;将这组数据从小到大的顺序排列,最中间的两个数的平均数为中位数;4出现的次数最多为众数.【详解】数据中4出现了5次,出现的次数最多,所以众数是4;把数据重新排列1、1、2、2、3、3、3、4、4、4、4、4、5、5,最中间的两个数是3和4,所以这组数据的中位数是3.5;这组数据的平均数是1(2122334552) 3.2114x=⨯+⨯+⨯+⨯+⨯=.【点睛】本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.三、解答题1、16【分析】由题意根据众数的定义即一组数据中出现次数最多的数值进行分析即可得出答案.【详解】解:数据是我国近几届奥运会所获金牌数,分别为:5、16、16、28、32、51,其中16出现次数最多,所以数据的众数为:16.【点睛】本题考查众数的定义,熟练掌握众数的定义即一组数据中出现次数最多的数值是解题的关键,注意有时众数在一组数中有好几个.2、-1【分析】根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)得出即可.【详解】解:数据-1,0,3,6,-1中-1的出现的次数最多,∴数据-1,0,3,6,-1的众数是-1.【点睛】本题考查了众数的定义,能熟记众数的定义是解此题的关键.3、2.5【分析】根据这组数据中的众数为4,求得a,再求解中位数即可.【详解】解:因为这组数据:0,1,3-,6,a,4.唯一的众数为4,所以4a=,将这组数据从小到大排列得3-,0,1,4,4,6,最中间的数是1,4,所以这组数据的中位数是142.52+=.【点睛】此题考查了众数和中位数,解题的关键是根据众数求得参数a 的值,掌握中位数的求解方法.4、(1)25,图见详解;(2)6.5;6;(3)12【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】解:(1)1050%20÷=(组),2023105---=(组),=⨯=5%100%25%20m , 统计图如下:(2)∵8分这一组的组数为5, ∴各组得分的中位数是()176 6.52⨯+=,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,21201220⨯=(组),∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.5、(1)85;85;(2)①七年级二班的总成绩为80;②七年级三班在“投稿及播稿情况”方面的最少得分是51分.【分析】(1)将三个班“开幕式”和“纪律卫生”列出来,从中找出中位数和众数即可;(2)①利用加权平均数计算出七年级三班的得分即可;②设七年级三班“投稿及播稿情况”的得分为x,因为三班的成绩要比二班的高,根据加权平均数计算与二班的成绩列出不等式求解即可.【详解】(1)“开幕式”三个班得分分别为:85,75,90,故中位数为85;“纪律卫生”三个班得分分别为:70,85,85,故众数为85;(2)①7548548028008044210⨯+⨯+⨯==++(分),故七年级二班的总成绩为:80分;②设七年级三班在“投稿及播稿情况”方面的得分为x分,若七年级三班当选精神文明对,则七年级三班的总成绩应比七年级二班精神文明成绩要高,则904854280442x⨯+⨯+⨯>++,解得50x>,∵x为整数,∴x最低为51,∴七年级三班在“投稿及播稿情况”方面的最少得分为51分.【点睛】本题考查了中位数、众数和加权平均数的计算,解题的关键是对定义的理解.。

八年级数学下册 第二十章 数据的分析 20.2 数据的波动程度教学课件 (新版)新人教版

八年级数学下册 第二十章 数据的分析 20.2 数据的波动程度教学课件 (新版)新人教版

+(71-75)2 (75-75)2 15
(1)甜玉米的产量可用什么量来描述?请计算后说明.
x甲 7.54,x乙 7.52
说明在试验田中,甲、乙两种甜玉米的平均产量相 差不大.
可估计这个地区种植这两种甜玉米的平均产量相差 不大.
(2)如何考察一种甜玉米产量的稳定性呢? ①请设计统计图直观地反映出甜玉米产量的分布情况.
甲种甜玉米的产量 产量波动较大
哪个芭蕾舞团女演员的身高更整齐?
练习1 计算下列各组数据的方差: (1) 6 6 6 6 6 6 6; (2) 5 5 6 6 6 7 7; (3) 3 3 4 6 8 9 9; (4) 3 3 3 6 9 9 9.
练习2 如图是甲、乙两射击运动员的10 次射击训
练成绩的折线统计图.观察图形,甲、乙这10 次射击成
教学课件
数学 八年级下册 人教版
第二十章 数据的分析
20.2 数据的波动程度
第1课时
1.平均数的计算要用到所有的数据,它能够充分利用数 据提供的信息,在现实生活中较为常用.但它受极端值 的影响较大. 2.当一组数据中某些数据多次重复出现时,众数往往 是人们关心的一个量,众数不受极端值的影响,这是它的 一个优势. 3.中位数只需很少的计算,不受极端值的影 响,这在有 些情况下是一个优点.
• 学习目标: 1. 经历方差的形成过程,了解方差的意义; 2.掌握方差的计算方法并会初步运用方差解决实际 问题.
• 学习重点: 方差意义的理解及应用.
问题1 农科院计划为某地选择合适的甜玉米种子. 选择种子时,甜玉米的产量和产量的稳定性是农科院所 关心的问题.为了解甲、乙两种甜玉米种子的相关情况, 农科院各用10 块自然条件相同的试验田进行试验,得到 各试验田每公顷的产量(单位:t)如下表:

人教版数学八年级下册《第二十章数据的分析》单元检测题(含答案

人教版数学八年级下册《第二十章数据的分析》单元检测题(含答案

人教版数学八年级下册第二十章数据的分析单元提优检测题一、选择题(每小题3分计30分)1.某市测得一周PM2.5的日均值如下:50,40,75,50,37,50,40, 这组数据的中位数和众数分别是 (A )A. 50 和 50B.50 和 40C.40 和 50D.40 和 40 2.某中学规定学生的学期体育成绩满分为 100分,其中课外体育占20%期中考试 成绩占30%期末考试成绩占50%张明的三项成绩(百分制)依次为95,90,88,则 张明这学期的体育成绩为(B ) (A )89 (B )90(C )92(D )933•将一组数据中的每一个数减去 50后,所得新的一组数据的平均数是 2, ?则 原来那组数据的平均数是(B )A . 50B . 52C . 48D . 2 4.(2017 •青岛中考)小明家1至6月份的用水量统计如图所示,关于这组数据,F 列说法错误的是C.中位数是5吨 D.方差是- 5.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学 考试成绩的(D ) (A )平均数(B )中位数(C )众数 (D )方差A.众数是6吨B. 平均数是5吨6•已知一组数据-2 , -2 , 3, -2 , -x , -1的平均数是-0.5 , ?那么这组数据的众 数与中位数分别是(D )A. -2 和 3 B . -2 和 0.5 C . -2 和-1 D . -2 和-1.5 7.(2017 •广安中考)关于2,6,1,10,6 的这组数据,下列说法正确的是(A )A.这组数据的众数是6B.这组数据的中位数是18. 甲、乙两班举行电脑汉字输入速度比赛,?参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论: (1) 甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字》150个为优秀)(3) 甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是(B ) A . (1)( 2)( 3)B . ( 1)( 2)C . (1)( 3)D . ( 2)( 3)9. 某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒 物)指数如表,则该周PM2.5指数的众数和中位数分别是(B )C.这组数据的平均数是6D. 这组数据的方差是10(A)150,150 (B)150,155 (C)155,150 (D)150,152.510. 某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按 50% 20%? ?30%勺比例计入学期总评成绩,90分以上为优秀•甲、乙、?丙三人的各项成绩 如下表(单位:分),学期总评成绩优秀的是( C )A .甲B .乙丙C .甲乙D .甲丙 二、填空题11. 某校规定学生的数学学期综合成绩是由平时、 期中和期末三项成绩按3: 3: 4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是 90分、90分和85分,则他本学期数学学期综合成绩是 _________ 分. 答案:8812. 在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3 , 9.5 , 9.9 , 9.4 , 9.3 , 8.9 , 9.2 , 9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这 名歌手最后得分约为 _____________ . 答案:9.4分13. 商店某天销售了 11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是 __________ cm,中位数是 ___________ cm.答案:39 4014. 一名学生军训时连续射靶10次,命中的环数分别为4, 7, 8, 6, 8, 5, 9,10, 7. ?则这名学生射击环数的方差是_________ .答案:315. 张老师对同学们的打字能力进行测试,他将全班同学分成五组•经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是________________ .答案:9016. 物理老师布置了10道选择题作为课堂练习,如图是全班解题情况的统计,平均每个学生约做对了________ 道题;做对题数的中位数为 _________ ;众数为答案:9 9 8和10三、解答题17. (6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、?课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、?84,则她这学期期末数学总评成绩是多少?90 70% 80 20% 84 10%解: =88.8 (分)70% 20% 10%18. (13分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示测试项 目测试成绩/分甲 乙 丙笔试 92 90 95 面试85 95 80图二是某同学根据上表绘制的一个不完整的条形图. 请你根据以上信息解答下列问题: ⑴补全图一和图二.(2) 请计算每名候选人的得票数.(3) 若每名候选人得一票记1分,投票、笔试、面试三项得分按照2: 5: 3的比确 定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?圏一国二【解析】⑴⑵甲的票数是:200 X 34%=68票),乙的票数是:200 X 30%=60票),丙的票数是:200 X 28%=56票).(3)甲的平均成绩:= ------------------ =85.1,乙的平均成绩:= ------------------ =85.5,丙的平均成绩:= ------------------ =82.7,•••乙的平均成绩最高,二应该录取乙.19. (6分)某文具商店共有单价分别为10元、15元和20元的3种文具盒出售, 该商店统计了2017年3月份这3种文具盒的销售情况,并绘制统计图如图所示文M向軒加I 丁年3月样文具金構售牯乱糸带鋭忡KI......... 庞 ................... .. ...... 旳 (i)1&7E 却元20元草脅(1)请把条形统计图补充完整⑵小亮认为该商店3月份这3种文具盒总的平均销售价格为(10+15+20)- 3=15 元,你认为小亮的计算方法正确吗?如果不正确,请计算总的平均销售价格.解:⑴ 由题意知,单价为10元的文具盒的销售数量为90- 15%X 25%=150个),补全条形统计图,如图所示•(2)小亮的计算方法不正确.法一总的平均销售价格为20X 15%+10< 25%+15< 60%=14.5(元).法二总的平均销售价格为(10 X 150+15X 360+20X 90)- (150+360+90)=8 700 -600=14.5(元).20. (14分)某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次-一一-二二-三四五六组别\乙组91410171618 (1)请根据上表中的数据完成下表.(注:方差的计算结果精确到0.1)平均数中位数方差甲组乙组(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图•(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况进行简要评价•【解析】(1)填表如下:平均中位方数数差。

八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时方差的实际应用与变化规律课件新版新人教版

八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时方差的实际应用与变化规律课件新版新人教版

第2课时 方差的实际应用与变化规律
(3)①乙车间样品的合格率比甲车间的高,所以乙车间生产的新产品更好. ②甲、乙两车间样品的平均数相等,且均在合格范围内,而乙车间样品的方 差小于甲车间样品的方差,说明乙车间生产的产品比甲车间的稳定,所以乙 车间生产的新产品更好.(其他理由合理也可)
第2课时 方差的实际应用与变化规律
第二十章 数据的分析
20. 2 方差的实际应用与变 化规律
第二十章 数据的分析
第2课时 方差的实际应用与 变化规律
A知识要点分类练
B规律方法综合练
C拓广探究创新练
第2课时 方差的实际应用与变化规律
A知识要点分类练
知识点 1 方差的实际应用
1.甲、乙、丙、丁四名跨栏运动员在为某运动会积极准备.在 某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平 均成绩都是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11, 0.03,0.05,0.02.则当天这四名运动员“110 米跨栏”的训练成绩 最稳定的是( D ) A.甲 B.乙 C.丙 D.丁
图 20-2-4
第2课时 方差的实际应用与变化规律
解:(1)∵A 种品牌冰箱各月的销售量(单位:台)分别为 13,14,15,16,17;B 种 品牌冰箱各月的销售量(单位:台)分别为 10,14,15,16,20, ∴该商场这段时间内 A,B 两种品牌冰箱月销售量的中位数分别为 15 台、15 台. ∵ xA=51(13+14+15+16+17)=15(台),xB=15(10+14+15+16+20)=15(台), ∴sA2=15 [(13-15)2+(14-15)2+(15-15)2+(16-15)2+(17-15)2]=2,
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。

人教版八级数学下册第二十章数据的分析测试卷及参考答案

人教版八级数学下册第二十章数据的分析测试卷及参考答案

第4题图4元3元2元③②①八年级数学第二十章数据的分析测试题班级 姓名 得分一、 选择题(本大题共分12小题,每小题3分共30分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( ) A. 2 B. 4 C. 4.5 D. 52.数据2、4、4、5、5、3、3、4的众数是( )A. 2B. 3C. 4D. 53.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是( ) A. 2 B. 2.75 C. 3 D. 54.学校食堂有2元,3元,4.如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A. 2.95元,3元 B. 3元,3元C. 3元,4元D. 2.95元,4元5.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a可能是()A.2B. 3C. 4D. 56.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较7.样本数据3,6,a,4,2的平均数是4,则这个样本的方差是()A. 2B.C. 3D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则的值为()A. 1B. 2C. 3D. 49.若样本x1+1,x2+1,x3+1,…,x n+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,x n+2,下列结论正确的是()A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是()A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分歧D.该组数据的极差是8分二、填空题(本大题共8小题,每小题3分,共24分)11.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 .12.若x1,x2,x3的平均数为7,则x1+3,x2+5,x3+4的平均数为 .13.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 .14. 五个数1,2,4,5,a的平均数是3,则a=,这五个数的方差为 .15.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是 .16.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是17. 已知数据3x1,3x2,3x3,…,3x n的方差为3,则一组新数据6x1,6x2,…,6x n的方差是 .18.已知样本99,101,102,x,y(x≤y)的平均数为100,方差为2,则x=,y= .三、解答题(本大题共46分)19.计算题(每小题6分,共12分)(1)若1,2,3,a的平均数是3;4,5,a,b的平均数是5.求:0,1,2,3,4,a,b的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42.求它们的中位数.20.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?()小时721.(本小题12⑵大多数队员的年龄是多少?⑶中间的队员的年龄是多少?22.(本小题12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:⑴ 请你填写下表:⑵ 请从以下两个不 同的角度对三个年级 的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.A;8.D;9.C;10.B;二、11.14;12.10;13.5;14.3,2;15.30,40;16.75分;17.12;18.98,100;三、19. ⑴由=3 得 a=6;由=5 得 b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为 a,b,c,d,e,f,g, a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得 e+f+g=7×38-33×4 ④,将④代入③得d=34.20.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.21. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁22.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

八年级数学下册 第二十章 数据的分析 20.2 数据的波动程度(2)课件 (新版)新人教版.pptx

八年级数学下册 第二十章 数据的分析 20.2 数据的波动程度(2)课件 (新版)新人教版.pptx
第二十章 数据的分析
数据的波动程 度(2)
1
目录 contents
8分钟小测 精典范例 变式练习 巩固提高
2
8 分钟小测
1.样本数据3,6,a,4,2的平均数是5,则这个样 本的方差是__8____. 2.题1中数据都加1,则这组数据的平均数为 ____6___,方差为__8_____ 3猜测:题1中数据都加a,则这组数据的平均数为 ____a_+_5_,方差为__8____。 4.若一组数据a1,a2,…,an的方差是5,则一组 新数据2a1,2a2,…,2an的方差是(C ) A.5 B.10 C.25 D.50
3
8 分钟小测
5.在某次训练中,甲、乙两名射击运动员各射击 10发子弹的成绩统计图如图所示,对于本次训练, 有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲 的射击成绩比乙稳定;④乙的射击成绩比甲稳定, 由统计图可知正确的结论是(B)
A. ①③ B. ①④ C. ②③ D. ②④
4
精典范例
知识点1.方差在统计决策中的应用 例1.下表记录了甲、乙、丙、丁四名射击运动员 最近几次选拔赛成绩的平均数和方差:
C.两班成绩一样稳定
D.无法确定
6
精典范例
例2.为了从甲、乙两名同学中选拔一个参加比赛
,对他们的射击水平进行了测验,两个在相同条件
下各射靶10次,命中的环数如下(单位:环)
甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,6,8,7,6,7,7
(1)求
_
x甲
,x_乙 ,S甲2,S乙2;
B.7 C.8
D.19
11
巩固提高
5. 一组数据:2018,2018,2018,2018,2018, 2018的方差是 0. 6. 在某次军事夏令营射击考核中,甲、乙两名同 学各进行了5次射击,射击成绩如图所示,则这两 人中水平发挥较为稳定的是 甲 同学.

八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时课件新版新人教版

八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时课件新版新人教版

以成绩的众数比较看,甲组成绩好些.
s s (2)
2 甲
172,
2 乙
256.
s s 因为 2< 甲
2 乙
,
从数据的离散程度的角度看,甲组较优;
(3)甲、乙两组成绩的中位数都是80分,甲组成绩在中位数
以上(包括中位数)的人有33人,乙组成绩在中位数以上(包
括中位数)的人有26人,从这一角度,看甲组成绩总体较好;
乙组 4 4 16 2 12 12
已经算得两个组的人平均分都是80分,请根据你所 学过的统计知识,进一步判断这两个组在这次竞赛 中的成绩谁优谁劣,并说明理由.
分数
50 60 70 80 90 100
人数 甲组 2
5
10 13 14
6
乙组 4
4
16
2
12 12
解: (1)甲组成绩的众数为90分,乙组成绩的众数为70分,
②数据a1-3,a2 -3,a3 -3 ,…,an -3的平均数为 --X------3---,方差为---Y-----
③数据3a1,3a2 ,3a3 ,…,3an的平均数为----3--X-----,方差为--9---Y-----.
④数据2a1-3,2a2 -3,2a3 -3 ,…,2an -3的平均数为 --2--X------3-, 方差为---4---Y---.
• A、众数
B、方差
• C、平均数
D、频数
1 ´
1、在方差的计算公式 S2=10 [(x1-
20)2+(x2-20)2+ +(x10-20)2]中,数字10
和20分别表示( C )
A、样本的容量和方差 本的容量
B、平均数和样

八年级数学下册第20章数据的分析20.2数据的波动程度教案新人教版(2021年整理)

八年级数学下册第20章数据的分析20.2数据的波动程度教案新人教版(2021年整理)

陕西省安康市石泉县池河镇八年级数学下册第20章数据的分析20.2 数据的波动程度教案(新版)新人教版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇八年级数学下册第20章数据的分析20.2 数据的波动程度教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇八年级数学下册第20章数据的分析20.2 数据的波动程度教案(新版)新人教版的全部内容。

20.2 数据的波动程度。

初中数学人教版八年级下册第二十章 数据的分析20.2 数据的波动程度-章节测试习题(3)

初中数学人教版八年级下册第二十章 数据的分析20.2 数据的波动程度-章节测试习题(3)

章节测试题1.【题文】申遗成功后的杭州,在国庆黄金周旅游市场中的知名餐饮受游客追捧,西湖景区附近的A,B两家餐饮店在这一周内的日营业额如下表:(1)要评价两家餐饮店日营业额的平均水平,你选择什么统计量?求出这个统计量;(2)分别求出两家餐饮店各相邻两天的日营业额变化数量,得出两组新数据,然后求出两组新数据的方差,这两个方差的大小反映了什么?(结果精确到0.1)(3)你能预测明年黄金周中哪几天营业额会比较高吗?说说你的理由.【答案】(1)选择平均数,A店的日营业额的平均值是2.5百万元,B店的日营业额的平均值是2.5百万元;(2)A组新数据的方差约为1.0,B组新数据的方差约为0.6;(3)答案见解析.【分析】(1)在数据差别不是很大的情况下评价平均水平一般采用平均数;(2)分别用每一个数据减去其平均数,得到新数据后计算其方差后比较即可;(3)用今年的数据大体反映明年的数据即可.【解答】解:(1)选择平均数.A店的日营业额的平均值是×(1+1.6+3.5+4+2.7+2.5+2.2)=2.5(百万元),B店的日营业额的平均值是×(1.9+1.9+2.7+3.8+3.2+2.1+1.9)=2.5(百万元).(2)0.6,1.9,0.5,-1.3,-0.2,-0.3;B组数据的新数为0,0.8,1.1,-0.6,-1.1,-0.2,∴A组新数据的平均数x A=×(0.6+1.9+0.5-1.3-0.2-0.3)=0.2(百万元),B组新数据的平均数x B=×(0+0.8+1.1-0.6-1.1-0.2)=0(百万元).∴A组新数据的方差s=×[(0.2-0.6)2+(0.2-1.9)2+(0.2-0.5)2+(0.2+1.3)2+(0.2+0.2)2+(0.2+0.3)2]≈1.0,B组新数据的方差s=×(02+0.82+1.12+0.62+1.12+0.22)≈0.6.这两个方差的大小反映了A,B两家餐饮店相邻两天的日营业额的变化情况,并且B餐饮店相邻两天的日营业额的变化情况比较小.(3)观察今年黄金周的数据发现今年的3号、4号、5号营业额较高,故明年的3号、4号、5号营业额可能较高.方法总结:本题考查了算术平均数和方差的计算,算术平均数的计算公式是:,方差的计算公式为:,根据公式求解即可.2.【题文】某农民在自己家承包的甲、乙两片荒山上各栽了200棵苹果树,成活率均为96%,现已挂果.他随意从甲山采摘了4棵树上的苹果,称得质量(单位:千克)分别为36,40,48,36;从乙山采摘了4棵树上的苹果,称得质量(单位:千克)分别为50,36,40,34,将这两组数据组成一个样本,回答下列问题:(1)样本容量是多少?(2)样本平均数是多少?并估算出甲、乙两山苹果的总产量;(3)甲、乙两山哪个山上的苹果长势较整齐?【答案】(1)样本容量为8;(2)甲、乙两山苹果的总产量约为15 360千克;(3)甲山上的苹果长势较整齐.【分析】(1)根据样本容量的定义即可解决问题;(2)求出样本平均数,用样本估计总体的思想解决问题即可;(3)比较方差的大小,即可判断.【解答】解:(1)样本容量为 .(2) .甲、乙两山苹果的总产量约为400×40×96%=15360(千克).(3)∵ ,∴ .∵ ,∴ .∴, ∴甲山上的苹果长势较整齐.3.【答题】能够刻画一组数据离散程度的统计量是()A. 平均数B. 众数C. 中位数D. 方差【答案】D【分析】本题考查了方差.【解答】由于方差反映数据的波动情况,∴能够刻画一组数据离散程度的统计量是方差,选D.4.【答题】在方差的计算公式s=[(x-20)+(x-20)+…+(x-20)]中,数字10和20分别表示的意义可以是()A. 数据的个数和方差B. 平均数和数据的个数C. 数据的个数和平均数D. 数据组的方差和平均数【答案】C【分析】本题考查了方差.【解答】10位于分数的分母上,根据方差的计算公式可知,10表明样本数据的个数,也就是样本容量为10,数字20为样本数据的平均数,即样本的均值.选C.5.【答题】一组数据8,0,2,,4的方差等于()A. 15B. 16C. 17D. 18【答案】B【分析】本题考查了方差.【解答】数据8、0、2、−4、4的平均数,方差,选B.6.【答题】甲、乙两组数据,它们都是由n个数据组成,甲组数据的方差是0.4,乙组数据的方差是0.2,那么下列关于甲乙两组数据波动说法正确的是().A. 甲的波动小B. 乙的波动小C. 甲、乙的波动相同D. 甲、乙的波动的大小无法比较【答案】B【分析】本题考查了方差.【解答】∵s甲2=0.4,s乙2=0.2,方差小的为乙,∴本题中成绩比较稳定的是乙,乙的波动小,选B.7.【答题】方差反映了一组数据的波动大小.有两组数据,甲组数据:-1,-1,0,1,2;乙组数据:-1,-1,0,1,1,它们的方差分别记为和,则() A. = B. >C. <D. 无法比较【答案】B【分析】本题考查了方差.【解答】,,∵s甲2=[(−1−0.2)2+(−1−0.2)2+(0−0.2)2+(1−0.2)2+(2−0.2)2]=1.224,s乙2=[(−1−0)2+(−1−0)2+(0−0)2+(1−0)2+(1−0)2]=0.8,∴s甲2>s乙2,选B.8.【答题】两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学成绩哪一位更稳定,通常还需要比较他们成绩的()A. 众数B. 中位数C. 方差D. 以上都不对【答案】C【分析】本题考查了方差.【解答】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.选C.9.【答题】如果一组数据x1,x2,…,x n的方差是3,则另一组数据x1+5,x2+5,…,x n+5的方差是()A. 3B. 8C. 9D. 14【答案】A【分析】本题考查了方差.【解答】设数据x1,x2,…,x n的平均数设为a,则数据x1+5,x2+5,…,x n+5的平均数为a+5,根据方差公式:s2[(x1-a)2+(x2-a)2+…+(x n-a)2]=3.则s2{[(x1+5)-(a+5)]2+[(x2+5)-(a+5)]2+…+(x n+5)-(a+5)]}2=[(x1-a)2+(x2-a)2+…+(x n-a)2]=3.选A.10.【答题】已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则______组数据波动较大.【答案】乙【分析】本题考查了方差.【解答】∵s甲2<s乙2,∴乙组数据波动较大.故答案为:乙.11.【答题】两个小组进行定点投篮对抗赛,每组6名组员,每人投10次.两组组员进球数的统计结果如下:组别6名组员的进球数平均数甲组8 5 3 1 1 0 3乙组 5 4 3 3 2 1 3则组员投篮水平较整齐的小组是______组.【答案】乙【分析】本题考查了方差.【解答】甲的方差=[(8-3)2+(5-3)2+(3-3)2+(1-3)2+(1-3)2+(0-3)2]÷6≈7.7,乙的方差=[(5-3)2+(4-3)2+(3-3)2+(3-3)2+(2-3)2+(1-3)2]÷6≈1.7,由于乙的方差较小,∴整齐的是乙组.故答案为:乙.12.【答题】某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差______(填“变小”“不变”或“变大”).【答案】变大【分析】本题考查了方差.【解答】∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:变大.13.【答题】甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______(填>或<).【答案】>【分析】本题考查了方差.【解答】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>,故答案为:>.14.【题文】甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:=3.4.(1)计算样本甲的方差;(2)试判断哪个样本波动大.【答案】见解答.【分析】本题考查了方差.【解答】(1)∵样本甲的平均数是,∴样本甲的方差是:=[(1-3)2+(6-3)2+(2-3)2+(3-3)2]=3.5.(2)∵=3.5,=3.4,∴>,∴样本甲的波动大.15.【题文】要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差,哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选______参赛更合适.【答案】见解答.【分析】本题考查了平均数、方差.【解答】(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知:甲的波动大于乙的波动,则>,(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.16.【答题】在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,45.则这组数据的极差为()A. 2B. 4C. 6D. 8【答案】C【分析】【解答】17.【题文】检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的记为负数,检查结果如下表:(1)最接近标准质量的是几号篮球?(2)最偏离标准质量的是几号篮球?(3)这次测量结果的极差是多少?【答案】(1)3号.(2)5号.(3)17.【分析】【解答】18.【答题】要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A. 方差B. 中位数C. 平均数D. 众数【答案】A【分析】【解答】19.【答题】一组数据11,8,10,9,12的极差是______,方差是______.【答案】4 2【分析】【解答】20.【答题】学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是______.【答案】乙【分析】【解答】。

最新人教版初中八年级下册数学【第20章数据的分析 20.2数据的波动程度(3)】教学课件

最新人教版初中八年级下册数学【第20章数据的分析 20.2数据的波动程度(3)】教学课件

2.“距离” (9.4-8.88)+(8.9-8.88)+···+(8.7-8.88)
6
≈ 0.
(9.4+8.9+···+8.7)-8.88×6 = 9.4+8.9+···+8.7 - 8.88×6 ≈ 8.88-8.88 = 0.
6
6
6
三、阅读与思考
(课本第129-130页)数据波动程度的几种度量
6
0 -1 -9 0 -4 -6 x甲 = 0, x乙 = 0.
s甲2
=
(9-0)2+(1-0)2+(0-0)2+(-1-0)2+(-9-0)2 5
=32.8,
标准差是方差 的算术平方根
s乙2
=
(6-0)2+(4-0)2+(0-0)2+(-4-0)2+(-6-0)2 5
=20.8,
四、巩固练习
1.(课本第130页)一个家具厂有甲、乙两个木料货源.下面是家具 厂向两个货源订货后等待交货天数的样本数据:
方差是
s2 =
(9.4-8.88)2+(8.9-8.88)2+···+(8.7-8.88)2 ≈ 0.06.
6
二、典例分析
【例】(课本第128页第4题)在体操比赛中,往往在所有裁判给出 的分数中,去掉一个最高分和一个最低分,然后计算余下分数的平 均分.6个B组裁判员对某一运动员的打分数据(动作完成分)为:
1.(学评第87页)观察与探究 (2)比较A与B,C,D的计算结果,你能发现什么规律?请与你的 伙伴交流.
规律3:如果每个数据扩大(或缩小)10倍, 那么平均数也扩大(或缩小)10倍, 方差扩大(或缩小)100倍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章节测试题1.【答题】已知样本x1、x2,…,x n的方差是2,则样本3x1+2,3x2+2,…,3x n +2的方差是______.【答案】18【分析】运用了方差的计算公式的运用.一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.【解答】∵样本x1、x2、…、x n的方差为2,又∵一组数据中的各个数据都扩大几倍,则新数据的方差扩大其平方倍,∴样本3x1、3x2、…、3x n的方差为32×2=18,∵一组数据中的各个数据都加上同一个数后得到的新数据的方差与原数据的方差相等,∴样本3x1+2、3x2+2、…、3x n+2的方差为182.【题文】某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?【答案】(1)8;0.8;(2)详见解析.【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【解答】解:(1)乙的平均数为:(7+9+8+9+7)÷5=8,乙的方差:=0.8,(2)∵S2甲>S2乙,∴乙成绩稳,选乙合适.3.【题文】八年2班组织了一次经典诵读比赛,甲乙两组各10人的比赛成绩如下表(10 分制):(I)甲组数据的中位数是,乙组数据的众数是;(Ⅱ)计算乙组数据的平均数和方差;(Ⅲ)已知甲组数据的方差是1.4分2,则成绩较为整齐的是.【答案】(1)9.5,10;(2)9,1;(3)乙组.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙组的平均成绩,再根据方差公式进行计算;(3)先比较出甲组和乙组的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分;故答案为:9.5,10;(2)乙组的平均成绩是:(10×4+8×2+7+9×3)÷10=9,则方差是:=1;(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,∴成绩较为整齐的是乙组.故答案为乙组.4.【题文】甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,8,8,9乙:5,9,7,10,9(1)填写下表(2)教练根据5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差(填“变大”“变小”或“不变”)【答案】(1)8|8|9;(2)详见解析;(3)变小.【分析】(1)根据众数、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【解答】解:(1)甲的众数为8;乙的平均数=(5+9+7+10+9)÷5=8,乙的中位数是9;(2)因为甲乙的平均数相等,而甲的方差小,成绩比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.5.【题文】要从甲.乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差,哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.【答案】(1)8环;(2) >;(3)乙|甲.【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.【解答】解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则S2甲>S2乙,(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.6.【题文】在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得=8,≈1.43,试比较甲、乙两人谁的成绩更稳定?【答案】(1)8,10;(2)甲.【分析】(1)根据众数的定义解答即可;(2)根据已知条件中的数据计算出乙的方差和平均数,再和甲比较即可.【解答】解:(1)由题意可知:甲的众数为8,乙的众数为10;(2)乙的平均数=(5+6+7+8+10+10+10)÷7=8,乙的方差为: S2乙≈3.71.∵甲=8,S2甲≈1.43,∴甲乙的平均成绩一样,而甲的方差小于乙的方差,∴甲的成绩更稳定.7.【题文】某商店对一周内甲、乙两种计算器每天销售情况统计如下(单位:个):品种\星期一二三四五六日甲 3 4 4 3 4 5 5乙 4 3 3 4 3 5 6(1)求出本周内甲、乙两种计算器平均每天各销售多少个?(2)甲、乙两种计算器哪个销售更稳定一些?请你说明理由.【答案】(1)本周内甲计算器平均每天销售4个,乙计算器平均每天销售4个;(2)甲的方差小于乙的方差,故甲的销售更稳定一些.【分析】根据题意,需求出甲、乙两种计算器销售量的平均数;要比较甲、乙两种计算器哪个销售更稳定,需比较它们的方差,根据方差的计算方法计算方差,进行比较可得结论.【解答】解:(1)甲种计算器销售量的平均数为(3+4+4+3+4+5+5)=4;乙种计算器销售量的平均数为(4+3+3+4+3+5+6)=4.答:本周内甲种计算器平均每天销售4个,乙种计算器平均每天销售4个.(2)甲的方差为[(3-4)2+(4-4)2+(4-4)2+(3-4)2+(4-4)2+(5-4)2+(5-4)2]= 个2;乙的方差为[(4-4)2+(3-4)2+(3-4)2+(4-4)2+(3-4)2+(5-4)2+(6-4)2]= 个2.根据方差的意义,方差越大,波动性越大,反之也成立.甲的方差小于乙的方差,故甲的销售更稳定一些.【方法总结】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.【题文】甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:=3.4.(1)计算样本甲的方差;(2)试判断哪个样本波动大.【答案】(1)3.5;(2)样本甲的波动大【分析】(1)先由平均数的公式计算出平均数,再根据方差的公式计算即可.(2)先比较出甲和乙的方差,再根据方差越大,波动性越大,即可得出答案.【解答】解:(1)∵样本甲的平均数是,∴样本甲的方差是:S2甲= [(1-3)2+(6-3)2+(2-3)2+(3-3)2]=3.5;(2)∵S2甲=3.5,S2乙=3.4,∴S2甲>S2乙,∴样本甲的波动大.9.【题文】某校要在两个体育特长生小明、小勇中挑选一人参加市跳远比赛,在跳远专项测试及之后的6次跳远选拔赛中,他们的成绩如下表所示(单位:cm):姓名一专项测试和6次选拔赛成绩小明603 589 602 596 604 612 608小勇597 580 597 630 590 631 596(1)分别求出他们成绩的中位数、平均数及方差;(2)你发现小明、小勇的成绩各有什么特点?(3)经查阅比赛资料,成绩若达到6.00m,就很可能夺得冠军,你认为选谁参赛更有把握?(4)以往的该项最好成绩纪录是6.15m,为了打破纪录,你认为应选谁去参赛?【答案】(1)小勇成绩的中位数为597cm,平均数为603cm,2≈49cm2;小明成绩的中位数为603cm,平均数为 602cm,2≈333cm2,(2)详见解析;(3)选小明更有把握夺冠;(4)选小勇.【分析】(1)根据中位数、众数、方差的概念计算即可;(2)从中位数、众数、方差等角度分析即可;(3)根据方差,从成绩的稳定性方面分析;(4)从最高成绩方面进行分析,超过6.15米的破纪录的可能性大.【解答】解:(1)将小勇成绩从小到大依次排列为580,590,596,597,597,630,631,中位数为597cm,将小明成绩从小到大依次排列为589,596,602,603,604,608,612,中位数为603cm,小明成绩的平均数为:(589+596+602+603+604+608+612)÷7=602cm,小勇成绩的平均数为:(603+589+602+596+604+612+608)÷7=603cm,方差为:2= [(597-603)2+(580-603)2+…+(596-603)2]≈333cm2,2= [(603-602)2+(589-602)2+…+(608-60)2]≈49cm2.(2)从成绩的中位数来看,小明较高成绩的次数比小勇的多;从成绩的平均数来看,小勇成绩的“平均水平”比小明的高,从成绩的方差来看,小明的成绩比小勇的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,小明有5次成绩超过6米,而小勇只有两次超过6米,从成绩的方差来看,小明的成绩比小勇的稳定,选小明更有把握夺冠.(4)小勇有两次成绩为6.30米和6.31米,超过6.15米,而小明没有一次达到6.15米,故选小勇.方法总结:本题结合实际问题考查了平均数、中位数、方差等方面的知识,体现了数学来源于生活、服务于生活的本质.10.【题文】小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,你会对奶奶有哪些好的建议。

相关文档
最新文档