7.1 平面直角坐标系练习题(含答案)

合集下载

人教版数学七年级下册 第7章 7.1---7.2同步检测题含答案

人教版数学七年级下册 第7章  7.1---7.2同步检测题含答案

7.1平面直角坐标系一.选择题1.下列各点中,在第一象限的点是()A.(2,3)B.(2,﹣1)C.(﹣2,6)D.(﹣1,﹣5)2.若实数a,b满足关系式a﹣b2=1和a+b2=3,则点(a,b)有()A.1个B.2个C.3个D.4个3.点P(a,b)在第三象限,则点P到y轴的距离是()A.a B.b C.|a|D.|b|4.若点A(x,y)是第二象限内的点,则下列不等式中一定成立的是()A.x>y B.x+y<0C.xy>0D.x﹣y<05.一个点在第一象限及x轴正半轴、y轴正半轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→……,且每秒移动一个单位,那么第47秒时,这个点所在位置的坐标是()A.(1,7)B.(7,1)C.(6,1)D.(1,6)6.若点P(a,b)到y轴的距离为2,则()A.a=2B.a=±2C.b=2D.b=±2.7.已知点A(m﹣1,m+4)在x轴上,则点A的坐标是()A.(0,5)B.(﹣5,0)C.(0,3)D.(﹣3,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2019,0)B.(2019,1)C.(2019,2)D.(2020,0)9.若点P(a,b)在第四象限,则()A.a>0,b>0B.a<0,b<0C.a<0,b>0D.a>0,b<0 10.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)二.填空题11.已知点P在第三象限,且点P到x轴的距离为3,到y轴的距离为2,那么点P的坐标为.12.如果点M(x,y)在第三象限,则xy的值0.在第二象限,则点B(n,m)在第象限.14.点A在第二象限,它到x轴的距离是它到y轴距离的2倍,请写出一个满足条件的点A 的坐标.15.对于平面坐标系中任意两点A(x1,y1),B(x2,y2)定义一种新运算“*”为:(x1,y1)*(x2,y2)=(x1y2,x2y1).若A(x1,y1)在第二象限,B(x2,y2)在第三象限,则A*B在第象限.三.解答题16.已知点P(2x﹣6,3x+1)在y轴上,求P的坐标.17.已知平面内点M(x,y),若x,y满足下列条件,请说出点M的位置.(1)xy=0;(2)>0.18.平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.19.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.参考答案与试题解析一.选择题1.【解答】解:A、(2,3),在第一象限,符合题意;B、(2,﹣1)在第四象限,不合题意;C、(﹣2,6)在第二象限,不合题意;D、(﹣1,﹣5)在第三象限,不合题意.故选:A.2.【解答】解:∵a﹣b2=1和a+b2=3,∴2a=4,解得:a=2,∴2﹣b2=1,解得:b=±1,∴点(a,b)有(2,1),(﹣2,1)共2个.故选:B.3.【解答】解:∵点P(a,b)在第三象限,∴点P到y轴的距离是:|a|.故选:C.4.【解答】解:因为点A(x,y)是第二象限内的点,所以x<0,y>0,可得:x﹣y<0,x<y,xy<0,故选:D.5.【解答】解:这个点3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到了(5,0);48秒到了(0,6);∵(0,6)之前经过的轴上坐标为(5,0),∴第47秒后点所在位置的坐标是(1,6).故选:D.6.【解答】解:∵点P(a,b)到y轴的距离为2,∴|a|=2,∴a=±2.故选:B.7.【解答】解:∵A(m﹣1,m+4)在x轴上,∴m+4=0,解得:m=﹣4,∴m﹣1=﹣5,∴点A的坐标是:(﹣5,0).故选:B.8.【解答】解:分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C.9.【解答】解:∵点P(a,b)在第四象限,∴a>0,b<0,故选:D.10.【解答】解:由图形可得:笑脸盖住的点在第二象限,故笑脸盖住的点的坐标可能为(﹣6,3).故选:B.二.填空题(共5小题)11.【解答】解:∵点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,∴x=﹣2,y=﹣3,∴点P的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).12.【解答】解:∵点M(x,y)在第三象限,∴x<0,y<0,∴xy>0.故答案为:>.13.【解答】解:∵A(m,n)在第二象限,∴m<0,n>0,则点B(n,m)在第四象限.故答案为:四.14.【解答】解:∵点A在第二象限,∴点A的横坐标为负,纵坐标为正,∵点A到x轴的距离是它到y轴距离的2倍,∴点A的坐标可以为:(﹣2,4)(答案不唯一).故答案为:(﹣2,4)(答案不唯一).15.【解答】解:∵A(x1,y1)在第二象限,∴x1<0,y1>0,∵B(x2,y2)在第三象限,∴x2<0,y2<0,∴x1y2>0,x2y1<0,∴A*B=(x1y2,x2y1)在第四象限.故答案为:四.三.解答题(共4小题)16.【解答】解:∵点P(2x﹣6,3x+1)在y轴上,∴2x﹣6=0,解得x=3,所以,3x+1=9+1=10,故P(0,10).17.【解答】解:(1)∵xy=0,∴x=0或y=0或x=0且y=0,∴点M在y轴或x轴或原点;(2)∵>0,∴横纵坐标同号,∴点M在第一象限或第三象限.18.【解答】解:(1)要使点M在x轴上,a应满足2a+7=0,解得a=,所以,当a=时,点M在x轴上;(2)要使点M在第二象限,a应满足,解得,所以,当时,点M在第二象限;(3)要使点M到y轴距离是1,a应满足|a﹣1|=1,解得a=2或a=0,所以,当a=2或a=0时,点M到y轴距离是1.19.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.7.2 坐标方法的简单应用一.选择题(共8小题)1.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(1,3)B.(3,2)C.(0,3)D.(﹣3,3)2.下列数据不能确定物体位置的是()A.电影票5排8号B.北偏东30°C.希望路25号D.东经118°,北纬40°3.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)一定在第四象限C.已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴D.已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)4.如图,在平面直角坐标系中,M,N,C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M 运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.5.将点P向下平移3个单位,向右平移2个单位后,得到点Q(5,﹣3),则点P的坐标为()A.(7,0)B.(2,1)C.(8,﹣5)D.(3,0)6.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比()A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.在平面直角坐标系中,线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),则线段A1B1的中点的坐标为()A.(7,6)B.(6,7)C.(6,8)D.(8,6)8.在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比()A.向右平移了2个单位B.向左平移了2个单位C.向上平移了2个单位D.向下平移了2个单位二.填空题(共6小题)9.甲的座位在第3列第4行,若记为(3,4),则乙的座位在第6列第2行,可记为.10.平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为.11.平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是.12.点P(﹣7,3)是由点M先向左平移动3个单位,再向下平移动3个单位而得到,则M的坐标为.13.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为.14.三角形ABC中任意一点P(x0,y0)经平移后対应点为P1(x0+5,y0+3),将三角形ABC 作同样的平移得到三角形A1B1C1,若A(﹣2,3),则A1的坐标为.三.解答题(共2小题)15.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.16.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.参考答案一.选择题(共8小题)1.A.2.B.3.C.4.B.5.D.6.A.7.A.8.B.二.填空题(共6小题)9.(6,2).10.(4,0)或(6,0).11.212.(﹣4,6).13.(3,﹣1).14.(3,6).三.解答题(共2小题)15.解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).16.解:(1)如图所示:A′(0,4)、B′(﹣1,1)、C′(3,1);(2)S△ABC=×(3+1)×3=6;(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得×4×|y+2|=6,解得y=1或y=﹣5,所以点P的坐标为(0,1)或(0,﹣5).。

2024年第七章平面直角坐标系课堂练习题及答案7.1.2 平面直角坐标系

2024年第七章平面直角坐标系课堂练习题及答案7.1.2   平面直角坐标系

基础通关
能力突破
素养达标
(2)已知点C(m,2),若点B和点C的k系和点为点D,且点D的横坐标等于纵
坐标.
①求m的值;
解:∵点D为B(2,0)和C(m,2)的k系和点,
∴设点D的坐标为(x,y),则x=2k+mk,y=2k,即D(2k+mk,2k).
∵点D的横坐标等于纵坐标,∴2k+mk=2k.∴mk=0.
平面直角坐标系
能力突破
素养达标
能力突破
10.如果点M(m,-n)在第二象限,则点N(m-2,n-2)在 ( C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
11.[2023·廊坊霸州市部分学校期中]已知点P的坐标是(m+2,2m-4),若点
P在y轴上,则m=
-2
;若点P到x轴的距离是6,则m=
A.(3,1)
B.(2,0)
C.(0,4)
D.(-2,-3)
7.已知点P在第四象限,且到x轴的距离为2,到y轴的距离为4,则点P的坐
标为 ( A )
A.(4,-2)
B.(-4,2)
C.(-2,4)
D.(2,-4)
(2,0)或(0,-2) .
8.若点P(m+3,m+1)在坐标轴上,则点P的坐标为
1
2
3
4Hale Waihona Puke 5678
9
7.1.2
基础通关
平面直角坐标系
能力突破
素养达标
各象限内,坐标轴上点的坐标特点
5.在平面直角坐标系中,点A(6,-7)位于 ( D )
A.第一象限
B.第二象限
C.第三象限

《平面直角坐标系》测试题及答案

《平面直角坐标系》测试题及答案

平面直角坐标系测试题一、选择题(每小题3分,共30分)1.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示 B 点,那么C 点的位置可表示为( ) A .(0,3) B .(2,3) C .(3,2) D .(3,0) 2.点B (0,3-)在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上3.平行于x 轴的直线上的任意两点的坐标之间的关系是( ) A .横坐标相等 B .纵坐标相等 C .横坐标的绝对值相等 D .纵坐标的绝对值相等 4.下列说法中,正确的是( )A .平面直角坐标系是由两条互相垂直的直线组成的B .平面直角坐标系是由两条相交的数轴组成的C .平面直角坐标系中的点的坐标是唯一确定的D .在平面上的一点的坐标在不同的直角坐标系中的坐标相同 5.已知点P 1(-4,3)和P 2(-4,-3),则P 1和P 2( ) A .关于原点对称 B .关于y 轴对称C .关于x 轴对称D .不存在对称关系6.如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y >0 B .y <0 C .y ≥0 D .y ≤07.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( ) A .(2,2); B .(3,2); C .(2,-3) D .(2,3) 8.在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是( ) A .(-3,2); B .(-7,-6); C .(-7,2) D .(-3,-6) 9.已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二、填空题(每小题3分,共21分)A BC11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.已知坐标平面内一点A(1,-2),若A、B两点关于x轴对称,则点B的坐标为 .13.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点A 的坐标为.14.已知点M在y轴上,纵坐标为5,点P(3,-2),则△OMP的面积是_______.15.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________.16.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a=_____.17.已知线段MN平行于x轴,且MN的长度为5,若M(2,-2),那么点N的坐标是__________.三、解答题(共49分)18.(5分)写出如图中“小鱼”上所标各点的坐标.19.(6分)在平面直角坐标系中,画出点A(0,2),B(-1,0),过点A作直线L1∥x轴,过点B作L2∥y轴,分析L1,L2上点的坐标特点,由此,你能总结出什么规律?20.(8分)如图,A点坐标为(3,3),将△ABC先向下平移4个单位得△A′B′C′,再将△A′B′C′向左平移5个单位得△A〞B〞C〞。

7.1 平面直角坐标系 同步课堂练习(含答案)

7.1 平面直角坐标系 同步课堂练习(含答案)

7.1.1有序数对基础题知识点1有序数对1.一个有序数对可以()A.确定一个点的位置B.确定两个点的位置C.确定一个或两个点的位置D.不能确定点的位置2.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置知识点2有序数对的应用3.某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排4.如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为()A.(4,5) B.(5,4) C.(4,2) D.(4,3)5.若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.中档题6.小敏家在学校正南方向150 m,正东方向200 m处.若以学校所在位置为原点,以正北、正东为正方向,则小敏家用有序数对(规定:东西方向在前,南北方向在后)表示为()A.(-200,-150) B.(200,150) C.(200,-150) D.(-200,150)7.(教材P65练习变式)如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A.(2,2)→(2,5)→(6,5) B.(2,2)→(2,5)→(5,6)C.(2,2)→(6,2)→(6,5) D.(2,2)→(2,3)→(6,3)→(6,5)8.如图所示,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋❶的位置可记为(C,4),白棋②的位置可记为(E,3),则黑棋❾的位置应记为.9.如图,点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,请帮兔子选一条路,使它吃到的食物最多.7.1.2平面直角坐标系基础题知识点1认识平面直角坐标系1.下列说法错误的是()A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条坐标轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限2.下列选项中,平面直角坐标系的画法正确的是()知识点2平面直角坐标系中点的坐标3.(2019·株洲)在平面直角坐标系中,点A(2,-3)位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,点A(-2,1)到y轴的距离为()A.-2 B.1 C.2 D. 55.已知点A(1,2),AC⊥x轴于点C,则点C的坐标为( )A.(2,0) B.(1,0) C.(0,2) D.(0,1)6.在平面直角坐标系中,点(0,-10)在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上7.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x=0;若点P为坐标原点,则且.8.(教材P68练习T1变式)写出图中点A,B,C,D,E,F,O的坐标.9.(教材P 68练习T 2变式)在平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).知识点3 建立平面直角坐标系表示点的坐标10.(2019·白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点.11.(教材P 68探究变式)将边长为1的正方形ABCD 放在平面直角坐标系中,使点C 的坐标为(12,12).请建立平面直角坐标系,并写出其余各顶点的坐标.易错点 对平面直角坐标系内点的坐标的符号理解不清 12.若点P (a ,b )在第二象限,则点M (b -a ,a -b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 中档题13.【易错】在平面直角坐标系中,点P (2,x 2)在( )A .第一象限B .第四象限C .第一或第四象限D .以上说法都不对 14.(2019·甘肃)已知点P (m +2,2m -4)在x 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)15.如图,长方形ABCD 的边CD 在y 轴上,点O 为CD 的中点,已知AB =4,AB 交x 轴于点E (-5,0),则点B 的坐标为( )A .(-5,2)B .(2,5)C .(5,-2)D .(-5,-2) 16.(教材P 69习题T 4变式)(2018·扬州改编)已知点M 到x 轴的距离为3,到y 轴的距离为4. (1)若M 点位于第一象限,则其坐标为 ; (2)若M 点位于x 轴的上方,则其坐标为 ; (3)若M 点位于y 轴的右侧,则其坐标为.17.(教材P 70习题T 8变式)已知A (-3,m ),B (n ,4),若AB ∥x 轴,且AB =8,则m = ,n =.18.如图是某台阶的一部分,每级台阶的高度相同,宽度也相同.已知点A 的坐标为(0,0),点B 的坐标为(1,1). (1)请建立适当的平面直角坐标系,并写出点C ,D ,E ,F 的坐标; (2)如果该台阶有10级,你能得到该台阶的高度吗?19.在平面直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(72,0),(92,0),(4,1),(6,1),(4,3),(5,3),(4,4).观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.综合题20.(教材P71习题T14变式)已知点A(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.参考答案基础题知识点1有序数对1.一个有序数对可以(A)A.确定一个点的位置B.确定两个点的位置C.确定一个或两个点的位置D.不能确定点的位置2.下列关于有序数对的说法正确的是(C)A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置知识点2有序数对的应用3.某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是(C)A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排4.如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)5.若将7门6楼简记为(7,6),则6门7楼可简记为(6,7),(8,5)表示的意义是8门5楼.中档题6.小敏家在学校正南方向150 m,正东方向200 m处.若以学校所在位置为原点,以正北、正东为正方向,则小敏家用有序数对(规定:东西方向在前,南北方向在后)表示为(C)A.(-200,-150) B.(200,150)C.(200,-150) D.(-200,150)7.(教材P65练习变式)如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)(B)A.(2,2)→(2,5)→(6,5)B.(2,2)→(2,5)→(5,6)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)8.如图所示,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋❶的位置可记为(C,4),白棋②的位置可记为(E,3),则黑棋❾的位置应记为(D,6).9.如图,点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,请帮兔子选一条路,使它吃到的食物最多.解:(1)C(2,1)表示放置2个胡萝卜、1棵青菜;D(2,2)表示放置2个胡萝卜、2棵青菜;E(3,3)表示放置3个胡萝卜、3棵青菜;F(3,2)表示放置3个胡萝卜、2棵青菜.(2)走①有9个胡萝卜、7棵青菜;走②有10个胡萝卜、8棵青菜;走③有11个胡萝卜、9棵青菜.故兔子选择路线③吃到的胡萝卜、青菜都最多.7.1.2平面直角坐标系基础题知识点1认识平面直角坐标系1.下列说法错误的是(A)A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条坐标轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限2.下列选项中,平面直角坐标系的画法正确的是(B)知识点2平面直角坐标系中点的坐标3.(2019·株洲)在平面直角坐标系中,点A(2,-3)位于哪个象限(D)A.第一象限B.第二象限C.第三象限D.第四象限4.如图,点A(-2,1)到y轴的距离为(C)A.-2B.1C.2D. 55.已知点A(1,2),AC⊥x轴于点C,则点C的坐标为(B)A.(2,0) B.(1,0)C.(0,2) D.(0,1)6.在平面直角坐标系中,点(0,-10)在(D)A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上7.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x=0;若点P为坐标原点,则x=0且y=0.8.(教材P68练习T1变式)写出图中点A,B,C,D,E,F,O的坐标.解:观察图,得A (2,3), B (3,2),C (-2,1), D (-1,-2),E (2.5,0), F (0,-2),O (0,0).9.(教材P 68练习T 2变式)在平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).解:如图.知识点3 建立平面直角坐标系表示点的坐标10.(2019·白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点(-1,1).11.(教材P 68探究变式)将边长为1的正方形ABCD 放在平面直角坐标系中,使点C 的坐标为(12,12).请建立平面直角坐标系,并写出其余各顶点的坐标.解:如图,A (-12,-12),B (12,-12),D (-12,12).易错点对平面直角坐标系内点的坐标的符号理解不清12.若点P(a,b)在第二象限,则点M(b-a,a-b)在(D)A.第一象限B.第二象限C.第三象限D.第四象限中档题13.【易错】在平面直角坐标系中,点P(2,x2)在(D)A.第一象限B.第四象限C.第一或第四象限D.以上说法都不对14.(2019·甘肃)已知点P(m+2,2m-4)在x轴上,则点P的坐标是(A)A.(4,0) B.(0,4)C.(-4,0) D.(0,-4)15.如图,长方形ABCD的边CD在y轴上,点O为CD的中点,已知AB=4,AB交x轴于点E(-5,0),则点B 的坐标为(D)A.(-5,2)B.(2,5)C.(5,-2)D.(-5,-2)16.(教材P69习题T4变式)(2018·扬州改编)已知点M到x轴的距离为3,到y轴的距离为4.(1)若M点位于第一象限,则其坐标为(4,3);(2)若M点位于x轴的上方,则其坐标为(4,3)或(-4,3);(3)若M点位于y轴的右侧,则其坐标为(4,3)或(4,-3).17.(教材P70习题T8变式)已知A(-3,m),B(n,4),若AB∥x轴,且AB=8,则m=4,n=5或-11.18.如图是某台阶的一部分,每级台阶的高度相同,宽度也相同.已知点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以点C ,D ,E ,F 的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5).(2)因为每级台阶的高度为1,所以10级台阶的高度是10.19.在平面直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(72,0),(92,0),(4,1),(6,1),(4,3),(5,3),(4,4).观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.解:如图所示,该图形像宝塔松.图形的面积为12×1×1+12×4×2+12×2×1=12+4+1=112.综合题20.(教材P 71习题T 14变式)已知点A (-2,3),B (4,3),C (-1,-3).(1)在平面直角坐标系中标出点A ,B ,C 的位置;(2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离;(4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.解:(1)如图所示.(2)AB =6.(3)点C 到x 轴的距离为3,到AB 的距离为6.(4)S 三角形ABC =12×6×6=18.(5)设P (0,y ).当点P 在AB 的上方时,12×6×(y -3)=18,解得y =9;当点P 在AB 的下方时,12×6×(3-y )=18, 解得y =-3.∴点P 的坐标的(0,9)或(0,-3).。

平面直角坐标系(习题及答案)

平面直角坐标系(习题及答案)

平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果ab=0,那么点P 的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若ab>0,那么点P 的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在;点(b,0)在.6.若点A(n-3,m-1)在x 轴上,点B(2n+1,m+4)在y 轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y 轴平行,且AB=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y 轴的直线上,点A 到y 轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x 轴的距离为,到y 轴的距离为,到原点的距离为.11.点M 在y 轴的左侧,距离x 轴4 个单位长度,距离y 轴3 个单位长度,则点M 的坐标为.12.点P(3,-2)关于x 轴的对称点的坐标是,关于y 轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y 轴上,则点P 关于x 轴的对称点的坐标为.14.若点P 先向左平移2 个单位,再向上平移1 个单位得到P′(-1,3),则点P 的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a 个单位后的坐标为;点(x,y)向下平移b 个单位后的坐标为;点(x,y)先向上平移a 个单位,再向右平移b 个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1. B2.D3. C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( -2 ,2 ),(2,-2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)27.5。

平面直角坐标系练习题(含答案)

平面直角坐标系练习题(含答案)

《平面直角坐标系》练习题班别:___________姓名:_______________一、选择题1. 若m<0,则点P(3,2m)所在的象限是 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 点 M(3,-4)关于x轴的对称点的坐标是 ( )A. (3,4)B. (−3,−4)C. (−3,4)D. (−4,3)3.P(a,b) 是第二象限内一点,则Q(b,a) 位于 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法:①坐标轴上的点不属于任何象限;②y轴上点的横坐标为0;③平面直角坐标系中,(1,2) 和 (2,1) 表示两个不同的点;④点(3,0) 在x轴上,其中你认为正确的有 ( )A. 1个B. 2个C. 3个D. 4个5. 若点A(3−m,n+2)关于原点的对称点B的坐标是(−3,2),则m,n的值为 ( )A. m=−6,n=−4B. m=0,n=−4C. m=6,n=4D. m=6,n=−46. 已知点A(−3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是 ( )A. (−3,3)B. (3,−3)C. (−3,3)或(−3,−3)D. (−3,3)或(3,−3)7. 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是 ( )A. 2B. 1C. 4D. 38. 若点P(a,b)在第四象限,则点Q(b,−a)所在的象限为 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,⋯,这样依次得到点A1,A2,A3,⋯,A n,⋯.例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),⋯;若点A1的坐标为(a,b),则点A2015的坐标为 ( )A. (−b+1,a+1)B. (−a,−b+2)C. (b−1,−a+1)D. (a,b)10. 在平面直角坐标系中,把点P(−3,2)绕原点O顺时针旋转180∘,所得到的对应点Pʹ的坐标为 ( )A. (3,2)B. (2,−3)C. (−3,−2)D. (3,−2)11. 在平面直角坐标系中,点A(−2,1)与点B关于原点对称,则点B的坐标为 ( )A. (−2,1)B. (2,−1)C. (2,1)D. (−2,−1)12. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是A. (13,13)B. (−13,−13)C. (14,14)D. (−14,−14)二、填空题13. 平面直角坐标系中,点(−3,4)关于y轴对称的点的坐标是.14. 点P在第二象限内,P 到x 轴的距离是1,到y轴的距离是2,那么点P的坐标为.15. 在平面直角坐标系中,已知A(−1,0),B(3,0),点C在y轴上,△ABC的面积是4,则点C的坐标是.16. 点P(3−a,a−1)在y轴上,则点Q(2−a,a−6)在第象限.17. 如图,长方形ABCD中,A(−4,1),B(0,1),C(0,3),则D点坐标是,长方形的面积为.18. 如图所示,在平面直角坐标系中,横坐标、纵坐标都为整数的点为整点,观察图形中的每一个正方形(实线)四条边上的整点的个数,请你猜想由里向外第100个正方形(实线)四条边上的整点共有个.三、解答题19. 将边长为1的正方形ABCD放在直角坐标系中,使C的坐标为(12,12 ).请建立直角坐标系,并求其余各点的坐标.20. 已知点M(3a−8,a−1).(1) 若点M在第二、四象限角平分线上,则点M的坐标为.(2) 若点M在第二象限;并且a为整数,则点M的坐标为.(3) 若N点坐标为(3,−6),并且直线MN∥x轴;则点M的坐标为.21. 已知点P(a−3,2a+1),且点P到两坐标轴的距离相等,求点P的坐标.22. 四边形ABCD各顶点的位置如图所示,求四边形ABCD的面积.23. 如图,△AOB的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1) 求△AOB的面积;(2) 若O,A两点的位置不变,且P点在y轴正半轴,若S△OAP=2S△OAB,求P点的坐标;(3) 若B,O两点的位置不变,M点在x轴上,M点在什么位置时,S△OBM=2S△OAB第17题答案第一部分1. D2. A3. D4. D5. B6. C7. C8. C9. B 10. D 11. B 12. C第二部分13. (3,4)14. (−2,1)15. (0,2)或(0,−2)16. 三17. (−4,3);818. 400第三部分19. 如图,A(−12,−12),B(12,−12),D(−12,12).20. (1) (−54,54) (2) (−2,1) (3) (−23,−6)21.因为点P(a−3,2a+1)到两坐标轴的距离相等,所以a−3=2a+1或a−3=−(2a+1),所以a=−4或a=23,故P(−7,−7)或P(−73,73).22. (1) 过D分别作DE⊥OC,DF⊥OA.S四边形ABCD =S△ABO+S△AFD+S△DEC+S正方形OEDF=12×1×4+12×1×3+12×2×3+3×3 =15.5.即四边形ABCD的面积为15.5.23. (1) S△AOB=12×5×4=10.(2) S△OAP=12×5×y p=20,所以y p=8.∴P(0,8) .(3) S△OBM=12×∣x M∣×4=20,所以∣x M∣=10,所以x M=10或x M=−10.∴M(−10,0)或M(10,0) .。

7.1平面直角坐标系 习题(含答案)

7.1平面直角坐标系 习题(含答案)

7.1平面直角坐标系习题(含答案)未命名一、单选题1.已知点A(1,0),B(0,2),点P在x轴上,且三角形PAB的面积为5,则P点的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(4,0)D.(﹣4,0)或(6,0)【答案】D【解析】【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】解:如图,设P(m,0),由题意:1•|1﹣m|•2=5,2∴m=﹣4或6,∴P(﹣4,0)或(6,0),故选:D.【点睛】本题考查三角形的面积、只能与图形性质等知识,解题的关键是学会利用参数构建方程解决问题.2.如图射线OA的方向是北偏东30°,在同一平面内∠AOB=70°,则射线OB的方向是()A.北偏东40∘B.北偏西40∘C.南偏东80∘D.B、C都有可能【分析】根据OA的方向是北偏东30°,在同一平面内∠AOB=70°即可得到结论.【详解】解:如图,∵OA的方向是北偏东30°,在同一平面内∠AOB=70°,∴射线OB的方向是北偏西40°或南偏东80°,故选:D.【点睛】此题主要考查了方向角,正确利用已知条件得出∠AOB度数是解题关键.3.点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,则点P的坐标为()A.(3,4)B.(-3,4)C.(-4,3)D.(-4,-3)【答案】B【解析】【分析】根据已知点的位置(在第二象限点的横坐标为负数,纵坐标为正数)和已知得出即可.【详解】∵点P在第二象限内,P点到x、y轴的距离分别是4、3,∴点P的坐标为(-3,4),故选B.【点睛】本题考查了点的坐标的确定与意义,点到x轴的距离是其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值.在y轴左侧,在x轴的上侧,即点在第二象限,横坐标为负,纵坐标为正.4.若点P在第二象限,且点P到x轴、y轴的距离分别为4,3,则点P的坐标是()A.(4,3)B.(3,﹣4)C.(﹣3,4)D.(﹣4,3)【答案】C根据点P在第二象限,则它的横坐标是负号,纵坐标是正号;根据点P到x轴、y轴的距离分别为4,3,则它的横坐标的绝对值是3,纵坐标的绝对值是4,两者综合进行解答.【详解】解:∵点P在第二象限,∴它的横坐标是负号,纵坐标是正号;∵点P到x轴、y轴的距离分别为4,3,∴它的横坐标的绝对值是3,纵坐标的绝对值是4,∴点P的坐标是(﹣3,4).故选:C.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.5.上海是世界知名金融中心,以下能准确表示上海市地理位置的是()A.在中国的东南方B.东经121.5∘C.在中国的长江出海口D.东经121∘29′,北纬31∘14′【答案】D【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5∘,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经121∘29′,北纬31∘14′,是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.6.若点A(a+1,b–2)在第二象限,则点B(1–b,–a)在()A.第一象限B.第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 先根据点A 在第二象限,求出a,b 的取值,再求出1–b ,–a 的正负,即可求出点B (1–b ,–a )在哪一象限.【详解】根据题意知{a +1<0b −2>0,解得a <–1,b >2,则1–b <0,–a >0,∴点B (1–b ,–a )在第二象限,故选B .【点睛】此题主要考查直角坐标系内点的坐标特点,解题的关键是熟知各象限的坐标特点.7.如图,Rt △ABC 的两边OA ,OB 分别在x 轴、y 轴上,点O 与原点重合,点A (–3,0),点B (0,3√3),将Rt △AOB 沿x 轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为( )A .(673,0)B .(6057+2019√3,0)C .(6057+2019√3,√32)D .(673,√32) 【答案】B【解析】【分析】 根据直角坐标系内的坐标特点,可知△2020的形状如同△4,△2020的直角顶点的纵坐标为0,即可求出△2020的直角顶点的坐标.【详解】∵2020÷3=673……1,∴△2020的形状如同△4,∴△2020的直角顶点的纵坐标为0,而OB 1+B 1A 2+A 2O 2=3√3+6+3=9+3√3,∴△2020的直角顶点的横坐标为(9+3√3)×673=6057+2019√3.故选B.【点睛】此题主要考查直角坐标系的坐标变换,解题的关键是根据题意发现规律.8.已知点M(a,1),N(3,1),且MN=2,则a的值为()A.1B.5C.1或5D.不能确定【答案】C【解析】【分析】依据平面直角坐标系中两点间的距离公式,即可得到a的值.【详解】∵M(a,1),N(3,1),且MN=2,∴|a﹣3|=2,解得a=1或5,故选C.【点睛】本题主要考查了坐标与图形性质,掌握两点间的距离公式是解决问题的关键.9.若点A(n,﹣3)在y轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】直接利用y轴上点的坐标特点得出n的值,进而得出答案.【详解】∵点A(n,﹣3)在y轴上,∴n=0,则点B(n﹣1,n+1)为:(﹣1,1),在第二象限,故选B.【点睛】本题主要考查了点的坐标,熟练掌握数轴上点的坐标特征是解题的关键.注意正确得出n 的值也是解本题关键.10.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【答案】A【解析】【分析】直接利用已知平面直角坐标系分析得出答案.【详解】如图所示:点P的坐标为:(3,﹣4),故选A.【点睛】此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.11.点A(−2,3)关于原点对称的点的坐标为()A.(2,3)B.(−3,2)C.(2,−3)D.(3,−2)【答案】C【解析】【分析】根据直角坐标系内点的变换即可判断.【详解】点A(−2,3)关于原点对称的点的坐标为(2,−3)故选C.【点睛】此题主要考查直角坐标系内点的变换,解题的关键是熟知直角坐标系内点坐标变换特点.12.与点P (a²+2,-a²-1)在同一个象限内的点是( )A.(2,-1)B.(-1,2)C.(-2,-1)D.(2,1)【答案】A【解析】根据平方数非负数的性质求出点P的横坐标与纵坐标的正负情况,再根据各象限内点的坐标特征求出点P所在的象限,然后解答即可.【详解】解:∵a2≥0,∴a2+2≥2,-a2-1≤-1,∴点P在第四象限,(2,-1),(-1,2),(-2,-1),(2,1)中只有(2,-1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.平面直角坐标系中,点(2,4)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据点的坐标特征求解即可.【详解】解:点(2,4)在第一象限,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.−1B.−4C.2D.3【答案】A【解析】【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.∵点A(m+1,-2)和点B(3,m-1),且直线AB∥x轴,∴-2=m-1,∴m=-1 故选:A.【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.15.点P(-2,-3)关于x轴的对称点为()A.(−3,−2)B.(2,3)C.(2,−3)D.(−2,3)【答案】D【解析】【分析】关于x轴对称的点,横坐标不变,纵坐标变为相反数【详解】∵点P(-2,-3),∴关于x轴的对称点为(-2,3).故选:D.【点睛】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题16.如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)如图1,写出点B的坐标();(2)如图2,若过点C的直线CD交AB于点D,且把长方形OABC的周长分为3:1两部分,则点D的坐标();(3)如图3,将(2)中的线段CD 向下平移,得到C′D′,使C′D′平分长方形OABC 的面积,则此时点D′的坐标是( ).【答案】(1)(3,5);(2)(3,4);(3)(3,2).【解析】【分析】(1)根据矩形的对边相等可得BC =OA ,AB =OC ,然后写出点B 的坐标即可; (2)先求出长方形OABC 的周长,然后求出被分成两个部分的长度,判断出点D 一定在AB 上,再求出BD 的长度即可得解;(3)先用待定系数法求出直线CD 的解析式,根据线段CD 向下平移,得到C′D′,设处直线C′D′的解析式,再求出矩形OABC 的中心坐标,代入直线C′D′的解析式即可得出结论.【详解】解:(1)∵A (3,0),C (0,5),∴OA =3,OC =5,∵四边形OABC 是长方形,∴BC =OA =3,AB =OC =5,∴点B 的坐标为(3,5).故答案为(3,5);(2)长方形OABC 的周长为:2(3+5)=16,∵CD 把长方形OABC 的周长分为3:1两部分,∴被分成的两部分的长分别为16×31+3=12,16×11+3=4, ①C→B→D 长为4,点D 一定在AB 上,∴BD =4﹣3=1,AD =5﹣BD =5﹣1=4,∴点D 的坐标为(3,4),②C→B→A→O→D 长为12时,点D 在OC 上,OD =1,不符合题意,所以,点D 的坐标为(3,4).故答案为(3,4);(3)设直线CD 的解析式为y =kx+b (k≠0),∵C (0,5),D (3,4),∴{b =53k +b =4, 解得{k =−13b =5,∴直线CD 的解析式为y =−13x +5,∵直线C′D′由直线CD平移而成,∴设直线C′D′的解析式为y=−13x+5−a,∵A(3,0),C(0,5),∴矩形OABC的中心坐标为(32,5 2 ).∵C′D′平分长方形OABC的面积,∴直线C′D′过矩形OABC的中心,∴52=−13×32+5−a,解得a=2,∴D′(3,2).故答案为:(3,2).【点睛】本题考查的是坐标与图形性质,熟知矩形的性质与一次函数的性质是解答此题的关键.17.已知线段AB∥x轴,且AB=4,若点A的坐标为(﹣1,2),则点B的坐标为_____.【答案】(3,2)或(﹣5,2).【解析】【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.【详解】∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(﹣5,2),当B点在A点右边时,B(3,2);故答案为:(3,2)或(﹣5,2).【点睛】本题考查了平行于x轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.18.如果点P(2a−1,2a)在x轴上,则P点的坐标是______.【答案】(−1,0).【解析】【分析】根据x轴上点的纵坐标为0列方程求出a的值,然后求解即可.【详解】解:∵点P(2a−1,2a)在y轴上,∴2a=0,解得,a=0,所以,2a−1=2×0−1=−1,所以,点P的坐标为(−1,0).故答案为:(−1,0).【点睛】本题考查了点的坐标,熟记x轴上点的坐标特征是解题的关键.19.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第______象限.【答案】四【解析】【分析】直接利用x轴上点的坐标特点得出n的值,进而得出答案.【详解】∵点A(2,n)在x轴上,∴n=0,则点B(n+2,n﹣5)的坐标为:(2,﹣5)位于第四象限.故答案为:四.【点睛】本题考查了点的坐标,正确得出n的值是解题的关键.20.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形可以看作是原来位置的图形一次性向_____平移_____个单位得到.【答案】左2【解析】【分析】可以动手操作一下,看所得到的图形在原来图形的哪个方向,距离原图形几个单位.【详解】解:由题意可知,所得到的图形,可以看作是原来图形一次向左平移2个单位得到的.故答案为:(1). 左(2). 2【点睛】本题考查图形的平移,注意平移是沿某一直线移动的.21.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第一次碰到长方形边上的点的坐标为(3,0),则第21次碰到长方形边上的点的坐标为_____.【答案】(8,3)【解析】【分析】根据图形得出图形变化规律:每碰撞6次回到始点,从而可以得出21次碰到长方形边上的点的坐标.【详解】根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵21÷6=3…3,∴第21次碰到长方形边上的点的坐标为(8,3),故答案为:(8,3).【点睛】本题考查点的坐标的规律问题,关键是根据题意画出符合要求的图形,找出其中的规律.22.如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为______.【答案】(1,√3)【解析】【分析】先过点A作AC⊥OB,根据△AOB是等边三角形,求出OA=OB,OC=BC,∠AOB=60∘,再根据点B的坐标,求出OB的长,再根据勾股定理求出AC的值,从而得出点A的坐标.【详解】解:过点A作AC⊥OB,∵△AOB是等边三角形,∴OA=OB,OC=BC,∠AOB=60∘,∵点B的坐标为(2,0),∴OB=2,∴OA=2,∴OC=1,∴AC=√3,∴点A的坐标是(1,√3).故答案是:(1,√3).【点睛】此题考查了等边三角形的性质,勾股定理,关键是作出辅助线,求出点A的坐标.23.已知点P的坐标为(-2,3),则点P到y轴的距离为______.【答案】2【解析】【分析】根据点到y轴的距离等于横坐标的长度解答.【详解】解:∵点P的坐标为(-2,3),∴点P到y轴的距离为2.故答案为:2.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.24.已知点P(2a-6,a),若点P在x轴上,则点P的坐标为______.【答案】(-6,0)【解析】【分析】根据x轴上点的坐标的特点y=0,计算出a的值,从而得出点P坐标.【详解】解:∵点P(2a-6,a)在x轴上,∴a=0,则点P的坐标为(-6,0),故答案为:(-6,0).【点睛】本题主要考查了点的坐标,解题的关键是掌握在x轴上的点的坐标的特点y=0,难度适中.三、解答题25.(1)在图①的平面直角坐标系中,描出点A(2,3)、B(-2,3)、C(2,-3),连结AB、AC、BC,并直接写出△ABC的面积.(2)如图②,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B均在格点上.在格点上确定点C,使△ABC为直角三角形,且面积为4,画出所有满足条件的△ABC.【答案】(1)画图见解析,面积是12;(2)见解析.【解析】【分析】(1)先画出图形,然后根据三角形的面积公式求解即可;(2)根据三角形的面积求出点C到AB的距离,再判断出点C的位置即可. 【详解】(1)如图,S△ABC=12AB⋅AC=12×4×6=12;(2)设△ABC的高为h,∵12AB⋅ℎ=12×4ℎ=4,∴h=2.∴点C的位置有3个.【点睛】本题考查了图形与坐标,三角形的面积公式,正确画出图形是解(1)的关键,求出三角形的高是解(2)的关键.26.在平面直角坐标系中,已知A(−3,−2),B(−1,4),C(5,2),D(3,−3).(1)作图:在坐标系中找出A、B、C、D四个点并顺次连接得到四边形ABCD.(2)求出该四边形的面积.【答案】(1)见解析;(2)36.【解析】【分析】(1)画出图形;(2)利用面积差可得结论.【详解】解:(1)如图所示,(2)如图分别过A、B、C、D作坐标轴的平行线,分别相交于E、F、G、H.由题意可知四边形EFGH是长方形,则有S四边形ABCD =S长方形EFGH−S△ABF−S△BCG−S△CDH−S△ADE=8×7−2×62−2×62−1×6 2−2×52=56−6−6−3−5=36.【点睛】此题主要考查了三角形的面积和点的坐标,正确得出对应点位置是解题关键.27.如图,△ABC平移后得到了△A'B'C',其中点C的对应点是点C'。

数学随堂小练人教版七年级下册:7.1平面直角坐标系(有答案)

数学随堂小练人教版七年级下册:7.1平面直角坐标系(有答案)

数学随堂小练人教版七年级下册:7.1平面直角坐标系一、单选题1.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列数据不能确定物体位置的是( )A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°3.下列选项中,平面直角坐标系的画法正确的是( ) A. B. C. D.4.已知点()12,1M m m --在第四象限,则m 的取值范围在数轴上表示正确的是( ) A.B.C. D.5.在平面直角坐标系内,任何一点的坐标是( )A.一对整数B.一对实数C.一对有序实数D.一对有序有理数6.点(4,3)P 所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7.我们用以下表格来表示某超市的平面示意图.如果用(C,3)表示“体育用品”的位置,那么表示“儿童服装”的位置应记作( )A B C D1 收银台 收银台 收银台 收银台2 酒水 糖果 小食品 熟食3 儿童服装 化妆品 体育用品 蔬菜4 入口 服装 家电日用杂品 D.(D,1)8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成( )A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.如图所示,已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置分别用())(2, 24,3,来表示,请在小方格的顶点上确定一点C ,连接AB,AC ,BC ,使三角形ABC 的面积为2个平方单位,则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2)二、填空题10.确定平面内某一点的位置一般需要__________个数据11.已知点A ()4,3,//AB y 轴,且3AB =,则点B 的坐标为 .12.如图是城市中某区域的示意图,小聪同学从点O 出发,先向西走100米,再向南走200米到达学校,如果学校的位置用()100,200--表示,那么(300,200)表示的地点是 .13.已知点A ()1,2m +-和点B ()3,1m -,如果直线//AB x 轴,则m 的值为_ 。

人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)

人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)

第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系班级:姓名:知识点1平面直角坐标系1.在直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).2.如图,写出平面直角坐标系中点A,B,C,D,E,F 的坐标.3.如图,在平面直角坐标系中:(1)描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(5,-2);(2)写出平面直角坐标系中E,F,G,H,M,N点的坐标.知识点2平面直角坐标系中各象限内点的坐标特征4.在平面直角坐标系中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)6.如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)7.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)8.如果x y<0,那么Q(x,y)在()A.第四象限B.第二象限C.第一或三象限D.第二或四象限9.若点P(m,n)在第三象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形ABCD 中点A和点C 的坐标分别为(-2,3)和(3,-2),则点B 和点D 的坐标分别为()A.(2,2)和(3,-3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)11.点P(-3,4)在第象限,到x 轴的距离是,到y 轴的距离是.知识点3坐标轴上点的坐标特征12.点B(-3,0)在()A.x 轴的正半轴上B.x 轴的负半轴上C.y 轴的正半轴上D.y轴的负半轴上13.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点D.在x轴上或在y轴上14.若点P(a-2,2a+3)在y轴上,则a=,此时点P的坐标是;如果点P在x轴上,那么a=.综合点1非负数与点的坐标15.已知(a-2)2+|b+3|=0,则P(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)综合点2分类讨论16.到x轴距离为2,到y轴距离为3的点有几个?拓展点1坐标与面积计算17.在直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0),要确定这个四边形的面积,你是怎样做的?‘拓展点2规律性问题18.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)19.如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2017的坐标为()A.(504,-504)B.(-504,504)C.(-504,503)D.(-505,504)第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系答案与点拨1.如图所示.2.A(5,2),B(0,4),C(-3,3),D(-5,0),E(-3,-4),F(4,-3).3.(1)如图所示,先在x 轴上找出表示4的点,再在y 轴上找出表示5的点,过这两个点分别作x 轴和y 轴的垂线,两垂线的交点就是点A.用同样的方法可描出其他各点.(2)过象限内的点M 分别向x 轴,y 轴作垂线,垂足在x 轴的坐标是4,在y 轴的坐标是1,故M 点的坐标为(4,1),同样,可得E(2,0),F(0,-4),G(-2,2),H(1,-2),N(-3,-2).4.B(点拨:∵-2<0,3>0,∴(-2,3)在第二象限,故选B.)5.A(点拨:因为第一象限点的特征是:横坐标是正数,纵坐标也是正数,而各选项中符合横坐标为正,纵坐标也为正的只有A 中(1,2).故选A.)6.D(点拨:小手盖住的点在第四象限.)7.C(点拨:先依据题意可以判断该点在第二象限.)8.D(点拨:由xy<0可得,x,y 异号,故选D.)9.A(点拨:点P 在第三象限,故m,n 均小于0,而-m,-n 则都大于0,故选A.)10.B(点拨:B 点与A 点的横坐标相同,B 点与C 点的纵坐标相同,故B 点坐标为(-2,-2),同理可得D 点坐标为(3,3).)11.二43(点拨:点P(-3,4)在第二象限内,点P 到x 轴的距离是|4|=4,到y 轴的距离是|-3|=3.)12.B(点拨:x 轴上的所有点的纵坐标为0.)13.D(点拨:由xy=0可以得到,x=0或y=0,即该点横坐标或纵坐标为0,故选D.)14.2(0,7)-32(点拨:由点P(a-2,2a+3)在y 轴上得a-2=0,解得a=2,∴2a+3=7,此时点P 的坐标是(0,7);由点P(a-2,2a+3)在x 轴上得2a+3=0,解得a=-32.)15.C(点拨:由非负数的性质,可知a-2=0,b+3=0,故a=2,b=-3,则-a=-2,-b=3.)16.4个,它们分别是(3,2),(3,-2),(-3,2),(-3,-2).(点拨:在各象限内均有可能.)17.S四边形ABCD =12×8-2×3-12×2×5-12×3×7-12×3×8=62.5.四边形的面积等于长方形的面积减去一个小长方形和三个三角形的面积.18.B(点拨:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒、2秒、3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B.)19.D(点拨:由规律可得,2017÷4=504…1,∴点P2017在第二象限,∵点P5(-2,1),点P9(-3,2),点P13(-4,3),∴点P2017(-505,504).)。

7_1_2平面直角坐标系(分层作业)解析版【人教版七下数学精品备课】

7_1_2平面直角坐标系(分层作业)解析版【人教版七下数学精品备课】

7.1.2 平面直角坐标系参考答案与试题解析夯基训练知识点1 平面直角坐标系1.如图所示,点A、点B所在的位置是( )A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上1.解析:根据坐标平面的四个象限来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.知识点2 各象限内、坐标轴上点的坐标特征2.平面直角坐标系中有点M(a,b).(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?2.解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M 在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.3.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列.如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2)……根据这个规律,点P2 016的坐标为.3.【答案】(504,-504)解:根据各个点的位置关系,可得:下标为4的倍数的点在第四象限的角平分线上;下标为被4除余1的数的点在第三象限的角平分线上;下标为被4除余3的数的点在第一象限的角平分线上.点P2 016在第四象限的角平分线上,且横、纵坐标的绝对值为2 016÷4=504,再根据第四象限内点的坐标符号可得出答案为(504,-504).知识点3 特殊点的坐标的特征4.已知M(1,-2),N(-3,-2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直4.【答案】D解:由点M(1,-2)和点N(-3,-2)的纵坐标相等可知,直线MN平行于x轴,与y轴垂直.或者在平面直角坐标系中描出点M和点N,结合图判断出直线MN平行于x轴,与y轴垂直.题型总结题型1 利用平面直角坐标系象限的符号特征判断点的位置5.点M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意非零实数,且b<0时,点M位于第几象限?5.解:(1)第四象限.(2)因为ab>0,所以a>0且b>0或a<0且b<0.所以点M位于第一象限或第三象限.(3)第三象限或第四象限.题型2 利用平面直角坐标系内图形位置写点的坐标6已知点A(0,3),B(-1,1),C(-3,2),D(-2,0),E(-3,-2),F(-1,-1),G(0,-3),H(1,-1),I(3,-2),J(2,0),K(3,2),L(1,1).(1)请在图①的平面直角坐标系中,分别描出上述各点,并顺次连接A,B,C,D,E,F,G,H,I,J,K,L,A;(2)试求(1)中连线围成的图形的面积.6.解析:(1)依据点的横、纵坐标的定义,分别描出各点并依次连接;(2)连线围成的图形被坐标轴平均分成四部分,故只要求出一个象限中图形的面积,就可求得答案.解:(1)如图②所示;(2)因为连线围成的图形在第一象限中的面积为4,并且图形被坐标轴平均分成四部分,所以图形的总面积为4×4=16.方法总结:所求图形在四个象限的面积相等,所以只需求其中一部分面积即可.7.如图,给出格点三角形ABC.(1)写出三角形ABC各顶点的坐标;(2)求出此三角形的面积.7.解:(1)A(2,2),B(-2,-1),C(3,-2).(2)S 三角形ABC =4×5-12×3×4-12×1×4-12×1×5=9.5.题型3 由点到坐标轴的距离确定点的坐标8.已知点P 到x 轴的距离为2,到y 轴的距离为1.如果过点P 作两坐标轴的垂线,垂足分别在x 轴的正半轴上和y 轴的负半轴上,那么点P 的坐标是( )A .(2,-1)B .(1,-2)C .(-2,-1)D .(1,2)8.解析:由点P 到x 轴的距离为2,可知点P 的纵坐标的绝对值为2.又因为垂足在y 轴的负半轴上,则纵坐标为-2.由点P 到y 轴的距离为1,可知点P 的横坐标的绝对值为1.又因为垂足在x 轴的正半轴上,则横坐标为1.故点P 的坐标是(1,-2).故选B.易错点拨:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P 到x 轴的距离”对应的是纵坐标的绝对值,与“点P 到y 轴的距离”对应的是横坐标的绝对值;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P 的坐标有四个.拓展培优拓展角度1 利用点的坐标的特征探究横或纵坐标相等的图形的性质9.如图所示.(1)请写出A,B,C,D,E 五点的坐标.(2)通过观察B,C 两点的坐标,你发现了什么?线段BC 的位置有什么特点?由此你又得出什么结论?通过进一步观察D,E 两点的坐标你发现了什么?线段DE 的位置有什么特点?由此你又能得出什么结论?9.解:(1)A(2,4),B(-1,2),C(-1,-1),D(1,-4),E(4,-4).(2)通过观察B,C 两点的坐标,发现B,C 两点的横坐标相同,纵坐标不同.线段BC 与y 轴平行,与x 轴垂直.由此可得出若一条直线上的所有点的横坐标均相同,纵坐标不同,则此直线与y 轴平行(或就是y 轴),也可以说是与x 轴垂直.通过观察D,E 两点的坐标,发现D,E 两点的纵坐标相同,横坐标不同.线段DE 与x 轴平行,与y 轴垂直.由此可得出若一条直线上的所有点的纵坐标均相同,横坐标不同,则此直线与x 轴平行(或就是x 轴),也可以说是与y 轴垂直. 拓展角度2 利用点的坐标画图求解相关问题10.在如图所示的平面直角坐标系中描出下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7),G(5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合.(2)连接CE,则直线CE 与y 轴是什么关系?(3)顺次连接D,E,G,C,D 得到四边形DEGC,求四边形DEGC 的面积.10.解:描点如图.(1)D(2)如图,直线CE 与y 轴平行.(3)S 四边形DEGC =S △CDE +S △CEG =12×6×10+12×10×2=30+10=40.拓展角度3 在坐标系中求图形的面积11.如图所示的直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (9,0),C (7,5),D (2,7).试确定这个四边形的面积.11.解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来解决.解:分别过点D 、C 向x 轴作垂线,垂足分别为点E 、F ,则四边形ABCD 被分割为△AED 、△BCF 及梯形CDEF .由各点的坐标可得AE =2,DE =7,EF =5,FB =2,CF =5.∴S 四边形ABCD =S△AED +S 梯形CDEF +S △BCF =12×2×7+12×(7+5)×5+12×5×2=7+30+5=42. 方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.。

7.1 平面直角坐标系练习卷(含答案)

7.1 平面直角坐标系练习卷(含答案)

7.1 平面直角坐标系一.选择题(共8小题)1.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)2.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)3.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)4.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知点P(1﹣2m,m﹣1),则不论m取什么值,该P点必不在()A.第一象限B.第二象限C.第三象限D.第四象限7.下列说法正确的是()A.点P(3,﹣5)到x轴的距离为﹣5B.在平面直角坐标系内,(﹣1,2)和(2,﹣1)表示同一个点C.若x=0,则点P(x,y)在x轴上D.在平面直角坐标系中,有且只有一个点既在x轴上,又在y轴上8.若|m|=2,|n|=3,则点A(m,n)()A.四个象限均有可能B.在第一象限或第三象限或第四象限C.在第一象限或第二象限D.在第二象限或第三象限或第四象限二.填空题(共5小题)9.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.10.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.11.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),…,按这样的运动规律,经过第2019次运动后,动点P的横坐标是.12.若点P(2﹣a,2a+3)到两坐标轴的距离相等.则点P的坐标是.13.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为.三.解答题(共5小题)14.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.15.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.16.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1﹣y2|;(1)已知点A(﹣1,0),B为y轴上的动点,①若点A与B的“识别距离为”2,写出满足条件的B点的坐标.②直接写出点A与点B的“识别距离”的最小值.(2)已知C点坐标为C(m,m+3),D(0,1),求点C与D的“识别距离”的最小值及相应的C点坐标.17.对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P的“k衍生点”例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2衍生点”P′的坐标为.(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.18.如图,在平面直角坐标系中,有A、B、C三点.若A、B、C三点的横坐标的数字之和为a,纵坐标的数字之总和为b,求出点P(a,b),并在坐标系中标出P点.参考答案一.选择题(共8小题)1.B.2.C.3.D.4.A.5.A.6.A.7.D.8.A.二.填空题(共5小题)9.(﹣3,2)或(﹣3,﹣2).10.二、四.11.(2019,2)12.(7,﹣7)或(,).13.(﹣3,2).三.解答题(共5小题)14.解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).15.解:(1)∵点M在x轴上,∴2m+3=0解得:m=﹣1.5;(2)∵点M在第二象限内,∴,解得:﹣1.5<m<0;(3)∵点M在第一、三象限的角平分线上,∴m=2m+3,解得:m=﹣3.16.解:①(0,2)或(0,﹣2);②“识别距离”的最小值是1;故答案为:(1)(0,2)或(0,﹣2),1.(2)|m﹣0|=|m+3﹣1|,解得m=8或﹣,当m=8时,“识别距离”为8当m=﹣时,“识别距离”为,所以,当m=﹣时,“识别距离”最小值为,相应C(﹣,).17.解:(1)由题意可得,点P(﹣1,6)的“2衍生点”P′的坐标为:[﹣1+2×6,2×(﹣1)+6],即(11,4);故答案为:(11,4);(2)设点P的坐标为:(a,b),由题意可得:,解得:,∴点P的坐标为:(2,1).18.解:由图知,A、B、C三点的坐标分别为:A(﹣1,﹣4),B(0,﹣1),C(5,4),则a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,故P的坐标为(4,﹣1),如图所示.。

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

平面直角坐标系测试题习题附答案

平面直角坐标系测试题习题附答案

平面直角坐标系测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 ( )A .(2,5)B .(5,2)C .(﹣5,2)D .(﹣5,2)或(5,2)【答案】D【分析】根据平行于x 轴的直线上的点纵坐标相同,再根据到y 轴的距离为5,即可判断坐标.【详解】解:∵点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,∴点N 的纵坐标为2,∵点N 到y 轴的距离为5,∴点N 的横坐标为±5,则点N 的坐标为(﹣5,2)或(5,2);故选:D .【点睛】本题考查了平面直角坐标系中点的坐标特征,解题关键是明确平行于x 轴的直线上的点纵坐标相同,到y 轴的距离是横坐标的绝对值.2.如果点P (a ,b )在x 轴上,那么点Q (ab ,﹣1)在( )A .y 轴的正半轴上B .y 轴的负半轴上C .x 轴的正半轴上D .x 轴的负半轴上【答案】B【分析】根据在x 轴上的点的特点可知0b =,即可求得0ab =,进而确定Q 点的坐标.【详解】点P (a ,b )在x 轴上,∴0b =,∴0ab =,∴点Q (ab ,﹣1)在y 轴的负半轴上故选B【点睛】本题考查了坐标轴上的点的特点,掌握坐标轴上的点的特征是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x 轴正半轴上的点:横坐标>0,纵坐标=0;②x 轴负半轴上的点:横坐标<0,纵坐标=0;③y 轴正半轴上的点:横坐标=0,纵坐标>0;④y 轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0. 3.点A (-3,1)到y 轴的距离是( )个单位长度.A .-3B .1C .-1D .3【答案】D【分析】由点到y 轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知(3,1)A -到y 轴的距离为33-=∴(3,1)A -到y 轴的距离是3个单位长度 故选D .【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点(,)A a b 到y 轴的距离=a ;到x 轴的距离=b .4.在平面直角坐标系中,点A (2,﹣4),点B (﹣3,1)分别在( )象限 A .第一象限,第三象限B .第二象限,第四象限C .第三象限,第二象限D .第四象限,第二象限【答案】D【分析】应先判断出点A ,B 的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵20,40,30,10>-<-<>∴点A (2,﹣4)在第四象限,点B (﹣3,1)在第二象限故选:D【点睛】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)【答案】D【分析】 根据题意可得,从A →B →C →D →A 一圈的长度为2(AB +BC )=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A 点坐标为(1,1),B 点坐标为(﹣1,1),C 点坐标为(﹣1,﹣2), ∴AB =1﹣(﹣1)=2,BC =2﹣(﹣1)=3,∴从A →B →C →D →A 一圈的长度为2(AB +BC )=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D .【点睛】本题考查了坐标规律探索,找到规律是解题的关键.6.若点A (a ,b ﹣2)在第二象限,则点B (﹣a ,b +1)在第( )象限.A .一B .二C .三D .四【答案】A【分析】先根据第二象限内点坐标符号可得0,20a b <->,再判断出,1a b -+的符号即可得.解:点(,2)A a b -在第二象限,0,20a b ∴<->,即0,2a b <>,0,130a b ∴->+>>,则点,(1)B a b -+在第一象限,故选:A .【点睛】本题考查了判断点所在象限,熟练掌握各象限内的点坐标符号规律是解题关键. 7.根据下列表述,能确定位置的是( )A .某电影院2排B .宜昌市夷陵路C .北偏东30D .东经118︒,北纬40︒【答案】D【分析】根据有序数对表示点的位置解答.【详解】解:A 选项:第二排有很多座位,不能确定是哪一个,故A 错误;B 选项:宜昌市夷陵路有很多点,不能确定是哪一个,故B 错误;C 选项:北偏东30,这一个方位很广,不能确定是哪个位置,故C 错误;D 选项:东经118︒,北纬40︒,经线和纬线相交为一个点,故D 正确.故选:D .【点睛】此题考查有序数对,正确掌握利用有序数对表示一个点的坐标是解题的关键. 8.如图,在平面直角坐标系中,若三角形ABC 的三个顶点分别为A (2,3),B (3,1),C (﹣2,﹣2),则三角形ABC 的面积为( )A .6.5B .13C .5.5D .11【分析】利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:∵A(2,3),B(3,1),C(﹣2,﹣2),∴1115545531225107.51 6.5222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=---=.故选:A.【点睛】本题考查了坐标与图形,熟练掌握平面直角坐标系中的坐标特点及三角形的面积的求法是解题的关键.二、填空题9.已知ABC的面积为3,且A、B两点的坐标分别为(1,0)、(2,0)-,若点C到y轴距离是1,则点C的坐标为____________.【答案】(1,2)或(-1,2)或(-1,-2)或(1,-2)【分析】以AB=3为底,根据△ABC面积求出其高,进而得到C点的纵坐标的绝对值为2,进而得到C点的纵坐标为2或-2,再由C到y轴距离是1得到其横坐标为1或-1,由此即可求出C点的坐标.【详解】解:∵A、B两点的坐标分别为(1,0)、(2,0)-,∴AB=3,设C点纵坐标为y,且ABC的面积为3,∴1||2ABCS AB y∆=⋅,代入数据,得到:||2y=,∴2y=±,又点C到y轴距离是1,∴C点的横坐标为±1,∴点C的坐标为(1,2)或(-1,2)或(-1,-2)或(1,-2),如下图所示:故答案为:(1,2)或(-1,2)或(-1,-2)或(1,-2) .【点睛】本题考查三角形的面积,平面直角坐标系中点的坐标特点等;本题的关键是通过三角形面积求出点的纵坐标的绝对值,进而确定的点坐标.10.如图,点A、B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为________.【答案】(3,2)【分析】利用DB=1,B(3,0),得出△AOB沿x轴向右平移了2个单位长度,再利用平移中点的变化规律求解即可.【详解】∵点A. B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,DB=1,∴OB=3,∴OD=2,∴△AOB沿x轴向右平移了2个单位长度,∴点C的坐标为:(3,2).故答案为:(3,2).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点.11.已知P(1﹣m,m+2)在x轴上,则点P的坐标是______________.【答案】(3,0)【分析】根据x 轴上点的纵坐标为零,可得m 的值,进而可得答案.【详解】解:(1,2)P m m -+在x 轴上,20m ∴+=,解得2m =-,13m ∴-=,∴点P 的坐标是(3,0).故答案为:(3,0).【点睛】本题考查了点的坐标,利用x 轴上点的纵坐标为零得出m 的值是解题关键. 12.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为_______.【答案】(0,-2)【分析】根据伴随点的定义,罗列出部分点A 的坐标,根据点A 的变化找出规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,∴A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数). ∵2020=4×504+4,∴点A 2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”.13.已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.【答案】(3,2)【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.14.已知点(34,47)A a a -+在第一、三象限的角平分线上,则a 的值为________.若A 在第二、四象限的角平分线上,则a 的值是_________.【答案】11- 37- 【分析】第一、三象限的角平分线上点的横坐标与纵坐标相等,第二、四象限的角平分线上的点的横坐标与纵坐标互为相反数,根据点的坐标特点列方程,解方程即可得到答案.【详解】 解: 点(34,47)A a a -+在第一、三象限的角平分线上,3447,a a ∴-=+11,a ∴=-(34,47)A a a -+在第二、四象限的角平分线上,34470,a a ∴-++=3.7a ∴=- 故答案为:311,.7-- 【点睛】本题考查的是四个象限的角平分线上点的坐标特点,掌握其坐标特点是解题的关键.三、解答题15.如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.【答案】(1)见解析;(2)14【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积. 【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯=; ∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.16.如图,A ,B 两点的坐标分别是()2,1-,()2,1,你能确定()3,3的位置吗?【答案】()3,3的位置是点C .【分析】先根据A 点坐标确定x 轴与y 轴位置,两轴交点为坐标原点O ,然后建立平面直角坐标系,根据点的坐标(3,3)找到点C 即可.【详解】解:点A 向左平移2个单位,是y 轴坐在位置,点A 向上平移一个单位为x 轴坐在位置,两轴相交位置为坐标原点O ,以O 为坐标原点建立平面直角坐标系,如图,从点O 向右平移3个单位,再向上平移3个单位是(3,3)用C 表示.【点睛】本题考查已知点坐标建立平面直角坐标系,根据坐标找点,掌握点的横坐标绝对值是点到y 轴的距离,点的纵坐标绝对值是点到x 轴的距离是解题关键.17.如图,三角形PQR 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点P ,点B 与点Q ,点C 与点R 的坐标,并观察它们之间的关系.三角形ABC 内任意一点M 的坐标为(,)x y ,点M 经过这种变换后得到点N ,点N 的坐标是什么?【答案】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【分析】根据点在直角坐标系中所在的象限及位置直接可以确定点的坐标,各组点的横纵坐标都是互为相反数,由此得到点M 的对应点N 的坐标.【详解】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【点睛】此题考查直角坐标系中点的坐标,正确确定各点的坐标及发现规律解决问题是解题的关键.18.如图1,在平面直角坐标系中,正方形OABC 的面积等于4,长方形OADE 的面积等于8,其中点C 、E 在x 轴上,点A 在y 轴上.(1)请直接写出点A ,点B ,点D 的坐标;(2)如图2,将正方形OABC 沿x 轴向右平移,移动后得到正方形O A B C '''',设移动后的正方形O A B C ''''长方形OADE 重叠部分(图中阴影部分)的面积为S ;①当1AA '=时,S =______;当3AA '=时,S =______;当5AA '=时,S =______; ②当1S =时,请直接写出AA '的值.【答案】(1)()0,2A ,()2,2B -,()4,2D ;(2)①2,4,2;②12AA '=或112AA '=. 【分析】(1)由正方形面积求出边长再求出A 、B 点坐标,又由长方形面积求出长再求出D 点坐标.(2)①AA ′=1 时,面积为图2阴影部分;AA ′=3 时,面积为正方形面积;AA ′=5时正方形一半在长方形内,一半在长方形外.②S =1时注意有两种情况:正方形刚进入长方形的时候和正方形快要走出长方形的时候.【详解】解:(1)正方形面积为4∴AB =AO = 2∴()0,2A ,∴()2,2B -,长方形面积为8,AO =2∴AD =8÷2=4∴()4,2D(2)①AA ′=1 时,面积为图2阴影部分,S =AA ′×AO =1×2=2 AA ′=3 时,面积如下图,S =AB′×AO=2×2=4AA ′=5时,面积如下图,S =B'D×BC=1×2=2②正方形刚进入长方形时,可参照图2,阴影部分是AA'O'O ,该部分面积=AA '×AO =AA '×2=1∴AA '=1÷2=12正方形快要走出长方形时,可参照下图,阴影部分是B'DEC ,该部分面积=B'D ×B'C =B'D ×2=1∴B'D=1÷2=12∴A'D=2-12=32∴AA'=4+32=112故答案为AA′=12或AA′=112【点睛】本题考查图形的平移和坐标的知识,准确识图,结合图形灵活运用相关知识是解题的关键.19.图中标明了李明家附近的一些地方.(1)写出书店和邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿(100,200)-,(100,0),(200,100),(200,200)-,(100,200)--,(0,100)-的路线转了一下,又回到家里,写出他路上经过的地方.(3)连接他在(2)中经过的地点,你能得到什么图形?【答案】(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图见解析,得到箭头符号.(1)根据坐标的概念结合图形即可得;(2)由图形及其坐标得出具体的位置;(3)连线可得答案.【详解】解:(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图,得到箭头符号.【点睛】本题主要考查坐标确定位置,各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0. 20.已知点(2,28)P a a -+分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;【答案】(1)()6,0-;(2)()1,14 【分析】 (1)根据点在数轴上的特点,令280a +=,即可求得a ,进而求得P 的坐标; (2)根据平行与y 轴的直线的特点,令21a -=,即可求得a ,进而求得P 的坐标; 【详解】 (1)点P 在x 轴上, ∴280a +=,2426a ∴-=--=-∴点P 的坐标()6,0-(2)点Q 的坐标为(1,5),直线PQ ∥y 轴,∴21a -=解得3a =286814a ∴+=+=∴点P 的坐标()1,14 【点睛】 本题考查了平面直角坐标系中坐标轴上的点的坐标特点,掌握以上知识是解题的关键. 21.如图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(﹣1,3),点C 的坐标为(1,﹣1).(1)请在图中画出平面直角坐标系;(2)把三角形ABC 向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的三角形A 1B 1C 1,并写出平移后各顶点的坐标.【答案】(1)见解析;(2)见解析; A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【分析】(1)根据已知两点的坐标,即可判断横轴和纵轴的位置,从而画出平面直角坐标系; (2)分别将三角形的三个点向下平移2个单位长度,再向右平移3个单位长度,然后将平移后的对应点顺次连接即可.【详解】解:(1)平面直角坐标系如图所示;(2)如图所示:三角形A 1B 1C 1即为所求,A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【点睛】本题考查平面直角坐标系内的平移作图,以及知道点的坐标确定平面直角坐标系的位置,牢记相关的知识点并能准确应用是解题关键.22.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.类似地,你能用坐标表示你自己学校各主要建筑物的位置吗?【答案】图见解析,校门、国旗杆、教学楼、实验楼、图书馆的位置分别是()0,0,()3,0,()6,0,()6,3-,()5,3.【分析】得出原点位置进而建立坐标系得出各点坐标.【详解】解:如图所示:以校门为原点,正东方向为x 轴正方向,正北方向为y 轴正方向建立平面直角坐标系,规定一个单位长度代表1m ,则校门、国旗杆、教学楼、实验楼、图书馆的位置分别是:()0,0,()3,0,()6,0,()6,3-,()5,3.【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.23.在直角坐标系中,写出下列各点的坐标:(1)点A 在x 轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B 在y 轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C 在y 轴的左侧,在x 轴的上侧,距离每个坐标轴都是4个单位长度.【答案】(1)()4,0A -;(2)()0,4B ;(3)()4,4C -.【分析】(1)根据x 轴上的点的纵坐标等于0得出答案;(2)利用在y 轴上点的坐标性质得出即可;(3)利用点的位置进而得出C 点坐标.【详解】(1)∵点A 在x 轴上,∴点A 的纵坐标为0,∵点A 位于原点左侧,距离原点4个单位长度,∴点A 的横坐标为-4,∴点A 的纵坐标为(-4,0);(2)∵点B 在y 轴上,∴点B 的横坐标为0,∵点B 位于原点的上侧,距离坐标原点4个单位长度∴点B的纵坐标为4∴点B的纵坐标为(0,4);(3)∵点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.∴C的纵坐标为(-4,4).【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.24.已知点P(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【答案】(1)点P的坐标为(-11,-8);(2)P点坐标为(-1,-3).【分析】(1)建立方程a-1=2a+3+3,解方程确定a值,代入计算即可;(2)根据平行x轴的点的纵坐标相等建立方程求解即可.【详解】(1)∵点P(2a+3,a-1),且点P的纵坐标比横坐标大3,∴a-1=2a+3+3,解得a=-7,∴点P(-11,-8);(2)∵点P在过A(2,-3)点,且与x轴平行的直线上,∴a-1=-3,解得a=-2,∴点P(-1,-3).【点睛】本题考查了坐标之间的关系,坐标与平行线的关系,熟练建立方程并灵活解方程是解题的关键.。

人教版七下数学7.1平面直角坐标系专题练习(含答案)

人教版七下数学7.1平面直角坐标系专题练习(含答案)

平面直角坐标系【诊断自测】1、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.2、在直角坐标系中,点(2,﹣3)在第象限.3、若点A(x,2)在第二象限,则x的取值范围是.4.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.【考点突破】类型一: 点的坐标特征例1、在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限例2、若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限类型二:点到坐标轴的距离例3、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.类型三:平行或垂直于坐标轴直线上的点坐标特征例4、经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C..经过原点D.无法确定类型四:点坐标的规律性例5、如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)例6、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.类型五:坐标与面积例7、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定例8、如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.类型六:坐标与几何变换例9、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.例10、已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.B(1,7)C.(1,1) D.(2,1)例11、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是.类型七:坐标确定位置例12、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)例13.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2) C.(0,3) D.(1,3)【易错精选】1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()2、定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.43、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.4.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.【精华提炼】1、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题

人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题

2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。

考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。

考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。

注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。

例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。

2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。

人教版七年级下册数学课时练《7.1.2 平面直角坐标系》试卷含答案

人教版七年级下册数学课时练《7.1.2 平面直角坐标系》试卷含答案

人教版七年级下册数学《7.1.2 平面直角坐标系》课时练学校:___________姓名:___________班级:___________一、单选题1.在平面直角坐标系中,点 ()22,3P x +- 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.点M (-3,4)离原点的距离是( )A .3B .4C .5D .73.已知点A (m+2,3m -6)在第一象限角平分线上,则m 的值为( )A .2B .-1C .4D .-24.如图,平面直角坐标系上有P 、Q 两点,其坐标分别为P (4,a )、Q (b ,6).根据图中P 、Q 两点的位置,判断点(﹣b ,a ﹣7)落在第( )象限.A .一B .二C .三D .四5.如果点P (m ,1-2m )在第四象限,那么m 的取值范围是A .0<m <12B .-12<m <0 C .m <0 D .m >126.在平面直角坐标系中,对于坐标P (2,5),下列说法错误的是( )A .P (2,5)表示这个点在平面内的位置B .点P 的纵坐标是5C .点P 到x 轴的距离是5D .它与点(5,2)表示同一个坐标7.如图,下列各点在阴影区域内的是( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)8.在平面直角坐标系中,点M(2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(﹣1,﹣2),“炮”位于(﹣4,1),则“象”位于点( )A .(1,2)B .(﹣2,1)C .(2,﹣2)D .(1,﹣2)10.如图,在平面直角坐标系中,一动点从原点 O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点 ()10,1A , ()21,1A , ()31,0A ()42,0A ,……那么点 41n A + ( n 为自然数)的坐标为( )A .()4,0nB .()2,1nC .()2,0nD .()4,1n11.对点(x ,y )的一次操作变换记为p 1(x ,y ),定义其变换法则如下:p 1(x ,y )=(x+y ,x ﹣y );且规定P n (x ,y )=P 1(P n ﹣1(x ,y ))(n 为大于1的整数).例如:p 1(1,2)=(3,﹣1),p 2(1,2)=p 1(p 1(1,2))=p 1(3,﹣1)=(2,4),p 3(1,2)=p 1(p 2(1,2))=p 1(2,4)=(6,﹣2).则p 2014(1,﹣1)=( ) A .(0,21006) B .(21007,﹣21007) C .(0,﹣21006)D .(21006,﹣21006)12.如图,在平面直角坐标系 xOy 中,点 (1,0)P .点 P 第1次向上跳动1个单位至点 1(1,1)P ,紧接着第2次向左跳动2个单位至点 2(1,1)P - ,第3次向上跳动1个单位至点 3P ,第4次向右跳动3个单位至点 4P ,第5次又向上跳动1个单位至点 5P ,第6次向左跳动4个单位至点6P ,……,照此规律,点 P 第2020次跳动至点 2020P 的坐标是( )A .(506,1010)-B .(505,1010)-C .(506,1010)D .(505,1010)二、填空题13.在平面直角坐标系中,点A (﹣3,6)到y 轴的距离为 .14.在平面直角坐标系内,点P (m -3,m -5)在第四象限中,则m 的取值范围是 15.点 (1,2)P m m -- 在第四象限,则m 的取值范围是 . 16.若点M (a+2,a -3)在y 轴上,则点M 的坐标为 . 17.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是 . 18.在平面直角坐标系中,点(﹣4,4)在第 象限.19.点E(a ,b)到x 轴的距离是4,到y 轴距离是3,且点E 在第四象限,则E 点坐标为 。

七年数学《习题7.1 平面直角坐标系》参考答案

七年数学《习题7.1 平面直角坐标系》参考答案

习题7.1 平面直角坐标系参考答案1. 如图,写出表示下列各点的有序数对:A(3, 3);B(5,2);C(7, 3);D(10, 3);E(10, 5);F(7,7);G(5,7);H(3, 6);I(4,8).2. 根据点所在的位置,用“+”“-”填表.3. 如图,写出其中标有字母的各点的坐标,并指出它们的横坐标和纵坐标.解:如图,A(-5,4);x A= -5, y A= 4;B(-2,2); x B= -2, y B= 2;C(3,4); x C= 3, y C= 4;D(2,1); x D= 2, y D= 1;E(5,-3); x E= 5, y E= -3;F(-1,-2); x F= -1, y F= -2; G(-5,-3); x G= -5, y G= -3; H(-4,-1); x H= -4, y H= -1.4. 在平面直角坐标系中,描出下列各点:点A在y轴上,位于原点上方,距离原点2个单位长度;点B在x轴上,位于原点右侧,距离原点1个单位长度;点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;点D在x轴上,位于原点右侧,距离原点3个单位长度;点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。

依次连接这些点,你能得到什么图形?解:如图,得到的图形是英文字母“W”.5. 如图,在所给的坐标系中描出下列各点:A(-4,-4),B(-2,-2),C(3,3),D(5,5),E(-3,-3),F(0,0).这些点有什么关系?你能再找出一些类似的点吗?解:如图,它们在同一直线上;类似的点还有(-1,-1),(1,1),(2,2),(4,4)等。

(即所有y=x的点)6. 如图,建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(4,0),写出点A,D,E,F,G的坐标,并指出它们所在的象限.解:如图,依题意建立坐标系。

A(-2,3),D(6,1),E(5,3) ,F(3,2),G(1,5)点A在第二象限,点D、E、F、G在第一象限。

2020-2021学年人教版 数学七年级下册 课时训练 7.1 平面直角坐标系(含答案)

2020-2021学年人教版 数学七年级下册 课时训练 7.1 平面直角坐标系(含答案)

人教版七年级下册数学课时训练7.1 平面直角坐标系一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)3. 如图,在平面直角坐标系中,点P的坐标为()A.(3,-2)B.(-2,3)C.(-3,2)D.(2,-3)4. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是()A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)5. 已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 在平面直角坐标系内,有一点P(1,-5),过点P作PA⊥y轴,垂足为A,则点A的坐标是()A.(1,0)B.(0,-5)C.(1,-3)D.(3,-7)7. 四边形ABCD经过平移得到四边形A'B'C'D',若点A(a,b)变为点A'(a-3,b+2),则对四边形ABCD进行的变换是()A.先向上平移3个单位长度,再向右平移2个单位长度B.先向下平移3个单位长度,再向左平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向左平移3个单位长度,再向上平移2个单位长度8. 已知点P(0,a)在y轴的负半轴上,则点Q(-a2-1,-a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题9. 将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A'的坐标为.10. 若点A(a-1,a+2)在x轴上,将点A向上平移4个单位长度得点B,则点B的坐标是.11. 将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12. 若点A的横坐标是2,纵坐标是-3,则点A的坐标是;若点B的坐标是(-2,3),则点B的横坐标是,纵坐标是.13. 如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为.14. 在平面直角坐标系中,已知点A的坐标为(-3,2),点B的坐标为(3,2),连接A,B两点所成线段与平行(填“x轴”或“y轴”).15. 如图,A,B两点的坐标分别为(-2,1),(4,1),则在同一平面直角坐标系内点C的坐标为.16. 在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 已知点A(-5,m+4)和点B(4m+15,-8)是平行于y轴的直线上的两点,求A,B两点的坐标.18. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.19. 如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.答案20. 在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4(____,____),A8(____,____),A12(____,____);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.人教版七年级下册数学课时训练7.1 平面直角坐标系-答案一、选择题1. 【答案】B2. 【答案】A3. 【答案】A4. 【答案】D5. 【答案】A【解析】∵点P(0,m)位于y轴负半轴,∴m<0,∴-m>0,-m +1>0,∴点M(-m,-m+1)的横坐标和纵坐标都大于0,故其在第一象限.6. 【答案】B7. 【答案】D8. 【答案】B[解析] 因为点P(0,a)在y轴的负半轴上,所以a<0,所以-a2-1<0,-a+1>0,所以点Q在第二象限.故选B.二、填空题9. 【答案】(-2,2)10. 【答案】(-3,4)[解析] ∵点A(a-1,a+2)在x轴上,∴a+2=0,解得a=-2,则点A的坐标为(-3,0).∵将点A向上平移4个单位长度得点B,∴坐标为(-3,4).11. 【答案】(1,3)12. 【答案】(2,-3)-2313. 【答案】(a-2,b+3)[解析] 由图可知线段AB向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).14. 【答案】x轴15. 【答案】(0,3)16. 【答案】(16,1+3)解析:可以求得点A(-2,-1-3),则第一次变换后点A的坐标为A1(0,1+3),第二次变换后点A的坐标为A2(2,-1-3),可以看出每经过两次变换后点A的y坐标就还原,每经过一次变换x坐标增加2.因而第九次变换后得到点A9的坐标为(16,1+3).三、解答题17. 【答案】解:依题意,得4m+15=-5,解得m=-5.所以A(-5,-1),B(-5,-8).18. 【答案】[解析] 三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB 交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB =S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.19. 【答案】解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.20. 【答案】解:(1)A4(2,0),A8(4,0),A12(6,0);(2)A4n的坐标为(2n,0);(3)蚂蚁从点A100到点A101的移动方向是向上.。

专题7.1平面直角坐标系(举一反三)(人教版)(原卷版)2

专题7.1平面直角坐标系(举一反三)(人教版)(原卷版)2

专题7.1 平面直角坐标系【八大题型】【人教版】【题型1 判断点所在的象限】 (1)【题型2 坐标轴上点的坐标特征】 (2)【题型3 点到坐标轴的距离】 (2)【题型4 平行与坐标轴点的坐标特征】 (3)【题型5 坐标确定位置】 (3)【题型6 点在坐标系中的平移】 (5)【题型7 图形在坐标系中的平移】 (6)【题型8 图形在格点中的平移变换】 (7)【题型1 判断点所在的象限】【例1】(2022春•洪山区期末)已知点P(x,y)在第四象限,则点Q(﹣x﹣3,﹣y)在()A.第一象限B.第二象限C.第三象限D.第四象限【变式11】(2022春•长沙期末)已知点P(﹣a,b),ab>0,a+b<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【变式12】(2022春•青山区期末)已知,点A的坐标为(m﹣1,2m﹣3),则点A一定不会在()A.第一象限B.第二象限C.第三象限D.第四象限【变式13】(2022春•晋州市期中)对任意实数x,点P(x,x2+3x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【题型2 坐标轴上点的坐标特征】【例2】(2022春•陇县期中)在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点P(m﹣1,1﹣m)在()A.第一象限B.第二象限C.第三象限D.第四象限【变式21】(2022春•海淀区校级期中)在平面直角坐标系中,点P的坐标为(2m﹣4,m+1),若点P在y轴上,则m的值为()A.﹣1B.1C.2D.3【变式22】(2022春•仓山区校级期中)已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【变式23】(2022春•东莞市期中)已知点P(2a﹣4,a+1),若点P在坐标轴上,则点P的坐标为.【题型3 点到坐标轴的距离】【例3】(2022春•巴南区期末)已知点P在x轴的下方,若点P到x轴的距离是3,到y轴的距离是4,则点P的横坐标与纵坐标的和为.【变式31】(2021秋•城固县期末)已知点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M到两坐标轴的距离之和为6,则点M的坐标为.【变式32】(2022春•云阳县期中)坐标平面内有一点A(x,y),且点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍.若xy<0,则点A的坐标为()A.(6,﹣3)B.(﹣6,3)C.(3,﹣6)或(﹣3,6)D.(6,﹣3)或(﹣6,3)【变式33】(2021秋•阳山县期末)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1B.2C.3D.1 或3【题型4 平行与坐标轴点的坐标特征】【例4】(2022春•东莞市期末)在平面直角坐标系中,点A的坐标为(3,2),AB平行于x轴,若AB=4,则点B的坐标为()A.(7,2)B.(1,5)C.(1,5)或(1,﹣1)D.(7,2)或(﹣1,2)【变式41】(2022春•延津县期中)在平面直角坐标系中,点A(﹣2,1),B(2,3),C(a,b),若BC∥x轴,AC∥y轴,则点C的坐标为()A.(﹣2,1)B.(2,﹣3)C.(2,1)D.(﹣2,3)【变式42】(2022春•涪陵区期末)在平面直角坐标系中,若点P和点Q的坐标分别为P(﹣2,m),Q (﹣2,1),点P在点Q的上方,线段PQ=5,则m的值为()A.6B.5C.4D.7【变式43】(2022春•硚口区期中)如图,已知点A(4,0),B(0,2),C(﹣5,0),CD∥AB交y 轴于点D.点P(m,n)为线段CD上(端点除外)一点,则m与n满足的等量关系式是()A.m+2n=﹣5B.2m+n=﹣10C.m﹣n=﹣5D.2m﹣n=﹣6【题型5 坐标确定位置】【例5】(2022春•中山市期中)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,(﹣2,0)表示“士”的位置,那么“将”的位置应表示为()A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)【变式51】(2021秋•渠县校级期中)在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(1,2),四号暗堡坐标为(﹣3,2),指挥部坐标为(0,0),则敌人指挥部可能在()A.A处B.B处C.C处D.D处【变式52】(2022春•朝阳区期末)为更好的开展古树名木的系统保护工作,某公园对园内的6棵百年古树都利用坐标确定了位置,并且定期巡视.(1)在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A、B的位置分别表示为A(1,2),B(0,﹣1);(2)在(1)建立的平面直角坐标系xOy中,①表示古树C的位置的坐标为;②标出另外三棵古树D(﹣1,﹣2),E(1,0),F(1,1)的位置;③如果“(﹣2,﹣2)→(﹣2,﹣1)→(﹣2,0)→(﹣2,1)→(﹣1,2)→(0,2)→(1,2)→(1,1)→(1,0)→(1,﹣1)→(0,﹣1)→(0,﹣2)→(﹣1,﹣2)”表示园林工人巡视古树的一种路线,请你用这种形式画出园林工人从原点O出发巡视6棵古树的路线(画出一条即可).【变式53】(2022春•海淀区校级期中)如图1,将射线OX 按逆时针方向旋转β角(0°≤β<360°),得到射线OY ,如果点P 为射线OY 上的一点,且OP =m ,那么我们规定用(m ,β)表示点P 在平面内的位置,并记为P (m ,β).例如,图2中,如果OM =5,∠XOM =110,那么点M 在平面内的位置,记为M (5,110°),根据图形,解答下列问题:(1)如图3,点N 在平面内的位置记为N (6,30°),那么ON= ,∠XON = .(2)如果点A 、B 在平面内的位置分别记为A (4,30°),B (3,210°),则A 、B 两点间的距离为 .【知识点5 点在坐标系中的平移】平面直角坐标内点的平移规律,设a >0,b >0(1)一次平移:P (x ,y ) P '(x +a ,y )P (x ,y ) P '(x ,y -b ) (2)二次平移:【题型6 点在坐标系中的平移】【例6】(2022春•洪湖市期中)在平面直角坐标系中,将点(1,﹣4)平移到点(﹣3,﹣2),经过的平移变换为( )A .先向左平移4个单位长度,再向下平移6个单位长度B .先向右平移4个单位长度,再向上平移6个单位长度C .先向左平移4个单位长度,再向上平移2个单位长度D .先向右平移4个单位长度,再向下平移2个单位长度【变式61】(2022春•武侯区期末)在平面直角坐标系中,将点M (3m ﹣1,m ﹣3)向上平移2个单位长度得到点M ',若点M '在x 轴上,则点M 的坐标是( )A .(2,﹣2)B .(14,2)C .(﹣2,−103)D .(8,0)【变式62】(2022春•碑林区校级期中)在平面直角坐标系中,将点P (a ,b )向右平移3个单位,再向下P (x ,y ) P (x - a ,y +b ) 向左平移a 个单位再向上平移b 个单向下平移b 个单位向右平移a 个单位平移2个单位,得到点Q.若点Q位于第四象限,则a,b的取值范围是()A.a>0,b<0B.a>1,b<2C.a>1,b<0D.a>﹣3,b<2【变式63】(2021秋•苏州期末)在平面直角坐标系中,把点P(a﹣1,5)向左平移3个单位得到点Q(2﹣2b,5),则2a+4b+3的值为.【题型7 图形在坐标系中的平移】【例7】(2022春•胶州市期末)如图,△ABC的顶点坐标A(2,3),B(1,1),C(4,2),将△ABC 先向左平移3个单位,再向下平移1个单位,得到△A'B'C',则BC边上一点D(m,n)的对应点D'的坐标是()A.(m+3,n+1)B.(m﹣3,n﹣1)C.(﹣1,2)D.(3﹣m,1﹣n)【变式71】(2022•青岛二模)如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段A'B'有一个点P'(a,b),则点P'在AB上的对应点P的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【变式72】(2022春•滨城区期中)如图,第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ 平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是()A.(﹣2,0)B.(0,3)C.(0,3)或(﹣4,0)D.(0,3)或(﹣2,0)【变式73】(2022春•如东县期中)三角形ABC在经过某次平移后,顶点A(﹣1,m+2)的对应点为A(2,m﹣3),若此三角形内任意一点P(a,b)经过此次平移后对应点P1(c,d).则a+b﹣c﹣d的值为()A.8+m B.﹣8+m C.2D.﹣2【题型8 图形在格点中的平移变换】【例8】(2021春•抚远市期末)在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.【变式81】(2022春•长沙期末)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',且点C的对应点坐标是C'.(1)画出△A'B'C',并直接写出点C'的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P',直接写出点P'的坐标;(3)求△ABC的面积.【变式82】(2022春•江岸区校级月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式83】(2021春•安阳县期中)在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m 和n的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面直角坐标系》练习题
班别:___________姓名:_______________
一、选择题
1. 若m<0,则点P(3,2m)所在的象限是 ( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2. 点 M(3,-4)关于x轴的对称点的坐标是 ( )
A. (3,4)
B. (−3,−4)
C. (−3,4)
D. (−4,3)
3.P(a,b) 是第二象限内一点,则Q(b,a) 位于 ( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
4. 下列说法:①坐标轴上的点不属于任何象限;②y轴上点的横坐标为0;③平面直角坐标系中,(1,2) 和 (2,1) 表示两个不同的点;④点(3,0) 在x轴上,其中你认为正确的有 ( )
A. 1个
B. 2个
C. 3个
D. 4个
5. 若点A(3−m,n+2)关于原点的对称点B的坐标是(−3,2),则m,n的值为 ( )
A. m=−6,n=−4
B. m=0,n=−4
C. m=6,n=4
D. m=6,n=−4
6. 已知点A(−3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是 ( )
A. (−3,3)
B. (3,−3)
C. (−3,3)或(−3,−3)
D. (−3,3)或(3,−3)
7. 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是 ( )
A. 2
B. 1
C. 4
D. 3
8. 若点P(a,b)在第四象限,则点Q(b,−a)所在的象限为 ( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
9. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,⋯,这样依次得到点A1,A2,A3,⋯,A n,⋯.例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),⋯;若点A1的坐标为(a,b),则点
A2015的坐标为 ( )
A. (−b+1,a+1)
B. (−a,−b+2)
C. (b−1,−a+1)
D. (a,b)
10. 在平面直角坐标系中,把点P(−3,2)绕原点O顺时针旋转180∘,所得到的对应点Pʹ的坐标为 ( )
A. (3,2)
B. (2,−3)
C. (−3,−2)
D. (3,−2)
11. 在平面直角坐标系中,点A(−2,1)与点B关于原点对称,则点B的坐标为 ( )
A. (−2,1)
B. (2,−1)
C. (2,1)
D. (−2,−1)
12. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从
内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,
则顶点A55的坐标是
A. (13,13)
B. (−13,−13)
C. (14,14)
D. (−14,−14)
二、填空题
13. 平面直角坐标系中,点(−3,4)关于y轴对称的点的坐标是.
14. 点P在第二象限内,P 到x 轴的距离是1,到y轴的距离是2,那么点P的坐标为.
15. 在平面直角坐标系中,已知A(−1,0),B(3,0),点C在y轴上,△ABC的面积是4,则点C的坐标是.
16. 点P(3−a,a−1)在y轴上,则点Q(2−a,a−6)在第象限.
17. 如图,长方形ABCD中,A(−4,1),B(0,1),C(0,3),则D点坐标是,
长方形的面积为.
18. 如图所示,在平面直角坐标系中,横坐标、纵坐标都为整数的点为整点,
观察图形中的每一个正方形(实线)四条边上的整点的个数,请你猜想由里向
外第100个正方形(实线)四条边上的整点共有个.
三、解答题
19. 将边长为1的正方形ABCD放在直角坐标系中,使C的坐标为(1
2,1
2 ).请建
立直角坐标系,并求其余各点的坐标.
20. 已知点M(3a−8,a−1).
(1) 若点M在第二、四象限角平分线上,则点M的坐标为.
(2) 若点M在第二象限;并且a为整数,则点M的坐标为.
(3) 若N点坐标为(3,−6),并且直线MN∥x轴;则点M的坐标为.
21. 已知点P(a−3,2a+1),且点P到两坐标轴的距离相等,求点P的坐标.
22. 四边形ABCD各顶点的位置如图所示,求四边形ABCD的面积.
23. 如图,△AOB的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).
(1) 求△AOB的面积;
(2) 若O,A两点的位置不变,且P点在y轴正半轴,若S△OAP=2S△OAB,
求P点的坐标;
(3) 若B,O两点的位置不变,M点在x轴上,M点在什么位置时,
S△OBM=2S△OAB
第17题
答案第一部分
1. D
2. A
3. D
4. D
5. B
6. C
7. C
8. C
9. B 10. D 11. B 12. C
第二部分
13. (3,4)
14. (−2,1)
15. (0,2)或(0,−2)
16. 三
17. (−4,3);8
18. 400
第三部分
19. 如图,
A(−1
2,−1
2
),B(1
2
,−1
2
),D(−1
2
,1
2
).
20. (1) (−5
4,5
4
) (2) (−2,1) (3) (−23,−6)
21.因为点P(a−3,2a+1)到两坐标轴的距离相等,所以a−3=2a+1或a−3=−(2a+1),
所以a=−4或a=2
3,故P(−7,−7)或P(−7
3
,7
3
).
22. (1) 过D分别作DE⊥OC,DF⊥OA.
S
四边形ABCD =S△ABO+S△AFD+S△DEC+S
正方形OEDF
=1
2
×1×4+1
2
×1×3+1
2
×2×3+3×3 =15.5.
即四边形ABCD的面积为15.5.
23. (1) S△AOB=1
2
×5×4=10.
(2) S△OAP=1
2
×5×y p=20,所以y p=8.
∴P(0,8) .
(3) S△OBM=1
2
×∣x M∣×4=20,所以∣x M∣=10,所以x M=10或x M=−10.∴M(−10,0)或M(10,0) .。

相关文档
最新文档