高中数学函数的单调性与最值练习题

合集下载

高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.下列函数中,既是奇函数又是增函数的为A.B.C.D.【答案】D【解析】为非奇非偶函数,为偶函数,是奇函数,但在定义域内不是增函数。

【考点】奇函数与增(减)函数的定义。

2.定义在上的偶函数满足:对任意的,有则()A.B.C.D.【答案】B【解析】由对任意的,有可知在为减函数,,又为偶函数,故,.故选B.【考点】函数的性质的应用.3.已知函数,则下列结论正确的是().A.是偶函数,递增区间是B.是偶函数,递减区间是C.是奇函数,递减区间是D.是奇函数,递增区间是【答案】C【解析】,其图像如图所示,由图像得是奇函数,递减区间是.【考点】分段函数的图像与性质.4.已知函数是定义在上的偶函数,且当时,.现已画出函数在轴左侧的图象,如图所示,并根据图象:(1)写出函数的增区间;(2)写出函数的解析式;(3)若函数,求函数的最小值.【答案】(1);(2);(3).【解析】解题思路:(1)利用偶函数的图像关于轴对称,得到在轴右侧的图像,再利用图像写出单调递增区间;(2)设,则,求,再利用偶函数求的解析式;(3)讨论对称轴与区间的关系,求出最小值.规律总结:1.奇函数的图像关系原点对称,偶函数的图像关系轴对称;2.二次函数的图像开口向上时,离对称轴越近的点对应的函数值越小,离对称轴越远的点对应的函数值越大.试题解析:(1)在区间,上单调递增.(2)设,则.函数是定义在上的偶函数,且当时,(3),对称轴方程为:,当时,为最小;当时,为最小当时,为最小.综上,有:的最小值为.【考点】1.函数的图像;2.函数的单调性;3.函数的解析式;4.函数的最值.5.函数,使是增函数的的区间是________.【答案】【解析】令在R上是减函数,又因为函数在(-,1]是减函数,由复合函数的单调性可知的增区间为: (-,1]【考点】复合函数的单调性.6.已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.【答案】 .【解析】根据条件中是奇函数的这一条件可以求得使的的范围,再根据与的表达式,可以得到与的交集即是使恒成立的所有的全体,通过参变分离可以将问题转化为求使恒成立的的取值范围,通过求函数最大值,进而可以求出的范围.依题意,,又在上是增函数,∴在上也是增函数, 1分∴由得或 2分∴或 3分4分由得 5分即 6分∴ 7分设, 9分∵, 10分∴, 11分且 12分∴的最大值为 13分∴ 14分另解:本题也可用下面解法:1. 用单调性定义证明单调性∵对任意,,,∴,即在上为减函数,同理在上为增函数,得 5分∴.2. 二次函数最值讨论解:依题意,,又在上是增函数,∴在上也是增函数,∴由得或∴或,4分由得恒成立,5分设, 6分∵,的对称轴为 7分1°当,即时,在为减函数,∴ 9分2°当,即时,∴ 11分3°当,即时,在为增函数,∴无解 13分综上, 14分3. 二次方程根的分布解:依题意,,又在上是增函数,∴在上也是增函数,∴由得或∴或,,由得恒成立,,设,∵,的对称轴为,, 7分1°当,即时,恒成立。

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分)1.函数2()log f x x =在区间[1,2]上的最小值是( )A .1-B .0C .1D .2 2.已知212()log (2)f x x x =-的单调递增区间是( )A.(1,)+∞B.(2,)+∞C.(,0)-∞D.(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b->-成立,则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加4.若在区间(-∞,1]上递减,则a 的取值范围为( )A. [1,2)B. [1,2]C. [1,+∞)D. [2,+∞)5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .26.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有2121()(()())0x x f x f x -->.则满足(21)f x -<x 取值范围是( )A. B. C.7.已知(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x xx ax a a 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A.(0,1)B.(0,31) C.[71,31) D.[71,1)8.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 9.已知函数()f x 是定义在[0,)+∞的增函数,则满足(21)f x -<的x 取值范围是( )(A )(∞- (B ) (C )∞+) (D ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2xy = B .1y x= C .2y x = D .tan y x = 11.已知函数(a 为常数).若在区间[-1,+∞)上是增函数,则a 的取值范围是( ) A .B .C .D .12.如果函数()f x 对任意的实数x ,都有()()1f x f x =-,且当12x ≥时, ()()2log 31f x x =-,那么函数()f x 在[]2,0-的最大值与最小值之差为( )A. 4B. 3C. 2D. 1 二、填空题(每小题4分)13.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是14.设函数()f x =⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足()2f x ≤的x 的取值范围是 .15.2()24f x x x =-+的单调减区间是 . 16.已知函数)(x f 满足),()(x f x f =-当,(,0]a b ∈-∞时总有,若)2()1(m f m f >+,则实数m 的取值范围是_______________.17.函数2()(1)2f x x =--的递增区间是___________________ . 18.已知函数()[]5,1,4∈+=x xx x f ,则函数()x f 的值域为 . 19.函数2(),,.f x x ax b a b R =-+∈若()f x 在区间(,1)-∞上单调递减,则a 的取值范围 .20.已知函数2()48f x x kx =--在区间[]5,10上具有单调性,则实数k 的取值范围是 . 21.已知函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a 的取值范围为_________.22.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则实数m 的取值范围为 .23.若函R 上的增函数,则实数a 的取值范围是 .24.已知函数f(x)=e x -1,g(x)=-x 2+4x -3,若有f(a)=g(b),则b 的取值范围为________. 25.已知函数f(x)(a≠1).若f(x)在区间(0,1]上是减函数,则实数a 的取值范围是________.参考答案1.B 【解析】试题分析:画出2()log f x x =在定义域}{0>x x 内的图像,如下图所示,由图像可知2()log f x x =在区间[1,2]上为增函数,所以当1=x 时2()log f x x =取得最小值,即最小值为2(1)log 10f ==。

高中数学函数的单调性与最值练习题

高中数学函数的单调性与最值练习题

函数的单调性与最值1.下列函数中,在区间(-1,1)为减函数的是( )A .xy -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( )A .)2,(--∞B .)1,(-∞C .),1(+∞D .),4(+∞3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( )A .-3B .-2C .-1D .14函数xx x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞5设函数)1()(,0,10,00,1)(2-=⎪⎩⎪⎨⎧<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( )A .]0,(-∞B .)1,0[C .),1[+∞D .]0,1[-6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[--B .]4,6[--C .]22,3[--D .]3,4[-- 7.函数],(,12n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[-8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数xx f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是10.已知函数f (x)的值域为]94,83[,则函数)(21)()(x f x f x g -+=的值域为1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( )A .]1,0(B .]2,1[C .+∞,1[)D .+∞,2[)2.已知函数⎪⎩⎪⎨⎧>-≤--=1,1log 1,41)(x x x x ax x f a 是R 上的单调函数,则实数a 的取值范围是( ) A .)21,41[ B .]21,41[ C .]21,0( D .)1,21[3.已知函数f (x)是定义在),0(+∞上的增函数,若)3()(2+>-a f a a f ,则实数a 的取值范围为4.已知减函数f (x)的定义域是R ,m,n 都是实数,如果不等式)()()()(n f m f n f m f --->-成立,那么下列不等式成立的是( )A .0<-n mB .0>-n mC .0<+n mD .0>+n m 5.设函数⎩⎨⎧<≥+=1,1,)(2x x x x m x f 的图像过点(1,1),函数g (x)是二次函数,若函数f (g (x))的值域是),0[+∞,则函数g (x)的值域是6.已知函数f (x)是R 上的增函数,A (0,-3)B (3,1)是其图像上的两点,那么不等式1)1(3<+<-x f 的的解集的补集是( )A .)2,1(-B .)4,1(C .),4[)1,(+∞⋃--∞D .),2[]1,(+∞⋃--∞7.已知函数)0,0(11)(>>-=x a xa x f (1)求证:f (x)在),0(+∞上是增函数 (2)若f (x)在]2,21[上的值域是]2,21[,求a 的值8.已知函数)2lg()(-+=xa x x f ,期中a 是大于0的常数 (1)求函数f (x)的定义域(2)当)4,1(∈a 时,求函数f (x)在),∞+2[上的最小值 (3)若对任意),2[+∞∈x 恒有0)(>x f ,试确定a 的取值范围。

高二数学函数的单调性与最值试题答案及解析

高二数学函数的单调性与最值试题答案及解析

高二数学函数的单调性与最值试题答案及解析1.下列函数中,在区间为增函数的是()A.B.C.D.【答案】A【解析】由幂函数的性质得在区间上是增函数;由于对称轴为,因此在区间上是减函数;区间上是减函数;底数为0.5,区间上是减函数.【考点】函数的单调性.2.函数f(x)=2x﹣sinx在(﹣∞,+∞)上().A.有最小值B.是减函数C.有最大值D.是增函数【答案】D.【解析】,;因为恒成立,所以在上是增函数.【考点】利用导数判断函数的单调性.3.已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为.【答案】6.【解析】因为的图像过,所以,即;因为f(x)在x=1,x=2时取得极值,所以的两根为1,2,则,即;则,所以.【考点】函数的零点、函数的极值.4.奇函数在定义域上是减函数,且,则实数的取值范围是__________.【答案】【解析】因为为奇函数,所以由,得,又因为函数在定义域上是减函数,所以有,解得,故实数的取值范围是,注意不要忽略定义域.【考点】抽象函数的性质及解不等式.5.已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;(3)求f(x)在[-3,6]上的最大值与最小值.【答案】(1)见解析;(2)见解析;(3)最大值为2,最小值为-4【解析】(1)欲证函数为奇函数,需寻找关系.由题中条件可知,需要从f(x)+f(y)=f(x+y)拼凑出与,令,便有,需求得,考虑到,令特殊值求;(2)同一样的思想,这里需要拼凑出与()不等于关系(需利用当x>0时,f(x)<0);(3)利用(1),(2)结论解(3).试题解析:令,可得从而.令,可得,即,故为奇函数. 4分证明:设,且,则,于是.从而.所以为减函数. 8分解:由(2)知,所求函数的最大值为,最小值为.,.于是在上的最大值为2,最小值为-4. 12分【考点】(1)函数奇偶性的证明(明确一般方法和过程);(2)函数单调性证明(紧扣证明过程);(3)求函数最值.6.已知函数是定义在上的减函数,函数的图象关于点对称. 若对任意的,不等式恒成立,的最小值是()A.3B.2C.1D.0【答案】C【解析】函数的图象关于点对称,函数的图象关于点对称,即函数是奇函数,不等式恒成立等价为;又是定义在上的减函数,,即;,即的最小值为2.故选C.【考点】函数单调性与对称性;不等式恒成立;函数值域.7.设函数.(1)用反证法证明:函数不可能为偶函数;(2)求证:函数在上单调递减的充要条件是.【答案】(1)祥见解析;(2) 祥见解析.【解析】(1)反证法证明的一般步骤是:先假设结论不正确,从而肯定结论的反面一定成立,在此基础上结合题目已知条件,经过正确的推理论证得到一个矛盾,从而得到假设不成立,所以结论正确;此题只需假设假设函数是偶函数,既然是偶函数,则对定义域内的一切x都有成立,那么我们为了说明假设不成立,即不可能成立,只需任取一个特殊值代入检验即可;(2)由于是证明函数在上单调递减的充要条件是:;应分充分性和必要性两个方面来加以证明,先证充分性:来证明一定成立;再证必要性:由函数在上单调递减在上恒成立,来证明即可,注意已知中的这一条件.试题解析:(1)假设函数是偶函数, 2分则,即,解得, 4分这与矛盾,所以函数不可能是偶函数. 6分(2)因为,所以. 8分①充分性:当时,,所以函数在单调递减; 10分②必要性:当函数在单调递减时,有,即,又,所以. 13分综合①②知,原命题成立. 14分(说明:用函数单调性的定义证明的,类似给分;用反比例函数图象说理的,适当扣分)【考点】1.反证法;2.函数的单调性;3.充要性的证明.8.设奇函数在上为增函数,且,则不等式的解集为()A.B.C.D.【答案】D【解析】因为奇函数在上为增函数,所以在上也是增函数,且,从而在定义域上的大致图象为:所以的解集为:,故选D.【考点】函数的奇偶性与单调性.9.已知命题p:函数在上单调递减.⑴求实数m的取值范围;⑵命题q:方程在内有一个零点.若p或q为真,p且q为假,求实数m 的取值范围.【答案】⑴ 1<m<3; ⑵.【解析】(1)由于u=6-mx中m>0,所以u在[1,2]上是减函数,由复合函数的单调性可知函数在上必是增函数且u=6-mx>0在[1,2]上恒成立;故有m>1且6-2m>0,所以1<m<3;(2)由q命题为真可知:函数与直线y=-m-1有且只有一交点,由图象得:-m-1=-1或-m-1-1,故有;再由p或q为真,p且q为假知p与q必然一真一假,从而求得m的取值范围.试题解析:.⑴,⑵由q命题为真可知:方程在内有一个零点等价于:函数与直线y=-m-1有且只有一交点,由图象得:-m-1=-1或-m-1-1,故有;又因为p或q为真,p且q为假知p与q必然一真一假,所以有,所以.【考点】1.复合函数的单调性,2.函数的零点,3.复合命题真假的判断.10.已知函数是上的增函数,(1)若,且,求证(2)判断(1)中命题的逆命题是否成立,并证明你的结论。

(word完整版)高中数学函数的单调性和最值习题和详解

(word完整版)高中数学函数的单调性和最值习题和详解

高中数学高考总复习函数的单调性与最值习题及详解一、选择题1 •已知f(x)=—X—X3, x€ [a, b],且f(a)f(b)<0,则f(x) = 0 在[a, b]内()A•至少有一实数根B.至多有一实数根C •没有实数根D.有唯一实数根[答案]D[解析]•••函数f(x)在[a, b]上是单调减函数,又f(a), f(b)异号•••• f(x)在[a, b]内有且仅有一个零点,故选 D.2 • (2010北京文)给定函数①y= x1,②y= log2(x+ 1),③y=x —11,④y= 2x+1,其中在区间(0,1)上单调递减的函数的序号是()A .①②B.②③C .③④D.①④[答案]B1 1 1[解析]易知y = X2在(0,1)递增,故排除A、D选项;又y= logq(x+ 1)的图象是由y= logqx的图象向左平移一个1单位得到的,其单调性与y= log^x相同为递减的,所以②符合题意,故选 B.1 1 13 • (2010 济南市模拟)设y1 = 0.43, y2= 0.53,y3= 0.54,则( )A • y3<y2<y1 B. y1<y2<y3C. y2<y3<y1D. y1<y3<y2[答案]B1 1[解析]•/ y= 0.5x为减函数,• 0.53<0.54,1•/ y= x3在第一象限内是增函数,1 1二0.43<0.53,二y1<y2<y3,故选 B.a _ 2 x ___ 1 x W14. (2010 •州市)已知函数,若f(x)在(—a, + a上单调递增,贝U实数a的取值范围为()log a x x>1A • (1,2) B. (2,3)C. (2,3]D. (2,+a)[答案]C[解析]••• f(x)在R上单调增,a>1a —2>0 , a —2 X1 —1 w log1••• 2<a W3,故选 C. 5.(文)(2010山东济宁)若函数f (x )= x 2+ 2x + alnx 在(0,1)上单调递减,则实数 a 的取值范围是()A . a > 0B . a <0 D . a <— 4[答案]Da 2x 2 + 2x + a[解析]•••函数 f(x)= x 2 + 2x + alnx 在(0,1)上单调递减,•••当 x € (0,1)时,f'x) = 2x + 2+- = ------- g(x)x — =2x 2 + 2x + a <0在 x € (0,1)时恒成立,• g(0) <p g(1) <p 即 a <— 4.n n(理)已知函数y = tan^x 在—2, 2内是减函数,贝卩3的取值范围是()A . 0< 1B . — 1 <o <0C . 3 》1D . 3<— 1[答案]Bn n[解析]•/ tansx 在—2,2上是减函数, • 3<0.当—n <x<2时,有n _冗3< c < 3X —7t3<0 6. (2010 天津文)设 a = log 54, b = (log 53)2, c = log 45,则( )A . a v c v bD . b v a v c[答案]D[解析] T 1>log 54>log 53>0,「. Iog 53>(log 53)2>0,而 Iog 45>1,「. c>a>b. 7 .若f(x)= x 3— 6ax 的单调递减区间是(一2,2),则a 的取值范围是( )A . (—s, 0]B . [ — 2,2]C . {2}D . [2,+ s)[答案]C[解析]f 'x) = 3x 2— 6a ,,…一1 <3<0.B . b v c v a 2 兀 n若a<0则f'x) >0 • f(x)单调增,排除A ;若a>0,则由f'x)= 0 得x= ± 2a,当x< —.2a 和x> ,2a 时,f'x)>0, f(x)单调增,当一.2a<x<,2a 时,f(x)单调减,••• f(x)的单调减区间为(—.2a, 2a),从而J2a = 2,a= 2.[点评]f(x)的单调递减区间是(一2,2)和f(x)在(—2, 2)上单调递减是不同的,应加以区分.1 18. (文)定义在R上的偶函数f(x)在[0,+ ^上是增函数,若f(?)= 0,则适合不等式f(log^7x)>0的x的取值范围是()1A . (3, + s) B. (0,刁1C . (0, + ) D. (0, 3) U (3 ,+s)[答案]D1 1[解析]•••定义在R上的偶函数f(x)在[0,+s上是增函数,且f( ) = 0,则由f(log丄x)>0,得|log丄x|>,即log!3 27 27 3 271 1 x>孑或log—x< —百.选D.327 3(理)(2010南充市)已知函数f(x)图象的两条对称轴x= 0和x= 1,且在x€ [—1,0]上f(x)单调递增,设a= f(3), b =f( 2), c= f(2),贝U a、b、c的大小关系是()A. a>b>cB. a>c>bC. b>c>aD. c>b>a[答案]D[解析]••• f(x)在[—1,0]上单调增,f(x)的图象关于直线x= 0对称,• f(x)在[0,1]上单调减;又f(x)的图象关于直线x= 1对称,• f(x)在[1,2]上单调增,在[2,3]上单调减.由对称性f(3) = f( —1)= f(1)<f( _2)<f(2),即a<b<c.x2+ 4x, x>09. (2009天津高考)已知函数f(x) = 2n若f(2 —a2)> f(a),则实数a的取值范围是()4x—x , x v 0.A . (— s,—1) U (2,+ s)B . ( —1,2)C . ( —2,1)D . (— s,—2) U (1 ,+ s)[答案]C[解析]■/ 时,f(x) = x2+ 4x= (x+ 2)2—4 单调递增,且f(x)当x<0 时,f(x)= 4x—x2=—(x —2)2+ 4 单调递增,且f(x)<0 ,• f(x)在R 上单调递增,由f(2 —a2)>f(a)得2—a2>a,•—2<a<1.10 . (2010泉州模拟)定义在R上的函数f(x)满足f(x + y) = f(x) + f(y),当x<0时,f(x)>0,则函数f(x)在[a, b]上有( )A .最小值f(a)B .最大值f(b)C .最小值f(b)D .最大值a +b f 2[答案]C[解析]令x = y= 0 得,f(0)= 0,令y=—x得,f(0) = f(x)+ f(—x),二f(—x)=—f(x)-对任意x i , X2 € R 且x i <X2,,f(x i) —f(X2)= f(x i) + f( —x2)=f(x i —X2)>0 ,.•• f(X l)>f(X2),••• f(x)在R上是减函数,••• f(x)在[a,b]上最小值为f(b).二、填空题b i11. (2010 重庆中学)已知函数f(x)= ax+ x—4(a, b 为常数),f(lg2) = 0,则f(lg^)= _____________[答案]—8[解析]令(Kx)= ax+ b,贝V H x)为奇函数,f(x) = $(x) —4,入•- f(lg2) = H lg2) —4 = 0 ,• H lg2)= 4,“ 1•-饥刁=f(—lg2) = H( —lg2) —4=—y ig2) —4=—8.12 .偶函数f(x)在(—s,0]上单调递减,且f(x)在[—2,k]上的最大值点与最小值点横坐标之差为3,则k= __________[答案]3[解析]•••偶函数f(x)在(—R, 0]上单调递减,• f(x)在[0,+ ^上单调递增.因此,若k WQ贝U k—(—2) = k + 2<3,若k>0,v f(x)在[—2,0]上单调减在[0,—k]上单调增,.••最小值为f(0), 又在[—2, k]上最大值点与最小值点横坐标之差为3,• k—0= 3,即k= 3.13 .函数f(x)= aX 1在(—m, —3)上是减函数,则a的取值范围是________________x+ 3[答案]1 ——OO ——_,314 . (2010 •苏无锡市调研)设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+^上是增函数,若f:=0 , f(log a t)>0,贝y t的取值范围是 _______ .[答(1,扫u (0,诵)案]1[解析]f(log a t)>0,即 f(log a t)>f 2, 1••• f(x)在(0,+ ^上 为增函数,二 log a t>2, 0<a<1 ,.°. 0<t<“Ja.1 i又 f(x)为奇函数,••• f — - =- f- = 0,r 1…f(log a t)>0 又可化为 f(log a t)>f — 2 , •••奇函数f(x)在(0 ,+8上是增函数,1• f(x)在(—8, 0)上为增函数,• 0>log a t> — 2,综上知,0<t< a 或1<t< a , 三、解答题15. (2010 北京市东城区)已知函数 f(x) = log a (x + 1) — log a (1 — x), a>0 且 a * 1. (1) 求f(x)的定义域;⑵判断f(x)的奇偶性并予以证明;⑶当a>1时,求使f(x)>0的x 的取值集合.[解析](1)要使 f(x) = log a (x + 1) — log a (1 — x)有意义,则 x + 1>0,解得—1<x<1.1 — x>0故所求定义域为{x — 1<x<1}.⑵由(1)知f(x)的定义域为{X — 1<x<1},且 f( — x) = log a ( — x +1)— log a (1 + x) = — [log a (x + 1) — log a (1 — x)] = — f(x),故 f(x)为奇函数. ⑶因为当a>1时,f(x)在定义域{x|— 1<x<1}内是增函数, x + 1所以 f(x)>0?产->1.1 — x 解得0<x<1.所以使f(x)>0的x 的取值集合是{x|0<x<1}.1 — mx 口 亠 p16. (2010北京东城区)已知函数f(x)= log a 是奇函数(a>0,a * 1) x — 1(1) 求m 的值;(2) 求函数f(x)的单调区间;(3) 若当x € (1,a — 2)时,f(x)的值域为(1,+8),求实数a 的值. “八卄亠1 — mx . 1+ mx 小•/ 0<a<1 ,1<t<1a ,[解析](1)依题意,f(—x)=—f(x),l卩f(x) + f(—x)= 0,即log a x—1 + log a—x—1 = 0,1 —mx 1 + mx•••—1,二(1 —m2)x2= 0 恒成立,x—1 —X—1 '•1 — m2= 0,「. m=—1或m= 1(不合题意,舍去)1 + x当m=—1时,由一>0得,x € (—汽一1) U (1,+s),此即函数f(x)的定义域,x —1又有f( —x) = —f(x),• m=—1是符合题意的解.1 + x⑵•/ f(x) = log a x z7,x—1 1 +X ,•- f x) = logx+ 1 x—1 &_ x—1 x—1 —x+1 2log a ex+1 x —1 2log a e—1—x2①若a>1,则log a e>0当x€ (1 ,+s 时,1 —x2<0 f'x)<0, f(x)在(1, +s上单调递减,即(1,+ s是f(x)的单调递减区间;由奇函数的性质知,(一s,—1)是f(x)的单调递减区间.②若0<a<1,则log a e<0当x€ (1 ,+s 时,1 —x2<0, • f'x(0,• (1 ,+s是f(X)的单调递增区间;由奇函数的性质知,(一s,—1)是f(x)的单调递增区间.1 + x 2(3)令t —------ —1 + -- ,贝U t为x的减函数x—1 x—1•- x€ (1, a —2),2 2• t€ 1+ ■,+ s且a>3,要使f(x)的值域为(1,+ s)需log a 1+ —1,解得a—2+ 3.a—3 a —31 —a _17 . (2010 山东文)已知函数f(x)—lnx—ax+ ——1(a€ R).入(1)当a ——1时,求曲线y—f(x)在点(2, f(2))处的切线方程;⑵当a g时,讨论f(x)的单调性.2[解析](1)a ——1 时,f(x) —lnx+ x+- —1, x€ (0,+s).xx2+ x—2f—2—, x € (0,+ s)y x因此f' (—1,即曲线y—f(x)在点(2 , f(2))处的切线斜率为1.又f(2) —ln2 + 2,所以y—f(x)在(2, f(2))处的切线方程为y—(In2 + 2) —x—2,即x—y+ ln2 —0.WORD 格式.可编辑__ 1 — a ⑵因为 f(x)= lnx — ax + — - 1, 入1 a — 1 ax2 — x +1 — a所以 f ,x) = — a + -- =— — 2x € (0,+g). x x x令 g(x) = ax 2— x + 1 — a ,① 当 a = 0 时,g(x) = 1— x , x € (0, + g), 当 x € (0,1)时,g(x)>0 , f'x (O , f(x)单调递减; 当 x € (1 ,+g 时,g(x)<0,此时 f 'x)>0, f(x)单调递增; 1② 当 a 工0时 f'x)= a(x — 1)[x — ( — 1)],a(i )当a = 2■时,g(x)亘成立,f'x) WQ f(x)在(0,+ g 上单调递减;1 1(ii )当 0<a<2时,彳—1>1>0, x € (0,1)时,g(x)>0,此时 f'x)<0, f(x)单调递减;1x € (1 , -— 1)时,g(x)<0,此时 f 'x)>0, f(x)单调递增; a g(x)>0,此时 f 'x)<0, f(x)单调递减;③当 a<0 时,1— 1<0,ax € (0,1)时,g(x)>0,有 f'x (O , f(x)单调递减 x € (1,+g)时,g(x)<0,有 f 'x)>0, f(x)单调递增. 综上所述:当a W0时函数f(x)在(0,1)上单调递减,(1,+g 上单调递增; 1当a = $时,f(x)在(0 ,+g 上单调递减;11 1当Ovav :时,f(x)在(0,1)上单调递减,在(1, — 1)上单调递增,在(-—1 ,+g 上单调递减.2 a a 注:分类讨论时要做到不重不漏,层次清楚.1x € Q — 1 ,+ g)寸,。

函数的单调性与最值(习题及答案)

函数的单调性与最值(习题及答案)
函数的单调性与最值(习题)
1. 下列说法:
①若 x1,x2∈I,当 x1<x2 时,f (x1)<f (x2),则 y=f (x)在 I 上是增
函数;
②函数 y=x2 在 R 上是增函数;
③函数 y 1 在定义域上是增函数; x
④ y 1 的单调区间是(∞,∪(0,+∞). x
其中正确的有( )
C.f (a2+a)< f (a)
D.f (a2+1)< f (a)
6. 函数 f (x) x2 2x 的单调增区间是( A. ( ,1] B.[1, ) C.R
) D.不存在
7. 设 f (x)是定义在区间(0,+∞)上的单调递减函数,若
f (x)> f (2-x),则 x 的取值范围是( )
11. 函数 f (x) x2 2x 3 的单调递增区间为______________.
12. 已知 f (x)是定义在(-1,1)上的减函数,且 f (2 a) f (a 3) 0 .则实数 a 的取值范围是__________.
13.
函数
f (x)
x x2
在区间[2,4]上的最大值为_________,最小
A.(,+∞) B.(∞, C.(,2)
D.(,1)
1
8.
函数
f
(
x)
1
1 x(1
x)
的最大值是(

A. 4 5
B. 5 4
C. 3 4
D. 4 3
9. 若函数 f (x)=x22axa21 在区间(∞,1)上是减函数,则实数 a 的取值范围是__________________.

高一数学函数的单调性与最值试题

高一数学函数的单调性与最值试题

高一数学函数的单调性与最值试题1.下列函数中,既是奇函数又是增函数的为A.B.C.D.【答案】D【解析】为非奇非偶函数,为偶函数,是奇函数,但在定义域内不是增函数。

【考点】奇函数与增(减)函数的定义。

2.设函数是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式的的取值范围是.【答案】.【解析】∵是定义在上的偶函数,且在区间上单调递增,∴在上单调递减,故不等式等价于或,∴的取值范围是.【考点】1.偶函数的性质;2.对数的性质.3.已知函数f(x)满足f(x)=f(π-x),且当时,f(x)=x+sinx,则( )A.f(1)<f(2)<f(3)B.f(2)<f(3)<f(1)C.f(3)<f(2)<f(1)D.f(3)<f(1)<f(2)【答案】D【解析】由已知得函数关于对称,当时,是单调递增函数,当时函数是单调递减函数,比较1,2,3距离对称轴的远近得出,故选D.【考点】1.函数的对称性;2.函数的单调性.4.若是奇函数,且在内是增函数,又,则的解集是()A.;B.C.;D.【答案】D【解析】由题意知当时,函数,当时,函数,所以不等式的解为.故正确答案为D.【考点】1.函数的单调性、奇偶性;2.不等式的解5.对于定义在上的函数,有如下四个命题:①若,则函数是奇函数;②若则函数不是偶函数;③若则函数是上的增函数;④若则函数不是上的减函数.其中正确的命题有______________.(写出你认为正确的所有命题的序号).【答案】②④【解析】①例如满足,但函数不是奇函数;故①错误②若则函数不是偶函数;正确③例如,,但函数在R上不是增函数;故③错误④若,则函数不是R上的减函数,正确所以填②④【考点】函数奇偶性的判断;函数单调性的判断与证明.6.设函数。

(Ⅰ)若且对任意实数均有成立,求的表达式;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.【答案】(Ⅰ),(Ⅱ)或【解析】(Ⅰ)根据得出a,b关系,再在定义域上恒成立,可得a,b的值,从而得出表达式.(Ⅱ)由(Ⅰ)可推出表达式,又为单调函数,利用二次函数性质求得实数的取值范围.试题解析:(Ⅰ)恒成立,知从而 .(6分)(Ⅱ)由(1)可知,由于是单调函数,知 .(12分)【考点】二次函数求解析式,单调区间求参量.7.若函数,在上单调递减,则a的取值范围是 .【答案】【解析】因为函数,在上单调递减,令,则在区间上是单调递减函数,且恒成立,所以,解得.【考点】函数的单调性8.已知函数的定义域为,且为奇函数,当时,,那么当时,的递减区间是()A.B.C.D.【答案】B【解析】令,则由已知得的定义域为,且为奇函数,当时,,所以当时,有,此时其单调递减区间为,而对于函数来说,其单调递减区间为.【考点】1.函数的奇偶性;2.函数的单调性;3.函数图像的平移.9.设,则的大小关系是 ( )A.B.C.D.【答案】A【解析】因指数相同,可由幂函数在上为增函数知;因底数相同,可由指数函数在上为减函数知,再由不等式的传递性知故选A.【考点】初等函数单调性及应用,不等式基本性质.10.若函数在上是减函数,则实数的取值范围是 .【答案】【解析】因为函数开口向上,对称轴为,且函数在为减函数,所以,解得.故答案为.【考点】二次函数的单调性11.若那么下列各式中正确的是()A.B.C.D.【答案】C【解析】;结合函数的单调性可知,结合的单调性可知成立【考点】比较大小点评:题目中比较大小借助于函数单调性将要比较的函数值关系转化为自变量关系12.已知函数在区间内恒有,则函数的单调递减区间是 .【答案】【解析】根据题意,由于函数在区间内恒有,即可知,因此可知外层的对数函数得到递增,那么内层是二次函数,定义域为,因此可知内层的减区间即为所求,开口向上,对称轴x=1,可知就是减区间,故答案为【考点】对数函数单调性点评:解决的关键是对于对数函数的值域的理解和运用,以及复合函数单调性的判定,属于基础题。

高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析1.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法2.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.【答案】(-2,)【解析】∵函数f(x)=x3+3x是奇函数,且在定义域f(x)=x3+3x上单调递增,∴由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),即mx-2<-x,令g(m)=xm+(x-2),由题意知g(2)<0,g(-2)<0,令g(m)=xm+(x-2),g(2)<0,g(-2)<0,∴,解得-2<x<.3. [2014·大庆质检]下列函数中,满足“对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是()A.f(x)=B.f(x)=(x-1)2C.f(x)=e x D.f(x)=ln(x+1)【答案】A【解析】由题意知,f(x)在(0,+∞)上是减函数,故选A.4. [2013·吉林调研]已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值()A.可能为0B.恒大于0 C.恒小于0D.可正可负【答案】C【解析】由x1x2<0不妨设x1<0,x2>0.∵x1+x2<0,∴x1<-x2<0.由f(x)+f(-x)=0知f(x)为奇函数.又由f(x)在(-∞,0)上单调递增得,f(x1)<f(-x2)=-f(x2),所以f(x 1)+f(x 2)<0.故选C.5. (3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【答案】D【解析】根据零点分段法,我们易将函数f (x )=|lg (2﹣x )|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论. 解:∵f (x )=|lg (2﹣x )|, ∴f (x )=根据复合函数的单调性我们易得 在区间(﹣∞,1]上单调递减 在区间(1,2)上单调递增 故选D点评:本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6. 定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y =x 2+1 B .y =|x|+1C .y =D .y =【答案】C【解析】利用偶函数的对称性知f(x)在(-2,0)上为减函数,又y =,在(-2,0)上为增函数,故选C. 7. 设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1【答案】A【解析】因为y=3x 在R 上单调递增,又,故﹣2<x <﹣1故选A8. 若对任意x ∈R ,不等式|x|≥ax 恒成立,则实数a 的取值范围是( ) A .a <﹣1 B .|a|≤1 C .|a|<1 D .a≥1【答案】B【解析】当x>0时,x≥ax恒成立,即a≤1当x=0时,0≥a×0恒成立,即a∈R当x<0时,﹣x≥ax恒成立,即a≥﹣1,若对任意x∈R,不等式|x|≥ax恒成立,所以﹣1≤a≤1,故选B.9.函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是()A.b≥0B.b≤0C.b>0D.b<0【答案】A【解析】∵函数y=x2+bx+c在[0,+∞)上为单调函数∴x=﹣≤0,即b≥0.故选A10.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A.B.C.D.【答案】A【解析】由即.所以函数在上递增.所以即成立.故选A.【考点】1.函数的导数.2.函数的单调性.3.函数的构造的思想.11.已知函数在点处的切线方程为.(1)求、的值;(2)当时,恒成立,求实数的取值范围;(3)证明:当,且时,.【答案】(1),;(2);(3)详见解析.【解析】(1)利用已知条件得到两个条件:一是切线的斜率等于函数在处的导数值,二是切点在切线上也在函数的图象上,通过切点在切线上求出的值,然后再通过和的值列有关、的二元一次方程组,求出、的值;(2)解法1是利用参数分离法将不等式在区间上恒成立问题转化为不等式在区间上恒成立,并构造函数,从而转化为,并利用导数求出函数的最小值,从而求出的取值范围;解法2是构造新函数,将不等式在区间上恒成立问题转化为不等式在区间上恒成立问题,等价于利用导数研究函数的单调性,对的取值进行分类讨论,通过在不同取值条件下确定函数的单调性求出,围绕列不等式求解,从而求出的取值范围;(3)在(2)的条件下得到,在不等式两边为正数的条件下两边取倒数得到,然后分别令、、、、,利用累加法以及同向不等式的相加性来证明问题中涉及的不等式.试题解析:(1),.直线的斜率为,且过点,,即解得,;(2)解法1:由(1)得.当时,恒成立,即,等价于.令,则.令,则.当时,,函数在上单调递增,故.从而,当时,,即函数在上单调递增,故.因此,当时,恒成立,则.所求的取值范围是;解法2:由(1)得.当时,恒成立,即恒成立.令,则.方程(*)的判别式.(ⅰ)当,即时,则时,,得,故函数在上单调递减.由于,则当时,,即,与题设矛盾;(ⅱ)当,即时,则时,.故函数在上单调递减,则,符合题意;(ⅲ)当,即时,方程(*)的两根为,,则时,,时,.故函数在上单调递增,在上单调递减,从而,函数在上的最大值为.而,由(ⅱ)知,当时,,得,从而.故当时,,符合题意.综上所述,的取值范围是.(3)由(2)得,当时,,可化为,又,从而,.把、、、、分别代入上面不等式,并相加得,.【考点】1.导数的几何意义;2.不等式恒成立;3.参数分离法;4.分类讨论;5.数列不等式的证明12.函数的单调递增区间是.【答案】【解析】当时,,增区间为,当时,,增区间为.填.【考点】分段函数的单调区间.13.已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.【答案】(1)(2)g(a)=(3)【解析】(1)当a=1时,f(x)=x2-|x|+1=作图如下.(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.若a≠0,则f(x)=a+2a--1,f(x)图象的对称轴是直线x=.当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.当0<<1,即a>时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2. 当1≤≤2,即≤a≤时,g(a)=f=2a--1.当>2,即0<a<时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3. 综上可得g(a)=(3)当x∈[1,2]时,h(x)=ax+-1,在区间[1,2]上任取x1、x2,且x1<x2,则h(x2)-h(x1)==(x2-x1)=(x2-x1).因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,即ax1x2>2a-1.当a=0时,上面的不等式变为0>-1,即a=0时结论成立.当a>0时,x1x2>,由1<x1x2<4,得≤1,解得0<a≤1.当a<0时,x1x2<,由1<x1x2<4,得≥4,解得-≤a<0.所以实数a的取值范围为14.已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.【答案】,【解析】由f(x)==a+.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴fmax (x)=f(1)=,fmin(x)=f(4)=;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴fmax (x)=f(4)=,fmin(x)=f(1)=.15.已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f(f(x)-lnx)=1+e,则f(1)=________.【答案】e【解析】f(x)-lnx必为常数函数,否则存在两个不同数,其对应值均为1+e,与单调函数矛盾.所以可设f(x)-lnx=c,则f(x)=lnx+c.将c代入,得f(c)=1+e,即lnc+c=1+e.∵y=lnx+x是单调增函数,当c=e时,lnc+c=1+e成立,∴f(x)=lnx+e.则f(1)=e16.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.【答案】【解析】f′(x)=3x2+1>0,∴f(x)在R上为增函数.又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)<f(-x).∴mx-2<-x,即mx+x-2<0,令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得,∴-2<x< .17.已知定义在R上的函数y=f(x)满足条件f=-f(x),且函数y=f为奇函数,给出以下四个命题:(1)函数f(x)是周期函数;(2)函数f(x)的图象关于点对称;(3)函数f(x)为R上的偶函数;(4)函数f(x)为R上的单调函数.其中真命题的序号为________.(写出所有真命题的序号)【答案】(1)(2)(3)【解析】由f(x)=f(x+3)⇒f(x)为周期函数,且T=3,(1)为真命题;又y=f关于(0,0)对称,y=f向左平移个单位得y=f(x)的图象,则y=f(x)的图象关于点对称,(2)为真命题;又y=f为奇函数,所以f=-f,f=-f=-f(-x),∴f=-f(-x),f(x)=f(x-3)=-f=f(-x),∴f(x)为偶函数,不可能为R上的单调函数,(3)为真命题;(4)为假命题,故真命题为(1)(2)(3).18.能够把圆的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是( )A.B.C.D.【答案】A【解析】由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,,所以的图象不过原点,故不为“和谐函数”; B中,,且,所以为奇函数,所以为“和谐函数”; C中,,且,为奇函数,故为“和谐函数”;D中,,且为奇函数,故为“和谐函数”;故选A.【考点】奇偶性与单调性的综合.19.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.20.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.21.已知函数,设,若,则的取值范围是 ___ .【答案】[,2)【解析】函数的图像如图所示.因为,若要使成立,有图像可得.且.由于b的变化是递增的,的变化也是递增的所以.即填[,2).本小题主要考查分段函数的问题.【考点】1.分段函数的知识.2.函数的单调性.22.已知是上的奇函数,对都有成立,若,则等于A.B.C.D.【答案】C.【解析】令x=-2,则f(-2+4)=f(-2)+f(2),又因为f(x)在R上是奇函数.,所以f(-2)+f(2)=0,即f(2)=0.所以得到f(x+4)=f(x).所以函数是以4为周期的周期函数.所以f(2014)=f(2)=0.本题的关键是把奇函数与所给的式子结合起来得到周期为四的结果.注这个条件多余.【考点】1.奇函数.2.周期函数.3.递推的思想.23.已知函数⑴判断函数的单调性,并证明;⑵求函数的最大值和最小值.【答案】(1)增函数,证明见解析;(2),【解析】(1)利用函数单调的定义证明,可得函数在[3,5]上为单调增函数;(2)根据函数的单调递增,可得函数的最值为,.试题解析:⑴设且,所以 4分即,在[3,5]上为增函数. 6分⑵在[3,5]上为增函数,则, 10分【考点】1.函数单调的判断;2.利用函数单调性求最值24.函数有最小值,则实数的取值范围是()A.B.C.D.【答案】B.【解析】若在定义域内有最小值,则满足,且恒成立,所以,故选B.【考点】1.复合函数的单调性与最值.25.关于函数,给出下列四个命题:①,时,只有一个实数根;②时,是奇函数;③的图象关于点,对称;④函数至多有两个零点.其中正确的命题序号为______________.【答案】①②③【解析】①,时,,显然只有一个实数根;②时,显然,,所以是奇函数;③设是函数的图象上的一点,点关于点,对称点,因为,所以点也在函数的图象上,故的图象关于点,对称;④,取,可得有三个零点.【考点】函数的基本性质.26.如果函数上单调递减,则实数满足的条件是()A.B.C.D.【答案】A【解析】函数在区间上单调递减,所以上,,即,故选A.【考点】导数、函数的单调性与最值27.给出下列四个命题:①函数有最小值是;②函数的图象关于点对称;③若“且”为假命题,则、为假命题;④已知定义在上的可导函数满足:对,都有成立,若当时,,则当时,.其中正确命题的序号是 .【答案】①②④.【解析】对于命题①,,,当且仅当,即当时,上式取等号,即函数有最小值,故命题①正确;对于命题②,由于,故函数的图象关于点对称,故命题②正确;对于命题③,若“且”为假命题,则、中至少有一个是假命题,故命题③错误;对于命题④,由于函数是奇函数,当时,,即函数在区间上单调递增,由奇函数的性质知,函数在上也是单调递增的,即当时,仍有,故命题④正确,综上所述,正确命题的序号是①②④.【考点】1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性28.已知函数是上的单调递增函数,若是其图像上的两点,则不等式的解集是.【答案】.【解析】由已知得.【考点】函数的单调性质.29.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有两个不同的根,则这两根之和为()A.±8B.±4C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有两个不同的根,所以这两个根必为-6、2或-2、6,所以这两个根之和为-4或4.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.30.已知函数,下列结论中错误的是()A.R,B.函数的图像是中心对称图形C.若是的极小值点,则在区间上单调递减D.若是的极值点,则【答案】C【解析】由于,,由于是函数的极小值点,且函数的图象开口向上,故函数存在极大值点,即存在使得,从而函数在上单调递增,在上单调递减,即函数在不是单调递减的.【考点】函数的单调性与极值、函数的对称性31.已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.【答案】(1)在上单调递减,在上单调递增;(2);(3).【解析】(1)先对求导,由于的正负与参数有关,故要对分类讨论来研究单调性; (2)先由在其定义域内为增函数转化为在不等式中求参数范围的问题,利用分离参数法和基本不等式的知识求出参数的取值范围;(3)先通过导数研究在的最值,然后根据命题“若,,总有成立”分析得到在上的最大值不小于在上的最大值,从而列出不等式组求出参数的取值范围.试题解析:解:(1)的定义域为,且, 1分①当时,,在上单调递增; 2分②当时,由,得;由,得;故在上单调递减,在上单调递增. 4分(2),的定义域为5分因为在其定义域内为增函数,所以,而,当且仅当时取等号,所以 8分(3)当时,,由得或当时,;当时,.所以在上, 10分而“,,总有成立”等价于“在上的最大值不小于在上的最大值”而在上的最大值为所以有 12分所以实数的取值范围是 14分【考点】1、利用导数研究单调性和最值,2、参数的取值范围问题,3、基本不等式.32.对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(1)的大小;求证:对于任意大于1的实数x1,x2,x3,,xn,均有g(ln(x1+x2++xn))>g(lnx1)+g(lnx2)++g(lnxn).【答案】(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得证.【解析】(Ⅰ)先求得,再由>得,解得;(Ⅱ)①构造函数,证明为上的增函数,再讨论就可得到,②先证得,即得,整理得,同理可得类似的的等式,累加即可得证.试题解析:(Ⅰ)由,可得,因为函数是函数,所以,即,因为,所以,即的取值范围为. (3分)(Ⅱ)①构造函数,则,可得为上的增函数,当时,,即,得;当时,,即,得;当时,,即,得. (6分)②因为,所以,由①可知,所以,整理得,同理可得,,.把上面个不等式同向累加可得[. (12分)【考点】1.恒成立问题;2.导数在求函数单调性、最值的应用;3.不等式.33.已知函数的定义域是,是的导函数,且在内恒成立.求函数的单调区间;若,求的取值范围;(3) 设是的零点,,求证:.【答案】(1);(2) ;(3)详见解析.【解析】(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对求导,然后借助已知的不等式恒成立进行转化为在内恒成立,进而采用构造函数的技巧,,通过求导研究其最大值,从而得到的取值范围;(3)借助第一问结论,得到,然后通过变形和构造的思路去证明不等式成立.试题解析:(1),∵在内恒成立∴在内恒成立,∴的单调区间为 4分(2),∵在内恒成立∴在内恒成立,即在内恒成立,设,,,,,故函数在内单调递增,在内单调递减,∴,∴ 8分(3)∵是的零点,∴由(1),在内单调递增,∴当时,,即,∴时,∵,∴,且即∴,∴ 14分【考点】1.函数的单调性;(2)导数的应用;(3)不等式的证明.34.已知函数的定义域是,若对于任意的正数,函数都是其定义域上的减函数,则函数的图象可能是A. B. C. D.【答案】B【解析】直接利用g(x)是减函数⇒导数小于0⇒f(x)的导数是减函数⇒f(x)是凸函数即可得到答案。

高中数学函数的单调性与最值练习题

高中数学函数的单调性与最值练习题

高中数学函数的单调性与最值练习题1.函数f(x) = (1-x)/(1-x^2),其定义域为{x|x≠1}。

根据函数y=-1/x的单调性及有关性质,可知f(x)在(-∞,1)和(1,+∞)上是增函数。

因此,选项C正确。

2.已知函数f(x)为R上的减函数,则满足f(x) < f(1),所以|x| < 1.因此,选项C正确。

3.函数f(x) = 8x^2 - 2kx - 7在[1,5]上为单调函数,说明函数的对称轴为x = k/8.因为函数在[1,5]上单调,所以k/8≤1或k/8≥5,解得k≤8或k≥40.因此,实数k的取值范围是(-∞,8]∪[40,+∞),选项C正确。

4.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b^2.函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]。

当-2≤x≤1时,f(x)=x-2;当1<x≤2时,f(x)=x^3-2.因为f(x)=x-2在[-2,1]上是增函数,f(x)=x^3-2在(1,2]上是增函数,所以f(x)的最大值为f(2)=6.因此,选项C正确。

5.函数f(x)=log2(x+1),x∈(1,+∞)。

因为log2(x+1)是单调递增函数,所以f(x)在(1,2)和(2,+∞)上是单调递增函数。

因此,f(x1) 0,所以x2+x1<1.因此,选项1-x正确。

2证明f(x)在(0,+∞)上是增函数。

2) 当x=2时,f(x)=-a2所以a20,1),解得a∈(1,+∞)或a∈(-∞,0).又因为a>0,所以a∈(1,+∞).答案:(1)增函数;(2)a∈(1,+∞).7.函数f(x)=|x-1|+x2的值域为[4,+∞).解析:因为f(x)=|x-1|+x2,所以f(x)在x≥1时,f(x)=(x-1)+x2=x2+x-1;在x<1时,f(x)=1-(1-x)+x2=x2+x,所以f(x)在[1,+∞)上为增函数,又因为f(x)在[1,+∞)上的最小值为4,所以f(x)的值域为[4,+∞).改写:函数f(x)=|x-1|+x2在[1,+∞)上为增函数,且在[1,+∞)上的最小值为4,因此函数f(x)的值域为[4,+∞).2.已知函数$f(x)=\frac{a}{x^2}-\frac{1}{x}$,其中$a$为常数,且$f(x)$在$(0,+\infty)$上是增函数。

高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析1.下列函数中,既是奇函数又存在极值的是()A.B.C.D.【答案】D【解析】由题可知,B、C选项不是奇函数,A选项单调递增(无极值),而D选项既为奇函数又存在极值.故选D.【考点】函数奇偶性的概念,函数单调性与函数极值.2.函数f(x)=是( )A.偶函数,在(0,+∞)是增函数B.奇函数,在(0,+∞)是增函数C.偶函数,在(0,+∞)是减函数D.奇函数,在(0,+∞)是减函数【答案】B【解析】因为f(-x)=-f(x),所以f(x)为奇函数又因为y=2x是增函数,y=2-x为减函数,故为增函数,选B考点:函数的奇偶性和单调性.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=B.y=C.y=-x2+2D.y=lg|x|【答案】C【解析】答案中的四个图象如下,通过图形可知符合题意的选C.【考点】函数图象.4.下列函数中,在区间上为增函数的是()A.B.C.D.【答案】A【解析】对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.【考点】函数的单调性,容易题.(x-2)在(3,+∞)上具有相同的单调性,则实数k的取值范围是5.使函数y=与y=log3________.【答案】(-∞,-4)(x-2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.【解析】由y=log3又函数y===2+,使其在(3,+∞)上是增函数,故4+k<0,得k<-4.6.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【答案】D【解析】函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=1·e x+(x-3)·e x=(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)·e x>0,解得x>2.7. [2014·济宁模拟]若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=________.【答案】-6【解析】由图象的对称性,知函数f(x)=|2x+a|关于直线x=-对称,因为函数f(x)=|2x+a|的单调递增区间是[3,+∞),所以-=3,即a=-6.8.已知函数在[0,+∞]上是增函数,,若则的取值范围是()A.B.C.D.【答案】D【解析】∵,∴,∵函数在[0,+∞]上是增函数,∴,∴或,∴或,又∵,∴或.【考点】函数的单调性、不等式的解法.=5.06x-9.(2014·长沙模拟)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L10.15x2和L=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利2润为()A.45.606万元B.45.6万元C.45.56万元D.45.51万元【答案】B【解析】设该公司在甲地销售x辆,则在乙地销售(15-x)辆,利润为L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15+0.15×+30,由于x为整数,所以当x=10时,L(x)取最大值L(10)=45.6,即能获得的最大利润为45.6万元.10.如果对定义在上的函数,对任意,都有则称函数为“函数”.给出下列函数:①;②;③;④.其中函数是“函数”的个数为()A.B.C.D.【答案】B【解析】由已知得,,即,故在定义域内单调递增.,其值不恒为正,故①不满足;,故②满足;,③满足;由分段函数的图象,④不满足.【考点】1、函数单调性的定义;2、利用导数判断函数的单调性;3、分段函数.11.函数的图象与的图象关于直线对称,则函数的递增区间是_________.【答案】(0,2)【解析】∵函数的图象与的图象关于直线对称∴与互为反函数∵的反函数为,∴,.令,则,即,∴,又∵的对称轴为,且对数的底数大于1,∴的递增区间为(0,2).12.已知,不等式的解集为.(1)求的值;(2)若对一切实数恒成立,求实数的取值范围.【答案】(1)2;(2).【解析】(1)我们首先求出不等式的解集,这个解集与相等,由此可求得;(2),一种方法,这个函数是分段函数,我们把它化为一般的分段函数表达式,以便求出它的最大(小)值,从而求得的最大值,得到的取值范围,也可应用绝对值不等式的性质,求得最大值.试题解析:解法一:(1)由不等式|2x-a|-a≤2,得|2x-a|≤2+a,∵解集不空,∴2+a≥0.解不等式可得{x∣-1≤x≤1+a}. 3分∵-1≤x≤3,∴1+a﹦3,即a=2. 5分(2)记g(x)=f(x)-f(x+2)=|2x-2|-|2x+2|, 6分4,(x≤-1)则g(x)=-4x,(-1﹤x﹤1). 8分-4,(x≥1)所以-4≤g(x)≤4,∴|g(x)|≤4,因此m≥4. 10分解法二:∵f(x)-f(x+2)=|2x-2|-|2x+2|,∵|2x-2|-|2x+2|≤|(2x-2)-(2x+2)|=4. 7分|2x-2|-|2x+2|≥|2x|-2-(|2x|+2)=-4. 9分∴-4≤|2x-2|-|2x+2|≤4.∴|f(x)-f(x+2)|≤4.∴m≥4. 10分【考点】(1)解绝对值不等式;(2)分段函数的最值,不等式恒成立问题.13.在直角坐标系中,曲线C1的参数方程为:(为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:,(1)求曲线C2的直角坐标方程;(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.【答案】(1);(2)【解析】(1)把代入曲线C2是极坐标方程中,即可得到曲线C2的直角坐标方程;(2)由已知可知P(),,由两点间的距离公式求出的表达式,再根据二次函数的性质,求出的最小值,然后可得min-.试题解析:(1),. 4分(2)设P(),6分时,, 8分. 10分【考点】1.极坐标方程和直角坐标方程的互化;2.曲线与曲线间的位置关系以及二次函数的性质.14.下列函数是偶函数,且在上单调递增的是()A.B.C.D.【答案】D【解析】对于函数,此函数为偶函数,且在区间上单调递减,A选项错误;对于函数,此函数为偶函数,且当时,,故函数在区间上不单调,B选项错误;对于函数,该函数为偶函数,且函数在区间上单调递减,C选项错误;对于函数,定义域为,且,故该函数为偶函数,且当时,,结合图象可知,函数在区间上单调递增,合乎题意,故选D.【考点】函数的奇偶性与单调性15.已知函数(),则()A.必是偶函数B.当时,的图象必须关于直线对称;C.有最大值D.若,则在区间上是增函数;【答案】D【解析】在二次函数上加绝对值符号,相当于把原二次函数在轴下方的图像翻折到上方,原来处于轴上方的图像保持不变.当时画图可知不是偶函数,比如就不是偶函数,排除A;仅有无法说明的图像关于直线对称,比如满足但画图可知图像并不关于直线对称,排除B;的图像两边向上无限延伸,没有最大值,排除C;若,则函数于轴最多有一个交点,故恒有,因此,其对称轴为,开口向上,因此在区间上是增函数,D正确.【考点】1、二次函数图象及变换;2、函数的对称性、单调性与最值.16.已知x∈[-3,2],求f(x)=-+1的最小值与最大值.【答案】最小值,最大值57.【解析】f(x)=-+1=4-x-2-x+1=2-2x-2-x+1=2+.∵x∈[-3,2],∴≤2-x≤8.则当2-x=,即x=1时,f(x)有最小值;当2-x=8,即x=-3时,f(x)有最大值57.17.已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.【答案】,【解析】由f(x)==a+.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴fmax (x)=f(1)=,fmin(x)=f(4)=;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴fmax (x)=f(4)=,fmin(x)=f(1)=.18.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则 ().A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0【答案】A【解析】由f(0)=f(4)知,f(x)=ax2+bx+c的对称轴为-=2.∴4a+b=0.又0和1在同一个单调区间内,且f(0)>f(1),∴y=f(x)在(-∞,2)内为减函数.∴a>0.故选A.19.定义域为的函数图象上两点是图象上任意一点,其中.已知向量,若不等式对任意恒成立,则称函数在上“k阶线性近似”.若函数在上“k阶线性近似”,则实数的k取值范围为( )A.B.C.D.【答案】C【解析】由题意可得点N与在直线AB上,并且由点M的横坐标为.又向量,可得点N的横坐标也为所以点M,N在横坐标相同.所以符合不等式对任意恒成立,则称函数在上的既要大于或等于的最大值,这是解题的关键.由函数在则,.所以==.又因为.所以即求.…的最大值由打钩函数可得时式的最大值是.所以.所以.故选C.【考点】1.向量的知识.2.新定义问题.3.函数的最值.4.恒成立问题.5.大钩函数求最值.20.函数是定义在上的增函数,函数的图象关于点对称.若实数满足不等式,则的取值范围是()A.B.C.D.【答案】C【解析】函数是定义在上,易知函数的图像是函数的图像向右平移了2014个单位,因为函数的图象关于点对称,所以函数的图像关于点(0,0)对称,即函数是奇函数.由不等式得.又函数是定义在上的增函数,所以,即,设点,由知点在以(3,4)为圆心,1为半径的圆内. (为原点),因为易知圆心到原点的距离为5,所以,所以,即的取值范围是(16,36).【考点】函数的奇偶性与单调性、点与圆的位置关系21.已知函数。

专题练习:函数的单调性与最值 (含参考答案)

专题练习:函数的单调性与最值 (含参考答案)

13.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是________.解析:在同一坐标系中分别作出函数y =4x +1,y =x +4,y =-x +8的图象后,取位于下方的部分得函数f (x )=min{4x +1,x +4,-x +8}的图象,如图所示,由图象可知,函数f (x )在x =2时取得最大值6.答案:614.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________. 解析:要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧ a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧ a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].答案:(2,3][能力挑战]15.(2018·长沙模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x2∈(2,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0解析:选B.因为函数y=log2x与函数y=11-x =-1x-1的单调性在(1,+∞)上均为增函数,所以函数f(x)=log2x+11-x在(1,+∞)上为增函数,且f(2)=0,所以当x1∈(1,2)时,f(x1)<f(2)=0;当x2∈(2,+∞)时,f(x2)>f(2)=0,即f(x1)<0,f(x2)>0.16.(2018·株洲二模)定义新运算⊕:当a≥b时,a⊕b=a;当a <b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1 B.1C.6 D.12解析:选C.由已知得当-2≤x≤1时,f(x)=x-2;当1<x≤2时,f(x)=x3-2.∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.∴f(x)的最大值为f(2)=23-2=6.17.已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称解析:解法一:选C.f (x )的定义域为(0,2).由于f (x )=ln x +ln(2-x )=ln(2x -x 2),从而对f (x )的研究可转化为对二次函数g (x )=2x -x 2(x ∈(0,2))的研究.因为g (x )=2x -x 2=-(x -1)2+1,所以g (x )在(0,1)上单调递增,在(1,2)上单调递减,直线x =1是y =g (x )的图象的对称轴.从而排除A ,B ,D ,故选C.解法二:由于f (2-x )=ln(2-x )+ln x ,即f (x )=f (2-x ),故可得y =f (x )的图象关于直线x =1对称,故选C.18.(2018·潍坊二模)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( )A .(-∞,-2)B .(-∞,0)C .(0,2)D .(-2,0)解析:选A.作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a-x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a 2,即a <-2.故选A. 19.(2018·唐山模拟)如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =e x +x ;②y =x 2;③y =3x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________.解析:因为对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)恒成立,所以不等式等价为(x 1-x 2)[f (x 1)-f (x 2)]>0恒成立,即函数f (x )是定义在R 上的增函数.①函数y =e x +x 在定义域上为增函数,满足条件.②函数y =x 2在定义域上不单调,不满足条件.③y =3x -sin x ,y ′=3-cos x >0,函数单调递增,满足条件.④f (x )=⎩⎨⎧ln |x |,x ≠0,0,x =0,当x >0时,函数单调递增,当x <0时,函数单调递减,不满足条件.综上,满足“H 函数”的函数为①③.答案:①③。

高二数学函数的单调性与最值试题答案及解析

高二数学函数的单调性与最值试题答案及解析

高二数学函数的单调性与最值试题答案及解析1.已知函数在区间上是单调减函数,则实数的取值范围是.【答案】【解析】的导函数为,由题意知时,,即,又在上递增,则实数的取值范围是。

【考点】利用函数在某区间上的单调性求参数的取值范围。

2.设是函数的一个极值点.(1)求与的关系式(用表示);(2)求的单调区间;(3)设,若存在,使得成立,求实数的取值范围.【答案】(1);(2)①当时,单调递增区间为:;单调递减区间为:,;②当时,单调递增区间为:;单调递减区间为:,;(3).【解析】(1)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(2)第二问关键是分离参数,把所求问题转化为求函数的最小值问题.(3)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:(1)∵∴由题意得:,即,∴且令得,∵是函数的一个极值点.∴,即故与的关系式(2)①当时,,由得单调递增区间为:;由得单调递减区间为:,;②当时,,由得单调递增区间为:;由得单调递减区间为:,;(3)由(2)知:当时,,在上单调递增,在上单调递减,,在上的值域为易知在上是增函数在上的值域为由于,又因为要存在,使得成立,所以必须且只须,解得:所以:的取值范围为【考点】(1)利用导数求函数的最值;(2)利用导数研究函数的单调性.(3)函数的恒成立问题.3.已知函数f(x)的定义域为,且满足f(2)=1,f(xy)=f(x)+f(y),(1)求f(1),f(4), f(8)的值;(2)函数f(x)当时都有.若成立,求的取值范围.【答案】(1),,;(2)【解析】(1)令x=1,y=2,代入可求出的值,同理可求出、的值;(2)根据当,∈(0,+∞)时都有可得函数在(0,+∞)为增函数,由化为,然后根据单调性与定义域建立关系式,可求出x的取值范围.试题解析:(1)由且,令∴得,∴,(2)∵当,∈(0,+∞)时都有.∴函数在(0,+∞)为增函数,由,化为,则∴.【考点】本题主要考查了抽象函数及其应用,以及函数单调性的判断,同时考查了转化的思想和分析问题的能力.4.若函数的导函数在区间上是增函数,则函数在区间上的图象可能是()【答案】A【解析】∵函数y=f(x)的导函数在区间[a,b]上是增函数,∴对任意的a<x1<x2<b,有也即在a,x1,x2,b处它们的斜率是依次增大的.∴A 满足上述条件,对于B 存在使,对于C 对任意的a<x1<x2<b,都有,对于D对任意的x∈[a,b],不满足逐渐递增的条件,故选A.【考点】单调性与导函数的关系.5.已知函数=,则下列结论正确的是( )A.当x=时取最大值B.当x=时取最小值C.当x=-时取最大值D.当x=-时取最小值【答案】D【解析】由题意易得:,令得,当时,,单调递增;当时,,单调递减,当时,取得最小值.故选D.【考点】利用导数求函数的极值与最值.6.下列函数中,满足“”的单调递增函数是()A.B.C.D.【答案】A【解析】由“”知,只有B、D满足此条件,由对数函数的单调性知,是单调递增函数,故选A.【考点】指数幂的运算法则,幂函数的单调性,指数函数单调性7.已知且,函数满足对任意实数,都有成立,则的取值范围是()A.B.C.D.【答案】C【解析】因为任意实数,都有成立,所以有(注意对于这中类似的条件往往转化为导数来用),即在R为单调递增函数.则有【考点】函数单调性与导数综合应用.8.已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;(3)求f(x)在[-3,6]上的最大值与最小值.【答案】(1)见解析;(2)见解析;(3)最大值为2,最小值为-4【解析】(1)欲证函数为奇函数,需寻找关系.由题中条件可知,需要从f(x)+f(y)=f(x+y)拼凑出与,令,便有,需求得,考虑到,令特殊值求;(2)同一样的思想,这里需要拼凑出与()不等于关系(需利用当x>0时,f(x)<0);(3)利用(1),(2)结论解(3).试题解析:令,可得从而.令,可得,即,故为奇函数. 4分证明:设,且,则,于是.从而.所以为减函数. 8分解:由(2)知,所求函数的最大值为,最小值为.,.于是在上的最大值为2,最小值为-4. 12分【考点】(1)函数奇偶性的证明(明确一般方法和过程);(2)函数单调性证明(紧扣证明过程);(3)求函数最值.9.设是R上的奇函数,当时,,且,则不等式的解集是( )A.B.C.D.【答案】D【解析】由,在时单调递增.在R上为奇函数,则,在时也单调递增.要使,则或.【考点】函数求导法则和利用单调性解不等式.10.函数的增区间是____________.【答案】【解析】,.∵二次函数的减区间是,∴的增区间是.【考点】复合函数的单调性.11.下列函数中与函数奇偶性相同且在(-∞,0)上单调性也相同的是().A.B.C.D.【答案】C【解析】为偶函数,且在上单调递增;又为奇函数;为偶函数,且在上单调递减;为偶函数,且在上单调递增;为非奇非偶函数;故选C.【考点】函数的奇偶性、单调性.12.已知函数在其定义域上为奇函数.⑴求m的值;⑵若关于x的不等式对任意实数恒成立,求实数的取值范围.【答案】(1)m=7;(2).【解析】(1)由是奇函数得:所以即;然后对m=-7和m=7检验即可;(2)先由(1)及复合函数的单调性确定函数的单调性,再利用函数的奇偶性和单调性将已知不等式转化为一般的代数不等式,最后用分离参数法,将不等式的恒成立问题转化为函数的最值问题进行解决.试题解析:(1)由是奇函数得:所以即;当m=-7时,,舍去;当时,,由得定义域为..⑵设在是增函数,在是增函数.又为奇函数,,对任意实数恒成立;对于,即.令恒成立,在[2,3]上递增,,则;对于,在[2,3]上递增,,则;对于,即,则;综上,的取值范围是.【考点】1.函数的奇偶性;2.利用函数的单调性解不等式;3.不等式的恒成立.13.已知的单调递增区间是()A.B.C.D.【答案】【解析】函数是复合函数,其定义域令,即,根据复合函数的单调性:同增异减.该函数是增函数,其外函数是为减函数,其内函数为也必是减函数,所以取区间.【考点】复合函数的单调性判断.14.定义在R上的函数及二次函数满足:且.(1)求和的解析式;(2)对于,均有成立,求的取值范围;(3)设,讨论方程的解的个数情况.【答案】(1),;(2)的取值范围为;(3)有5个解.【解析】(1)根据已知的函数方程,可以得到,联立已知条件的函数方程,即可解得,又由条件二次函数及,可设,再根据,可求得;(2)问题等价于求使,恒成立的的取值范围,即求当,使成立的的取值范围,通过判断的单调性可知,其在上单调递增,因此只需,由(1)求得的二次函数的解析式,可得只需,即的取值范围为;(3)根据条件及(1),(2)所求得的解析式,可画出的示意图,根据示意图,可以得到方程即等价于或,再从示意图上可得:有2个解, 有个解,因此有个解.试题解析:(1),①即②由①②联立解得:. 2分,是二次函数, 且,可设,由,解得.∴,∴, 5分;(2)设,,依题意知:当时,,在上单调递减,∴ 7分∴在上单调递增,,∴∴解得:,∴实数的取值范围为. 10分;由题意,可画出的示意图如图所示:令,则∴,由示意图可知:有2个解, 有个解.∴有个解. 14分.【考点】1.函数解析式的求解;2.利用函数单调性求极值;3.方程根个数的判断.15.设是定义在R上的奇函数且单调递增,当时,恒成立,则实数的取值范围是()A.B.C.D.【答案】D【解析】由原不等式,可得,又在R上的奇函数可得,又单调递增,则,可知恒成立,当时,,则.【考点】函数的奇偶性,单调性.16.已知(1)求函数的最小值;(2)对一切恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)先求定义域,再利用导数与单调性的关系求单调区间;(2)通过导数解决不等式恒成立的问题.(1)由已知知函数的定义域为,, 2分当单调递减,当单调递增.. 5分(2),则, 6分设,则,①单调递减;②单调递增; 8分,对一切恒成立,. 10分【考点】利用导数求单调区间;函数单调性;不等式恒成立.17.已知函数,若存在正实数,使得集合,则的取值范围为()A.B.C.D.【答案】A【解析】由题意,显然m>0,对函数的单调性进行研究知,函数在(-∞,0)上是增函数,在x=0处函数值不存在,在(0,1)函数是减函数,在(1,+∞)函数是增函数,由此结合函数的连续性可以得出ab>0且1∉[a,b].①当b<0时,f(x)在[a,b]上为增函数∴,,即a,b为方程1−=mx的两根.∴mx2-x+1=0有两个不等的负根 m>0,<0,此不等式组无解.②当a≥1时,f(x)在[a,b]上为增函数∴,,即a,b为方程1−=mx的两根.∴mx2-x+1=0有两个不等的大于1的根.,解得0<m<.③当0<a<b<1时,f(x)在[a,b]上为减函数,∴,两式作差得a=b,无意义.综上,非零实数m的取值范围为(0,).【考点】1.函数的单调性及单调区间;2.集合的包含关系判断及应用;3.集合的相等.18.已知函数().(I)若的定义域和值域均是,求实数的值;(II)若在区间上是减函数,且对任意的,,总有,求实数的取值范围.【答案】(I) a=2, (II) .【解析】(I)研究二次函数性质,关键研究对称轴与定义区间之间相对位置关系. 因为函数f(x)对称轴为x=a,抛物线开口向上,在(1,a)上单调递减,则f(1)=a,f(a)=1,代入解得a=2, (II) 因为在区间上是减函数,所以因此,所以1离开对称轴的距离最远,所以在区间最大值应为,最小值应为,因此对任意的,,总有,就可化为,,解得,又所以(1)因为函数f(x)对称轴为x=a,抛物线开口向上,在(1,a)上单调递减,则f(1)=a,f(a)=1,代入解得a=2 -6分(2)可得,显然在区间最大值应为,最小值应为所以,解得 -14分【考点】二次函数最值19.如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为.(1)当时,求直路所在的直线方程;(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?【答案】(1)(2),【解析】(1)直路与池边AE相切,切点为M,点M到边OA距离为,因此又切线斜率为故切线方程为,(2)用t表示出地块OABC在直路不含泳池那侧的面积. ,过切点M的切线即,令得,故切线与AB交于点令,得,又在递减,所以,故切线与OC交于点,地块OABC在切线右上部分区域为直角梯形,面积,等号,.(1) 6分(2),过切点M的切线即,令得,故切线与AB交于点;令,得,又在递减,所以故切线与OC交于点。

高一 函数的单调性和最值 练习 含答案

高一 函数的单调性和最值 练习 含答案

训练目标 (1)函数单调性的概念;(2)函数的最值及其几何意义. 训练题型 (1)判断函数的单调性;(2)利用函数单调性比较大小、解不等式;(3)利用函数单调性求最值.解题策略(1)判断函数单调性常用方法:定义法、图象法、导数法、复合函数法;(2)分段函数单调性要注意分界点处函数值的大小;(3)可利用图象直观研究函数单调性. 1.函数f (x )=x 2-2mx -3在区间[1,2]上单调,则m 的取值范围是__________________.2.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围是________.3.函数f (x )=11-x (1-x )的最大值是________. 4.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5, x ≤1,2a x, x >1是(-∞,+∞)上的减函数,那么a 的取值范围是________.5.函数f (x )=x 2-4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是________.6.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.7.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.8.(2015·上海黄浦区期中调研测试)若函数f (x )=2x 2+ax +1-3a 是定义域为R 的偶函数,则函数f (x )的单调递减区间是________.9.设函数f (x )=x 2+(a -2)x -1在区间(-∞,2]上是减函数,则实数a 的最大值为________.10.若定义在R 上的二次函数f (x )=ax 2-4ax +b 在区间[0,2]上是增函数,且f (m )≥f (0),则实数m 的取值范围是________.11.(2015·洛阳二模)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x ) (0<a <1)的单调减区间是________.12.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.13.(2015·福州一模)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为________.14.定义f (1,1)=1,f (m ,n )∈N *(m ,n ∈N *),且对任意的m ,n ∈N *,都有f (m +1,1)=2f (m,1),f (m ,n +1)=f (m ,n )+2.给出以下三个结论:(1) f (1,5)=9;(2) f (5,1)=16;(3) f (5,6)=26.其中正确结论的个数为________.答案解析1.(-∞,1]∪[2,+∞)2.[1,32) 3.434.(0,2]5.[2,4]6.23解析 令f (x )=0,得x =1;令f (x )=1,得x =13或3.因为f (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故b -a 的最小值为1-13=23. 7.(-1,+∞)解析 由题意知,存在正数x ,使a >x -12x , 所以a >(x -12x )min ,而函数f (x )=x -12x 在(0,+∞)上是增函数, 所以f (x )>f (0)=-1,所以a >-1.8.(-∞,0]解析 由已知得a =0,从而f (x )=2x 2+1,由复合函数的单调性可知函数f (x )的单调递减区间是(-∞,0].9.-210.0≤m ≤4 11.[a ,1]12.⎣⎡⎦⎤12,213.4解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在[12,+∞)上单调递增,故f (x )在(-∞,12]上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4.14.3解析 由f (m +1,1)f (m ,1)=2,得f (m,1)=f (1,1)2m -1=2m -1, 由f (m ,n +1)-f (m ,n )=2,得f (m ,n )=f (m,1)+2(n -1),∴f (m ,n )=2m -1+2(n -1). ∴f (1,5)=21-1+2×(5-1)=9,f (5,1)=25-1+2×(1-1)=16,f (5,6)=25-1+2×(6-1)=26.故正确结论的个数为3.。

高考数学专题《函数的单调性与最值》习题含答案解析

高考数学专题《函数的单调性与最值》习题含答案解析

专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。

高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.定义在上的偶函数满足:对任意的,有则()A.B.C.D.【答案】B【解析】由对任意的,有可知在为减函数,,又为偶函数,故,.故选B.【考点】函数的性质的应用.2.已知函数,数列满足,且数列是递增数列,则实数的取值范围是 ( )A.B.C.D.【答案】C【解析】由题意得:解得或因此.【考点】分段函数单调性,数列单调性3.已知函数,则满足不等式的实数的取值范围为 .【答案】【解析】由于函数可知函数在R上递增,又函数在(0,1)上递减.并且两个函数在x=1x时的函数值相等.根据函数的图像的走向要满足不等式,首先要确定在x>1时函数值的等于的对应x的值.即.所以.故填.【考点】1.函数的单调性.2.函数的最值问题.3.函数的数形结合思想.4.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.【答案】(1)-1;(2);(3)【解析】(1)因为为奇函数,所以根据奇函数的定义可得一个等式.根据等式在定义域内恒成立可求得的值,由于真数大于零,所以排除.即可得到结论.(2)由(1)得到的值表示出函数g(x),根据函数的定义域可知函数在区间上单调递增.所以上,.即.所以可得.即存在常数,都有.所以所有上界构成的集合.(3)因为函数在上是以3为上界的有界函数,所以根据题意可得在上恒成立.所得的不等式,再通过分离变量求得的范围.试题解析:(1)因为函数为奇函数,所以,即,即,得,而当时不合题意,故. 4分(2)由(1)得:,下面证明函数在区间上单调递增,证明略. 6分所以函数在区间上单调递增,所以函数在区间上的值域为,所以,故函数在区间上的所有上界构成集合为. 8分(3)由题意知,在上恒成立.,.在上恒成立.10分设,,,由得,设,,,所以在上递减,在上递增, 12分在上的最大值为,在上的最小值为 .所以实数的取值范围为. 14分【考点】1.函数的奇偶性.2.新定义的函数的性质.3.函数的最值的求法.4.分离变量的思想.5.已知函数,若对于任意,当时,总有,则区间有可能是()A.B.C.D.【答案】B【解析】函数有意义,则解得,又因为二次函数在单调递减,在单调递增,若对于任意,当时,总有,则,在上单调递增.而单调递增,故复合函数在单调递增,故选B.【考点】本题考查复合函数的单调性.6.下列函数中,既是奇函数又在定义域上是增函数的为A.B.C.D.【答案】D【解析】A: ,所以不是奇函数,故A不正确。

函数的单调性与最值练习题

函数的单调性与最值练习题

函数的单调性与最值练习题在数学的世界里,函数的单调性与最值是非常重要的概念。

它们不仅在数学理论中有着关键的地位,还在实际问题的解决中发挥着巨大的作用。

为了更好地理解和掌握这两个概念,让我们一起来做一些相关的练习题。

一、选择题1、函数$f(x)=x^2 2x + 3$在区间$0, 2$上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增对于函数$f(x)=x^2 2x + 3$,其对称轴为$x = 1$,开口向上。

在区间$0, 1$上,函数单调递减;在区间$1, 2$上,函数单调递增。

所以在区间$0, 2$上,函数先减后增,答案选择 D。

2、函数$f(x) =\frac{1}{x}$在区间$(0, +\infty)$上()A 单调递增B 单调递减C 不具有单调性D 以上都不对对于函数$f(x) =\frac{1}{x}$,当$x$增大时,$f(x)$的值减小,所以在区间$(0, +\infty)$上,函数单调递减,答案选择 B。

3、函数$f(x) = 2x + 1$在定义域$R$上()A 有最大值B 有最小值C 有最大值和最小值D 既无最大值也无最小值因为一次函数$f(x) = 2x + 1$的斜率$2 > 0$,所以函数在定义域$R$上单调递增,既无最大值也无最小值,答案选择 D。

4、函数$f(x) = x^3 3x$的单调递减区间是()A $(-1, 1)$B $(\infty, -1)$和$(1, +\infty)$C $(\infty, -1)$D $(1, +\infty)$对函数$f(x) = x^3 3x$求导得$f'(x) = 3x^2 3$,令$f'(x) < 0$,解得$-1 < x < 1$,所以函数的单调递减区间是$(-1, 1)$,答案选择 A。

二、填空题1、函数$f(x) = 3 2x$的单调递减区间是________。

因为一次函数$f(x) = 3 2x$的斜率$-2 < 0$,所以函数在定义域$R$上单调递减,单调递减区间是$R$。

高一数学函数的单调性与最值试题

高一数学函数的单调性与最值试题

高一数学函数的单调性与最值试题1.定义在上的偶函数满足:对任意的,有则()A.B.C.D.【答案】B【解析】由对任意的,有可知在为减函数,,又为偶函数,故,.故选B.【考点】函数的性质的应用.2.函数的最小值为.【答案】5.【解析】首先将函数化简为,该式子可以看作是点到两个定点、的距离.即将求“函数的最小值”问题转化为“求的最小值” ,作出函数图像如下图所示,过点作其关于轴的对称点,连接,交轴于点.此时由三角形的两边之和大于第三边可得:此时取得最小值,即,即为所求.【考点】直线方程的应用.3.函数,使是增函数的的区间是________.【答案】【解析】令在R上是减函数,又因为函数在(-,1]是减函数,由复合函数的单调性可知的增区间为: (-,1]【考点】复合函数的单调性.4.已知,关于的函数,则下列结论中正确的是()A.有最大值B.有最小值C.有最大值D.有最小值【答案】A【解析】函数=,可知:当时,函数有最大值,故答案选A.【考点】二次函数的值域.5.已知奇函数f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且,则下列结论正确的是()A.B.C.D.【答案】B【解析】∵奇函数在[-1,0]上是减函数,∴在[0,1]上是增函数,又∵是锐角三角形两内角,∴,又∵,∴,∴,B正确,A错误;.对于C,D:∵为锐角三角形两内角,∴,∴,即,∴,∴C正确,D错误.【考点】1、奇函数单调性的判断;2、三角函数值的大小比较.6.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.【答案】(1);(2);(3).【解析】(1)因为为奇函数,所以利用,求出的值;(2) 在(1)的条件下,证明的单调性,在恒成立,即,根据单调性,可以求出其最大值;(3)若函数在上是以3为上界的有界函数,则,将函数代入,反解,,利用函数的单调性求出他们的最大,和最小值,就是的范围.试题解析:解:(1)因为函数为奇函数,所以,即,即,得,而当时不合题意,故. 4分(2)由(1)得:,下面证明函数在区间上单调递增,证明略. 6分所以函数在区间上单调递增,所以函数在区间上的值域为,所以,故函数在区间上的所有上界构成集合为. 8分(3)由题意知,在上恒成立.,.在上恒成立.10分设,,,由得,设,,,所以在上递减,在上递增, 12分在上的最大值为,在上的最小值为.所以实数的取值范围为. 14分【考点】1.函数的奇偶性;2.函数的单调性;3.函数的最值.7.已知的单调增区间为 .【答案】【解析】对数函数为外函数求单调区间一定注意先求定义域,即,让后再利用同增异减的原则,因为外函数增只需找内函数的增即可.【考点】复合函数单调性.8.已知函数且.(1)求函数的定义域;(2)判断的奇偶性并予以证明.【答案】(1);(2)奇函数,证明详见解析.【解析】(1)根据对数函数的真数大于0,求解不等式即可得到函数的定义域;(2)从奇偶函数的定义上进行判断、证明该函数的奇偶性,即先由(1)说明函数的定义域关于原点对称;然后求出,若,则该函数为偶函数,若,则该函数的奇函数.试题解析:(1)由题得 3分所以函数的定义域为 5分(2)函数为奇函数 6分证明:由(1)知函数的定义域关于原点对称 7分且所以函数为奇函数 10分.【考点】1.对数函数的图像与性质;2.函数的奇偶性.9.已知函数.(Ⅰ)若函数为偶函数,求的值;(Ⅱ)若,求函数的单调递增区间;(Ⅲ)当时,若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2),;(3).【解析】(1)据偶函数定义,得到,平方后可根据对应系数相等得到的值,也可将上式两边平方得恒成立,得的值;(2)当时,作出函数的图像,即可得到函数的单调递增区间;(3)先将不等式转化为,然后利用零点分段法(三段:())去掉绝对值,在每段上分别求解不等式的恒成立问题,可得出各段不等式恒成立时参数的取值范围,注意在后一段时可考虑结合前一段的参数的取值范围进行求解,避免不必要的分类,最后对三段求出的的取值范围取交集可得参数的取值范围.试题解析:(1)解法一:任取,则恒成立即恒成立 3分∴恒成立,两边平方得:∴ 5分(1)解法二(特殊值法):因为函数为偶函数,所以,得,得:(酌情给分)(2)若,则 8分作出函数的图像由函数的图像可知,函数的单调递增区间为及 10分(3)不等式化为即: (*)对任意的恒成立因为,所以分如下情况讨论:①时,不等式(*)化为即对任意的恒成立,因为函数在区间上单调递增,则只需即可,得,又∴ 12分②时,不等式(*)化为,即对任意的恒成立,由①,,知:函数在区间上单调递减,则只需即可,即,得或因为所以,由①得 14分③时,不等式(*)化为即对任意的恒成立,因为函数在区间上单调递增,则只需即可,即,得或,由②得综上所述得,的取值范围是 16分.【考点】1.函数的奇偶性;2.函数的单调性;3.函数性质的综合应用;4.分类讨论思想.10.在边长为10的正方形内有一动点,,作于,于,求矩形面积的最小值和最大值,并指出取最大值时的具体位置.【答案】最小值为;最大值为,此时点处在的角平分线上,且满足.【解析】本题是函数模型的建立与应用问题,解题的关键是引入适当的变量,建立面积与的三角函数模型,然后根据同角三角函数的基本关系式,令,再将模型转化为关于的二次函数模型,转化时要特别注意变量取值范围的变化,最后利用二次函数的性质求取函数的最值,并确定取得最大值点的位置.试题解析:连结,延长交于,设则,设矩形的面积为,则4分设,则又,() 8分当时, 10分当时,此时,,又13分.【考点】1.函数的应用;2.二次函数的最值;3.三角函数的性质.11.设,当时,对应值的集合为.(1)求的值;(2)若,求该函数的最值.【答案】(1)(2)42【解析】(1)由题意可知是方程的两根,根据韦达定理可求出.(2)由(1)知,,进而转化为定义域确定、对称轴确定的二次函数在闭区间的最值问题,详细见解析.试题解析:(1)当时,即,则为其两根,由韦达定理知:所以,所以.(2)由(1)知:,因为,所以,当时,该函数取得最小值,又因为,所以当时,该函数取得最大值.【考点】二次函数的最值问题及一元二次方程根与系数的关系.12.已知函数⑴写出该函数的单调区间;⑵若函数恰有3个不同零点,求实数的取值范围;⑶若对所有的恒成立,求实数的取值范围.【答案】(1)函数的单调递减区间是;单调增区间是及(2),(3)【解析】(1)函数的单调递减区间是;单调增区间是及(2)作出直线,函数恰有3个不同零点等价于函数与函数的图象恰有三个不同公共点.由函数又∴(3)又即在上恒成立在上恒大于等于0的取值范围是【考点】本题考查了函数的零点及性质点评:对于一次函数y=f(x)=ax+b(a≠0)在[m,n]内恒有f(x)>0,则同理,若在[m,n]内恒有f(x)<0,则有13.(本小题12分)已知函数,其中。

中学数学单调性与最值练习题(含答案)

中学数学单调性与最值练习题(含答案)

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的,自左向右看图象是下降的(2)函数单调性的两种等价形式设任意x1,x2∈[a,b]且x1<x2,那么①f x1-f x2x1-x2>0⇔f(x)在[a,b]上是增函数;f x1-f x2x1-x2<0⇔f(x)在[a,b]上是减函数.②(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在[a,b]上是减函数.[必记结论]对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:(1)可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;(2)可导函数则可以利用导数解之.(3)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.[必记结论]求函数单调区间的2个注意点(1)单调区间是定义域的子集,故求单调区间应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示.知识梳理2.函数的最值前提设函数y =f (x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x)=M(1)对于任意x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值考点一函数单调性的判断与单调区间的求法自主探究基础送分考点——自主练透[题组练通]1.(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2) B.(-∞,1)C.(1,+∞) D.(4,+∞)解析:(复合法)由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D2.设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2 014型增函数”,则实数a的取值范围是________.解析:(图象法)由题意得,当x>0时,f(x)=⎩⎪⎨⎪⎧x-3a x≥a,-x-a x<a.①当a≥0时,函数f(x)的图象如图①所示,考虑极大值f(-a)=2a,令x-3a=2a,得x=5a.例题讲解所以只需满足5a -(-a )=6a <2 014,即0≤a <1 0073.②当a <0时,函数f (x )的图象如图②所示,且f (x )为增函数. 因为x +2 014>x ,所以满足f (x +2 014)>f (x ). 综上可知,实数a 的取值范围是a <1 0073.答案:⎝⎛⎭⎫-∞,1 0073 3.已知函数f (x )=ln x +mx 2(m ∈R ),求函数f (x )的单调区间. 解析:(导数法)依题意,知f (x )的定义域为(0,+∞). 对f (x )求导,得f ′(x )=1x +2mx =1+2mx 2x.当m ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增. 当m <0时,令f ′(x )=0,得x =-12m. 当x ∈⎝⎛⎭⎫0,-12m 时,f ′(x )>0, 所以f (x )在⎝⎛⎭⎫0,-12m 上单调递增; 当x ∈⎝⎛⎭⎫-12m ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫-12m ,+∞上单调递减.函数单调性的判断方法考点二 函数单调性的应用 多维探究 题点多变考点——多角探明[锁定考向] 高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题某一问中.常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小;(3)解函数不等式;(4)利用单调性求参数的取值范围或值.角度一 求函数的值域或最值1.(2018·合肥模拟)已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( )A .4B .2C .1D .0解析:设t =x -1,则f (x )=(x 2-2x )sin(x -1)+x +1=(t 2-1)sin t +t +2,t ∈[-2,2].记g (t )=(t 2-1)sin t +t +2,则函数y =g (t )-2=(t 2-1)sin t +t 是奇函数.由已知得y =g (t )-2的最大值为M -2,最小值为m -2,所以M -2+(m -2)=0,即M +m =4.故选A.答案:A角度二 比较函数值或自变量大小2.已知a >b >0,则下列命题成立的是( ) A .sin a >sin bB .log 2a <log 2bD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:函数y =sin x 在(0,+∞)上不是单调函数,所以不能判断出sin a 与sin b 的大小;函数y =log 2x 在(0,+∞)上单调递增,结合a >b >0可得log 2a >log 2b ;函数y =在(0,+∞)上单调递增,结合a >b >0可得;函数y =⎝⎛⎭⎫12x是单调递减函数,所以⎝⎛⎭⎫12a<⎝⎛⎭⎫12b.故选D.答案:D角度三 求解函数不等式3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,2x -x 2,x <0,函数g (x )=|f (x )|-1.若g (2-a 2)>g (a ),则实数a的取值范围是( )A .(-2,1)B .(-∞,-2)∪(2,+∞)C .(-2,2)D .(-∞,-2)∪(-1,1)∪(2,+∞)解析:由题可知,f (x )为单调递增的奇函数,则g (x )为偶函数且在[0,+∞)上单调递增.因为g (2-a 2)>g (a ),所以|2-a 2|>|a |,即(2-a 2)2>a 2,解得a <-2或-1<a <1或a >2,即实数a 的取值范围是(-∞,-2)∪(-1,1)∪(2,+∞).故选D.答案:D角度四 利用单调性求参数的取值范围4.已知函数f (x )=⎩⎪⎨⎪⎧a x ,x <0,a -3x +4a ,x ≥0满足对任意x 1≠x 2,都有fx 1-f x 2x 1-x 2<0成立,则实数a 的取值范围是( )A.⎝⎛⎦⎤0,14 B .(1,2] C .(1,3)D.⎝⎛⎭⎫12,1解析:由f x 1-f x 2x 1-x 2<0,得f (x )在定义域上是减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,4a ≤1,解得0<a ≤14,所以a ∈⎝⎛⎦⎤0,14.故选A. 答案:A函数单调性应用问题的常见类型及解题策略(1)比较大小比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.(4)求函数最值(四种常用方法)单调性法:先确定函数的单调性,再由单调性求最值.图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.[即时应用]1.(2018·福州模拟)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数.因为a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,且2<52<3,所以b >a >c . 答案:D2.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)A 组——基础对点练1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 答案:C2.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln xD .y =|x |解析:因为对数函数y =ln x 的定义域不是R ,故首先排除选项C ;因为指数函数y =e-x,即y =⎝⎛⎭⎫1e x,在定义域内单调递减,故排除选项A ;对于函数y =|x |,当x ∈(-∞,0)时,函数变为y =-x ,在其定义域内单调递减,因此排除选项D ;而函数y =x 3在定义域R 上为增函数.故选B.答案:B3.(2018·长春市模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2,x <-1,|2x-1,x ≥-1,则函数f (x )的值域为( )A .[-1,+∞)B .(-1,+∞)综合题库C .[-12,+∞)D .R解析:当x <-1时,f (x )=x 2-2∈(-1,+∞);当x ≥-1时,f (x )=2x -1∈[-12,+∞),综上可知,函数f (x )的值域为(-1,+∞).故选B.答案:B4.设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数解析:∵f (-x )=-x -sin(-x )=-(x -sin x )=-f (x ),∴f (x )为奇函数.又f ′(x )=1-cos x ≥0,∴f (x )单调递增,选B. 答案:B5.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)解析:因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,排除A ;因为函数f (x )在(-2π,-π)上单调递减,排除B ;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,排除C ;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞),故选D.答案:D6.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件,选A.答案:A7.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( )A .(0,1)B .⎣⎡⎭⎫13,1 C.⎝⎛⎦⎤0,13 D .⎝⎛⎦⎤0,23 解析:∵⎩⎪⎨⎪⎧0<a <13a ≥1,∴13≤a <1.答案:B8.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-xD .y =log 0.5(x +1)解析:A 项,y =x +1为(-1,+∞)上的增函数,故在(0,+∞)上递增;B 项,y =(x -1)2在(-∞,1)上递减,在(1,+∞)上递增;C 项,y =2-x =⎝⎛⎭⎫12x 为R 上的减函数;D 项,y =log 0.5(x +1)为(-1,+∞)上的减函数.故选A.答案:A9.已知f (x )是偶函数,当x >0时,f (x )单调递减,设a =-21.2,b =⎝⎛⎭⎫12-0.8,c =2log 5 2,则f (a ),f (b ),f (c )的大小关系为( )A .f (c )<f (b )<f (a )B .f (c )<f (a )<f (b )C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )解析:依题意,注意到21.2>20.8=⎝⎛⎭⎫12-0.8>20=1=log 55>log 54=2log 52>0,又函数f (x )在区间(0,+∞)上是减函数,于是有f (21.2)<f (20.8)<f (2log 52),由函数f (x )是偶函数得f (a )=f (21.2),因此f (a )<f (b )<f (c ),选C.答案:C10.(2018·长沙市统考)已知函数f (x )=x 12,则( )A .∃x 0∈R ,f (x 0)<0B .∀x ∈(0,+∞),f (x )≥0C .∃x 1,x 2∈[0,+∞),f x 1-f x 2x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),f (x 1)>f (x 2)解析:幂函数f (x )=x 12的值域为[0,+∞),且在定义域上单调递增,故A 错误,B 正确,C 错误,D 选项中当x 1=0时,结论不成立,选B.答案:B11.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数.下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos(x +1)解析:由f (x )为准偶函数的定义可知,若f (x )的图象关于x =a (a ≠0)对称,则f (x )为准偶函数,A ,C 中两函数的图象无对称轴,B 中函数图象的对称轴只有x =0,而D 中f (x )=cos(x +1)的图象关于x =k π-1(k ∈Z )对称.答案:D12.函数的值域为________.解析:当x ≥1时,0<2x <2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)13.函数f (x )=x +2x -1的值域为________. 解析:由2x -1≥0可得x ≥12,∴函数的定义域为⎣⎡⎭⎫12,+∞,又函数f (x )=x +2x -1在⎣⎡⎭⎫12,+∞上单调递增, ∴当x =12时,函数取最小值f ⎝⎛⎭⎫12=12, ∴函数f (x )的值域为⎣⎡⎭⎫12,+∞. 答案:⎣⎡⎭⎫12,+∞ 14.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.解析:由f (x )=⎩⎨⎧-2x -a ,x <-a22x +a ,x ≥-a2,可得函数f (x )的单调递增区间为⎣⎡⎭⎫-a2,+∞,故3=-a2,解得a =-6.答案:-615.已知函数f (x )=x +ax(x ≠0,a ∈R ),若函数f (x )在(-∞,-2]上单调递增,则实数a的取值范围是__________.解析:设x 1<x 2≤-2,则Δy =f (x 1)-f (x 2)=x 1+a x 1-x 2-ax 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2=x 1-x 2x 1x 2-a x 1x 2.因为x 1-x 2<0,x 1x 2>0,所以要使Δy =x 1-x 2x 1x 2-a x 1x 2<0恒成立,只需使x 1x 2-a >0恒成立,即a <x 1x 2恒成立.因为x 1<x 2≤-2,所以x 1x 2>4,所以a ≤4,故函数f (x )在(-∞,-2]上单调递增时,实数a 的取值范围是(-∞,4].答案:(-∞,4]B 组——能力提升练1.(2018·西安一中模拟)已知函数f (x )={ x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)解析:∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.故选D.答案:D2.(2018·郑州模拟)已知函数f (x )=x +x ln x ,若k ∈Z ,且k (x -1)<f (x )对任意的x >1恒成立,则k 的最大值为( )A .2B .3C .4D .5解析:依题意得,当x =2时,k (2-1)<f (2),即k <2+2ln 2<2+2=4,因此满足题意的最大整数k 的可能取值为3.当k =3时,记g (x )=f (x )-k (x -1),即g (x )=x ln x -2x +3(x >1),则g ′(x )=ln x -1,当1<x <e 时,g ′(x )<0,g (x )在区间(1,e)上单调递减;当x >e 时,g ′(x )>0,g (x )在区间(e ,+∞)上单调递增.因此,g (x )的最小值是g (e)=3-e >0,于是有g (x )>0恒成立.所以满足题意的最大整数k 的值是3,选B.答案:B3.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .⎣⎡⎭⎫1,32C .[1,2)D .⎣⎡⎭⎫32,2解析:函数f (x )的定义域为(0,+∞),所以k -1≥0,即k ≥1.令f ′(x )=4x 2-12x =0,解得x =12⎝⎛⎭⎫x =-12舍.因为函数f (x )在区间(k -1,k +1)内不是单调函数,所以k -1<12<k +1,得-12<k <32.综上得1≤k <32.答案:B4.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+≤2f (1),则a 的取值范围是( )A .[1,2]B .⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,2D .(0,2]解析:由已知条件得f (-x )=f (x ),则f (log 2a )+≤2f (1)⇒f (log 2a )+f (-log 2a )≤2f (1)⇒f (log 2a )≤f (1),又f (log 2a )=f (|log 2a |)且f (x )在[0,+∞)上单调递增,∴|log 2a |≤1⇒-1≤log 2a ≤1,解得12≤a ≤2,选C.答案:C5.设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数解析:因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),在(0,1)上,当x 增大时,1-x 2减小,ln(1-x 2)减小,即f (x )在(0,1)上是减函数,故选B.答案:B6.已知函数f (x )=lg(a x -b x )+x 中,常数a ,b 满足a >1>b >0,且a =b +1,那么f (x )>1的解集为( )A .(0,1)B .(1,+∞)C .(1,10)D .(10,+∞)解析:由a x -b x >0,即⎝⎛⎭⎫a b x>1,解得x >0,所以函数f (x )的定义域为(0,+∞).因为a >1>b >0,所以y =a x 单调递增,y =-b x 单调递增,所以t =a x -b x 单调递增.又y =lg t 单调递增,所以f (x )=lg(a x -b x )+x 为增函数.而f (1)=lg(a -b )+1=lg 1+1=1,所以x >1时f (x )>1,故f (x )>1的解集为(1,+∞).故选B.答案:B7.已知函数f (x )是定义在R 上的单调递增函数,且满足对任意的实数x 都有f (f (x )-3x )=4,则f (x )+f (-x )的最小值等于( )A .2B .4C .8D .12解析:由f (x )的单调性知存在唯一实数K 使f (K )=4,即f (x )=3x +K ,令x =K 得f (K )=3K +K =4,所以K =1,从而f (x )=3x +1,即f (x )+f (-x )=3x +13x +2≥23x ·13x +2=4,当且仅当x =0时取等号.故选B.答案:B8.(2013·高考安徽卷)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:充分性:当a <0时,f (x )=|(ax -1)·x |=-ax 2+x 为图象开口向上的二次函数,且图象的对称轴为直线x =12a ⎝⎛⎭⎫12a <0,故f (x )在(0,+∞)上为增函数;当a =0时,f (x )=x ,为增函数.必要性:f (0)=0,当a ≠0时,f ⎝⎛⎭⎫1a =0,若f (x )在(0,+∞)上为增函数,则1a <0,即a <0.f (x )=x 时,f (x )为增函数,此时a =0.综上,a ≤0为f (x )在(0,+∞)上为增函数的充分必要条件.答案:C9.已知函数f (x )={ a -1x +4-2a ,x <11+log 2x ,x ≥1.若f (x )的值域为R ,则实数a 的取值范围是( )A .(1,2]B .(-∞,2]C .(0,2]D .[2,+∞)解析:依题意,当x ≥1时,f (x )=1+log 2x 单调递增,f (x )=1+log 2x 在区间[1,+∞)上的值域是[1,+∞).因此,要使函数f (x )的值域是R ,则需函数f (x )在(-∞,1)上的值域M ⊇(-∞,1).①当a -1<0,即a <1时,函数f (x )在(-∞,1)上单调递减,函数f (x )在(-∞,1)上的值域M =(-a +3,+∞),显然此时不能满足M ⊇(-∞,1),因此a <1不满足题意;②当a -1=0,即a =1时,f (x )在(-∞,1)上的值域M ={2},此时不能满足M ⊇(-∞,1),因此a =1不满足题意;③当a -1>0,即a >1时,函数f (x )在(-∞,1)上单调递增,函数f (x )在(-∞,1)上的值域M =(-∞,-a +3),由M ⊇(-∞,1)得{ a >13-a ≥1,解得1<a ≤2.综上所述,满足题意的实数a 的取值范围是(1,2],选A.答案:A10.函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f xx 在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:∵函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上, 对称轴x =a ,∴a <1, g (x )=f x x =x +a x-2a .若a ≤0,则g (x )=x +ax-2a 在(0,+∞),(-∞,0)上单调递增;若0<a <1,则g (x )=x +ax -2a 在(a ,+∞)上单调递增,则在(1,+∞)上单调递增.综上可得,g (x )=x +ax -2a 在(1,+∞)上单调递增.故选D.答案:D11.(2018·武汉市模拟)若存在正实数a ,b ,使得∀x ∈R 有f (x +a )≤f (x )+b 恒成立,则称f (x )为“限增函数”.给出以下三个函数:①f (x )=x 2+x +1;②f (x )=|x |;③f (x )=sin(x 2),其中是“限增函数”的是( )A .①②B .②③C .①③D .③解析:对于①,f (x +a )≤f (x )+b 即(x +a )2+(x +a )+1≤x 2+x +1+b ,即2ax ≤-a 2-a +b ,x ≤-a 2-a +b 2a 对一切x ∈R 恒成立,显然不存在这样的正实数a ,b .对于②,f (x )=|x |,即|x +a |≤|x |+b ,|x +a |≤|x |+b 2+2b |x |,而|x +a |≤|x |+a ,∴|x |+a ≤|x |+b 2+2b |x |,则|x |≥a -b 22b ,显然,当a ≤b 2时式子恒成立,∴f (x )=|x |是“限增函数”.对于③,f (x )=sin(x 2),-1≤f (x )=sin(x 2)≤1,故f (x +a )-f (x )≤2,当b ≥2时,对于任意的正实数a ,b 都成立,故选B.答案:B12.函数f (x )=⎩⎪⎨⎪⎧x 2-2x +4x ,x >0,-x 2-2x ,x ≤0的值域为__________.解析:当x >0时,f (x )=x 2-2x +4x =x +4x -2,由基本不等式可得x +4x≥2x ·4x =4(当且仅当x =4x,即x =2时等号成立), 所以f (x )=x +4x-2≥4-2=2,即函数f (x )的取值范围为[2,+∞);当x ≤0时,f (x )=-x 2-2x =-(x +1)2+1,因为当x =-1时,f (x )取得最大值1, 所以函数f (x )的取值范围为(-∞,1].综上,函数f (x )的值域为(-∞,1]∪[2,+∞). 答案:(-∞,1]∪[2,+∞)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x -6,x >1,则f (f (-2))=__________,f (x )的最小值是__________.解析:因为f (-2)=4,f (4)=-12,所以f (f (-2))=-12;x ≤1时,f (x )min =0,x >1时,f (x )min =26-6,又26-6<0,所以f (x )min =26-6.答案:-1226-614.(2018·长沙市模拟)定义运算:x y =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:34=3,(-2)4=4,则函数f (x )=x 2(2x -x 2)的最大值为__________.解析:由已知得f (x )=x 2(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 22x -x 2≥0,2x -x 2,x 22x -x 2<0=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x <0或x >2,易知函数f (x )的最大值为4. 答案:415.定义域为R 的函数f (x )满足f (x +3)=2f (x ),当x ∈[-1,2)时,f (x )=⎩⎪⎨⎪⎧x 2+x ,x ∈[-1,0,-12|x -1|,x ∈[0,2,若存在x ∈[-4,-1),使得不等式t 2-3t ≥4f (x )成立,则实数t 的取值范围是__________.解析:由题意知f (x )=12f (x +3).当x ∈[-1,0)时,f (x )=x 2+x =(x +12)2-14∈[-14,0];当x ∈[0,2)时,f (x )=-(12)|x -1|∈[-1,-12];所以当x ∈[-1,2)时,f (x )min =-1.故当x ∈[-4,-1)时,x +3∈[-1,2),所以f (x +3)min =-1,此时f (x )min =12×(-1)=-12.由存在x ∈[-4,-1),使得不等式t 2-3t ≥4f (x )成立,可得t 2-3t ≥4×(-12),解得t ≤1或t ≥2.答案:(-∞,1]∪[2,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性与最值
1.下列函数中,在区间(-1,1)为减函数的是( )
A .x
y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( )
A .)2,(--∞
B .)1,(-∞
C .),1(+∞
D .),4(+∞
3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( )
A .-3
B .-2
C .-1
D .1
4函数x
x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞
5设函数)1()(,0,10,00,1)(2-=⎪⎩
⎪⎨⎧<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( )
A .]0,(-∞
B .)1,0[
C .),1[+∞
D .]0,1[-
6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[--
B .]4,6[--
C .]22,3[--
D .]3,4[-- 7.函数],(,1
2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[-
8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x
x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数
9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是
10.已知函数f (x)的值域为]9
4,83[,则函数)(21)()(x f x f x g -+=的值域为
1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( )
A .]1,0(
B .]2,1[
C .+∞,1[)
D .+∞,2[)
2.已知函数⎪⎩⎪⎨⎧>-≤--=1
,1log 1,41)(x x x x ax x f a 是R 上的单调函数,则实数a 的取值范围是( ) A .)21,41[ B .]21,41[ C .]21,0( D .)1,2
1[
3.已知函数f (x)是定义在),0(+∞上的增函数,若)3()(2+>-a f a a f ,则实数a 的取值范围为
4.已知减函数f (x)的定义域是R ,m,n 都是实数,如果不等式)()()()(n f m f n f m f --->-成立,那么下列不等式成立的是( )
A .0<-n m
B .0>-n m
C .0<+n m
D .0>+n m 5.设函数⎩⎨⎧<≥+=1
,1,)(2x x x x m x f 的图像过点(1,1),函数g (x)是二次函数,若函数f (g (x))
的值域是),0[+∞,则函数g (x)的值域是
6.已知函数f (x)是R 上的增函数,A (0,-3)B (3,1)是其图像上的两点,那么不等式1)1(3<+<-x f 的的解集的补集是( )
A .)2,1(-
B .)4,1(
C .),4[)1,(+∞⋃--∞
D .),2[]1,(+∞⋃--∞
7.已知函数)0,0(11)(>>-=
x a x
a x f (1)求证:f (x)在),0(+∞上是增函数 (2)若f (x)在]2,21[上的值域是]2,21[,求a 的值
8.已知函数)2lg()(-+=x
a x x f ,期中a 是大于0的常数 (1)求函数f (x)的定义域
(2)当)4,1(∈a 时,求函数f (x)在)
,∞+2[上的最小值 (3)若对任意),2[+∞∈x 恒有0)(>x f ,试确定a 的取值范围。

相关文档
最新文档