人教版七年级数学上册《绝对值》PPT课件
合集下载
《绝对值》ppt课件
4
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培
七年级上册数学绝对值ppt课件(共13张PPT)
情景引入
有理数大小的比较方法1: 数轴比较法:
在数轴上表示的两个数,右边的数总比左边的数大.
记住了吗?
小 -5 -4 -3 -2 -1 0 1
大 2 3 4 5
有没有最大的有理数?有没有最小的有理数?为什么?
典例分析
例1 在数轴上表示数-3,-5,4,0,并比较它们的大
小,将它们按从小到大的顺序用“<”号连接. 解:-3,-5,4,0在数轴上表示如图:
1.2.4绝对值—有理数 大小的比较
学习目标
1.能利用数轴及绝对值的知识,比较两个
有理数的大小.(重点、难点)
情景引入
你能说出哪个城市的最低气温最低吗?
一 借助数轴比较有理数的大小 下图表示某一天我国5个城市的最低气温.
武汉5 ℃
北京-10℃
上海0℃
广州10℃
哈尔滨-20℃
问题:你能将上述五个城市的最低气温按从低到高
两负数相比较,绝对值 大的反而小.
解:两个负数做比较,先求它们的绝对值.
24 24 5 5 25 − = ,= = . 35 35 7 7 35 24 25 因为 , 35 35 24 5 所以 − - , 35 7 24 5 所以 − - . 35 7
同号两数比 较要考虑它们的 绝对值.
● -5
-4
● -3
-2
-1
● 0
1
2
3
● 4
5
将它们按从小到大的顺序排列为:
-5 <-3 <0 <4
二 运用法则比较有理数的大小 问题: 对于正数、0、负数这三类数,它们之间有什 么大小关系?两个负数之间如何比较大小? 结论:
(1)正数大于0, 正数大于负数; 负数小于0,
绝对值_课件
练习
写出下列各数的绝对值: 16,-7,-2.4, , ,1000,0,
快问快答
快速说出下列数的相反数或绝对值 -5的绝对值是______ 100的相反数是______
的相反数是______ 的绝对值是______
3.5的绝对值是______
探究
2.05 1000
0
相反数 -2.05 -1000
总结
这节课我们学会了什么?
1、绝对值的几何意义:
数轴上表示数a的点与原点的距离叫做数a的绝对值,记作: |a|. 2、绝对值的代数意义:
小组讨论
(1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么? (3)不论有理数a取何值,它的绝对值总是什么数?
不论有理数a取何值, 它的绝对值总是正数或0(非负数),
即对任意有理数a,总有|a|≥0.
思考探究
招聘会
正数公司和负数公司招聘职员,要求是:经过绝对值符号“︱︱”这扇 大门后,结果为正就是正数公司职员,结果为负就是负数公司职员.
(2)绝对值是0的数有几个?各是什么? 答:绝对值是0的数有一个,就是0.
(3)绝对值小于3的整数一共有多少个? 答:绝对值小于3的整数一共有5个, 它们分别是-2,-1,0,1,2.
练习
求绝对值等于4的数.
练习
判断: (1)一个数的绝对值是 2 ,则这数是2 . (2)|-0.3|=|0.3|. (3)|3|>0. (4)|-1.4|>0. (5)有理数的绝对值一定是正数. (6)若a=b,则|a|=|b|. (7)若|a|=|b|,则a=b. (8)若|a|=-a,则a必为负数.
问题:这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、 B两点又有什么特征? 共同点:它们的跑动距离相等. 特征:关于原点对称.
人教版数学七年级上册绝对值完美课件
2 的绝对值是 2,即| 2|= 2;
3
3
33
0的绝对值是0,即|0|=0;
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
-2.3的绝对值是2.3,即|-2.3|=2.3;
+0.56的绝对值是0.56,即|+0.56|=0.56;
-6的绝对值是6,即|-6|=6;
+6的绝对值是6 ,即|+6|=6;
21 的绝对值是 21,即| 21|=
2
2
2
21.
2
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
1.字母 a 表示一个数,-a 表示什 么?-a一定是负数吗?
2 , 2 , 0. 55 20 2
55
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
3.化简 5 _5__
5 _-_5_
21
2 1 __4_
4
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
绝对值的表示 数a的绝对值,记作:|a|.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作:|-5|=5.
11 3
的绝对值是1 1 3
人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
人教版七年级上册数学绝对值ppt课堂课件
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
2.若|a|+ |b-3| =0.则a =__0___,
b= __3___. 3.如果一个数的绝对值等于4.53 ,
则这个数是__4_._5_3或__-__4_.5_3____. 4.如果|x-1|=2,则x=___3或__-__1___. 5.如果a 的相反数是-0.86,那么|a|
东、西方向行驶10km,到达A、B两处(图
1.2-5)。
方向不同, (正负性)
(1)它们的行驶路线的方向相同吗?距(不离。管相方同向,)
(2)它们行驶路程的距离(线段OA、OB的长 度)相同吗?
A
10
-10
O
10
B
0
10
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
1.2.4
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
学习目标
1. 初步理解绝对值的概念,能求一个
数的绝对值. 2.通过应用绝对值解决相关问题,体 会绝对值的意义和作用.
人教版七年级上册数学课件:1.2.4绝 对值
❖
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
❖
7学习这篇课文,应该重点引导学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。
七年级数学上册PPT课件--《绝对值》
-4 ,-(-32),│-0.6│,-0.6,-│4.2│
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
新版人教版七年级数学上册《绝对值》课件(17张)
创设情境
两辆汽车从同一处O出发,分别向东、西方向行 驶了10千米,到达A、B两处.它们的行驶路线相同 吗? 行驶的路程分别是多少?
B
O
A
-10
0
10
10千米
10千米
做游戏
请两位同学分别站在老师的左右两边,两位同学 同时向东、西相反的方向走1米,把这两位同学所 站位置用数轴上的点表示出来.
距
距
离
离
是1
学生活动 2.互为相反数的两个数的绝对值有什么关系?
一对相反数虽然分别在原点两边,但它们 到原点的距离是相等的.所以互为相反数的两 个数的绝对值相等.
7 图1.2-7
学生活动
你能把14个气温从低到高排列吗?能把这14个数 用数轴上的点表示出来吗?观察这些点在数轴上的位 置,思考它们与温度的高低之间的关系,你觉得两个 有理数可以比较大小吗?
(B )
A.可以是负数 B.不可能是负数
C.必是正数
D.可以是正数也可以是负数
温馨提示: 认真完成作业是巩固知识的有效方法!!
12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
练习2:|-13 |的相反数是 ;若|a|=2,则a=±2 .
练习3:绝对值小于3.5的整数是-3,-2,-1,0,1,2,3 . 练习4:已知:x342y0,则x= -3 ,y= 2 .
课堂练习
两辆汽车从同一处O出发,分别向东、西方向行 驶了10千米,到达A、B两处.它们的行驶路线相同 吗? 行驶的路程分别是多少?
B
O
A
-10
0
10
10千米
10千米
做游戏
请两位同学分别站在老师的左右两边,两位同学 同时向东、西相反的方向走1米,把这两位同学所 站位置用数轴上的点表示出来.
距
距
离
离
是1
学生活动 2.互为相反数的两个数的绝对值有什么关系?
一对相反数虽然分别在原点两边,但它们 到原点的距离是相等的.所以互为相反数的两 个数的绝对值相等.
7 图1.2-7
学生活动
你能把14个气温从低到高排列吗?能把这14个数 用数轴上的点表示出来吗?观察这些点在数轴上的位 置,思考它们与温度的高低之间的关系,你觉得两个 有理数可以比较大小吗?
(B )
A.可以是负数 B.不可能是负数
C.必是正数
D.可以是正数也可以是负数
温馨提示: 认真完成作业是巩固知识的有效方法!!
12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
练习2:|-13 |的相反数是 ;若|a|=2,则a=±2 .
练习3:绝对值小于3.5的整数是-3,-2,-1,0,1,2,3 . 练习4:已知:x342y0,则x= -3 ,y= 2 .
课堂练习
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
绝对值(课件)数学七年级上册(人教版)
你能把这些数在数轴上表示出来吗?
数学中规定:在数轴上表示有理数,它们从左到右的顺序,
就是从小到大的顺序,即左边的数小于右边的数.
-4<-3 < -2 < -1 < 0 < 1 < 2
互动新授
思考
对于正数、0和负数这三类数,它们之间有什么大小关系?
两个负数之间如何比较大小?
一般地
(1)正数大于0,0大于负数,正数大于负数;
同号两数比较大小,要考虑它们的绝对值.
正数
负数
数值
越大
越小
绝对值
越大
越小
越大
越小
越小
越大
小试牛刀
1.比较下列各对数的大小,正确的是( A )
A.0>-2
C.-2.2<-|-2.25|
B.-3<-5
3 3
D.- <-
5 4
2.下面四个数中,比-|-3|小的数是( D )
A.-1
B.-2
C.-3
D.-4
(2)两个负数,绝对值大的反而小.
例如,1 > 0;0 > -1;1 > -1;-1 < -2.
典例精析
例2
比较下列各数的大小:
3
8
1
(1)-(-1)和-(+2); (2) 和
; (3)-(-0.3)和 3 .
7
21
解: (1)先化简-(-1)=1, -(+2)=-2
∵正数大于负数
∴1>-2
吗? 行驶的路程分别是多少?
B
-10
10
O
0
它们的行驶路线不同,A是向东,B是向西.
行驶的路程相等,即OA=OB=10.
数学中规定:在数轴上表示有理数,它们从左到右的顺序,
就是从小到大的顺序,即左边的数小于右边的数.
-4<-3 < -2 < -1 < 0 < 1 < 2
互动新授
思考
对于正数、0和负数这三类数,它们之间有什么大小关系?
两个负数之间如何比较大小?
一般地
(1)正数大于0,0大于负数,正数大于负数;
同号两数比较大小,要考虑它们的绝对值.
正数
负数
数值
越大
越小
绝对值
越大
越小
越大
越小
越小
越大
小试牛刀
1.比较下列各对数的大小,正确的是( A )
A.0>-2
C.-2.2<-|-2.25|
B.-3<-5
3 3
D.- <-
5 4
2.下面四个数中,比-|-3|小的数是( D )
A.-1
B.-2
C.-3
D.-4
(2)两个负数,绝对值大的反而小.
例如,1 > 0;0 > -1;1 > -1;-1 < -2.
典例精析
例2
比较下列各数的大小:
3
8
1
(1)-(-1)和-(+2); (2) 和
; (3)-(-0.3)和 3 .
7
21
解: (1)先化简-(-1)=1, -(+2)=-2
∵正数大于负数
∴1>-2
吗? 行驶的路程分别是多少?
B
-10
10
O
0
它们的行驶路线不同,A是向东,B是向西.
行驶的路程相等,即OA=OB=10.
《绝对值》PPT经典课件1
人教版·数学·七年级上册第一章
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
再 见 任清后任后绝张绝 长思张任概0问 后懒后清思情人张((概负我任0任(张23的))何康来何来对英对城考英务念题来惰来康考境教英1念数们务务家当 当)绝有 熙 张 一 张 值 收 值万 : 收 一 : :张 象 张 熙 : 导 版 收 : 的 把 一 二 人aa(若对a=是理年家个家等书等 里一书:一观 家生家年一入·书一绝一::豁=数0|值0负x时数间人有人于后于 今个后探般察 人锈人间个-后般对个探理然)|-学是-数=,六的,千理千它批它 犹数批究地思 千一千,数批地值数究解开·0七时|尺绝宰里数里本诗本 在的诗绝,考 里样里宰的诗,是在绝绝朗,,年,a巷对相传的传身一身 ,绝一对数正 传,传相绝一数它数对对,但|则级|故值张书绝书的首的 不对首值轴数 书比书张对首轴的轴值值退0=x上不a事都英到对到数云数 见值云得上、 到操到英值云上相上的得让=|_册是_是的京值京一:一当等:概表负京劳京的大:表反对概意了=__第正正老城都城定一定 年于一念示数 城更城老小一示数应念义三____一数数家求是求是纸是 秦他纸及数、 求能求家与纸数的及尺__.章_人救非救正书正 始本书表救消救人什书点表。.0_aa;的;与。负。数来数 皇身来示。耗。与么来示的的绝 到邻数只。,只身邻有只..点点对 原居为这为体居关为!与与值 点吴墙个墙;吴?墙原原有 的家,数,家,点点什 距在让是让在让的的么 离宅他?他宅他距距特 叫地三三地三离离点 做的尺尺的尺叫叫? 这问又又问又做做个题何何题何数数数上妨妨上妨aa发。。发。的的的生生绝绝绝了了对对对争争值值值执执,,,,,用记记谁谁“作作也也|||aa不不|||..”表肯肯示相相.让让。。
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
再 见 任清后任后绝张绝 长思张任概0问 后懒后清思情人张((概负我任0任(张23的))何康来何来对英对城考英务念题来惰来康考境教英1念数们务务家当 当)绝有 熙 张 一 张 值 收 值万 : 收 一 : :张 象 张 熙 : 导 版 收 : 的 把 一 二 人aa(若对a=是理年家个家等书等 里一书:一观 家生家年一入·书一绝一::豁=数0|值0负x时数间人有人于后于 今个后探般察 人锈人间个-后般对个探理然)|-学是-数=,六的,千理千它批它 犹数批究地思 千一千,数批地值数究解开·0七时|尺绝宰里数里本诗本 在的诗绝,考 里样里宰的诗,是在绝绝朗,,年,a巷对相传的传身一身 ,绝一对数正 传,传相绝一数它数对对,但|则级|故值张书绝书的首的 不对首值轴数 书比书张对首轴的轴值值退0=x上不a事都英到对到数云数 见值云得上、 到操到英值云上相上的得让=|_册是_是的京值京一:一当等:概表负京劳京的大:表反对概意了=__第正正老城都城定一定 年于一念示数 城更城老小一示数应念义三____一数数家求是求是纸是 秦他纸及数、 求能求家与纸数的及尺__.章_人救非救正书正 始本书表救消救人什书点表。.0_aa;的;与。负。数来数 皇身来示。耗。与么来示的的绝 到邻数只。,只身邻有只..点点对 原居为这为体居关为!与与值 点吴墙个墙;吴?墙原原有 的家,数,家,点点什 距在让是让在让的的么 离宅他?他宅他距距特 叫地三三地三离离点 做的尺尺的尺叫叫? 这问又又问又做做个题何何题何数数数上妨妨上妨aa发。。发。的的的生生绝绝绝了了对对对争争值值值执执,,,,,用记记谁谁“作作也也|||aa不不|||..”表肯肯示相相.让让。。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
1.绝对值的定义:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值, 记作│a│.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
2.绝对值的意义: 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0. 即:①如果a>0,那么│a│=a; ②如果a=0,那么│a│=0;
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
例题解析
(2)∵
- 8 = 8 , -3 =3
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
合作探究
对于正数,0和负数这三类数,它们之间有什么大小关系?两个负 数之间如何比较大小?
(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
(2)你能将这七天中 每天的最低气温按从低到高 的顺序排列吗?
(3)数轴上的数的排列规律是什么?
人教版七年级数学上册《绝对值》PPT 课件
合作探究
(1)最低气温是-4,最高气温是9. (2)这七天中每天的最低气温按从低到高的顺序排列为: -4, -3, - 2, - 1,0,1 , 2. (3)数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序, 即左边的数小于右边的数.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
例题解析
例2 比较下列各对数的大小:
(1)-(-1)和-(+2);
(2)- 8 和 - 3 ;
21
7
(3)-(-0.3)和
-1 3
.
解:(1)化简,得:-(-1)=1,-(+2)=-2. ∵1>-2, ∴-(-1)>-(+2).
合作探究
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
例题解析
例1 求下列各数的绝对值: (1)|-1 1 |; (2) - | - 7 |;
2 (3)+| - 2 |; (4)| 3 - π |. 解:(1)原式=1 1 ; (2)原式= - 7;
2
(3)原式=2; (4)原式=π - 3.
∴-(-0.3)<
-1 3
.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
>
-
5 6
.
2.化简:
-|-5|= -5 ;
|-(-5)|= 5 ;
-+
1 2
人教版七年级数学上册《绝对值》PPT 课件
第一章 有理数
1.2有理数 1.2.4 绝对值
人教版七年级数学上册《绝对值》PPT 课件
学习目标
1.借助数轴初步理解绝对值的概念,会求一个数的绝对值. 2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.
创设情境
两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A, B两处.它们的行驶路线相同嘛?它们行驶的路程相等吗?
人教版七年级数学上册《绝对值》PPT 课件 人教版七年级数学上册《绝对值》PPT 课件
再
见
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
即:①如果a>0,那么│a│=a; ②如果a=0,那么│a│=0; ③如果a<0,那么│a│=-a.
合作探究
合作探究
有没有绝对值等于-2的数?一个数的绝对值会是负数吗?不论有理 数a取何值,它的绝对值总是什么数?
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件 人教版七年级数学上册《绝对值》PPT 课件
=
1 __2_.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂练习
3.已知|x-2|+|y+2|=0,求x,y的值.
解:∵|x-2|≥0,|y+2|≥0, 又|x-2|+|y+2|=0, ∴|x-2|=0,|y+2|=0, 即x-2=0,y+2=0. ∴x=2,y=-2.
10 A
10 B
到达A,B两处的行驶路线不相同,它们行驶的路程相等.
合作探究
-10与10是相反数,它们只有符号不同,它们什么相同呢?
+10与-10虽然符号不同,但表示这两个数的点到原点的距离都是10, 是相同的.我们把这个距离叫+10与-10的绝对值.
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.
没有绝对值等于-2的数,一个数的绝对值不会是负数;
不论有理数a取何值,它的绝对值总是正数或0(非负数),即对任意 有理数a,总有|a|≥0.
合作探究
互为相反数的两个数的绝对值有什么关系? 互为相反数的两个数的绝对值相等.
合作探究
下图给出了未来一周中每天的最高气温和最低气温,看图回 答下面问题:
(1)最低气温是多少? 最高气温是多少?
③如果a<0,那么│a│=-a.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.