立体几何中存在性问题教案.docx

合集下载

立体几何中的点的存在性问题

立体几何中的点的存在性问题

用向量法(坐标法)解决点的存在性问题点的存在问题(即探索性问题)是历年高考的热点,立体几何中,探索满足某个条件的点是否存问题,能很好的考查学生的逻辑推理能力和空间想象能能力,休现了的新课标的要求,故倍受命题人青睐。

下面结合具体例题讲解此类问题的大致类型及解题策略。

例1:如图,在正方体1111ABCD A B C D -中,E 是1DD 的中点,(1)在棱B 1C 1是否存一点G ,使得AG ⊥平面1A BE ;(2)在线段BE 上是否存一点M ,使得M-CD-A 的平面角的余弦值为25. (3)在正方形ABCD 内(含边界线段)否存一点N ,使得C 1N ⊥1A BE点评:立何几何中的点的存在问题通常使用坐标法来进得解答,此方法不需要进行复杂的作图、推理及论证,只需要通过坐标运算进行判断。

解题策略:先假设满足条件的点存在,把要成立的结论当作条件,据此列方程或解方程组,把“是否存在”问题转化为“点的坐标是否在规定范围内有解问题。

命题类型:(1)在与坐标轴平行的线段上寻求一点满点某个条件,此种类型较易,直接设出该点坐标(横、纵,竖三个坐标中,己知两个),据条件得方程即可求解;(2)在与坐标轴不平行的线段上寻求一点满点某个条件,此种类型,此点的横、纵,竖三个坐标,可能己知一个,或者都不清楚,解题时需要根据三点共线进行坐标代换。

比如:在线段AB(AB 与坐标轴不平行)上寻找一点M 满足条件f 。

具体做法:设M (x,y,z)与AM=λAB (01λ≤≤),由坐标相等概念则可将M 点的坐标全部用λ表示M (f(λ),g(λ),φ(λ)),然后根据假设的结论列方程即求得λ。

(3)在某个面上寻求一点满点某个条件,直接列方程组解决。

命题规律:所探求的点一般是线段的中点或三等分点,故此种也可先估计此点的位置,然后进行证明。

专项训练1.(2010马鞍山模拟)如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(Ⅰ)求二面角B—DE—C的平面角的余弦值;(Ⅱ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.2,(2010绍兴模拟)如图,在三棱锥S-ABC中,SA=AB=AC=BC=2SB=2SC,O为BC的中点,(1)求证:SO ABC平面;(2)求异面直线SC与AB所成角的余弦值;(3)在线段AB上是否存在一点E,使得二面角B-SC-E的平面角的余弦值为15;5若存在,求BE:BA的值;若不存在,试说明理由。

立体几何中的存在性问题

立体几何中的存在性问题

立体几何中的存在性问题1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1;(2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由.2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由.3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小;(2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由.立体几何中的存在性问题1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1;(2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由.2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由.3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小;(2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE的值,若不存在,说明理由.立体几何中的存在性问题1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1;(2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由.(1)证明 在直四棱柱ABCD -A 1B 1C 1D 1中,连接C 1D , ∵DC =DD 1,∴四边形DCC 1D 1是正方形, ∴DC 1⊥D 1C .又AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D , ∴AD ⊥平面DCC 1D 1, 又D 1C ⊂平面DCC 1D 1, ∴AD ⊥D 1C .∵AD ⊂平面ADC 1,DC 1⊂平面ADC 1,且AD ∩DC 1=D , ∴D 1C ⊥平面ADC 1,又AC 1⊂平面ADC 1,∴D 1C ⊥AC 1. (2)解 假设存在点E ,使D 1E ∥平面A 1BD . 连接AD 1,AE ,D 1E , 设AD 1∩A 1D =M , BD ∩AE =N ,连接MN , ∵平面AD 1E ∩平面A 1BD =MN , 要使D 1E ∥平面A 1BD , 可使MN ∥D 1E , 又M 是AD 1的中点, 则N 是AE 的中点. 又易知△ABN ≌△EDN , ∴AB =DE .即E 是DC 的中点.综上所述,当E 是DC 的中点时, 可使D 1E ∥平面A 1BD .2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. (1)证明 取AC 中点F ,连接OF ,FB . ∵F 是AC 中点,O 为CE 中点, ∴OF ∥EA 且OF =12EA .又BD ∥AE 且BD =12AE ,∴OF ∥DB ,OF =DB ,∴四边形BDOF 是平行四边形,∴OD ∥FB . 又∵FB ⊂平面ABC ,OD ⊄平面ABC , ∴OD ∥平面ABC .(2)解 ∵平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,且BD ⊥BA , ∴DB ⊥平面ABC .∵BD ∥AE ,∴EA ⊥平面ABC .2、如图所示,以C 为原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与平面ABC 垂直的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),D (0,4,2),E (4,0,4),O (2,0,2),M (2,2,0),∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由n ⊥MD →,n ⊥OD →,可得⎩⎨⎧-2x +4y =0,-2x +2y +2z =0.令x =2,得y =1,z =1.∴n =(2,1,1). 设直线CD 和平面ODM 所成角为θ,则sin θ=|n ·CD →||n ||CD →|=|(2,1,1)·(0,4,2)|22+12+12·02+42+22=66·25=3010.∴直线CD 和平面ODM 所成角的正弦值为3010. (3)解 当N 是EM 中点时,ON ⊥平面ABDE . 方法一 取EM 中点N ,连接ON ,CM , ∵AC =BC ,M 为AB 中点, ∴CM ⊥AB .又∵平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,CM ⊂平面ABC ,∴CM ⊥平面ABDE . ∵N 是EM 中点,O 为CE 中点, ∴ON ∥CM ,∴ON ⊥平面ABDE . 方法二 由(2)设N (a ,b ,c ),∴MN →=(a -2,b -2,c ),NE →=(4-a ,-b,4-c ). ∵点N 在ME 上,∴MN →=λNE →, 即(a -2,b -2,c )=λ(4-a ,-b,4-c ),∴⎩⎨⎧a -2=λ(4-a ),b -2=λ(-b ),c =λ(4-c ),解得⎩⎪⎨⎪⎧a =4λ+2λ+1,b =2λ+1,c =4λλ+1.∴N (4λ+2λ+1,2λ+1,4λλ+1).∵BD →=(0,0,2)是平面ABC 的一个法向量, ∴ON →⊥BD →,∴4λλ+1=2,解得λ=1.∴MN →=NE →,即N 是线段EM 的中点, ∴当N 是EM 的中点时,ON ⊥平面ABDE .3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小;(2)在D 1E 上是否存在一点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由.解 (1)设AC 与BD 交于点O ,如图所示建立空间直角坐标系O -xyz ,设AB =2, 则A (3,0,0),B (0,-1,0),C (-3,0,0),D (0,1,0),D 1(0,1,2),设E (0,-1,t ),t >0,则ED 1→=(0,2,2-t ),CA →=(23,0,0),D 1A →=(3,-1,-2).∵D 1E ⊥面D 1AC ,∴D 1E ⊥CA ,D 1E ⊥D 1A , ∴⎩⎪⎨⎪⎧ED 1→·CA →=0,ED 1→·D 1A →=0,解得t =3,∴E (0,-1,3),∴AE →=(-3,-1,3),设平面EAC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·CA →=0,m ·AE →=0,∴⎩⎨⎧23x =0,-3x -y +3z =0,令z =1,y =3,m =(0,3,1).又平面D 1AC 的法向量ED 1→=(0,2,-1), ∴cos 〈m ,ED 1→〉=m ·ED 1→|m |·|ED 1→|=22.所以所求二面角的大小为45°. (2)假设存在点P 满足题意. 设D 1P →=λPE →=λ(D 1E →-D 1P →),得D 1P →=λ1+λD 1E →=(0,-2λ1+λ,λ1+λ),A 1P →=A 1D 1→+D 1P →=(-3,1,0)+(0,-2λ1+λ,λ1+λ)=(-3,1-2λ1+λ,λ1+λ)∵A 1P ∥平面EAC ,∴A 1P →⊥m ,∴-3×0+3×(1-2λ1+λ)+1×λ1+λ=0,解得λ=32,故存在点P 使A 1P ∥面EAC ,此时D 1P ∶PE =3∶2.。

立体几何中存在性问题教案

立体几何中存在性问题教案
培养学生学习的自主性
训练学生如何说明结论不成立
引发学生思考直线是怎么寻找到的,探索问题的本质
总结归纳解题思路及方法
当 数量关系变化时,如何找到点 的位置,检查学生对刚学习的解题方法的掌握程度。
提示学生并非所有的存在性问题结论都是肯定的,渗透分析法与反证法的思想,让学生去思考解决存在性问题的思路,巩固面面平行的判定与线面平行的性质
总结归纳解题思路及方法
巩固基础知识和基本思想方法,提高基本技能
检查学生对知识方法的掌握情况
四、课堂小结
通过这节课的复习,请同学们从知识与方法方面回顾一下,学习过程中遇到了什么问题需要注意哪些方面
五、作业布置
学案上的练习题
教学背景分析
教学
内容
分析
立体几何中常出现点的存在性和位置待定的问题,以“是否存在”、“是否有”、“在何位置”
等形式设问,以示结论有待于确定. 文科主要涉及到平行与垂直的位置关系的考查,其中渗透反证法与分析法的解题思路,也是高考中的常见题型。2012年北京市高考文科就考查了有关线面垂直的存在性问题,2016年北京市高考文科就考查了有关线面平行的存在性问题。
问题4:这些直线是怎么找到的
总结问题的类型及解决问题的方法:
问题5:若将题目中的已知条件 改为 ,你能判断在棱 上是否存在一点 使得 ∥平面 , 若存在,请指出 点位置,并证明;若不存在,请说明理由.
问题6:在棱 上(除 点外)是否存在一点 使得 ∥平面 ,若存在,请指出 点位置,并证明;若不存在,说明理由.
总结问题的类型及解决问题的方法:
练习:如图,在四棱锥 中,底面 是平行四边形, 是 中点, 为线段 上一点.试确定点 在线段 上的位置,使
检测题:1、如图,在四棱锥 中,底面 是梯形, ∥ , .在棱 上是否存在一点 使得 ∥平面 ,若存在,求出 点位置,并证明;若不存在,说明理由.

《立体几何存在性问题》

《立体几何存在性问题》

C1B1A一、立体几何的存在性问题1、已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(I)证明:BN⊥平面C1B1N;(II)M为AB中点,在线段CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.俯视图左视图2、如图:在四棱锥P ABCD-中,底面ABCD是菱形,60,ABC PA∠=︒⊥平面ABCD,点,M N分别为,BC PA的中点,且2==ABPA.(1)证明:BC⊥平面AMN;(2)求三棱锥AMCN-的体积;(3)在线段PD上是否存在一点E,使得//NM平面ACE;若存在,求出PE的长;若不存在,说明理由.M CDD3、在直三棱柱111ABC A B C -中,1CC BC =,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.(Ⅰ)求证:⊥C B 1平面BNG ; (Ⅱ)若CG //平面M AB 1,试确定G 点的位置,并给出证明.4、如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,BC =12AD ,P A =PD ,Q 为AD 的中点.(Ⅰ)求证:AD ⊥平面PBQ ;(Ⅱ)若点M 在棱PC 上,设PM =tMC ,试确定t 的值,使得P A //平面BMQ .PABCD Q M二、应用题综合【基本不等式】1、某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过a米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.(1)把房屋总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?【导数】2、为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【线性规划】。

向量法探索立体几何中的存在性问题

向量法探索立体几何中的存在性问题
1 探 索 距 离 问题 . 例 1 (0 1 建 理 2 ) 图 , . 21 福 0如 四棱 锥 P— B D 中 ,A上 AC P 底 面 A C 四边 形 A C 中 ,B上A A A =4 C , B D, BD A D,B+ D , D=
C£ =4 . 5o

所 以 A _ 面 P D. Bj平 A 又A Bc平 面 P B, 以平 面 P BJ平 面 P D A 所 A _ A.
( 以 A为坐标原点 , Ⅱ) 建立空 间直角坐标 系 A— y ( xz 如
图)
在平 面 A C 内, C /A BD 作 E / B交 A 于 点 E, C D 则 E ̄A D.
在 R AC E 中 , E=C ・ o 5 =1 t D D D cs 。 , 4
C E=C ・ i 5 :l A A D s 4 。 设 B= P=t则 B( , 0 , 0 n , t 0, ) P( ,
0t ,)

由A A 4得A : B+ D= , D 4一t所 以 E( 3一t0 , 13 , 0, , ) C( ,
t0 , o, tO , , )o( 4一 ,)

(一110 , , ,)
:( , 0 4一£ 一t , )

( ) 平 面 P D 的法 向量 为 n=( yz , i设 C , ,)
5‘
(i在线段 A i ) D上是否存 在一个 点 G, 得点 G到点 P, 使

c, D的距离都相 等?说 明理 由. 分析 : 题 目中 的四棱锥 能够 找到三 条两两 垂直 的棱 , 从
因此 , 可考虑建立空间直角坐标 系 , 利用向量表 示相关元素 , 然后利用 向量 的运算求解结论.

向量问解:立体几何中的存在性问题

向量问解:立体几何中的存在性问题
3。 0. 不妨设 P 0 0 ( ≤t ( , ,)O ≤V- , )则 = ( 下转第 4 7页 )
() 2 求二面角D- B A 的大小 ;
高版 ? ? __ 中 十。 擞・曩—_
课 程 解 读
21 0 2年 7月
材 法
足点 ( ) , 在可行域中 , 且使 在

cs o(
) =



ቤተ መጻሕፍቲ ባይዱ
1 曰D卜I I / I t
1B : / , , C 、 T 且肘是B D的中点.
( ) 证 :M/ - D ; 1求 E /  ̄ F
又二面角D
B 为锐 角 , 故二面角D- B的大小为6 。 A 0.
( )假设在线段E 上存在一点P,使得C - 晰 成 的角为 3 B P ̄A
本题避 开了讨论 直线斜率一a中。 的符号问题 , 也无 须旋转 直 线束通过数形结合 的方法 找到 目标 函数 +y = 2仅在点 ( , ) 10 处 取得最小值 时 ,直线斜率 的取值 范围 ,从而巧妙解 决 了这类 线性
规 划 问 题.



向上 的射影 I I S , ) C ( 取得最大值 的点在A点 , 以 O 所
解: 因为E - Bj平面A D,B_B 故 VB B A L D, 2 为原点 , 建立如图3 所示的空间直角坐标  ̄B xz由已知可得B 0 00 , 0 2 0 , , -y. ( , , )A( , , )
D ( , , )C ( , 20 , ( , ,、 了 )F ( , ,、 了 )M 3O 0 , 3 一 , )E 0 0 / , 0 1 / ,
I y≤ 2,

立体几何存在性问题

立体几何存在性问题

立体几何中的存在性问题1、如图,已知直三棱柱111ABC A B C -,90ACB ∠=o ,E 就是棱1CC 上动点,F 就是AB 中点 ,2==BC AC ,41=AA 、(Ⅰ)求证:CF ⊥平面1ABB ;(Ⅱ)当E 就是棱1CC 中点时,求证:CF ∥平面1AEB ;(Ⅲ)在棱1CC 上就是否存在点E ,使得二面角1A EB B --的大小就是45o ,若存在,求CE 的长,若不存在,请 说明理由、2、如图,在底面就是正方形的四棱锥P-ABCD 中,PA ⊥面ABCD,BD 交AC 于点E,F 就是PC 中点,G 为AC 上一点。

(Ⅰ)求证:BD ⊥FG;(Ⅱ)确定点G 在线段AC 上的位置,使FG//平面PBD,并说明理由;(Ⅲ)当二面角B-PC-D 的大小为23π时,求PC 与底面ABCD 所成角的正切值。

3、在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 就是直角梯形,//AB CD ,90ADC ∠=o ,1AB AD PD ===,2CD =、(Ⅰ)求证://BE 平面PAD ; (Ⅱ)求证:BC ⊥平面PBD ;(Ⅲ)设Q 为侧棱PC 上一点,PQ PC λ=u u u r u u u r ,试确定λ的值,使得二面角Q BD P--为45o4、如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点、 (Ⅰ)证明:1A O ⊥平面ABC ;GFE AABCD EP(Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值;(Ⅲ)在1BC 上就是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置、5、如图,棱锥P —ABCD 的底面ABCD 就是矩形,PA ⊥平面ABCD ,PA =AD =2,BD =22、 (Ⅰ)求证:BD PAC ⊥平面; (Ⅱ)求二面角B PD C --的余弦值; (III)在线段PD 上就是否存在一点Q ,使CQ 与平面PBD 所成的角的正弦值为962,若存在,指出点Q 的位置,若不存在,说明理由、6、如图,四棱锥,,P ABCD AB AD CD AD PA ABCD -⊥⊥⊥中,底面,22PA AD CD AB ====,M PC 为的中点、(1)求证:BM PAD 平面P ;(2)在侧面PAD 内找一点N,使MN PBD ⊥平面7、如图,三棱柱ABC —A 1B 1C 1中,AA 1⊥面ABC,BC ⊥AC,BC=AC=2,AA 1=3,D 为AC 的中点、 (Ⅰ)求证:AB 1//面BDC 1;(Ⅱ)在侧棱AA 1上就是否存在点P,使得CP ⊥面BDC 1?并证明您的结论、8、 如图,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA = AD = CD = 2AB = 2,M 为PC 的中点、 (1)求证:BM ∥平面PAD ;1A BCO A 1B 1C DPABCA C 1B C 1(2)平面PAD 内就是否存在一点N ,使MN ⊥平面PBD ? 若存在,确定N 的位置,若不存在,说明理由;9、直三棱柱A 1B 1C 1—ABC 的三视图如图所示,D 、E 分别为棱CC 1与B 1C 1的中点。

《立体几何中的存在性问题》教学设计同步培优

《立体几何中的存在性问题》教学设计同步培优

微课堂设计《立体几何中的存在性问题》立体几何中的存在性问题在近几年的全国卷高考中大题第二问一直都有体现,存在性问题也就是探究性问题。

存不存在,存在又如何,我们处理的总的思路是什么?立体几何中的存在问题都是先假设存在,在存在的背景下去完成这个问题。

立体几何中有许多存在性问题,主要是针对直线上是否存在一点(平面内一点)使得满足一定的位置关系(平行、垂直)或一定的角度要求(线面角、二面角)。

存在性问题解决:(1)采用先猜后证,猜中点或三等分点等等然后证明位置关系:平行多用中位线、垂直多用三线合一等;(2)采用先设后求,运用待定系数法和空间向量解决,特别运用三点共线设一般直线上一点。

一.教学目标:掌握处理立体几何中探究性问题的一般思路;二.教学重点:利用先猜后证和先设后求处理探究性问题;三.教学难点:如何猜点及设点;四.教学过程4.1例题讲解例1.如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【答案】P为AM的中点【解析】当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.【分析】先猜后证,为什么要猜中点?根据已知条件没有比例关系,关键是连接对角线会产生中点,平行多用中位线、垂直多用三线合一。

例2.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.【解析】(2)以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz - .则(0,0,0),(2,0,0),(0,2,0),(0,2,0),(0,0,23),(0,2,23)O B A C P AP -= 取平面PAC 的法向量(2,0,0)OB =.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面PAM 的法向量为(,,)n x y z =.由0,0AP n AM n ⋅=⋅=得2230(4)0y z ax a y ⎧+=⎪⎨+-=⎪⎩ , 可取2(3(4),3,)n a a a =--所以22223(4)cos 23(4)3a OB n a a a -〈⋅〉=-++ .由已知得3cos 2OB n 〈⋅〉= .所以22223|4|3223(4)3a a a a -=-++ . 解得4a =-(舍去),43a = .所以83434,,333n ⎛⎫=-- ⎪ ⎪⎝⎭ .又(0,2,23)PC =- ,所以3cos ,4PC n 〈〉= .所以PC 与平面PAM 所成角的正弦值为34. 【分析】本题关键在于设M 的坐标,由于M 在xoy 平面内,可以放在xoy 平面去设M 坐标,根据M 点在直线BC 上,可以得到BC 方程,从而设出M 坐标。

巧解立体几何中的存在性问题

巧解立体几何中的存在性问题

巧解立体几何中的存在性问题发布时间:2021-04-20T15:13:42.997Z 来源:《教学与研究》2021年第2期作者:唐义志[导读] 在近些年的立体几何试题中,逐渐出现了一类带有探究和开放性的试题唐义志湖南省道县第一中学摘要:在近些年的立体几何试题中,逐渐出现了一类带有探究和开放性的试题,这类试题本身涉及的点带有显著的运动性和不确定性特征,使用传统的解题方式有着较大的难度。

笔者在几何本人工作经历的基础上,分析当下学生解答立体几何存在性问题的状况,并在文后通过立体讲述了一些立体几何存在性问题的解答技巧,以期为今后立体几何的存在性问题教学解答提供借鉴。

关键词:立体几何;存在性问题;解答技巧1、立体几何存在性问题解决现状当下高中阶段的试题中,立体几何占据的比例相对较大,这类试题在学生空间思维等方面的培养上发挥了关键作用,其中又以点的存在性和位置待定的问题设置为主,问题中通常带有是否存在等字眼,以便告知学生结论有待进一步确定,在解答问题的过程中,渗透了反证法和分析法等解题思路,也是高考中的热门题目[1]。

这类问题的设置能够帮助学生进一步体会空间内直线之间、直线与平面之间、平面之间平行的位置关系,并使用相关定理有效解决在线平行中的存在性问题,。

同时,学生需要将空间层面的转化为平面问题,并使用多种方式寻找结论证明所需的点、线、面。

但是,学生在具体的问题解答过程中,因其基本掌握了直线之间、直线与平面之间、平面之间平行的判定及其性质等知识,具备一定的解题思路,但解答存在性问题通常以特殊点猜想的方式为主,并未做到从深层次上意识到这个特殊点寻找的意义,再加之学生复习中忽视反证法的应用,导致在结论证明不存在的情况下,无法有效进行叙述。

2、巧妙解决立体几何存在性问题的技巧2.1肯定性问题解答即证明符合条件的对象一定存在,其中常见的一类是只要求证明符合条件的几何对象存在即可,对存在对象的数量并不作要求.常见的证明方法有综合法、构造法、反证法等[2]。

立体几何中的存在性问题

立体几何中的存在性问题

作业.(2010·浙江·理·T20)如图,平面PAC⊥平面ABC, △ABC是以AC为斜边的等腰直角三角形.E,F,O分 别是PA,PB,AC的中点,AC=16 , PA=PC =10.
证明:在△ABO内存在一点M使得FM⊥平面BOE, 并求点M到OA,OB的距离.
z P
E
F
A
C
M
O
y
x
B
例3.(2011·福建·理·T20)
Hale Waihona Puke 几何方法:通过构造一C
个过点P且与AO垂直
的平面来确定点的Q
B
位置
AB 3 AQ
PO
M A
Q
例2.(2010·湖北·理·T18)如图,在四面体OABC中,OC ⊥ OA , OC ⊥ OB , ∠ AOB=120°,且OA=OB= OC=1,P为AC中点,证明:在AB上存在一点Q,使得 PQ⊥ OA,并计算AB/AQ的值.
A
FG∥EC
D
B
C
例1.如图,在底面是菱形的四棱锥P-ABCD
中,∠ABC=60 °,PA=AC=1,PB=PD= 2 ,点E在PD
上,且PE:ED=2:1.在棱PC上是否存在一点F,使
BF∥平面AEC ?证明你的结论.
P
A B
G E
F
O
C
思考3:若要确定平面
BFG∥平面AEC ,还需要
另一组平行线,你能通
C1
E
点F为C1D1的中点
A
MD
B
C 几何方法
向量方法
练习.(2010·湖南·理·T18)
如图,在正方体ABCD-A1B1C1D1中,E是DD1的中
点,在棱C1D1上是否存在一点F,使B1F∥平面A1BE ?

立体几何中的存在性问题

立体几何中的存在性问题

立体几何中的存在性问题利用空间向量解决探索性问题例3 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)求二面角C 1-AD -C 的余弦值;(3)试问线段A1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.如图,在三棱锥P —ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC⊥AC ,点D 为BC 的中点;(1)求二面角A —PD —B 的余弦值;(2)在直线AB 上是否存在点M ,使得PM 与平面P AD1所成角的正弦值为,若存在,求出点M 的位置;若不存在,说明理由. 6提醒三点:(1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值.(2)求二面角除利用法向量外,还可以按照二面角的平面角的定义和空间任意两个向量都是共面向量的知识,我们只要是在二面角的两个半平面内分别作和二面角的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如图所示【上图】.→→→→(3)对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP =xOA +yOB +zOC (x ,y ,z ∈R ) ,四点P ,A ,→→B ,C 共面的充要条件是x +y +z =1. 空间一点P 位于平面MAB 内⇔存在有序实数对x ,y ,使MP =xMA +→→→→→yMB ,或对空间任一定点O ,有序实数对x ,y ,使OP =OM +xMA +yMB .1.如图,在边长为4的菱形ABCD 中,∠DAB =60°. 点E 、F 分别在边CD 、CB 上,点E 与点C 、D 不重合,EF ⊥AC ,EF ∩AC =O . 沿EF 将△CEF翻折到△PEF 的位置,使平面PEF ⊥平面ABFED .(1)求证:→→BD ⊥平面POA ;(2)设点Q 满足AQ =λQP (λ>0),试探究:当PB 取得最小值时,直线OQ 与平面PBD 所π成角的大小是否一定大于 42.如图,AB 为圆O 的直径,点E ,F 在圆上且EF ∥AB ,矩形ABCD 所在平面和圆O 所在平面垂直,已知AB =2,EF =1.(1)求证:平面ADE ⊥平面BCE ;(2)当AD 的长为何值时,二面角D -EF -B 的大小为60°?。

立体几何存在性问题(完整资料).doc

立体几何存在性问题(完整资料).doc

【最新整理,下载后即可编辑】立体几何存在性问题未命名一、解答题1.在多面体中,底面是梯形,四边形是正方形,,,面面,..(1)求证:平面平面;(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?(3)在(2)的条件下,求点到平面的距离.2.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;(Ⅱ)求三棱锥的体积.3.如图,在长方体中,,点在棱上,,点为棱的中点,过的平面与棱交于,与棱交于,且四边形为菱形.(2)确定点的具体位置(不需说明理由),并求四棱锥的体积.4.如图2,已知在四棱锥中,平面平面,底面为矩形.(1)求证:平面平面;(2)若,试求点到平面的距离.5.如图,三棱锥的三条侧棱两两垂直,,,分别是棱,的中点.(1)证明:平面平面;(2)若四面体的体积为,求线段的长.6.如图,在四棱锥中,,,,.(1)求证:;(2)若,,为的中点.(i)过点作一直线与平行,在图中画出直线并说明理由;(ii)求平面将三棱锥分成的两部分体积的比.7.如图1所示,在梯形中,//,且,,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示.(1)求证:;(2)若,,四棱锥的体积为,求四棱锥的表面积.8.如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求四面体的体积.是矩形,且平面平面,点在线段上.(1)求证:平面;(2)当为何值时,平面?证明你的结论. 10.10.如图,已知菱形的对角线交于点,点为的中点.将三角形沿线段折起到的位置,如图2所示.图1 图2(Ⅰ)求证:平面;(Ⅱ)证明:平面平面;(Ⅲ)在线段上是否分别存在点,使得平面平面?若存在,请指出点的位置,并证明;若不存在,请说明理由.参考答案1.(1)见解析.(2)见解析.(3).【解析】分析:(1)在梯形中,过点作作于,可得,所以,由面面,可得出,利用线面垂直的判定定理得平面,进而可得平面平面;(2)在线段上取点,使得,连接,先证明与相似,于是得,由线面平行的判定定理可得结果;(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用体积相等可得,,解得.详解:(1)因为面面,面面,,所以面,.故四边形是正方形,所以.在中,,∴.,∴,∴∴.因为,平面,平面.∴平面,平面,∴平面平面.(2)在线段上存在点,使得平面在线段上取点,使得,连接.在中,因为,所以与相似,所以又平面,平面,所以平面.(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用同角相等可得,,可得.点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.2.(Ⅰ)见解析(Ⅱ)【解析】试题分析:(1)根据面面平行的性质得到,,根据平行关系和长度关系得到点是的中点,点是的中点;(2),因为,所以,进而求得体积.详解:(1)因为平面平面,平面平面,平面平面,所以,又因为,所以四边形是平行四边形,所以,即点是的中点.因为平面平面,平面平面,平面平面,所以,又因为点是的中点,所以点是的中点,综上:分别是的中点;(Ⅱ)因为,所以,又因为平面平面,所以平面;又因为,所以.点睛:这个题目考查了面面平行的性质应用,空间几何体的体积的求法,求椎体的体积,一般直接应用公式底乘以高乘以三分之一,会涉及到点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,还可以等体积转化.3.(1)见解析(2)为棱上靠近的三等分点,为棱中点,【解析】分析:(1)要证平面平面,即证平面,即证,;(2)为棱上靠近的三等分点,为棱中点,利用等体积法即可求得结果.详解:(1)在矩形中,,.又平面,.,平面.又平面,平面平面.(2)为棱上靠近的三等分点,为棱中点,,所以的面积.于是四棱锥的体积.点睛:求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.4.(1)见解析;(2)【解析】分析:(1)由平面平面,根据面面垂直的性质可得平面,由面面垂直的判定定理可得结论;(2)取AD 的中点O,则平面,由,从而利用棱锥的体积公式可得结果.详解:(1)证明:.(2)解:取AD的中点O,则,,则.又易知,所以,解出.点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.5.(1)证明见解析;(2).【解析】分析:(1)推导出BE⊥CD,AB⊥CD,从而CD⊥平面ABE,由此能证明平面ABE⊥平面ACD;(2)取BD的中点G,连接EG,则EG∥BC.推导出BC⊥平面ABD,从而EG⊥平面ABD,由此能求出线段AE的长.详解:(1)证明:因为,是棱的中点,所以.又三棱锥的三条侧棱两两垂直,且,所以平面,则.因为,所以平面,又平面,所以平面平面.(2)解:取的中点,连接,则.易证平面,从而平面,所以四面体的体积为,则,在中,,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.6.(1)见解析;(2)见解析,【解析】分析: (1) 取中点,连接,,先证明面,再证明.(2) (i)取中点,连接,,则,即为所作直线,证明四边形为平行四边形即得证. (ii)先分别计算出两部分的体积,再求它们的比.详解:(1)证明:(1)取中点,连接,,为中点,又,为中点,又,面又面,(2)(i)取中点,连接,,则,即为所作直线,理由如下:在中、分别为、中点,且又,且,四边形为平行四边形.(ii),,,面又在中,,,又,面,.:(1)本题主要考查空间平行垂直位置关系的证明,考查空间几何体体积的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)对于空间平行垂直位置关系的证明有几何法和向量法两种方法,空间几何体体积的计算有公式法、割补法和体积变换法三种方法.7.(1)见解析;(2)【解析】分析:(1)先利用直角三角形和线线平行的性质得到线线垂直,再利用线面垂直的判定定理和性质得到线面垂直和线线垂直;(2)分析四棱锥的各面的形状,利用相关面积公式进行求解.详解:(1)因为∠C=90°,即AC⊥BC,且DE∥BC,所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.因为A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又因为BE⊂平面BCDE,所以A1F⊥BE.(2)由已知DE∥BC,且DE=BC,得D,E分别为AC,AB 的中点,在Rt△ABC中,,则A1E=EB=5,A1D=DC=4,则梯形BCDE的面积S1=×(6+3)×4=18,四棱锥A1—BCDE的体积为V=×18×A1F=12,即A1F=2,在Rt△A1DF中,,即F是CD的中点,所以A1C=A1D=4,因为DE∥BC,DE⊥平面A1DC,所以BC⊥平面A1DC,所以BC⊥A1C,所以,在等腰△A1BE中,底边A1B上的高为,所以四棱锥A1—BCDE的表面积为S=S1++++=18+×3×4+×4×2+×6×4+×2×2=36+4+2.点睛:本题考查空间中的垂直关系的转化、空间几何体的表面积等知识,意在考查学生的空间想象能力和数学转化能力.8.(1)见解析;(2)【解析】分析:(1)由面面垂直的性质定理得到⊥平面,即,进而得到平面平面,(2)由等体积法求解,。

立体几何中的存在性问题教案

立体几何中的存在性问题教案
作业
(2010·浙江·理·T20)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形.E,F,O分别是PA,PB,AC的中点,AC=16 ,PA=PC=10.
证明:在△ABO内存在一点M使得FM⊥平面BOE,并求点M到OA,OB的距离.
提示:建系后设点M坐标为(x,y, 0 )
思考8:如何用向量来确定PC上的动点F的位置?
(令 ,通过λ的值来确定点F的位置)
思考9:如何用向量来表示BF∥平面AEC?
( ,其中 为平面ACE的法向量)
思考1Байду номын сангаас:如何求λ的值?(利用 建立方程求出λ)
写出详细的解答过程:
【方法归纳】点F是线PC上的点,一般可设 ,求出λ即可确定点F的位置
课堂练习.(2010·湖南·理·T18)
答案:AM=3
向量方法:建立适当的坐标系
令 ,利用 求出λ的值,但要注意,
根据线面垂直的条件还欠一组线面垂直,故还需证明PA⊥BC
或PA⊥MC
小结
作业
[课堂小结]
对存在性问题常采用以下两种方法:
1、(几何方法)先通过命题成立的必要条件探索出命题成立的充分条件,再从正面入手证明;
2、(向量方法)把几何问题转化为代数问题,探索出命题成立的条件
2010-2011年汕头市潮阳实验学校高中部
教学教案
教师
黄黎明
科目
数学
上课时间
2012年5月18日
课题
立体几何中的存在性问题
教学目标
知识与能力目标
1.引导学生探索立体几何中的位置性存在问题.
2.掌握利用逆向思维方法确定动点位置的方法;
3.掌握利用向量确定动点位置的方法;

难点02 立体几何中的探索性与存在性问题(教学案)-2016年高考数学二轮复习精品资料(江苏版)(原卷版)

难点02 立体几何中的探索性与存在性问题(教学案)-2016年高考数学二轮复习精品资料(江苏版)(原卷版)

难点二 立体几何中的探索性与存在性问题数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.1对命题条件的探索探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:1、先猜后证,即先观察与尝试给出条件再给出证明;2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;3、把几何问题转化为代数问题,探索出命题成立的条件.例1【江苏省扬州中学2016届高三上学期月考试题】如图,在梯形ABCD 中,CD AB //,a CB DC AD ===,60ABC ∠=,四边形ACFE 是矩形,且平面ACFE ⊥平面ABCD ,点M 在线段EF 上.(1)求证:BC ⊥平面ACFE ;(2)当EM 为何值时,//AM 平面BDF ?证明你的结论.2对命题结论的探索探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.例2 【海安2016届高三上学期期末试题】(本小题满分14分)在四棱锥P ABCD -中,平面四边形ABCD 中 //,AD BC BAD ∠为二面角B PA D --一个平面角.(1)若四边形ABCD 是菱形,求证:BD ⊥平面PAC ;(2)若四边形ABCD是梯形,且平面PAB平面PCD l ,问:直线l能否与平面ABCD平行?请说明理由.对于立体几何的探索性与存在性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.:。

立体几何的探索存在性问题

立体几何的探索存在性问题

-- ……………………………………装……………………………………订……………………………………线………………………………… ……………………………………装……………………………………订……………………………………线…………………………………第2讲 导数与最值(2) 班级: _________ 姓名: ____________ 小 组:___________ 评价:___________ 【考纲解读】 了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题. 【课堂六环节】 一、导——教师导入新课。

(7分钟) 探索存在性问题在立体几何综合考查中是常考的命题角度,也是考生感觉较难,失分较多的问题,归纳起来立体几何中常见的探索性问题有:(1)探索性问题与空间角结合;(2)探索性问题与垂直相结合;(3)探索性问题与平行相结合 二、思——自主学习。

学生结合课本自主学习,完成下列相关内容。

(15分钟) 角度一 探索性问题与空间角相结合 1.(2014·哈师大附中模拟)如图,三棱柱ABC -A 1B1C 1的侧棱AA 1⊥底面ABC ,∠A CB =90°,E是棱CC 1上的动点,F是A B的中点,AC =1,BC =2,A A1=4. (1)当E 是棱CC 1的中点时,求证:CF∥平面AEB 1(2)在棱CC 1上是否存在点E ,使得二面角A -EB 1 -B 的余弦值是错误!?若存在,求CE的长,若不存在,请说明理由 解析:(1)证明:取AB 1的中点G,连接EG ,FG .∵F ,G 分别是棱AB ,AB 1的中点,∴FG ∥BB 1,F G=\f(1,2)BB 1,又B 1B 綊C 1C ,EC =12C1C,∴B 1B∥EC,EC=错误!B 1B .∴FG 綊EC .∴四边形FG EC 是平行四边形,∴CF ∥EG.∵C F⊄平面AEB 1,E G⊂平面AEB 1,∴CF ∥平面AEB 1.(2)以C为坐标原点,射线C A,C B,CC 1为x ,y ,z轴正半轴,建立如图所示的空间直角坐标系C-xyz ,则C (0,0,0),A(1,0,0),B 1(0,2,4).设E (0,0,m)(0≤m ≤4),平面AEB 1的法向量n 1=(x ,y ,z).则1AB =(-1,2,4), AE =(-1,0,m).由1AB ⊥n 1,AE ⊥n 1, 得错误!∴CA 是平面EBB 1的一个法向量,令n 2=CA ,∵二面角A -EB 1-B 的余弦值为2\r(17)17, ∴错误!=c os〈n1,n 2〉=错误!=错误!,解得m =1(0≤m ≤4).∴在棱CC 1上存在点E ,符合题意,此时CE =1.角度二 探索性问题与垂直相结合2.(2014·南昌模拟)如图是多面体AB C -A 1B 1C1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1C C1?若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB,A C两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1AC =(0,-2,-2).设E (x ,y,z ),则CE =(x,y +2,z ),设CE =λ1EC ,则错误! 则E 错误!,BE =错误!.由错误!得错误!解得λ=2,所以线段C C1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1. (2)设平面C 1A 1C 的法向量为m =(x,y ,z),则由错误!得错误!取x =1,则y =-1,z =1.故m=(1,-1,1),而平面A1CA 的一个法向量为n =(1,0,0),则cos 〈m ,n 〉=错误!=错误!=错误!,故平面C1A1C与平面A1CA夹角的余弦值为\f(\r(3),3).角度三探索性问题与平行相结合3.(2013·江西模拟)如图,四边形ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.(1)求证:AC⊥平面BDE;(2)求二面角F-BE-D的余弦值;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.解:(1)证明:∵DE⊥平面ABCD,∴DE⊥AC,∵四边形ABCD是正方形,∴AC⊥BD,又DE∩BD=D,∴AC⊥平面BDE.(2)∵DE⊥平面ABCD,∴∠EBD就是BE与平面ABCD所成的角,即∠EBD=60°.∴\f(ED,BD)=错误!.由AD=3,得DE=3错误!,AF=错误!.如图,分别以DA,DC,DE所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(3,0,0),F (3,0,错误!),E(0,0,3错误!),B(3,3,0),C(0,3,0),∴BF=(0,-3,\r(6)),EF=(3,0,-26).设平面BEF的一个法向量为n=(x,y,z),则错误!即错误!令z=\r(6),则n=(4,2,6).∵AC⊥平面BDE,∴CA=(3,-3,0)为平面BDE的一个法向量,∴cos〈n,CA〉=错误!=错误!=错误!.故二面角F-BE-D的余弦值为1313.(3)依题意,设M(t,t,0)(t>0),则AM=(t-3,t,0),∵AM∥平面BEF,∴AM·n=0,即4(t-3)+2t=0,解得t=2.∴点M的坐标为(2,2,0),此时DM=错误!DB,∴点M是线段BD上靠近B点的三等分点.三、议——学生起立讨论。

立体几何中的存在性问题

立体几何中的存在性问题

立体几何中的存在性问题例4 (2016·邯郸第一中学研究性考试)在直棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,E ,F 分别是CC 1,BC 的中点,AE ⊥A 1B 1,D 为棱A 1B 1上的点.(1)证明:DF ⊥AE .(2)是否存在一点D ,使得平面DEF 与平面ABC 所成的锐二面角的余弦值为1414?若存在,说明点D 的位置;若不存在,说明理由.(1)证明 ∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB .又∵AA 1⊥AB ,AA 1∩AE =A ,∴AB ⊥平面A 1ACC 1.又∵AC ⊂平面A 1ACC 1,∴AB ⊥AC .以A 为原点建立如图所示的空间直角坐标系Axyz ,则有A (0,0,0),E (0,1,12),F (12,12,0),A 1(0,0,1),B 1(1,0,1). 设D (x ,y ,z ),A 1D →=λA 1B 1→,且λ∈(0,1),即(x ,y ,z -1)=λ(1,0,0),则D (λ,0,1),∴DF →=(12-λ,12,-1). ∵AE →=(0,1,12), ∴DF →·AE →=12-12=0,∴DF ⊥AE . (2)解 结论:存在一点D ,使得平面DEF 与平面ABC 所成的锐二面角的余弦值为1414. 理由如下:由题意知平面ABC 的法向量为m =(0,0,1).设平面DEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·FE →=0,n ·DF →=0. ∵FE →=(-12,12,12),DF →=(12-λ,12,-1), ∴⎩⎨⎧ -12x +12y +12z =0,(12-λ)x +12y -z =0,即⎩⎪⎨⎪⎧ x =32(1-λ)z ,y =1+2λ2(1-λ)z .令z =2(1-λ),则n =(3,1+2λ,2(1-λ)).∵平面DEF 与平面ABC 所成的锐二面角的余弦值为1414, ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=1414, 即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414, 解得λ=12或λ=74(舍去), ∴存在满足条件的点D ,此时D 为A 1B 1的中点.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.(1)证明 如图,以点A 为原点,分别以AD ,AA 1,AB 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)解 B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0. 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1). 由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1,CC 1∩CE =C ,可得B 1C 1⊥平面CEC 1, 故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217, 所以二面角B 1-CE -C 1的正弦值为217. (3)解 AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量.设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13(负值舍去), 所以AM = 2.。

(完整word版)文科立体几何存在性点

(完整word版)文科立体几何存在性点

1、已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.2、在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.3、如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD。

(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD。

4、在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形。

(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.5、如图1,在矩形ABCD 中,AB=4,AD=2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE⊥平面ABCE 。

(1)证明:BE⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF∥平面D 1AE?若存在,求出的值;若不存在,请说明理由。

6、一个多面体的直观图和三视图如图所示,M ,N 分别是线段AB,AC 的中点,G 是DF 上的一动点.(1)求该几何体的体积与表面积; (2)求证:GN⊥AC;(3)当FG=GD 时,在棱AD 上确定一点P ,使得GP∥平面FMC ,并给出证明.7、如图,在四棱锥P-ABCD 中,PC⊥平面ABCD ,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.8、如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=,点E在PD上,且=2.(1)求证:PA⊥平面ABCD;(2)在棱PC上是否存在点F,使得BF∥平面EAC?若存在,指出F的位置;若不存在,请说明理由.9、如图,在棱长为a的正方体ABCD—A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF。

存在性问题教学设计

存在性问题教学设计

“存在性问题”教学设计“存在性问题”教学设计一、教学内容解析本节教学内容源于人教版属于“数与代数”的一部分,主要内容是在具体问题中准确找出满足题目要求条件的所有点,并求出所有点的坐标,是初三专题复习中的“存在性问题”.这一课时探究“存在性问题”中等腰三角形的构成,为今后探究直角三角形、平行四边形、菱形、正方形、等腰梯形提供了方法和思路.“存在性问题”是探索型问题中的一种典型问题,这类问题涉及的知识点多,综合性强,解题方法灵活,能有效地考察学生综合运用知识的能力和创新意识,以及分析问题、解决问题的能力,因而是中考的热点.为此,在教学中,通过引导学生自主、合作和探究,激发的学生学习的信心和兴趣,让学生发现、感受、体验学习此类问题的方法,领悟其中的数学思想方法的思路,提高学生分析问题和解决问题的能力.基于上述分析,本节课的教学重点确定如下:能在具体问题中准确找出构建等腰三角形的存在的所有点,同时根据假设,经过推理、论证、计算,得出所有符合条件的点的坐标.二、教学目标设置本节课的教学安排为一课时.基于本节教学的内容和特点,以及学生的情况,教学目标设置如下:1.能在具体问题中准确找出构建等腰三角形的存在的所有点,同时求出所有符合条件的点的坐标.2.在教学中,引导学生自主、合作和探究,经过推理、论证、计算,得出所有符合条件的点的坐标.激发的学生学习的信心和兴趣,让学生发现、感受、体验学习此类问题的方法,领悟其中的数学思想方法的思路,提高学生分析问题和解决问题的能力.3.在运用数学知识解答问题的活动中,获取成功的体验,培养学生学习的自信心、合作意识,同时培养学生大胆猜想、乐于探究的良好品质.三、学生学情分析“存在性问题”是探索型问题中的一种典型问题,这类问题涉及的知识点多,综合性强,解题方法灵活,因此学生学习中可能出现的问题:(1)由于学生刚开始学习存在性问题,还没有掌握这类问题的解题思路和方法,所以不能准确的在具体问题中找出构建等腰三角形的存在的所有点,有丢掉点的情况.(2)综合应用数学知识解决问题的能力不强,因此在求解点坐标的过程中有些困难.鉴于上述分析,确定本节的教学难点是:在学习过程中,让学生发现、感受、体验解决此类问题的思路和方法,提高学生分析问题和解决问题的能力.四、教学策略分析“存在性问题”是探索型问题中的一种典型问题,这类问题涉及的知识点多,综合性强,解题方法灵活,因此,在教学中通过引导学生自主、合作和探究,激发的学生学习的信心和兴趣,让学生发现、感受、体验学习此类问题的方法,领悟其中的数学思想方法的思路,提高学生分析问题和解决问题的能力.同时,采用问题式学案教学,使课堂有问有答,学生便于画图操作.五、教学过程设计请你试试吧!(志在峰巅的攀登者,不会陶醉在途的某个脚印之中)例1:如图:在直角坐标系中,直线AB 的解析式为42+-=x y 与x 轴、y 轴分别相交于A 、B 两点,其中直线m 是抛物线423412+--=x y x 的对称轴; 问:在直线m 上是否存在点P ,使得使△ABP 为等腰三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.问题1:你能归纳出,在存在性问题中准确找出构建等腰三角形的所有点的方法吗? 设计意图:通过这个例题的学习,在教师的引导下,让学生经历猜想、画图、分析、讨论,探究解决这类数学问题的思路和方法,总结归纳并求其点的坐标,提高学生分析问题和解决问题的能力. 活动方式:学生自主学习,学生教学生的方式;教师纠错、补充、提炼、总结.请用心做做吧!(学而时习之,温故而知新)变式练习:如图:在直角坐标系中,直线AB的解析式为4y与x轴、y轴分别相=x2+-交于A、B两点,其中点M是线段AB的中点;⑴求线段BM的长度;⑵在y轴上是否存在点Q,使得△BMQ是等腰三角形?若存在,请求出所有满足条件的点Q 的坐标;若不存在,请说明理由.设计意图:通过这个变式练习,让学生准确掌握解决问题的思路和方法,同时鼓励学生多讲解,不断丰富数学活动的经验,在思考、想象的数学思维和操作活动中,让学生体会运用数学知识解决数学问题的过程.在教学过程中,尊重学生的个体差异,满足多样化的学习需要,尊重学生在解决问题过程中所表现出的不同水平.在探究问题的过程中,体现学生在学习中的主体作用,教师的主导作用;更好地突出重点、突破难点.这样做既能较好的完成预定的教学目标,更符合新课标对数学学科教学要求的特点.活动方式:学生讨论完成,教师纠错补充.让我们一起冲刺中考吧:(如能善于利用,生命乃悠长)3.分别以OA、如图:在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)在(2)中直线DE上的是否存在点M,使得使△ODM为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.问题2:两个全等的等腰三角形能拼出什么样的四边形呢?(4)在(3)的条件下,在平面直角坐标系内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.设计意图:这个题目的设计是由20XX年山西省中考最后一个题改编而成,与前面两个题比较有一定的难度,主要难点在求解点坐标,这个题目的求解过程利用三角形相似,勾股定理综合性较强,计算量大; 在此过程中提高学生的计算能力和综合能力.另外,第(4)小题的出现是为预习下节课提出的问题,不做为这节课的解决问题,所以做课后作业来完成.梳理小结:(请同学们自己总结出这节课的学习内容)六、课后升华:1.请你思考“我们一起冲刺中考”的第(4)小题;2.如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于 A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.七、板书设计设计意图:这样设计板书,更能突出这节课的重点,明确学生学习的目标,为更好的达到本节课的教学目标起到辅助的作用.八、教学反思数学无新知,旧知引新知.本节课教师充分利用学生已有知识“等腰三角形性质”知识,在课堂教学中应用学案,学生经过画图、猜想、小组讨论,总结出:在数学问题中构建等腰三角形的方法与思路.在此过程中,教学安排合理,小组分工明确,充分体现了学生的主体地位,培养了学生动手操作、归纳总结的能力,体现了学生合作学习的精神;同时,也培养了学生利用数学知识解决数学问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学背景分析
立体几何中常出现点的存在性和位置待定的问题,以“是否存在”、“是否有”、“在何位置”教学
等形式设问,以示结论有待于确定.文科主要涉及到平行与垂直的位置关系的考查,其中渗透反证
内容
法与分析法的解题思路,也是高考中的常见题型。

2012 年北京市高考文科就考查了有关线面垂直的分析
存在性问题,2016 年北京市高考文科就考查了有关线面平行的存在性问题。

1、进一步熟悉空间直线与直线、直线与平面和平面与平面平行的位置关系;理解并掌握线面平行和
教学
面面平行的判定定理及性质定理,会运用定理解决与平行有关的存在性问题;
目标
2、通过对例题的分析,以及对问题的探究,会把空间问题转化为平面问题,尝试用不同的方法找到
需要确定的点、线、面,初步形成解决存在性问题的思路及方法;
3、感受“线线问题、线面问题、面面问题”之间的转化,逐步体会逻辑推理的严谨性。

学生情况
学生在前面立体几何的复习过程中,基本掌握了线线、线面、面面平行的判定与性质,碰到证明问题有一定的思路,但碰到存在性问题多以猜想特殊点的方法去尝试解决,并没从深层次上思考为什么去找这个位置。

另外前面的复习过程中由于对反证法并没有过多的强调,所以在碰到结论是不存在的情况时,还不会叙述,不会写解题格式。

教学方法教学重点教学难点教学引导启发式
线线平行、线面平行、面面平行的相互转化
探索立体几何中(与平行有关的)存在性问题的解题思路,思考存在性问题的本质多媒体、几何画板课件
辅助手段
课题:立体几何中与平行有关的存在性问题
板书例题分析
设计问题 3:方法总结:问题 6:
教学步骤
教学过程
教师活动学生活动设计目的
一、热身训练
二、例题精讲判断下列命题是否正确,若不正确,请修改或
添加条件使结论成立.
①若 a / /b,b,则 a / /;
②若 a / / ,b,则 a / /b ;
③若 m / / , n / / , m, n,则 / /;
④若/ / , a,则 a / /;
⑤若/ / , m, n,则 m / / n .
例题:如图,在四棱锥P ABCD 中,底面
ABCD 是梯形,AB∥ CD ,AB 1 CD .
2
问题 1:请指出图中的线面平行的位置关系并选
择一组证明;
问题 2:AD∥平面PBC吗为什么
问题 3:过点A能做平面PBC 的平行线吗如果
能,请在图中作出一条或两条直线并证明.
回忆、思考、小组讨论
说明或操作演示为什么不正
确,如何改正
总结证明线线、线面、面面平
行的证明方法以及相互关系
P
D
C
A B
梳理平行的相关知
识,为本节课的复
习内容作铺垫,加
强知识之间的联系
检验学生对定理的
理解程度
为例题及问题的证
明明确证明的思路
培养学生学习的自
主性
训练学生如何说明
结论不成立
学生思考, 分析解题思路, 书
写解题过程,展示学习成果
问题 4:这些直线是怎么找到的
总结问题的类型及解决问题的方法:
问题 5:若将题目中的已知条件
AB
1
CD 改
2
为 AB
1 CD ,你能判断在棱 PD 上是否存在
3
一点 E 使得 AE ∥平面 PBC , 若存在,请指
出 E 点位置,并证明;若不存在,请说明理由
.
问题 6: 在棱 PB 上(除 B 点外)是否存在一点 E
使得 AE ∥平面 PDC ,若存在, 请指出 E 点位
置,并证明;若不存在,说明理由
.
总结问题的类型及解决问题的方法:
引发学生思考直线
是怎么寻找到的,
探索问题的本质
总结归纳解题思路
P 及方法
当 AB 与 CD 数 量
D
C
关系变化时,如何
A
B
找到点 E 的位置,
分析解题思路,书写解题过
检查学生对刚学习
程,展示学习成果
的解题方法的掌握
P
程度。

D
C
三、 课
P ABCD 中,底面
练习:如图,在四棱锥
提示学生并非所有
B
堂练习
ABCD 是平行四边形,
A
E 是 PB 中点,
F 为
的存在性问题结论
线段 DB 上一点 . 试确定点 F 在线段 DB 上的
位置,使 EF PAC
P
都是肯定的,渗透
分析法与反证法的
检测题: 1、如图,在四棱锥
P ABCD 中,底
思想,让学生去思
考解决存在性问题
E
1
CD .
面 ABCD 是梯形, AB ∥ CD , AB
的思路,巩固面面
2
C
平行的判定与线面
D
在棱 PC 上是否存在一点
E 使得 BE ∥平面
O
平行的性质
PAD ,若存在,求出 E 点位置,并证明;若不
四、课通过这节课的复习,请同学们从知识与方法方面回顾一下,学习过程中遇到了什么问题需要注意
哪些方面
堂小结
五、作学案上的练习题
业布置。

相关文档
最新文档