方法专题7巧用锐角三角函数解决实际问题

合集下载

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。

你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。

比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。

想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。

他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。

再讲讲导航和地图。

当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。

这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。

就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。

那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。

还有测量山峰的高度。

测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。

这就像是解开了一个神秘的谜题,让人充满了成就感。

在航海中,锐角三角函数也发挥着重要作用。

船员们需要根据星星的位置和角度来确定船只的方向和位置。

想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。

又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。

甚至在体育比赛中也有它的身影。

比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。

锐角三角函数的实际应用

锐角三角函数的实际应用

解:(1)在Rt△BCD中,∠DBC=15°,sin∠DBC= CD,
∴CD=BDsin∠DBC≈20×0.26=5.2 m,

BD
∴CD的值为5.2 m;
(2)如解图,作DH⊥AB,垂足为H. 则FH=ED=1.6 m, 在Rt△BCD中, ∵∴解∠c得oCsB1=5C°9≈01=°9.,4BBDCm∠=,CBB2DC0 =≈01.59°7,,BD=20 m, ∴EF=BC≈19.4 m, 在Rt△AEF中, ∵∠AEF=45°,∠AFE=90∴AF=EF=BC≈19.4 m, ∴AB=AF+FH+BH≈19.4+1.6+5.2=26.2 m, 即楼房AB约为26.2 m.
满分技法 锐角三角函数的实际应用常见模型
抱 子 型
满分技法
锐角三角函数的实际应用常见模型
背靠背型
注:在“抱子型”及“背靠背型”中,若只知两个直角 三角形两条直角边之和或之差,则需要列方程求解.
m,
∴∠DCF=∠EDC=60°,
∴∠ADC=∠ADE+∠EDC=90°,
∴在Rt△ADC中,AD2+CD2=AC2,
∴( 2 3 x+ 4 3 解得x31=4+34
)2+42=( 2x)2, 3,x2=4-4 3 (舍去),
∴AB=4+4 3≈10.8 m.
∴电线杆的高AB约10.8 m.
练习1、如图是一座人行天桥的示意图,天桥的高是10米,
练习3、如图是某儿童乐园为小朋友设计的滑梯平面图.已 知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、 CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB= 31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离 BM的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52, cos 31°≈0.86,tan 31°≈0.60)

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题一、《数学新课程标准》课标要求《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(掌握)。

数学离不开生活,生活也离不开数学。

在实际生活中,有不少问题的解决都涉及到数学中直角三角形的边、角关系。

而锐角三角函数的实际应用注重联系学生的生活实际,侧重于解决与学生生活比较接近的实际问题,突出了学数学、用数学的意识与过程。

二、考向分析结合近五年中考试题分析,锐角三角函数的内容考查主要有以下特点:1.命题方式为运用锐角三角函数解决与直角三角形有关的实际问题. 题型解答题,以中档题出现.分值都是9分;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题;三、锐角三角函数的实际应用这道题的价值1.它是代表初中几何图形的计算中的一个最高水平;2.此题蕴含的数学思想比较多,如化归思想、方程思想等;3.能加入实际生活的背景,增强学生的数学应用意识;4.能把学生的基本思想、基本方法、基本能力呈现出来。

四、近五年锐角三角函数的实际应用中考试题变与不变1.价值不变2.基本模型不变;3. 2012.2014.2015.2016四年都是考察解直角三角形的应用-仰角俯角问题.2013年考察解直角三角形的应用-坡度坡角问题.4. 2012. 2013. 2016年的都能在图中找到与已知和未知相关联的直角三角形,2014.2015年要通过作高或垂线构造直角三角形,把实际问题划归为直角三角形中边角关系问题加以解决.5.外形变化,实际背景变化,一些条件和结论的变化。

五、近五年锐角三角函数的实际应用中考试题回顾1.(河南省2012)(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅。

如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定。

小明为了测量此条幅的长度,他先测得楼顶A 点的仰角为45°,已知点C 到大厦的距离BC =7米,∠ABD =90°.请根据以上数据求条幅的长度(结果保留整数。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。

一、 化简或求值例1 (1)已知tan 2cot 1αα-=,且α的值。

(2)化简()()22sin cos cos sin a b a b αααα++-。

分析 (1)由已知可以求出tan α可用1tan cot αα=⋅;(2)先把平方展开,再利用22sin cos 1αα+=化简。

解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得tan 2α=或tan 1α=-。

又α是锐角,∴tan 2α=。

==tan cot αα-。

由tan 2α=,得1cot 2α==tan cot αα-=13222-=。

(2)()()22sin cos cos sin a b a b αααα++-=2222sin 2sin cos cos a ab b αααα+⋅⋅++2222cos 2cos sin sin a ab b αααα-⋅⋅+=()()222222sin cos sin cos a b αααα+++=22a b +。

说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα⋅=等。

二、已知三角函数值,求角例2 在△ABC 中,若223cos sin 022A B ⎛⎫-+-= ⎪ ⎪⎝⎭(),A B ∠∠均为锐角,求C ∠的度数。

分析 几个非负数的和为0,则这几个数均为0。

由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

解 由题意得2cos 0,23sin 0.2A B ⎧-=⎪⎪⎨⎪-=⎪⎩解得2cos ,23sin .3A B ⎧=⎪⎪⎨⎪=⎪⎩又∵,A B ∠∠均为锐角,∴45A ∠=,60B ∠=。

∴18075C A B ∠=-∠-∠=.说明 解这类问题首先要熟记特殊角的三角函数值,还要掌握一些化简的技巧。

锐角三角函数应用题解题思路

锐角三角函数应用题解题思路

锐角三角函数应用题解题思路的实际应用情况1. 应用背景锐角三角函数是三角学的重要分支,它研究的是以锐角为基础的三角函数,包括正弦、余弦和正切。

这些函数可以用来描述直角三角形和一般三角形中的角度关系。

在实际应用中,锐角三角函数可以被广泛地应用于物理、工程、地理、天文、航空等领域。

2. 应用过程考虑到篇幅限制,接下来我们将选取几个典型的应用案例,来具体阐述锐角三角函数的应用过程,并给出详细解题思路。

2.1 三角测量三角测量是指利用三角形的边长和角度信息来测量其他距离或高度的方法。

在实际测量中,我们常常需要利用已知边长和角度来求解未知边长和角度。

这时,可以利用正弦、余弦和正切等锐角三角函数来解决问题。

以求解未知边长为例,假设我们需要测量一个高耸的塔楼的高度。

首先,我们可以通过一定的测量手段获得塔顶处与地面的夹角α。

然后,我们可以选择一个合适的位置,在该位置与塔顶连线处测量出与地面的夹角β。

此时,我们可以利用正切函数来计算塔楼的高度h。

具体的解题思路如下所示:步骤1:根据测量手段,得到α的数值。

步骤2:选择合适的测量位置,测量得到β的数值。

步骤3:利用正切函数的定义,根据α和β的数值求解出α和β的弧度值。

步骤4:根据正切函数的性质,可以得到塔楼的高度h与β的正切值tan(β)的关系,即h = d * tan(β),其中d为已知的水平距离。

通过上述步骤,我们可以得到塔楼的高度h的数值。

2.2 航空导航在航空领域,飞行器的导航是一项重要的任务。

为了准确地确定飞行器的位置和方向,我们需要利用锐角三角函数来计算飞机的航向角、仰角等信息。

以计算航向角为例,假设我们需要确定某个飞机相对于正北方向的航向角。

首先,我们需要测量飞机相对于正东方向的角度α。

然后,利用余弦函数可以计算出航向角θ。

具体的解题思路如下所示:步骤1:根据测量手段,得到α的数值。

步骤2:利用余弦函数的定义,根据α的数值求解出α的弧度值。

步骤3:根据余弦函数的性质,可以得到航向角θ与α的余弦值cos(α)的关系,即cos(θ) = cos(α)。

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。

其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。

锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。

下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。

由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。

根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。

代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。

我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。

初中数学九年级下册苏科版7.6用锐角三角函数解决问题说课稿

初中数学九年级下册苏科版7.6用锐角三角函数解决问题说课稿
课中,我将采用问题驱动法和案例分析法为主要教学方法。问题驱动法能够激发学生的学习兴趣和动机,引导学生主动探索和解决问题。案例分析法能够让学生直观地理解和掌握锐角三角函数在实际问题中的应用。这两种方法都符合建构主义学习理论,即学生通过主动构建知识体系来提高学习效果。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和数学软件等技术工具。多媒体课件能够生动地展示锐角三角函数的图像和性质,帮助学生直观地理解知识点。实物模型和数学软件则可以让学生亲身体验和操作,增强他们的动手能力和解决问题的能力。
3.动手实践:让学生利用实物模型或数学软件进行操作和实践,亲身体验锐角三角函数的应用过程。这样的实践活动能够增强学生的动手能力和解决问题的能力。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾所学知识,总结锐角三角函数的概念和性质。然后,我会鼓励学生分享自己的学习心得和体会,让其他同学和学习成果。最后,我会对学生的表现进行点评,给予肯定和鼓励,并提出改进的建议和指导。
(二)新知讲授
在新知讲授阶段,我会逐步呈现锐角三角函数的知识点,引导学生深入理解。首先,我会回顾一下锐角三角函数的定义和性质,为学生提供一个知识框架。然后,我会通过多媒体课件展示锐角三角函数的图像,让学生直观地理解函数的变化规律。接下来,我会通过案例分析法,引导学生分析和解决实际问题,让学生将理论知识运用到实际情境中。在这个过程中,我会鼓励学生积极参与,提出问题和解决问题,从而加深对锐角三角函数的理解。
五、板书设计与教学反思
(一)板书设计
我的板书设计将注重布局的合理性、内容的精炼性和风格的简洁性。板书将包括本节课的主要知识点,如锐角三角函数的定义、图像和性质,以及解决实际问题的方法。布局上,我会将板书分为几个部分,每个部分都有明确的标题和内容,以便学生能够清晰地理解和把握知识结构。板书在教学过程中的作用是提供一个视觉辅助工具,帮助学生梳理和巩固知识点。为了确保板书清晰、简洁且有助于学生把握知识结构,我会尽量使用简洁的文字和图示,并注意字体的清晰度和大小。

锐角三角函数应用题的方法与技巧

锐角三角函数应用题的方法与技巧

锐角三角函数应用题的方法与技巧
x
《锐角三角函数应用题的方法与技巧》
一、总体思路
1、识别出三角形所涉及的三角函数,并确定三角函数的参数:根据题干里面提供的线段、角度等长度或角度来初步判断三角形的形状,并由此来计算出三个角度和三条边。

2、判断题目的性质:根据题目要求,判断出是求边长还是求角度。

3、解答:
(1)求边长:利用相应的三角函数关系(正弦定理、余弦定理、正切定理等),求出答案;
(2)求角度:利用相应的三角函数关系,求出角度的三角函数值,再用反三角函数求出角度。

二、技巧总结
1、画图法:根据题干中提供的信息,画出准确的三角形图形,便于计算和判断。

2、直角三角形快速求角度:根据对边比斜边的特点,找出角度所对应的三角函数值,再用反三角函数计算出角度。

3、正弦定理、余弦定理:正弦定理可用于计算夹角的一边的长度,余弦定理可用于求另一边的长度。

4、正切定理:正切定理可以用于求夹角的角度大小。

5、各种三角函数的关系:在计算三个角度的大小时,可以利用三个角度的和为180°;在计算三条边的长度时,可以利用三条边之和的性质。

锐角三角形应用题

锐角三角形应用题

锐角三角形应用题锐角三角形是指一个三角形的三个内角均小于90度的三角形。

在数学领域中,锐角三角形具有广泛的应用。

本文将介绍锐角三角形的应用,并给出相应的例题。

一、地质勘探在地质勘探中,利用锐角三角形的原理可以估算地质剖面中的未知部分。

假设我们已知某一部分的长度和角度,通过构造对应的锐角三角形,我们可以利用正弦定理、余弦定理等相关原理,计算出未知部分的长度和角度。

例如,已知某一地质剖面的高度差为100米,剖面与水平面的夹角为30度,我们可以通过构造相应的锐角三角形,利用三角函数计算出剖面的实际长度。

二、建筑设计在建筑设计中,锐角三角形的应用十分广泛。

例如,在设计房屋的屋顶坡度时,我们需要考虑降雨的排水情况。

通过利用锐角三角形的原理,我们可以计算出屋顶坡度的合理范围,保证雨水能够顺利排出,避免积水导致屋顶渗漏。

另外,在角度明确的情况下,利用锐角三角形的原理可以计算出房屋的高度、边长等相关参数,以便于设计出合理的建筑方案。

三、航海导航在航海导航中,锐角三角形被广泛用于确定船只和目标的位置。

通过观测双方之间的锐角和基准线的长度,利用三角函数可以计算出目标的坐标位置。

例如,在利用雷达进行航海导航时,我们可以测量雷达到目标之间的角度和距离,通过构造锐角三角形,应用三角函数计算出目标相对于雷达的实际位置坐标,以便进行航线规划和导航引导。

四、天文观测在天文观测中,锐角三角形是一种重要的测量工具。

通过观测天体的视差、视角等参数,利用锐角三角形的原理可以计算出天体的实际距离、大小、亮度等重要参数。

例如,在观测恒星时,我们可以利用地球公转产生的视差观测到同一恒星在不同时间的位置,通过构造锐角三角形并应用三角函数计算出恒星的距离。

综上所述,锐角三角形在各行各业中都有广泛的应用。

从地质勘探到建筑设计,从航海导航到天文观测,锐角三角形的原理和公式为我们提供了计算和测量的便利。

掌握锐角三角形的应用,对于学习和实践具有重要意义。

用锐角三角函数解决实际问题

用锐角三角函数解决实际问题

A
C
DB
会穿过,那怎么办呢?
生活中的实际问题可以通过建立数学模型,将 它们转化为数学问题,从而用数学的方式解决。
探究活动二
坐摩天轮时你最关心什么问题?
南昌之星摩天轮的半径约为80米,旋转一 周需要30分钟,我们从摩天轮的底部(与 地面相距1米)出发开始观光。
南昌之星摩天轮的半径约为80米,旋转一 周需要30分钟,我们从摩天轮的底部(与 地面相距1米)出发开始观光。
世界那么大 我们一起去看看
探究活动一
如图,我们学校旁边的青山湖部分区域可以近似的看成是一个
半径为600米的圆弧形,在青山湖的左右两侧有两个加油站A和
B,现计划在A和B之间修建一条笔直的公路,经测量点A到湖心
0的距离为
米,∠OAB=30°,∠OBA=一
如图,我们学校旁边的青山湖部分区域可以近似的看成是一
sin36°=0.59,cos36°=0.81,tan36°=0.73
问题1:3分钟后,我们离地面多高?
O
l
南昌之星摩天轮的半径约为80米,旋转一 周需要30分钟,我们从摩天轮的底部(与 地面相距1米)出发开始观光。
问题2:摩天轮转动多长时间后离地面的高度首次达 到41米?
O
l
南昌之星摩天轮的半径约为80米,旋转一 周需要30分钟,我们从摩天轮的底部(与 地面相距1米)出发开始观光。
问题3:摩天轮转动多长时间后离地面的高度首次达 到121米?
O
l
南昌之星摩天轮的半径约为80米,旋转一 周需要30分钟,我们从摩天轮的底部(与 地面相距1米)出发开始观光。
问题4:据推算,当摩天轮额高度达到121米时,可 以俯瞰整个红谷滩的美景,那么摩天轮转动一周能 看见全景的时间有多长?

锐角三角函数帮你解决生活中的问题

锐角三角函数帮你解决生活中的问题

锐角三角函数帮你解决生活中的问题锐角三角函数是学好三角学及本章内容的关键和基础. 锐角三角函数, 既是本章的重点,也是难点. 此内容又是数形结合的典范. 这涉及数学各个分支,又在工程,测量,军事,工业,农业,航海,航空等诸领域都有应用. 因而,对本单元的学习必须引起足够的重视,特别是在日常生活中的应用更加广泛,下面举几例与同学们共赏一、车厢离地面多少米?问题1:如图,自卸车厢的一个侧面是矩形ABCD ,AB =3米,BC =0.5米,车厢底部离地面1.2米,卸货时,车厢倾斜的角度060=θ,问此时车厢的最高点A 离地面多少米?(精确到1米)【思路解析:】此题只需求出点A 到CE 的距离,于是过A 、D 分别作AG ⊥CE ,DF ⊥CE ,构造直角三角形,解Rt △AHD 和Rt △CDF 即可求解.过点A 、D 分别作CE 的垂线AG 、DF ,垂足分别为G 、F ,过D 作DH ⊥AG 于H ,则有:23323360sin 0=⨯=⋅=CD DF 41215.060cos 0=⨯=⋅=AD AH 于是A 点离地面的高度为42.141233≈++(米). 所以,车厢的最高点A 离地面约为4米.点评:本题只要将实际问题转化为解直角三角形的问题,然后,运用三角函数的有关知识即可解决.二、如何将角橱搬进房间?问题2:如图1所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2米,房间高2.6米,所以不从高度方面考虑方案的设计),按此方案可以使该家具通过如图2中的长廊搬入房间,在图2中把你的设计方案画成草图,并说明按此方案可把家问题一图HG FDCB A具搬入房间的理由(注:搬动过程中不准拆卸家具,不准损坏墙壁).问题二图1问题二图2【思路解析:】如说理图所示,作直线AB ,延长DC 交AB 于E ,由题意可知,△ACE 是等腰直角三角形,所以CE =0.5,DE =DC +CE =2,作DH ⊥AB 于H ,则245sin 2sin 0==∠⋅=HED DE DH ,∵5.12<,∴可按此方案设计图将家具从长廊搬入房间. 答案:设计方案草图如图所示.设计方案图设计方案说理图.点评:本题是一道比较贴近生活的实际问题,学生看到题目感到比较亲切、自然,但本题重点考查学生综合运用所学知识解决实际问题的探究和创新能力.本题还反映了生活中常见的实际情况,很有创意,并充分体现了学数学用数学的价值,角书橱过长廊进入房间,必须要放倒倾斜搬进,不能正面直入,方案的设计也多种多样.三、是否有进入危险区域的可能?问题3:一艘渔船正以30海里/小时的速度由西向东追赶鱼群,在A 处看见小岛C 在船的北偏东600方向,40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东300方向,已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区域的可能?【思路解析】此题是一个重要题型——航海问题,解这类题要弄清方位角、方向角的概念,正确地画出示意图,然后根据条件解题.此题可先求出小岛C 与航向(直线AB )的距离,再与10海里进行比较得出结论.解:过C 作AB 的垂线CD 交AB 的延长线于点D ∵CD AD =30cot ,CDBC =060cot , ∴030cot ⋅=CD AD ,60cot ⋅=CD BD ,∴20)60cot 30(cot 0=-=-CD BD AD ∴31033320=-=CD , ∵310>10.∴这艘渔船继续向东追赶鱼群不会进入危险区域.点评:正确解答这类问题,第一步,根据材料提供的生活背景,画出几何图形,并把实际问题数学化,分析出作为一个数学问题的已知条件和问题。

用锐角三角函数解决问题

用锐角三角函数解决问题
通过正弦函数,我们可以利用已知的边长和角度来计算未知边长。
详细描述
已知一边和该边所对应的角度,可以计算出另一边的长度。公式为:sin(角度) = 未知边长/已知边长。
用余弦函数测量
总结词
余弦函数可以用来计算角度,尤其是当我们知道两条边和它们之间的夹角时。
详细描述
已知两边和它们之间的夹角,可以计算出第三边的长度。公式为:cos(角度) = 已知边长1/已知边长2 。
详细描述
已知直角三角形的一个锐角的大小为A度,则其邻边与斜边的比值就是sin(A)。同时,也可以通过已知的邻边长 度和斜边长度,利用正弦函数计算出锐角的大小。
用余弦函数计算
总结词
余弦函数是直角三角形中一个锐角与斜边的 比值。
详细描述
已知直角三角形的一个锐角的大小为A度, 则其邻边与斜边的比值就是cos(A)。同样, 也可以通过已知的邻边长度和斜边长度,利 用余弦函数计算出锐角的大小。
用锐角三角函数解决 问题
汇报人: 日期:
目录
• 锐角三角函数的定义 • 用锐角三角函数测量不可直接测量的物体 • 用锐角三角函数计算角度 • 用锐角三角函数解决实际问题 • 锐角三角函数的近似计算
01
锐角三角函数的定义
正弦函数
定义
正弦函数是直角三角形中一个锐角的对边与斜边的比值,记作 sin(α)。
隧道挖掘
在隧道挖掘中,需要确定挖掘方向和深度以确保隧道的 质量和安全性。锐角三角函数可以帮助计算隧道挖掘的 角度和长度,以实现精确的挖掘。
地理问题
地图绘制
地图绘制需要将地球表面上的点转换为平面坐标。锐 角三角函数可以用于计算不同地点之间的角度和距离 ,从而确定它们在地图上的位置。
地球自转

锐角三角函数的实际应用

锐角三角函数的实际应用

锐角三角函数的实际应用一、仰角、俯角问题例1. 某数学课外活动小组利用课余时间,测量了安装在一幢楼房顶部的公益广告牌的高度.如图,矩形CDEF 为公益广告牌,CD为公益广告牌的高,DM为楼房的高,且C、D、M三点共线.在楼房的侧面A处,测得点C与点D的仰角分别为45°和37.3°,BM=15米.根据以上测得的相关数据,求这个广告牌的高(CD的长).(结果精确到0.1米,参考数据:sin37.3°≈0.6060,cos37.3°≈0.7955,tan37.3°≈0.7618)例2.如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成57.5°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果精确到0.01米,参考数据:sin57.5°≈0.843,cos57.5°≈0.537,tan57.5°≈1.570,3≈1.732,2≈1.414)二、坡度、坡角问题例3. 如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:2≈1.414,3≈1.732)例4. 如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C 三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)三、测量问题例5、为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)例6、如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于A B的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)四、方向角问题例7:某海域有A、B两个港口,B港口在A港口北偏西30°的方向上,距A港口60海里.有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处.求该船与B港口之间的距离即CB的长(结果保留根号).例8:如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为612千米,且位于临海市(记作点B)正西方向603千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?巩固练习:1、如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)2. 张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度.(结果精确到0.1米,参考数据:3≈1.732)3.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)4、如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.5、如图,某军港有一雷达站,军舰停泊在雷达站的南偏东方向36海里处,另一艘军舰位于军舰的正西方向,与雷达站相距海里.求:(1)军舰在雷达站的什么方向?(2)两军舰的距离.(结果保留根号)6、(某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°。

中考复习专题之-锐角三角函数实际应用

中考复习专题之-锐角三角函数实际应用

事故船位于巡逻艇的北偏东58°方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分
钟可以到达事故船A处.
(结果保留整数.参考数据: 3 1.73
cos53 3
, sin 53 4
, tan 53 54
, )
5
3
名校模拟
10.(2023·安徽亳州·校联考模拟预测)如图,某数学兴趣小组为了测量塔AB的高度,他们先在水平地面上的
典例2.先化简,再求值
6a a2
9
1
2a 3 a3
其中 a 2sin30 3
典例3.如图,在△ABC中,C 90 , tan A 3 , ABC 的平分线BD交AC于点D,CD= 3.求AB的 3
长?
典例剖析
典例4.如图,△ABC的顶点B,C的坐标分别是1,0,0,3 且 ABC 90 A 30,求点A的坐标?
求观测点B到A船的距离(结果精确到0.1海里).
参考数据:
sin 67.4 12 , cos 67.4 5 ,sin 67.6 0.925, cos 67.6 0.381, 2 1.4临沂·统考一模)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能 环保的举措,某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度,如图,已知测倾器的高度为 1.5米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3米的测点D处安置测倾器,测得点M 的仰角∠MEC=45°(点A,D与N在一条直线上).求电池板离地面的高度MN的长
5
4
5
3
名校模拟
11.(2023·安徽亳州·统考一模)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量 距离和角度.某校“综合与实践”活动小组的同学要测量AB、CD两座楼之间的距离,他们借助无人机设计了如下 测量方案:无人机在AB、CD两楼之间上方的点O处,点O距地面AC的高度为120m,此时观测到楼AB底部点A 处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行48m到达点F,测得点E处俯角为60°,其中 点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确

用锐角三角函数概念解题的常见方法(含答案页)

用锐角三角函数概念解题的常见方法(含答案页)

用锐角三角函数概念解题的常见方法(含答案11页)用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=abab,cosA=,tanA=,cotA=.ccba锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0&lt;sinα&lt;1,o&lt;cosα&lt;1(0°&lt;α&lt;90°)1(2)tanα·cotα=1或tanα=(3)tanα=1;cot?sin?cos?,cotα=.cos?sin?(4)sinα=cos(90°-α),tanα=cot(90°-α).有关锐角三角函数的问题,常用下面几种方法:一、设参数例1. 在?ABC中,?C?90?,如果tanA?5,那么sinB的值等于()12D.12 5A.513B.1213C.512解析:如图1,要求sinB的值,就是求AC5的值,而已知的tanA?,也就是AB12BC5? AC12可设BC?5k,AC?12k则AB?(5k)2?(12k)2?13k?sinB?12k12?,选B 13k13二、巧代换例2. 已知tan??3,求sin??2cos?的值。

5sin??cos?解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式sin??3,作代换sin??3cos?,代入即可达到约分的目的,也可以把所求的cos?分式的分子、分母都除以cos?。

tan??2sin??2sin??2cos? ?cos?sin5sin??cos?5?1cos?再把sin?1?3代入,得:原式? cos?16三、妙估计例3. 若太阳光与地面成37?角,一棵树的影长为10m,则树高h的范围是(取?1.7)A. 3?h?5B. 5?h?10C. 10?h?15D. h?15 解析:如图2,树高h?10tan37?,要确定h的范围,可根据正切函数是增函数,估计tan30??tan37??tan45?即10tan30??10tan37??10tan45??10??h?10 3?5?h?10,故选B四、善转化例4. 在?ABC中,1?A?30?,tanB?BC?,求AB的长。

用锐角三角函数解决问题

用锐角三角函数解决问题

利用正切定理求解问题
总结词
正切定理是指在三角形中,任意两边之比等于对应角的 正切之比。利用正切定理可以解决一些与角度和边长有 关的问题。
详细描述
在任意三角形ABC中,正切定理表示为$\frac{a}{tan A} = \frac{b}{tan B} = \frac{c}{tan C}$。利用这个定 理,我们可以推导出一些有用的结论,比如三角形的面 积公式为$S = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A$
03
用锐角三角函数解决实际问题
测量距离的问题
总结词
利用锐角三角函数,可以解决一些难以直接测量的距离问题 。
详细描述
通过构建直角三角形,利用已知的边长和角度,计算出需要 测量的距离。例如,在野外考察时,可以利用三角函数计算 出两点之间的距离。
测量高度的问题
总结词
锐角三角函数可以帮助我们解决高度测量问题。
04
特殊情况下锐角三角函数的运用
等边三角形中的三角函数
等边三角形三边:任意一边的长度与 高的比值等于正弦值
余弦定理:任意一边的长度与 邻边的长度之比等于余弦值
等腰三角形中的三角函数
等腰三角形两腰相等,两个底角相等,顶角对着的边为底边 正弦定理:任意一边的长度与高的比值等于正弦值
回归实际问题
将求解出的未知数代回原表达式中, 得到实际问题的解。
对于多解的情况,需要根据实际问题的特 征进行分析和取舍。
将所得结果进行实际应用,验证所 得解是否符合实际问题要求。
THANK YOU.
01
02
正弦函数性质
定义域:[-π/2, π/2] 或 [0, π]

专题07 利用锐角三角函数解实际问题(教师版含解析) -2021年中考数学复习重难点与压轴题型训练

专题07 利用锐角三角函数解实际问题(教师版含解析) -2021年中考数学复习重难点与压轴题型训练

备战2021年中考复习重难点与压轴题型专项训练专题07 利用锐角三角函数解实际问题【专题训练】一、解答题1.(2020·江西中考真题)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长AB =120mm ,支撑板长CD =80mm ,底座长DE =90mm ,托板AB 固定在支撑板顶端点C 处,且CB =40mm ,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若∠DCB =80°,∠CDE =60°,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10°后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)【答案】(1)如图所示,过点A 作AMDE ⊥,CN DE ⊥,CP AM ⊥, 则90CPM CMD CND ∠=∠=∠=︒,∵120mm AB =,40mm CB =,∵80mm =AC , 又∵80DCB ︒∠=,60CDE ︒∠=,∵100ACD ∠=︒,120CDM∠=︒, ∵360909012060PCD∠=︒-︒-︒-︒=︒, ∵1006040ACP∠=︒-︒=︒, ∵sin 40800.64351.44mm AP AC =︒=⨯=,又∵60CDN =︒,80mm CD =,∵sin 608069.28CN CD =︒=⨯=≈mm , ∵69.2851.44120.72120.7AM mm =+=≈.∵点A 到直线DE 的距离是120.7mm .(2)如图所示,根据题意可得90DCE ∠=︒,40mm CB =,80mm CD =, ∵401tan 802BC CDB DC ∠===, ∵26.6CDB ∠=︒,根据(1)可得60CDE ︒∠=,∵CD 旋转的角度=60-26.6=33.4︒︒︒.【点睛】本题主要考查了解直角三角形的应用,准确的构造直角三角形,利用三角函数的定义求解是解题的关键.2.(2020·浙江宁波市·中考真题)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB =AC =50cm ,∵ABC =47°.(1)求车位锁的底盒长BC .(2)若一辆汽车的底盘高度为30cm ,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin 47°≈0.73,cos 47°≈0.68,tan 47°≈1.07)【答案】解:(1)过点A作AH∵BC于点H,∵AB=AC,∵BH=HC,在Rt∵ABH中,∵B=47°,AB=50,∵BH=ABcosB=50cos47°≈50×0.68=34,∵BC=2BH=68cm.(2)在Rt∵ABH中,∵AH=ABsinB=50sin47°≈50×0.73=36.5,∵36.5>30,∵当车位锁上锁时,这辆汽车不能进入该车位.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.3.(2020·浙江绍兴市·中考真题)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∵AFE的度数和棚宽BC的长.(2)当∵AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:(1)∵AE=EF=AF=1,∵∵AEF是等边三角形,∵∵AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵∵AEF是等边三角形,∵AK=1 2,∵FK==,∵FM=2FK∵BC=4FM=6.92≈6.9(m); (2)∵∵AFE=74°,∵∵AFK=37°,∵KF=AF•cos37°≈0.80,∵FM=2FK=1.60,∵BC=4FM=6.40<6.92,6.92﹣6.40=0.5,答:当∵AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.【点睛】本题主要考查了解直角三角形的应用,观察图形,发现直角三角形是解题的关键.4.(2020·浙江中考真题)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∵AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∵AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【答案】(1)过点B作BE∵AC于E,∵OA=OC,∵AOC=120°,∵∵OAC=∵OCA=1801202︒︒-=30°,∵h=BE=AB•sin30°=110×12=55;(2)过点B作BE∵AC于E,∵OA=OC,∵AOC=74°,∵∵OAC=∵OCA=180742︒︒-=53°,∵AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.【点睛】本题考查了解直角三角形的应用,作出辅助线构造直角三角形,弄清题中的数据是解本题的关键.5.(2020·四川广安市·中考真题)如图所示的是某品牌太阳能热水器的实物图和横断面示意图,己知真空集热管AB与支架CD 所在直线相交于水箱横断面∵O的圆心,支架CD与水平线AE垂直,AB=154cm,∵A=30°,另一根辅助支架DE=78cm,∵E=60°.(1)求CD的长度.(结果保留根号)(2)求OD 的长度.(≈1.414≈1.732)【答案】解:(1)在Rt CDE △中,6078cm CED DE ∠=︒=,,·60CD DE sin ∴=︒=答:CD 的长度为;(2)设水箱半径OD 的长度为x 厘米,则CO =(x )厘米,AO =(154+x )厘米, ∵∵A =30°,∵CO =12AO ,x =12(154+x ),解得:x =154-154-135.096≈18.9cm .答:OD 的长度为18.9cm .【点睛】此题考查的是解直角三角形的应用和圆的基本性质,掌握利用锐角三角函数解直角三角形和圆的半径相等是解题关键. 6.(2020·湖南衡阳市·中考真题)小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24cm OA OB ==,BC AC ⊥,30OAC ∠=︒.(1)求OC 的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB 与水平线的夹角仍保持120°,求点B '到AC 的距离.(结果保留根号)【答案】解:(1)∵24cm OA =,BC AC ⊥,30OAC ∠=︒ ∵1122OC OA cm ==. 即OC 的长度为12cm .(2)如图,过点O 作OM ∵AC ,过点B ′作B ′E ∵AC 交AC 的延长线于点E ,交OM 于点D ,B ′E 即为点B '到AC 的距离,∵OM ∵AC ,B ′E ∵AC , ∵B ′E ∵OD ,∵MN ∵AC ,∵∵NOA =∵OAC =30°,∵∵AOB =120°,∵∵NOB =90°,∵∵NOB ′=120°,∵∵BOB ′=120°-90°=30°,∵BC ∵AC ,B ′E ∵AE ,MN ∵AE ,∵BC ∵B ′E ,四边形OCED 为矩形,∵∵OB ′D =∵BOB ′=30°,DE =OC =12cm ,在Rt ∵B ′OD 中,∵∵OB ′D =30°,B ′O =BO =24cm ,∵B'D cos OB'D==B'O 2∠B ′D = ,B ′E =B ′D +DE = ()12cm ,答:点B '到AC 的距离为()12cm .【点睛】本题考查解直角三角形的应用、矩形的判定和性质和直角三角形中30度角所对的直角边长度是斜边的一半,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.7.(2020·湖南益阳市·中考真题)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高DH =12米,斜坡CD 的坡度1:1i =,此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin 260.44≈,tan 260.49≈,sin 710.95≈,tan 71 2.90≈)【答案】解(1)∵tan 1:11i α===,∵=45α︒;(2)延长AD 交PC 于点E ,过点E 作EF ∵BC 于F ,如图,则四边形DEFH 是矩形,∵EF =DH =12m ,DE =HF ,∵HDE =∵EFH =∵DHF =90°,∵α=45°,∵∵HDC =45°,∵HC =DH =12m ,又∵PCD =26°,∵∵ECF =45°+26°=71°,∵tan 71EF FC ︒=,即12 4.14tan 71 2.90EF FC ==≈︒m , ∵HF =HC -CF =12-4.14=7.86m ,∵DE =7.86m ,∵AE //BC ,∵∵PED =∵PCH =71°,在Rt ∵PDE 中,tan PD PED DE ∠=,即 tan 717.86PD ︒=, ∵7.86 2.9022.8018PD =⨯≈>m ,∵此次改造符合电力部门的安全要求.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 8.(2020·辽宁葫芦岛市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB ,在观测点C 处测得大桥主架顶端A 的仰角为30°,测得大桥主架与水面交汇点B 的俯角为14°,观测点与大桥主架的水平距离CM 为60米,且AB 垂直于桥面.(点A ,B ,C ,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中,60,30︒=∠=CM ACMtan ∠=AM ACM CMtan 3060︒∴=⋅==AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中,60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.【点睛】本题考查直角三角形的边角关系,锐角三角函数的意义,掌握锐角三角函数的意义是解决问题的前提.9.(2020·四川内江市·中考真题)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【答案】(1)过点P作PD∵AB于点D,由题意得,AB=60(海里),∵P AB=30°,∵PBD=60°,∵∵APB=∵PBD-∵P AB=60°-30°=30°=∵P AB,∵PB=AB=60(海里),答:B处到灯塔P的距离为60海里;(2)由(1)可知∵APB=∵P AB=30°,∵PB=AB=60(海里)在Rt∵PBD中,PD=BPsin60°=60=海里),∵50>,∵海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.10.(2020·湖北随州市·中考真题)如图,某楼房AB 顶部有一根天线BE ,为了测量天线的高度,在地面上取同一条直线上的三点C ,D ,A ,在点C 处测得天线顶端E 的仰角为60︒,从点C 走到点D ,测得CD =5米,从点D 测得天线底端B 的仰角为45°,已知A ,B ,E 在同一条垂直于地面的直线上,AB =25米.(1)求A 与C 之间的距离;(2)求天线BE 的高度.( 1.73≈,结果保留整数)【答案】(1)依题意可得,在Rt ABD △中,45ADB ∠=︒ ,25AD AB ∴==米,5CD =米,25530AC AD CD ∴=+=+=米.即,A C 之间的距离为30米.(2)在Rt ACE △中,60ACE ∠=︒,30AC =米,30tan 60AE ∴=⋅︒=米),25AB =米,25)(BE AE AB ∴=-=-米.173≈..并精确到整数可得27BE ≈米.即天线BE 的高度约为27米.【点睛】(1)本题主要考查等腰直角三角形的性质,掌握等腰直角三角形的性质是解答本题的关键.(2)本题主要考查三角函数的灵活运用,正确运用三角函数是解答本题的关键.11.(2020·湖北鄂州市·中考真题)鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度CD .如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流右岸D 处的俯角为30°.线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一条直线上.其中tan 2,MC α==米. (1)求无人机的飞行高度AM ;(结果保留根号)(2)求河流的宽度CD .(结果精确到1 1.73≈≈)【答案】(1)由题意可得AF∵MD∵∵ACM=∵F AC=αα==米);在Rt∵ACM中,AM=CMtan∵ACM=CM tan2(2)如图,过点B作BH∵MD,在Rt∵BDH中,∵BDH=∵FBD=30°,BH=∵DH=BH÷tan30°=300米,∵AM∵DM,AM∵AF∵四边形ABHM是矩形∵MH=AB=50米∵CH=CM-MH=50(米)∵CD=DH-CH=300-(50)=350-263(米)故河流的宽度CD为263米.【点睛】此题主要考查三角函数的应用,解题的关键是熟知解直角三角形的方法.12.(2020·山东临沂市·中考真题)如图.要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足6075α︒︒,现有一架长5.5m 的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m 时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin 750.97︒=,cos750.26︒=,tan 75 3.73︒=,sin 23.60.40︒=,cos56.40.40︒=,tan 21.80.40︒=)【答案】解:(1)当∵ABC =75°时,梯子能安全使用且它的顶端最高;在Rt ∵ABC 中,有sin ∵ABC =AC AB∵AC =AB •sin ∵ABC =5.5×sin 75°≈5.3;答:安全使用这个梯子时,梯子的顶端距离地面的最大高度AC 约为5.3m(2)在Rt ∵ABC 中,有cos ∵ABC =BC AB =2.25.5=0.4 由题目给的参考数据cos56.40.40︒=,可知∵ABC =56.4° ∵56.4°<60°,不在安全角度内;∵这时人不能安全使用这个梯子,答:人不能够安全使用这个梯子.【点睛】此题考查的是解直角三角形的实际应用,熟练掌握并能灵活运用各锐角三角函数是解答此类题的关键.13.(2020·贵州贵阳市·中考真题)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35°,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF =12m ,EF ∥CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈ 1.7≈)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).【答案】解:(1)∵房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,EF ∥CB ,∵AG EF ⊥,162EG EF ==,35AEG ACB ∠=∠=︒. 在Rt AGE ∆中,90AGE ∠=︒,35AEG ∠=°,∵tan AEG AG EG∠=,6EG =,tan350.7︒≈. ∵6tan3542AG =≈°(米)答:屋顶到横梁的距离AG 约是4.2米.(2)过点E 作EH CB ⊥于点H ,设EH x =,在Rt EDH ∆中,90EHD ∠=︒,60EDH∠=°, ∵tan EHEDH DH ∠=,∵tan 60x DH =°, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=°, ∵tan EHECH CH ∠=,∵tan 35x CH =°. ∵8CH DH CD -==, ∵8tan 35tan 60x x -=°°,∵tan350.7︒≈, 1.7≈,解得9.52x ≈.∵ 4.29.5213.7214AB AG BG =+=+=≈(米)答:房屋的高AB 约是14米.【点睛】本题主要考查了仰角的定义及其解直角三角形的应用,解题时首先正确理解仰角的定义,然后构造直角三角形利用三角函数和已知条件列方程解决问题.14.(2020·河南中考真题)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m,(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:︒≈︒≈︒≈≈);220.37,220.93,22 1.41sin cos tan(2)“景点简介”显示,观星台的高度为12.6m,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】解:(1)如图,过点A作AE∵MN交MN的延长线于点E,交BC的延长线于点D,设AD的长为xm,∵AE∵ME,BC∵MN,∵AD∵BD,∵ADC=90°,∵∵ACD=45°,∵CD=AD=xm,BD=BC+CD=(16+x)m,由题易得,四边形BMNC为矩形,∵四边形CNED 为矩形,∵DE =CN =BM =1.6m ,在Rt ∵ABD 中,tan ABD=0.4016AD x BD x==+∠, 解得:10.7x ≈,即AD =10.7m ,AE =AD +DE =10.7+1.6=12.3m ,答:观星台最高点A 距离地面的高度为12.3m .(2)本次测量结果的误差为:12.6-12.3=0.3m ,减小误差的合理化建议:多次测量,求平均值.【点睛】本题考查解直角三角形的实际应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(2020·四川攀枝花市·中考真题)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?解:(1)设王诗嬑的影长为xcm , 由题意可得:9015072x=, 解得:x =120,经检验:x =120是分式方程的解,王诗嬑的的影子长为120cm ;(2)正确,因为高圆柱在地面的影子与MN 垂直,所以太阳光的光线与MN 垂直,则在斜坡上的影子也与MN 垂直,则过斜坡上的影子的横截面与MN 垂直,而横截面与地面垂直,高圆柱也与地面垂直,∵高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB 为高圆柱,AF 为太阳光,∵CDE 为斜坡,CF 为圆柱在斜坡上的影子,过点F 作FG ∵CE 于点G ,由题意可得:BC =100,CF =100,∵斜坡坡度1:0.75i =, ∵140.753DE FG CE CG ===, ∵设FG =4m ,CG =3m ,在∵CFG 中,()()22243100m m +=,解得:m =20, ∵CG =60,FG =80,∵BG=BC+CG=160,过点F作FH∵AB于点H,∵同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,FG∵BE,AB∵BE,FH∵AB,可知四边形HBGF为矩形,∵9072AH AHHF BG==,∵AH=9090160 7272BG⨯=⨯=200,∵AB=AH+BH=AH+FG=200+80=280,故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.。

锐角三角函数的解题技巧

锐角三角函数的解题技巧
解:由
例18.如图3,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工。从AC上的一点B,取 米, 。要使A、C、E成一直线,那么开挖点E离点D的距离是()
A. 米B. 米
C. 米D. 米
图3
分析:在 中可用三角函数求得DE长。
解: A、C、E成一直线
在 中,
米,
米,故应选B。
例19.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B为追上时的位置)(2)确定巡逻艇的追赶方向(精确到 )(如图4)
例13在 中, ,那么cotB等于()
分析:在 中,已知tanA,求cotB可利用互余角的三角函数关系求解,应选C。
例14已知 为锐角,下列结论:
<2>如果 ,那么
<3>如果 ,那么 <4>
正确的有()
A. 1个B. 2个C. 3个D. 4个
分析:利用三角函数的增减性和有界性即可求解。
解:由于 为锐角知<1>不成立
3.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案。甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回。已知该公司租车从基地到公司的运输费为5000元。
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围。
(1)求证:AC=BD

应用锐角三角函数解实际问题

应用锐角三角函数解实际问题

应用锐角三角函数解实际问题锐角三角函数是数学中一个重要的概念,它能够帮助我们解决日常生活中的实际问题。

本文将从四个方面来讨论锐角三角函数在实际问题中的应用。

首先,锐角三角函数可以解决根据两条边求三角形面积的问题。

设有一个三角形ABC,其中AB=2,BC=3,则可以使用锐角三角函数求解这个三角形的面积。

首先,我们需要根据已知条件计算出三角形ABC的内角度数,即α=60°,可以由两条边求出其它边的长度AC=2.5。

然后,我们可以使用锐角三角函数中的S=1/2absinα公式,来求出三角形ABC的面积,即S=1/2*2*3*sin60°=3.464。

其次,锐角三角函数可以解决根据两个内角和外角求三角形面积的问题。

设有一个三角形ABC,其中A=60°,B=30°,C=90°,则可以使用锐角三角函数求解这个三角形的面积。

首先,我们需要根据已知条件计算出三角形ABC的边长,即AB=2,BC=2,可以由两个内角求出外角的长度AC=3。

然后,我们可以使用锐角三角函数中的S=1/2a bsinα公式,来求出三角形ABC的面积,即S=1/2*2*2*sin90°=2.000。

此外,锐角三角函数还可以用来解决求抛物线焦点距离中心点的问题。

假设有一个抛物线y=-1/4x^2,其中x为横坐标,y为纵坐标,则可以使用锐角三角函数求出抛物线的焦点距离中心点的距离为2。

首先,我们需要根据抛物线的模型求出抛物线的焦点坐标(0,1/2),然后通过三角函数来求出焦点距离中心点的距离,即a=√(0-1/2)^2+(1/2)^2=√2。

最后,锐角三角函数还可以应用于光学中,用来求解折射率等问题。

假设有一个简单的透镜系统,镜片一边入射面和出射面之间有n条光线,可以使用锐角三角函数求出透镜系统的折射率。

这里,我们可以先分别求出入射面和出射面的角度α1、α2,再用反射率的定义,即n1sinα1=n2sinα2,求出折射率n2。

锐角三角函数在日常生活中有哪些用途

锐角三角函数在日常生活中有哪些用途

锐角三角函数在日常生活中有哪些用途锐角三角函数在日常生活中的用途那可真是不少!咱们先来说说建筑方面。

就拿盖房子来说吧,建筑工人师傅们在搭建脚手架的时候,可就得用到锐角三角函数的知识。

我之前亲眼见过一个建筑工人师傅,他站在地上,拿着测量工具,眼睛专注地盯着上面的架子,嘴里还念念有词。

我好奇凑过去一听,原来他在计算架子与地面形成的角度,用的就是锐角三角函数。

他跟我说,如果角度算不对,这脚手架搭得不稳当,那可就危险啦!再说说装修的时候,要安装一个斜着的窗户。

这时候就得算出窗户与墙面的夹角,才能保证窗户安装得既美观又实用。

工人师傅们会拿着尺子和量角器,在那比划来比划去,其实就是在运用锐角三角函数的原理呢。

还有测量山的高度。

有一次我去爬山,碰到一群搞测量的人。

他们站在山脚下,拿着各种仪器。

其中一个人拿着望远镜看向山顶,另外几个人在本子上记录着数据。

我好奇地问他们在干啥,他们说在测量这座山的高度。

原来他们是通过测量山脚下到山顶的角度,还有他们与山之间的距离,利用锐角三角函数来算出山的高度。

这可真神奇,我当时就在想,这小小的锐角三角函数居然有这么大的本事!在航海中,锐角三角函数也起着重要作用。

船长要确定船只的位置和航向,就得依靠对角度的测量和计算。

比如说,通过测量灯塔与船只的夹角,结合已知的距离,就能准确判断出船只的位置,避免触礁或者迷路。

在日常生活里,如果你想在墙上挂一幅画,要挂得正又好看,也得用到锐角三角函数。

你得先测量画框与墙面的角度,还有画框的长度和高度,这样才能确定钉子应该钉在哪个位置,画才能挂得稳稳当当,不会歪歪斜斜的。

还有啊,比如你想在院子里搭一个滑梯给小朋友玩。

滑梯的坡度太陡,小朋友滑下来速度太快不安全;坡度太缓,又滑得不痛快。

这时候就得通过锐角三角函数来计算出最合适的角度,让小朋友既能玩得开心又能保证安全。

甚至在拍照的时候,有时候为了拍出特别的效果,摄影师也会考虑角度的问题。

通过计算拍摄角度和距离,来达到想要的构图和视觉效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档