高一数学必修集合教案

合集下载

高中数学 必修一 集合的概念 教案

高中数学 必修一 集合的概念   教案

集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。

2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。

【教学重难点】教学重点:集合的含义与表示方法。

教学难点:表示法的恰当选择。

【教学过程】一、创设情景,揭示课题。

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。

举例和互相交流。

与此同时,教师对学生的活动给予评价。

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。

二、研探新知。

1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程2560-+=的所有实数根;x xx->的所有解;(7)不等式30(8)国兴中学2004年9月入学的高一学生的全体。

2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。

一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

a b c d…表4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,示。

三、质疑答辩,排难解惑,发展思维。

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。

使学生明确集合元素的三大特性,即:确定性。

高一数学第一章《集合》教案

高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。

那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。

高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。

(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

高一数学教案(优秀6篇)

高一数学教案(优秀6篇)

高一数学教案(优秀6篇)第一节集合的含义与表示学时:1学时[学习引导]一、自主学习1.阅读课本.2.回答问题:⑴本节内容有哪些概念和知识点?⑵尝试说出相关概念的含义?3完成练习4小结二、方法指导1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法[思考引导]一、提问题1.集合中的元素有什么特点?2、集合的常用表示法有哪些?3、集合如何分类?4.元素与集合具有什么关系?如何用数学语言表述?5集合和是否相同?二、变题目1.下列各组对象不能构成集合的是()A.北京大学2023级新生B.26个英文字母C.著名的艺术家2.下列语句:①0与表示同一个集合;②由1,2,3组成的集合可表示为或;③方程的解集可表示为;④集合可以用列举法表示。

其中正确的是()A.①和④B.②和③C.②D.以上语句都不对[总结引导]1.集合中元素的三特性:2.集合、元素、及其相互关系的数学符号语言的表示和理解:3.空集的含义:[拓展引导]1.课外作业:习题11第题;2.若集合,求实数的值;3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.1、知识与技能(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。

2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。

引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

2024年高一数学教案高一数学教案必修一

2024年高一数学教案高一数学教案必修一

2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。

2.能够运用集合的语言描述生活中的现象。

3.培养学生的抽象思维能力和语言表达能力。

二、教学重难点1.重点:集合的含义与表示方法。

2.难点:集合语言的应用。

三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。

今天我们就来学习一下集合的含义与表示方法。

(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。

(2)集合的元素:构成集合的对象叫做集合的元素。

(3)集合的性质:确定性、互异性、无序性。

2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。

(2)描述法:用文字或符号描述集合中元素的特征。

(3)图示法:用Venn图或树状图表示集合。

(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。

2.例题2:用列举法表示下列集合。

A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。

A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。

A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。

2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。

四、作业布置1.抄写并背诵集合的定义、性质及表示方法。

2.完成课后练习题。

第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

集合的概念教案5篇

集合的概念教案5篇

集合的概念教案5篇集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。

集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。

把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。

从知识结构上来说是为了引入函数的定义。

因此在高中数学的模块中,集合就显得格外的举足轻重了。

(2)说教学目标根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:1.知识与技能:掌握集合的基本概念及表示方法。

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。

二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。

人教版高中数学必修1集合教案

人教版高中数学必修1集合教案

集 合教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、 定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2> x+3的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学.一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。

则上几例可表示为……为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}2(1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。

如A={2,4,8,16},则4∈A ,8∈A ,32 A.∈∉集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……2、“∈”的开口方向,不能把a ∈A 颠倒过来写。

4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。

记作N *或N + 。

Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。

1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。

高一数学集合教案

高一数学集合教案

1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学过程】环节 教学内容 师生互动 设计意图导 入 师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”. 师:“物以类聚”;“人以群分”;这些都给我们以集合的印象. .新 课 新 课引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母 A,B,C,…表示,它的元素通常用小写英文字母 a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 N;或 N*;(2) 正整数集:非负整数集内排除0的集合,记作 N+(3) 整数集:整数全体构成的集合,记作 Z;(4) 有理数集:有理数全体构成的集合,记作 Q;(5) 实数集:实数全体构成的集合,记作 R.注意:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用. 例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的 26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a Q,b Q,则 a+b Q.2.选择题⑴以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可例2 用符号“ ”或“ ”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“ ”或“ ”填空:(1) -3 N;(2) 3.14 Q;(3) 13 Z ; (4) -12 R ;(5) 2 R ; (6) 0 Z .1.1.2 集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.. 【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合. 【教学难点】集合特征性质的概念,以及运用描述法表示集合. 【教学过程】 环节 教学内容师生互动设计意图导 入1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“ ”与“ ”填空白:(1) 0 N ; (2) -2 Q ; (3)-2 R .这节课我们一起研究如何将集合表示出来.新 课 新 课 新 课1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示. 如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,…,99}. 例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合; (2) 方程 x 2-5 x +6=0的解集. 解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体;(4) 大于3.5且小于12.8的整数的全体.2. 性质描述法.给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质p(x),则性质 p(x)叫做集合A的一个特征性质,于是集合 A 可以用它的特征性质描述为 {x I |p(x)} ,它表示集合 A是由集合 I 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为 R,“x R”可以省略不写.例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面 内到两定点 A,B 距离相等的点的全体构成的集合.解 (1){ x |x >3};(2){ x |x 是两组对边分别平行的四边形};(3) l={ P ,|PA|=|PB|,A,B 为 内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、用列举法表示下列集合①{x∈N|x是15的约数}②{(x,y)|x∈{1,2},y∈{1,2}}?③④⑤ ?⑥①注意区别 a 与 {a}.a 是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.集合{1,2}与{2,1}表示同一个集合吗?注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

高中数学_必修1_集合教案1

高中数学_必修1_集合教案1

集合(第2课时)一、知识目标:①内容:深入理解集合的基本概念,掌握集合元素的三个特征并会应用,了解有限集、无限集的概念②重点:集合元素的三个特征,空集③难点:集合元素的三个特征的应用二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;③由运用集合的观点分析、处理实际问题,培养由具体到抽象,由抽象到具体的思维方式,形成正确的认知观;三、教学过程:1)情景设置:复习上一节课所学的主要内容①集合的概念:某些指定的对象集在一起就成为一个集合。

集合非常类似于电脑中的文件夹,文件夹就是一个集合,文件夹的内容就是该集合的元素②元素:集合中的每个对象③元素与集合的关系:∈、∉④集合中元素的特征:确定性、互异性、无序性⑤常用数集2)新课讲授例1、下列指定的对象,能构成一个集合的是①很小的数②不超过30的非负实数③直角坐标平面内横坐标与纵坐标相等的点④π的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体分析:①“很小”是不明确的,不确定的②“π的近似值”也是不确定的③“优秀”不确定例2、给出下列说法:①较小的自然数组成一个集合②集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合③某同学的数学书和物理书组成一个集合④若a∈R,则a∉Q⑤已知集合{x,y,z}与集合{1,2,3}是同一个集合,则x=1,y=2,z=3其中正确说法个数是()A、1个B、2个C、3个D、4个例3、已知集合A={a+2,(a+1)2,a 2+3a+3},且1∈A ,求实数a 的值 解:若a+2=1,则a=-1,此时A={1,0,0}违反互异性,舍去 若(a+1)2=1,则a=0或-2当a=0时,此时A={2,1,3}当a=-2时,此时A={0,1,1}违反互异性,舍去若a 2+3a+3=1,则a=-1(舍去)或a=-2(舍去) 所以a=0练习1:在下列各题中,分别指出集合的所有元素① 世界上最高的山峰② 组成中国国旗图案的颜色 ③ 所有大于0且小于10的奇数 ④ 小于100的自然数 ⑤ 由1,2,3这三个数字抽出一部分或全部数字所组成的一切自然数(没有重复)⑥ 不等式x-3>2的解集⑦ 平面内到一定点o 的距离等于定长1的所有的点P ⑧ 两边之和小于第三边的三角形练习2:集合{3,x,x 2-2x}中,x 应满足什么条件? 解:根据集合元素的互异性,x 应满足 x ≠3,且x 2-2x ≠3,且x 2-2x ≠x 解得x ≠3且x ≠0且x ≠-1为进一步研究集合,需要将行行色色的集合进行分类,假如这项工作由你来做,你会选用什么标准对集合进行分类呢?(拿刚才的练习题为例加以讨论) 师生共同探讨形成共识:根据“集合中元素个数”可将形形色色集合分成以下三类:a) 有限集——含有有限个元素的集合 b) 无限集——含有无限个元素的集合c) 空集——不含任何元素的集合,记作φ练习3:指出下列集合中哪些是有限集?哪些是无限集?哪些是空集?为什么? ①{0}②{x 2+x+2=0的解}③{使得x6为自然数的整数}④{不等式x-3>2的解}思考题:已知集合{关于x 的 方程ax 2+2x+1=0的解}只含1个元素,求a 的值。

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇高一必修一数学集合教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。

本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。

加强函数教学可帮助学好其他的内容。

而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。

而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。

函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。

为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

高中数学集合全集教案

高中数学集合全集教案

高中数学集合全集教案
一、教学目标:
1.了解集合的概念和基本性质;
2.掌握集合的表示方法;
3.掌握集合的运算;
4.能够解决集合问题。

二、教学重点:
1.理解集合的概念和基本性质;
2.掌握集合的表示方法。

三、教学难点:
1.掌握集合的运算;
2.解决集合问题。

四、教学过程:
1.引入:老师向学生介绍集合的概念,让学生了解集合的基本性质。

2.讲解:教师详细讲解集合的表示方法和运算规则,让学生掌握集合的基本知识。

3.练习:老师出一些练习题,让学生巩固所学的知识,提高解题能力。

4.拓展:教师可对集合的运算和表示方法进行拓展,让学生了解更多相关知识。

五、作业:布置相关的作业,让学生巩固所学知识,并在下节课进行讲解。

六、教学反思:
1.学生普遍对集合的概念和表示方法掌握得比较好;
2.集合的运算部分学生掌握得不够好,需要加强练习;
3.结合实际生活场景,讲解更多集合问题,提高学生的综合能力。

七、教学反馈:
1.通过作业和课堂练习,发现学生对集合的运算和表示方法掌握得较好;
2.需要加强对集合问题的讲解,并综合运用所学知识解决问题。

新教材高一数学必修一教案,集合的定义

新教材高一数学必修一教案,集合的定义

《集合的含义与表示》教案(一)教学目标1 •知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义•理解集合相等的含义(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2. 过程与方法(1)通过实例,初步体会元素与集合的属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法•3. 情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合. 通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识概念形成第一组实例(幻灯片一):(1)“小于10”的自然数0,1 ,2, 3,……, 9.(2)满足3x - >x+3的全体实数.(3)所有直角二角形.(4 )到两定点距离的和等于两定点间的距离的点.(5 )咼一(1)班全体同学.(6)参与中国加入WTO谈判的中方成员.1.集合:一般地,把一些能够确定的不冋的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).2 .集合的兀素(或成员):即构成集合的每个对象(或成员),教师提问:①以上各例(构成集合)有什么特点?请大家讨论.学生讨论交流,得出集合概念的要点,然后教师肯定或补充.②我们能否给出集合一个大体描述?……学生思考后回答,然后教师总结.③上述六个例子中集合的元素各是什么?④请同学们自己举一些集合的例子.通过实例,引导学生经历并体会集合(描述性)概念形成的过程,引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合.概念深化第二组实例(幻灯片二):(1 )参加亚特兰大奥运会的所有中国代表团的成员构成的集合.(2)方程x2 = 1的解的全体构成的集合.(3)平行四边形的全体构成的集合.(4)平面上与一定点0的距离等于r 的点的全体构成的集合.3.兀素与集合的关系:教师要求学生看第二组实例,并提问:①你能指出各个集合的元素吗?②各个集合的兀素与集合之间是什么关系?③例(2)中数0,- 是这个集合的元素吗?学生讨论交流,弄清兀素与集合之间是从属关系,即“属于”或“不属于”关系.引入集合语言描述集合.(1)小于10的所有自然数组成的集合;(2)方程x2 = X的所有实数根组成的集合;(3 )由1〜20以内的所有质数组成的集合•描述法:定义:用集合所含元素的共同特征表示集合的方法称为描述法•具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2试分别用列举法和描述法表示下列集合:(1)方程x2乞=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合•由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举法•例如:A = {9 , 8, 7, 6, 5, 4, 3, 2, 1 , 0}.(2)设方程x2 = x的所有实数根组成的集合为B,那么B = {0,1}.(3)设由1〜20以内的所有质数组成的集合为C,那么C = {2 , 3, 5, 7, 11, 13, 17, 19}.例2解答:(1)设方程x2 -2 = 0的实数根为x,并且满足条件x -2 =0,因此,用描述法表示为2A = {x€ R| x - = 0}.方程x2- = 0有两个实数根 2 , -2,因此,用列举法表示为A = { 2,—. 2}.(2)设大于10小于20的整数为x,它满足条件x€ Z,且10v x v 20. 因此,用描述法表示为B = {x€ Z | 10v x v 20}.大于10小于20的整数有11, 12, 13, 14, 15, 16, 17, 18, 19,因此,用列举法表示为B = {11 , 12, 13, 14, 15, 16, 17,备选例题例1 (1 )禾9用列举法表法下列集合:①{15的正约数}:②不大于10的非负偶数集(2)用描述法表示下列集合:①正偶数集;②{1,-3, 5,-7,…,439, 41}.【分析】考查集合的两种表示方法的概念及其应用【解析】(1)①{1 , 3, 5, 15}②{0 , 2, 4, 6, 8, 10}(2)①{x | x = 2n, n € N*}②{x | x = ( -) n-• (2n -1), n€ N*且n< 21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集例2用列举法把下列集合表示出来:9(1)A = {x € N € N };9 _x(2) B = {9€ N | x € N };9 -x(3) C :={ y = y = - + 6 , x € N , y € N }; (4) D : 2 ={(x , y) | y =+6 , x € N }; (5) E = p ={x 1= x , p + q = 5 , p € N , q € N *}qA 的元素是自然数 x ,它必须满足条件 -L 也9—x是自然数;集合 B 中的元素是自然数匕,它必须满足条件 x 也是自然数;集合 C 中的元素9—x是自然数y ,它实际上是二次函数 y = — + 6 (x € N )的函数值;集合 D 中的元素是点,这些点 必须在二次函数y = -2+ 6 (x € N )的图象上;集合E 中的元素是x,它必须满足的条件是 x =卫,q 其中 p +q = 5,且 p € N , q € N *.【解析】(1)当x = 0, 6, 8这三个自然数时, —=1, 3, 9也是自然数.9—x(5 )依题意知 p + q = 5 , p € N , q € N * ,则 p =0, P =1, p =2, p =3, p =4, q =5,q =4, q =3,q =2, q =1.Px 要满足条件x =-,q• E = {0,丄,2, 3 , 4}.4 3 2【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3已知-€ A = {a -3 , 2a -1, a 2 + 1},求a 的值及对应的集合 A.-3€ A ,可知是集合的一个元素,则可能 a 43 =3 或2a -1 =-,求出a ,再代入A , 求出集合A.【解析】由占€ A ,可知,a H3 = 或2a - =£,当a£ =,即a = 0时,A = {,-,1}【分析】先看五个集合各自的特点:集合•-A = {0 , 6, 9}(2 )由(1)知,B = {1 , 3, 9}.(3 )由 y = — + 6 , x € N , y € N 知 y < 6.••• x = 0 , 1 , 2 时,y = 6 , 5 , •-C = {2 , 5 , 6}.(4)点{x , y}满足条件 x =0, x =1, x =2, y =6, y =5,y =2.• D = {(0 , 6) (1, 5) (2 ,2符合题意. 2承 + 6 , x € N , y € N ,则有:2) }当2a -1 = H3,即a =-时,A = { -4 , £ , 2}.以此展开讨【评析】元素与集合的关系是确定的,43 € A,则必有一个式子的值为论,便可求得a.。

高中数学集合教案

高中数学集合教案

高中数学集合教案【篇一:高一数学集合教学案(4课时)】高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。

情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。

(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

难点:能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本p3(3)元素:集合中每个叫做这个集合的元素,元素通常用表示 2、元素与集合的关系(1)属于:记作:a___a;(2)不属于:记作:a___a;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为2(3) 方程方程x=1的解的全体构成的集合; 其中元素为(4) 不等式x+12x+2的解的全体构成的集合. 其中元素为你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1);(2);(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点o的距离等于定长r的点的全体;(3) 方程x+1=x+2的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有个元素的集合叫做有限集(2)含有个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集:的集合.记作;(2)正整数集:的集合.记作;(3)整数集:的集合.记作;(4)有理数集:的集合.记作;(5)实数集:的集合.记作。

高一数学必修1《集合的含义与表示》教案

高一数学必修1《集合的含义与表示》教案

高一数学必修1《集合的含义与表示》教案【教学目标】1. 理解集合的概念,能够用通俗易懂的语言描述集合的含义。

2. 熟悉常见集合符号的表示及其含义。

3. 能够运用集合的相关性质解决实际问题。

4. 能够分别用文字描述和图形表示集合。

【教学重点】1. 集合的概念与基本符号的熟练掌握。

2. 集合运算的理解和运用。

【教学难点】1. 集合的基本概念,包括空集、全集、子集等。

2. 集合运算的细节及其运用。

【教学方法】1. 演讲法:介绍集合的基本概念和相关性质。

2. 互动式教学:让学生根据实际问题思考集合的处理方法,提高学生的思维能力。

3. 提问式教学:通过提出问题,引导学生自己思考和总结。

【教学资源】1. 高一数学必修1教材。

2. PPT。

3. 多媒体教学设备。

【教学过程】一、导入(15分钟)1. 引入集合概念。

通过图片或文字向学生展示几个集合,引导学生了解集合的概念。

2. 创建集合。

让学生自己尝试创建几个集合,并用文字或图形表示出来。

二、集合的概念(30分钟)1. 什么是集合?集合是由一些互不相同的元素所组成的整体。

例如,由0、1、2、3、4这5个元素组成的集合可以用花括号表示:{0,1,2,3,4}。

2. 集合的符号表示。

集合用大写字母表示,元素用小写字母表示。

例如,集合A={a1,a2,…,an}。

3. 集合的基本概念。

有限集合、无限集合、空集、全集、真子集、超集。

4. 练习。

通过几个例题,让学生巩固集合的基本概念。

三、集合的运算(45分钟)1. 集合的运算符号。

并集、交集、差集、补集、对称差集等。

2. 集合的运算法则。

交换律、结合律、分配律、消去律、德摩根定律等。

3. 练习。

通过较易的例题,让学生理解集合运算的概念和运算法则。

四、作业布置(10分钟)1. 课后练习。

布置一定量的集合练习题,让学生掌握集合概念和运算法则,并合理运用集合来解决实际问题。

2. 知识巩固。

要求学生按照课上所学知识,撰写一篇500字的集合概念详解。

人教版高一数学必修一《集合》教案及教学反思

人教版高一数学必修一《集合》教案及教学反思

人教版高一数学必修一《集合》教案及教学反思一、教学目标1.知道集合的基本概念,掌握集合的特征和表示方法。

2.掌握集合的基本运算,会用运算符号表示集合的交、并、补、差等。

3.理解集合的包含关系和相关定理,掌握证明方法。

4.能够运用集合的基本知识解决实际问题,提高数学思维能力。

二、教学重难点教学重点:集合的基本概念、包含关系和相关定理。

教学难点:集合的证明方法、集合的运算和运算符号。

三、教学内容和方法1. 教学内容1.集合的概念和特征:元素、空集、全集、子集等概念。

2.集合的表示方法:文氏图、列举法、描述法等。

3.集合的运算:交、并、补、差等运算及其记号。

4.集合的包含关系和相关定理:包含关系、真子集、幂集等定理。

5.集合的证明方法:包含证明、反证法等。

2. 教学方法本节课采用“讲授-练习-板书”相结合的教学方法。

首先讲解集合的概念和基本特征,通过一些实例说明集合的元素和特征的含义。

之后介绍集合的表示方法和运算,通过练习巩固学生对集合运算的认识。

讲解集合的包含关系和相关定理,重点讲解真子集和幂集的概念和性质,并给出证明示例作为练习。

最后根据学生掌握情况综合演练习题,温故知新。

针对难点,采用举例讲解和反复练习的方法来加深学生的理解,带领学生进行试验,一步一步掌握证明方法。

四、教学过程1. 预习在上课前,老师要求学生预习本节课目的和基本内容,预习必修一中的集合部分,对基本概念进行认识。

2. 讲授1、引入通过类比生活中的集合来引导学生对概念和特征的整体认识。

2、概念讲授介绍集合、元素、空集、全集、子集等概念,并通过实例分别掌握其含义。

3、表示方法介绍文氏图、列举法、描述法等表示方法的使用和注意事项。

4、集合运算介绍集合的交、并、补、差等运算及其运算符号,引导学生理解和掌握。

5、包含关系和相关定理介绍集合的包含关系、真子集、幂集等概念和性质,并给出证明示例进行练习。

带领学生理解集合的学习目的和实际应用。

6、归纳总结通过练习和讨论,引导学生从总结入手,形成正确的集合概念,打下学习的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1(一)集合的有关概念⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。

练:A={2,4,8,16},则4∈A ,8∈A ,32∉A.8. 空集:定义9. 集合的分类观察下列三个集合的元素个数1. {4.8, 7.3, 3.1, -9};2. {x ∈R ∣0<x<3};3. {x ∈R ∣x 2+1=0}由此可以得到集合的分类:::()empty set ⎧⎪⎨⎪∅-⎩有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含有任何元素的集合 (二)例题讲解:例1.用“∈”或“∉”符号填空:⑴8 N ; ⑵0 N ; ⑶-3 Z ;;练:5页1题例2.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。

练:⑴给出下面四个关系:3∈R,0.7∉Q,0∈{0},0∈N,其中正确的个数是:( ) A .4个 B .3个 C .2个 D .1个(2)求集合{2a ,a 2+a }中元素应满足的条件?(3)若t1t 1+-∈{t},求t 的值. 1.1.2一、集合的表示方法⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。

如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;⑸列举法可表示有限集,也可以表示无限集。

当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。

⑹对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为{}1,2,3,4,5,......例1.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除而且大于4小于15的自然数组成的集合;(3)从51到100的所有整数的集合;(4)小于10的所有自然数组成的集合;(5)方程2x x =的所有实数根组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。

方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

一般格式:{}()x A p x ∈如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;说明:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

写法{实数集},{R}也是错误的。

用符号描述法表示集合时应注意:1、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?2、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。

例2.用描述法表示下列集合:(1)由适合x2-x-2>0的所有解组成的集合;(2)到定点距离等于定长的点的集合;(3)方程220x-=的所有实数根组成的集合(4)由大于10小于20的所有整数组成的集合。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

课本P7 例1例21.用适当的方法表示集合:大于0的所有奇数2.集合A={x|4∈Z,x∈N},则它的元素是。

3x-3.判断下列两组集合是否相等?(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}1.2 集合间的基本关系教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;1.2.1 ⒈子集:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B的元素,我们说这 两个集合有包含关系,称集合A 是集合B的子集(subset )。

记作:()A B B A ⊆⊇或 读作:A 包含于B ,或B 包含A当集合A 不包含于集合B 时,记作A ?B(或B ?A)用Venn 图表示两个集合间的“包含”关系:2.真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集。

记作:A B (或B A ) 读作:A 真包含于B (或B 真包含A )3.集合相等 定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。

如:A={x|x=2m+1,m ∈Z},B={x|x=2n-1,n ∈Z},此时有A=B 。

4.空集定义:不含有任何元素的集合称为空集。

记作:φ用适当的符号填空:φ {}0; 0 φ ; φ {φ}; {}0 {φ}5.几个重要的结论:⑴空集是任何集合的子集;对于任意一个集合A 都有φ⊆A 。

⑵空集是任何非空集合的真子集;⑶任何一个集合是它本身的子集;⑷对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。

练习 ⑴2 N ; {2} N ; φ A; B A 表示:A B ⊆⑵已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N},则 A B ; A C ; {2} C ; 2 C 说明: ⑴注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;⑵在分析有关集合问题时,要注意空集的地位。

⑶结论:一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,特别地,空集的子集个数为1,真子集个数为0。

1.2.2 集合间的基本运算考察下列集合,说出集合C 与集合A ,B 之间的关系:(1){1,3,5}A =,{}{2,4,6},1,2,3,4,5,6B C ==; (2){}A x x =是有理数,{}{},B x x C x x ==是无理数是实数;1.并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B的并集,即A 与B 的所有部分,记作A ∪B , 读作:A 并B 即A ∪B={x|x ∈A 或x ∈B}。

Venn 图表示:2.交集定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,叫作集合A 、B 的交集(intersection set ),记作:A ∩B 读作:A 交B 即:A ∩B ={x|x ∈A ,且x ∈B} Venn 图表示:常见的五种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个A B A(BA B A B A (阴影部分即为A 与B 的交集)集合没有交集3. 全集、补集概念及性质:全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U ,是相对于所研究问题而言的一个相对概念。

补集的定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,叫作集合A 相对于全集U 的补集,记作:U C A ,读作:A 在U 中的补集,即{},U C A x x U x A =∈∉且 Venn 图表示:(阴影部分即为A 在全集U 中的补集) 说明:补集的概念必须要有全集的限制高一数学必修1集合单元综合练习1、U ={1,2,3,4,5},若A ∩B ={2},(C U A )∩B ={4},(C U A )∩(C U B )={1,5},则下列结论正确的是 .①、3A 且3B ;②、3A 且3B ;③、3A 且3B ;④、3A 且3B 。

2、设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠,则k 的取值范围是3、已知全集U Z =,2{1,0,1,2},{|}A B x x x =-==,则U A C B I为 4、设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=5、已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅I,则实数a 的取值范围是 6、设集合∈<≤=x x x A 且30{N }的真子集...的个数是7、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x x x Z -=∈ 是空集中,错误的个数是8、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B。

相关文档
最新文档