2020-2021山东师范大学附属中学高一数学上期末试题及答案
山东师范大学附属中学2022年数学高一上期末学业质量监测模拟试题含解析
(3)是否存在实数 ,使得函数 最大值为0,若存在,求出 的值,若不存在,说明理由.
参考答案
一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)
1、D
【解析】先由题意设所求直线为: ,再由直线过点 ,即可求出结果.
21、(1)证明见详解;(2)最大值 ;最小值 .
【解析】(1)任取 、 且 ,求 ,因式分解,然后判断 的符号,进而可得出函数 的单调性;
(2)利用(1)中的结论可求得函数 的最大值和最小值.
【详解】(1)任取 、 且 ,
因为 ,
所以 ,
,
, , ,
,
即 ,
因此,函数 在区间 上为增函数;
(2)由(1)知,当 时,函数 取得最小值 ;
9、D
【解析】 关于 对称,且 时, ,故选D
10、B
【解析】因为函数 的最小正周期是 ,故先排除选项D;又对于选项C: ,对于选项A: ,故A、C均被排除,应选B.
11、D
【解析】根据角度制与弧度制的关系求解.
【详解】因为 ,
所以 .
故选:D.
12、D
【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.
16.若函数 在区间 上是增函数,则实数 取值范围是______
三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)
17.义域为 的函数 满足:对任意实数x,y均有 ,且 ,又当 时, .
(1)求 的值,并证明:当 时, ;
(2)若不等式 对任意 恒成立,求实数 的取值范围.
2020-2021山东师范大学附属中学高一数学上期末试题附答案
2020-2021山东师范大学附属中学高一数学上期末试题附答案一、选择题1.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )A .[]2,0-B .(],8∞--C .[)2,∞+D .(],0∞- 2.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >> B .b a c >> C .c a b >> D .c b a >>4.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<5.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10936.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}7.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,610.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U11.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .12.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)二、填空题13.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .14.如图,矩形ABCD 的三个顶点,,A B C 分别在函数2logy x=,12y x =,2xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.15.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.16.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________. 17.某食品的保鲜时间y (单位:小时)与储存温度x (单位:)满足函数关系(为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.18.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 19.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.20.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.已知函数()212xxk f x -=+(x ∈R ) (1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围. 23.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 3332log 27log 2log 36lg 2lg 5-⋅---.24.已知()()122x x f x a a R +-=+∈n .(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.25.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳. 26.已知函数()224x x a f x =-+,()()log 0,1a g x x a a =>≠.(1)若函数()f x 在区间[]1,m -上不具有单调性,求实数m 的取值范围; (2)若()()11f g =,设()112t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x Q 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤- ()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤ 本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .3.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.6.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.7.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.11.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C .【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.12.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.二、填空题13.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为.14.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x 在函数2logy x=的图像上,所以22Ax =,即22122A x ⎛⎫== ⎪ ⎪⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y 在函数2x y =⎝⎭的图像上,所以4214C y ==⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭.故答案为11,24⎛⎫ ⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.15.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得解析:10,2⎡⎫⎪⎢⎣⎭【解析】 【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围. 【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.16.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)f x x x -=≥.故答案为:12()(0)f x x x -=≥【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.17.24【解析】由题意得:所以时考点:函数及其应用解析:24 【解析】由题意得:2211221924811{,,1924248b k k k be e e e +=∴====,所以33x =时,331131()192248k b k b y e e e +==⋅=⨯=.考点:函数及其应用.18.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考解析:4 【解析】 【分析】设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.19.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立, 则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.20.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0 【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=.【点睛】本题主要考查了分段函数求值,属于中档题.三、解答题21.(1){}1|0x x <<;(2)12k =-. 【解析】 【分析】 【详解】试题分析:()1由题意得()()()221log 1log f x f x x x +-=+-,然后解不等式即可(2) 图象关于y 轴对称即为偶函数,即:()()22log 21log 21xx kx kx -+-=++成立,从而求得结果解析:(1)因为()()11f x f x +->,所以()22log 1log 1x x +->,即:21log 1x x +>,所以12x x+>,由题意,0x >,解得01x <<,所以解集为{}1|0x x <<.(2)()()21x gx f kx =++ ()2log 21x kx =++,由题意,()g x 是偶函数,所以x R ∀∈,有()()g x g x -=,即:()()22log 21log 21x xkx kx -+-=++成立,所以()()22log 21log 212xxkx -+-+=,即:221log 221x x kx -+=+,所以2log 22xkx -=,所以2x kx -=,()210k x +=,所以12k =-. 22.(1)1k =(2)30a -≤≤ 【解析】 【分析】(1)根据()00f =计算得到1k =,再验证得到答案.(2)化简得到()()24f x f ax -≥-对[]1,2x ∈-恒成立,确定函数单调递减,利用单调性得到240x ax +-≤对[]1,2x ∈-恒成立,计算得到答案. 【详解】(1)因为()f x 为奇函数且定义域为R ,则()00f =,即002021k -=+,所以1k =.当1k =时因为()f x 为奇函数,()()12212121x x x x f x f x -----===-++,满足条件()f x 为奇函数.(2)不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立即()()24f x f ax -≥-对[]1,2x ∈-恒成立,因为()f x 为奇函数,所以()()24f x f ax -≥-对[]1,2x ∈-恒成立(*)在R 上任取1x ,2x ,且12x x <,则()()()21121212122221212()()12121212x x x x x x x x f x f x ----=-=++++, 因为21x x >,所以1120x +>,2120x +>,21220x x ->, 所以()()120f x f x ->,即()()12f x f x >, 所以函数()f x 在区间(1,)-+∞上单调递减; 所以(*)可化为24x ax -≤-对[]1,2x ∈-恒成立,即240x ax +-≤对[]1,2x ∈-恒成立. 令()24g x x ax =+-,因为()g x 的图象是开口向上的抛物线,所以由()0g x ≤有对[]1,2x ∈-恒成立可得:()()10,20,g g ⎧-≤⎪⎨≤⎪⎩即140,4240,a a --≤⎧⎨+-≤⎩解得:30a -≤≤,所以实数a 的取值范围是30a -≤≤. 【点睛】本题考查了函数的奇偶性,单调性,恒成立问题,意在考查学生的综合应用能力. 23.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出. 【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=.(2)原式323log 313=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 24.(1)答案见解析;(2)253,8⎛⎫ ⎪⎝⎭. 【解析】 试题分析:(1)函数为奇函数,则()()0f x f x -+=,据此可得2a =-,且函数()f x 在R 上单调递增;(2)原问题等价于22252x x a =-⋅+⋅在区间(0,1)上有两个不同的根,换元令2x t =,结合二次函数的性质可得a 的取值范围是253,8⎛⎫ ⎪⎝⎭.试题解析: (1)因为是奇函数,所以()()()()1122222220x x x x x x f x f x a a a -++---+=+⋅++⋅=++=,所以;在上是单调递增函数;(2) 在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根, 所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y =a 与函数的图象有2个交点时,所以的取值范围为.点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.25.(1)2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,;(2)当4x =时产品的性能达到最佳【解析】 【分析】(1)二次函数可设解析式为2y ax bx c =++,代入已知数据可求得函数解析式;(2)分段函数分段求出最大值后比较可得. 【详解】(1)当0≤x <7时,y 是x 的二次函数,可设y =ax 2+bx +c (a ≠0), 由x =0,y =﹣4可得c =﹣4,由x =2,y =8,得4a +2b =12①, 由x =6,y =8,可得36a +6b =12②,联立①②解得a =﹣1,b =8, 即有y =﹣x 2+8x ﹣4;当x ≥7时,1()3x my -=,由x =10,19y =,可得m =8,即有81()3x y -=;综上可得2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,.(2)当0≤x <7时,y =﹣x 2+8x ﹣4=﹣(x ﹣4)2+12, 即有x =4时,取得最大值12; 当x ≥7时,81()3x y -=递减,可得y ≤3,当x =7时,取得最大值3.综上可得当x =4时产品的性能达到最佳. 【点睛】本题考查函数模型的应用,考查分段函数模型的实际应用.解题时要注意根据分段函数定义分段求解.26.(1)()1,+∞;(2)12t t > 【解析】 【分析】(1)根据二次函数的单调性得到答案.(2)计算得到2a =,再计算()2110x t ->=,22log 0t x =<,得到答案. 【详解】(1)函数()224x x a f x =-+的对称轴为1x =,函数()f x 在区间[]1,m -上不具有单调性,故1m >,即()1,m ∈+∞. (2)()()11f g =,即24log 10a a -+==,故2a =. 当()0,1x ∈时,()()212212110x x x t f x -+=-=>=;()22log 0t g x x ==<. 故12t t > 【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综合应用.。
山东高一上学期期末数学试题(解析版)
一、单选题1.sin390°的值是( )A .B 12C .D .12-【答案】A【分析】根据终边相同的角,将化成,再利用的三角函数值与的公式,即可390-︒30-︒30︒sin()α-求出答案.【详解】解:根据题意,得 ()()1sin 390sin 30360sin 302︒=︒+︒=︒=故选:A .2.“函数为偶函数”是“” 的( )()sin(2)f x x θ=+2πθ=A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】充分性判断:利用偶函数的性质,结合和差角正弦公式求;必要性判断:应用诱导公式θ化简并判断奇偶性,最后由充分、必要性定义确定题设条件间的关系. ()f x 【详解】当为偶函数时, ()sin(2)f x x θ=+sin(2)sin(2)x x θθ-=+则恒成立,即,;2sin 2cos 0x θ=2k πθπ=+Z k ∈当时,为偶函数; ,2πθ=()sin(2)cos 22f x x x π=+=综上,“函数为偶函数”是“”的必要不充分条件.()sin(2)f x x θ=+2πθ=故选:B3.已知函数是幂函数,且为偶函数,则实数( )()2222()1mm f x m m x--=--m =A .或 B .C .D .21-1-42【答案】D【分析】利用幂函数的定义及偶函数的概念即得.【详解】由幂函数的定义知,解得或.211m m --=1m =-2m =又因为为偶函数,所以指数为偶数,故只有满足. ()f x 222m m --2m =故选:D . 4.已知,,,则,,的大小关系为 3sin7a π=4cos 7b π=3tan(7c π=-a b cA .B .C .D .a b c <<b a c <<c b a <<c<a<b 【答案】C【分析】可以看出,直接排除A 、B ,再比较,从而选出正确答案. 0,0,0a b c ><<1,1b c >-<-【详解】可以看出是一个锐角,故;又,故;又37π3sin07a π=>4cos cos 72ππ<10b -<<,而, 34tan tan 77ππ⎛⎫-= ⎪⎝⎭43274πππ<<故;从而得到, 1c <-c b a <<故选C.【点睛】比较大小时常用的方法有①单调性法,②图像法,③中间值法;中间值一般选择0、1、-1等常见数值.5.函数的部分图象大致为( )()sin ln ||f x x x =⋅A . B .C .D .【答案】D【解析】先根据函数的奇偶性,可排除A ,C ,根据当时,即可排除B .得出答01x <<()0f x <案.【详解】因为,所以, ()sin ln ||(0)f x x x x =⋅≠()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-所以为奇函数,故排除A ,C .()f x 当时,,,则,故排除B , 01x <<sin 0x >ln ||0x <()0f x <故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.6.函数的最大值和最小值分别是( )()22sin 2cos f x x x =-+A .B .C .D .2,2-52,2-12,2-5,22-【答案】B 【分析】,函数可化简为,令,本题转化为函数,的最值()2152cos 22f x x ⎛⎫=+- ⎪⎝⎭cos t x =215222y t ⎛⎫=+- ⎪⎝⎭[]1,1t ∈-求解即可.【详解】根据题意,()222152sin 2cos 2cos 2cos 22cos 22f x x x x x x ⎛⎫=-+=+-=+- ⎪⎝⎭令,则,cos t x =[]1,1t ∈-因为函数的对称轴为,12t =-所以根据二次函数的图像和性质得:当时,;当时,.12t =-min 52y =-1t =max 2y =故选:B.7.要得到函数的图象,只需将函数的图象( )214y x π⎛⎫=++ ⎪⎝⎭22y x π⎛⎫=- ⎪⎝⎭A .先向右平移个单位长度,再向下平移1个单位长度 8πB .先向左平移个单位长度,再向上平移1个单位长度 8πC .先向右平移个单位长度,再向下平移1个单位长度 4πD .先向左平移个单位长度,再向上平移1个单位长度4π【答案】B【解析】根据,可判断.212148y xx ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭222y x x π⎛⎫=-= ⎪⎝⎭【详解】,212148y x xππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭ 所以先向左平移个单位长度,再向上平移1个单位长度可得到222y x x π⎛⎫=-= ⎪⎝⎭8π的图象.218y x π⎛⎫=++ ⎪⎝⎭故选:B.8.已知函数在上单调递减,且关于的方程24,0,()(0,1)log (1)1,0a x a x f x a a x x ⎧+<=>≠⎨++≥⎩R x ()2f x x =-恰好有两个不相等的实数解,则的取值范围是( )aA .B .C .D .10,2⎛⎤ ⎥⎝⎦11,42⎡⎤⎢⎥⎣⎦119,4216⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭119,4216⎡⎫⎧⎫⋃⎨⎬⎪⎢⎣⎭⎩⎭【答案】C【分析】由在, 上单调递减,得,由在上单调递减,得log (1)1a y x =++[0)∞+01a <<()f x R ,作出函数且在上的大致图象,利用数形结合思想114a ≤<24,0()(0log (1)1,0a x a x f x a x x ⎧+<=>⎨++⎩…1)a ≠R 能求出的取值范围.a 【详解】解:由在上单调递减,得,log (1)1a y x =++[0,)+∞01a <<又由且在上单调递减, 24,0()(0log (1)1,0a x a x f x a x x ⎧+<=>⎨++⎩…1)a ≠R 得,解得,所以, 204(0)1a f +≥=1a 4≥114a ≤<作出函数且在上的大致图象, 24,0()(0log (1)1,0ax a x fx a x x ⎧+<=>⎨++⎩…1)a ≠R由图象可知,在上,有且仅有一个解, [0,)+∞|()|2f x x =-故在上,同样有且仅有一个解, (,0)-∞|()|2f x x =-当,即时,联立,即, 42a >12a >2|4|2x a x +=-242x a x +=-则,解得:, 214(42)0a ∆=--=916a =当时,即,由图象可知,符合条件. 142a ≤≤1142a ≤≤综上:.119,4216a ⎡⎤⎧⎫∈⋃⎨⎬⎢⎥⎣⎦⎩⎭故选:C .二、多选题9.已知函数:①,②,③,④,其中周期为,且在tan y x =sin y x =sin y x =cos y x =ππ02⎛⎫ ⎪⎝⎭,上单调递增的是( ) A .① B .②C .③D .④【答案】AC【分析】根据正切函数的性质可判断①正确;根据图象变换分别得到、、sin y x =sin y x =的图象,观察图象可判断②不正确、③正确、④不正确. cos y x =【详解】函数的周期为,且在上单调递增,故①正确;tan y x =π02π⎛⎫⎪⎝⎭,函数不是周期函数,故②不正确;sin y x =函数的周期为,且在上单调递增,故③正确;sin y x =π02π⎛⎫⎪⎝⎭,函数的周期为,故④不正确.cos y x =2π故选:AC.10.已知,且为锐角,则下列选项中正确的是( ) 1sin cos 5αα-=αA . B . 12sin cos 25αα=7sin cos 5αα+=C .D . 0,4πα⎛⎫∈ ⎪⎝⎭4tan 3α=【答案】ABD【分析】根据,并结合为锐角求解即可. ()2sin cos 12sin cos αααα±=±α【详解】解:因为,所以,即 1sin cos 5αα-=242sin cos 25αα=12sin cos 25αα=所以, ()249sin cos 12sin cos 25αααα+=+=因为为锐角,所以, α7sin cos 5αα+=所以,43sin ,cos 55αα==所以, 4tan 13α=>所以,42⎛⎫∈ ⎪⎝⎭ππα故选:ABD11.设函数则( ) ()ln ,0,cos ,30,2x x f x xx π>⎧⎪=⎨-≤≤⎪⎩A .的定义域为B .的值域为 ()f x [)3,∞-+()f x [)1,-+∞C .的单调递增区间为D .的解集为 ()f x [)2,-+∞()12f x =23⎧-⎨⎩【答案】AD【分析】A.根据函数的解析式判断;B.分,,利用对数函数和余弦函数的性质求解0x >30x -≤≤判断;C.利用函数的图象判断;D. 分,,令求解判断. 0x >30x -≤≤1()2f x =【详解】因为函数, ln ,0()πcos ,302x x f x xx >⎧⎪=⎨-≤≤⎪⎩所以的定义域为,故A 正确; ()f x [30](0)[3,)∞-⋃+=-+∞,,当时, ,当 时,, 0x >()(),f x ∈-∞+∞30x -≤≤[]()1,1f x ∈-所以的值域为,故B 错误; ()f x [11]()()-⋃-∞+∞=-∞+∞,,,如图所示:当时, 的单调递增区间为, 0x >()f x (0)+∞,当 时,的单调递增区间为, 30x -≤≤()f x [20]-,但在上不单调,故C 错误; [2)∞-+,当时,,解得 0x >1()ln2f x x ==x 当时,,解得,D 正确.30x -≤≤π1()cos 22x f x ==23x =-故选:AD .12.存在实数a 使得函数有唯一零点,则实数m 可以取值为( )2()223x x f x ma a -=+-+-A .B .0C .D .14-1412【答案】ABC【分析】把问题转化为与有唯一交点,利用换元法求的最小22x x y -=+23y ma a =-+22x x y -=+值,再转化为关于的二次函数有根,利用判别式大于等于0求得实数的取值范围. a m 【详解】函数有唯一零点,即方程有唯一根, 2()223x x f x ma a -=+-+-22230x x ma a -+-+-=也就是与有唯一交点,22x x y -=+23y ma a =-+令,则, 2x t =112222x x xx y t t-=+=+=+由“对勾函数”的单调性可知,当,即时,有最小值2, 1t =0x =y 可得,即, 232ma a -+=210ma a -+=当时,符合题意, 0m =1a =当时,0m ≠则,解得且. 2(1)40m ∆=-- (1)4m …0m ≠综上,实数的取值范围是,. m (-∞1]4故选:ABC三、填空题13.化简:_____. 22(1tan )cos αα+=【答案】1【详解】,故答案为. ()222222cos sin 1tan cos cos 1cos αααααα++=⋅=114.已知cos =,0<α<,则sin =________.4a π⎛⎫+ ⎪⎝⎭132π4a π⎛⎫+ ⎪⎝⎭【详解】由已知<α+<,∴sin >0,4π4π34π4a π⎛⎫+ ⎪⎝⎭∴sin 4a π⎛⎫+ ⎪⎝⎭15.若的最小值为_____. 42log (34)log a b +=a b +【答案】7+【详解】试题分析:由,即,所以 ,42log (34)log a b +=34ab a b =+304ab a =>-4a >,当且仅当时取等号,所以312477744a ab a a a a +=+=-++≥+=+--4a =+a b +的最小值为.7+【解析】1.对数的性质;2.基本不等式.【名师点睛】本题考查对数的性质、基本不等式,属中档题;利用基本不等式求最值时,首先是要注意基本不等式的使用条件,“一正、二定、三相等”;其次在运用基本不等式时,要特别注意适当“拆”、“拼”、“凑”.16.已知函数,把的图象向左平移个单位长度,纵坐标不变,可得到π()24f x x ⎛⎫- ⎪⎝⎭()f x π3的图象,若,则的最小值为____________.()g x ()()()122120g x g x x x ⋅=>>12x x +【答案】13π12【分析】根据函数图象的平移可得,进而根据的有界性可知π5π()2312g x f x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭()g x ,根据最值点即可由三角函数的性质求解.()()122g x g x ==【详解】有题意得,由于对任意的,π5π()2312g x f x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭x ∈R ()g x ≤故根据得()()()122120g x g x x x ⋅=>>()()12g x g x ==()()12g x g x ==若且, ()()12g x g x ==12ππ2ππ,,N,5π5π221212x k x m k m +2,2=+2+=∈+m k >因此, 12122ππN ,πN 5π5ππ121212x x n n x x n n 2+2,,+**+++=∈+=∈故当时,取最小值,且最小值为, 1n =12x x +13π12若且, ()()12g x g x ==123π3π2π5π5π12π,,N,2122x k x m k m ++=∈+2,2=+2m k >因此, 121223ππN 5π5π13π1212,πN 12x x n n x x n n **++=∈+=∈+2+2,,+故当时,取最小值,且最小值为, 1n =12x x +25π12故取最小值,且最小值为, 12x x +13π12故答案为:13π12四、解答题17.已知集合,集合,集合{}2|560A x x x =--<{}2|6510B x x x =-+≥. ()(){}|90C x x m x m =---<(1)求;A B ⋂(2)若,求实数的取值范围.A C C = m 【答案】(1)或;(2).1|13A B x x ⎧⋂=-<≤⎨⎩162x ⎫≤<⎬⎭31m -≤≤-【分析】(1)根据一元二次不等式的解法求出集合、,即可求出; A B A B ⋂(2)由,可知,得到不等式组,解得.A C C = A C ⊆【详解】解:(1),,{}2|560A x x x =--< {}2|6510B x x x =-+≥()(){}|90C x x m x m =---<,或,{|16}A x x ∴=-<<1|3B x x ⎧=≤⎨⎩12x ⎫≥⎬⎭{|9}C x m x m =<<+或;1|13A B x x ⎧∴⋂=-<≤⎨⎩162x ⎫≤<⎬⎭(2)由,得,解得.A C C = A C ⊆961m m +≥⎧∴⎨≤-⎩31m -≤≤-【点睛】本题考查集合的运算,集合与集合之间的关系,属于基础题.18.在平面直角坐标系中,角的顶点在坐标原点,始边与轴的非负半轴重合,角的终xOy αO x α边经过点,.(,3)A a 4cos 5α=-(1)求和的值;a tan α(2)求的值.sin()2sin()233sin()sin()2πααπαπα-++++-【答案】(1),;4a =-3tan 4α=-(2). 1115-【分析】(1)根据三角函数的定义求出a ,进而求出;tan α(2)先通过诱导公式对原式化简,进而进行弦化切,然后结合(1)求出答案. 【详解】(1)由题意得:,解得,所以. 4cos 5α==-4a =-3tan 4α=-(2)原式. 32sin 2cos tan 211433cos sin 3tan 1534αααααα+-+-+====--+-+--19.已知函数.()2sin(26f x x π=+(1)求的最小正周期和对称轴; ()f x (2)求在上的最大值和最小值. ()f x ππ[,]64-【答案】(1)最小正周期为,对称轴 πππZ 62k x k =+∈,(2)最小值为,最大值为2 1-【分析】(1)根据周期公式和对称轴公式求解;(2)整体代换,讨论的取值范围即可求解最值. π26x +【详解】(1)的最小正周期为,()f x 2ππT ω==令,可得即为对称轴. ππ2π,Z 62x k k +=+∈ππZ 62k x k =+∈(2), ππππ2π1π,,2,sin(2)16466326x x x ⎡⎤∈-∴-≤+≤∴-≤+≤⎢⎥⎣⎦,π12sin(226x ∴-≤+≤所以当,即时的最小值为, ππ266x +=-π6x =-()f x 1-当,即时的最大值为2. ππ262x +=π6x =()f x 20.某工厂产生的废气经过过滤后排放,过滤过程中废气的剩余污染物数量与过滤开始()/P mg L 后的时间(小时)的关系为.其中为过滤开始时废气的污染物数量,为常数.如果过滤t 0kt P P e -=0P k 开始后经过5个小时消除了的污染物,试求:10%(1)过滤开始后经过10个小时还剩百分之几的污染物?(2)求污染物减少所需要的时间.(计算结果参考数据:,,)50%ln 20.7=ln 3 1.1=ln 5 1.6=【答案】(1);(2)35个小时81%【分析】(1)由当时,,可得,从而可求出参数5t =()0110%P P =-()500110%k P P e --=,进而可知,当时,; 1ln 0.95k =-10t =081%P P =(2)当时,可求出. 050%P P =ln 0.5ln 25351ln 2ln52ln 3ln 0.95t ==⋅=+-【详解】解:(1)由可知,当时,;当时,.0kt P P e -=0=t 0P P =5t =()0110%P P =-于是有,解得,那么, ()500110%k P P e --=1ln 0.95k =-1ln 0.950P P e ⎛⎫ ⎪⎝⎭=所以,当时,,10t =1ln 0.910ln 0.81500081%P P e P e P ⎛⎫⨯⎪⎝⎭===∴过滤开始后经过10个小时还剩的污染物.81%(2)当时,有. 050%P P =1ln 0.950050%t P P e ⎛⎫⎪⎝⎭=解得 15lnln 0.5ln 2ln 22553519ln 9ln10ln 2ln 52ln 3ln 0.9ln 510t -===⋅=⋅=-+-∴污染物减少所需要的时间为35个小时.50%【点睛】本题考查了函数模型的应用,考查了指数方程的求解,考查了对数的运算性质.由已知条件求出参数的值是本题的关键.本题的易错点是误把当成了已消除的污染的数量.k ()/P mg L 21.已知函数,x ∈[,9]. ()2233()log log 3f x x a x =--13(1)当a =0时,求函数f (x )的值域;(2)若函数f (x )的最小值为-6,求实数a 的值.【答案】(1)[]3,1-(2)2-【分析】(1)由题意可得,结合定义域,逐步可得函数的值域;()23()log 3f x x =-(2)利用换元法转化为二次函数的值域问题,分类讨论即可得到结果.【详解】(1)当a =0时,,x ∈[,9]. ()23()log 3f x x =-13∴,, []3log 1,2x ∈-()[]23log 0,4x ∈∴,()[]23()log 33,1f x x =-∈-∴函数f (x )的值域为;[]3,1-(2)令,[]3log 1,2t x =∈-即函数的最小值为, []2()23,1,2g t t at t =--∈-6-函数图象的对称轴为,2()23g t t at =--t a =当时,,1a ≤-()min ()1226g t g a =-=-=-解得;2a =-当时,,1a 2-<<()2min ()36g t g a a ==--=-解得a =当时,,2a ≥()min ()2146g t g a ==-=-解得(舍); 74a =综上,实数a 的值为2-22.已知定义域为的函数是奇函数,且指数函数的图象过点. R ()22x x b n f x b +=--x y b =(2,4)(Ⅰ)求的表达式;()f x (Ⅱ)若方程,恰有个互异的实数根,求实数的取值集()23()0f x x f a x ++-+=(4,)x ∈-+∞2a 合;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围. [1,1]t ∈-()22(1)0f t a f at -+-≥a 【答案】(Ⅰ);(Ⅱ);(Ⅲ). 121()22x x f x +-+=+{}40a a -<<{}0a a ≥【分析】(Ⅰ)先利用已知条件得到的值,再利用奇函数得到,进而得到的值,经检验b ()00f =n 即可得出结果;(Ⅱ)先利用指数函数的单调性判断的单调性,再利用奇偶性和单调性得到()f x,把在恰有个互异的实数根转化为在23x x a x +=-23x x a x +=-(4,)x ∈-+∞2()24f x x x a =+-恰与轴有两个交点,求解即可;(Ⅲ)先利用函数为上的减函数且为奇函(4,)x ∈-+∞x ()f x R 数,得到,把问题转化为对任意的恒成立,令221t a at -≤-2210t at a +--≤[1,1]t ∈-,利用二次函数的图像特点求解即可.()221g t t at a =+--【详解】(Ⅰ)由指数函数的图象过点,x y b =(2,4)得,2b =所以, 2()222x x n f x +=-⋅-又为上的奇函数,()f x R 所以,()00f =得,1n =-经检验,当时,符合,1n =-()()f x f x -=-所以; 121()22x x f x +-+=+(Ⅱ), 12111()22221x x x f x +-+==-+++因为在定义域内单调递增,21x y =+则在定义域内单调递减, 121x y =+所以在定义域内单调递增减,()f x 由于为上的奇函数,()f x R 所以由,()23()0f x x f a x ++-+=可得,()()23()f x x f a x f a x +=--+=-则在恰有个互异的实数根,23x x a x +=-(4,)x ∈-+∞2即在恰与轴有两个交点,()24f x x x a =+-(4,)x ∈-+∞x 则, ()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩所以实数的取值集合为.a {}40a a -<<(Ⅲ)由(Ⅱ)知函数为上的减函数且为奇函数,()f x R 由, ()22(1)0f t a f at -+-≥得,()()221f t a f at -≥-所以,221t a at -≤-即对任意的恒成立,2210t at a +--≤[1,1]t ∈-令,()221g t t at a =+--由题意, ()()1010g g ⎧-≤⎪⎨≤⎪⎩得,0a ≥所以实数的取值范围为:. a {}0a a ≥【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为在()24f x x x a =+-恰与轴有两个交点的问题;(Ⅲ)把问题转化为对任意的(4,)x ∈-+∞x 2210t at a +--≤[1,1]t ∈-恒成立是解决本题的关键.。
2020-2021济南市高中必修一数学上期末试卷及答案
2020-2021济南市高中必修一数学上期末试卷及答案一、选择题1.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .b a c >>D .c a b >>2.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( )A .12BC D .24.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>5.函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞6.若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 7.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<9.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}10.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1111.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值12.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( )A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;14.函数()()4log 5f x x =-+________.15.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.16.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 17.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 18.若函数()121xf x a =++是奇函数,则实数a 的值是_________. 19.已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.20.定义在R 上的奇函数()f x ,满足0x >时,()()1f x x x =-,则当0x ≤时,()f x =______. 三、解答题21.已知函数1()21xf x a =-+,()x R ∈. (1)用定义证明:不论a 为何实数()f x 在(,)-∞+∞上为增函数;(2)若()f x 为奇函数,求a 的值;(3)在(2)的条件下,求()f x 在区间[1,5]上的最小值.22.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =. (1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17amf x x x >--恒成立,求实数m 的取值范围.23.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围.24.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好. 附:80()f x x x=+在单调递减,在)+∞单调递增. 25.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.26.已知全集U=R,集合{}240,A x x x =-≤{}22(22)20B x x m x m m =-+++≤. (Ⅰ)若3m =,求U C B 和A B U ; (Ⅱ)若B A ⊆,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.2.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.D解析:D 【解析】 【分析】由对数的运算化简可得2log 3a =3log 6b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.5.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞U . 内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.6.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.3430662f ππ⎛⎫=-≈-=-<⎪⎝⎭,20.7850.7070.0780442f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以c ∈, 所以a c b <<,故选B.9.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.10.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.11.D解析:D【解析】【分析】由题意画出函数图像,利用图像性质求解【详解】画出()f x的图像,如图(实线部分),由()1152y xy x=+⎧⎪⎨=-⎪⎩得()1,2A.故()f x有最大值2,无最小值故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.12.C解析:C【解析】【分析】【详解】210x ax++≥对于一切10,2x⎛⎫∈ ⎪⎝⎭成立,则等价为a⩾21xx--对于一切x∈(0,12)成立,即a⩾−x−1x对于一切x∈(0,12)成立,设y=−x−1x,则函数在区间(0,12〕上是增函数∴−x−1x<−12−2=52-,∴a⩾5 2 -.故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】 【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可. 【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+, 当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+, 且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-, 且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++, 且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞故答案为:[)5,+∞ 【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.14.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.15.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩, 即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.16.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考 解析:4【解析】【分析】设()2sin 1x g x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++x y x x 的最大值与最小值的和即可. 【详解】 ∵函数2sin 21=+++x y x x , ∴设()2sin 1x g x x x =++,则()()2sin 1x g x x g x x --=-=-+, ∴()g x 是奇函数,设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -,又()max max 22g x y M =+=+,()min min 22g x y M =+=-,∴max min 224y y M M +=++-=,故答案为:4.【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1x g x x x =++的奇偶性以及最值是解题的关键,属于中档题. 17.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫⎪⎝⎭,再代入求值即可.【详解】因为()()1f x f x +=-, 所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数,因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为.【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用. 18.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键 解析:12- 【解析】【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212x f x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-. 【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】【分析】将已知等式8(9)a aa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解.【详解】 8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-Q , ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】 本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题. 20.【解析】【分析】由奇函数的性质得设则由函数的奇偶性和解析式可得综合2种情况即可得答案【详解】解:根据题意为定义在R 上的奇函数则设则则又由函数为奇函数则综合可得:当时;故答案为【点睛】本题考查函数的奇 解析:()1x x +【解析】【分析】由奇函数的性质得()00f =,设0x <,则0x ->,由函数的奇偶性和解析式可得()()()1f x f x x x =--=+,综合2种情况即可得答案.【详解】解:根据题意,()f x 为定义在R 上的奇函数,则()00f =,设0x <,则0x ->,则()()()1f x x x -=-+,又由函数为奇函数,则()()()1f x f x x x =--=+,综合可得:当0x ≤时,()()1f x x x =+;故答案为()1x x +【点睛】本题考查函数的奇偶性以及应用,注意()00f =,属于基础题.三、解答题21.(1)见解析;(2)12a =;(3) 16. 【解析】【分析】【详解】(1)()f x Q 的定义域为R, 任取12x x <, 则121211()()2121x x f x f x a a -=--+++=121222(12)(12)x x x x -++. 12x x <Q ,∴1212220,(12)(12)0x x x x -++.∴12())0(f x f x -<,即12()()f x f x <.所以不论a 为何实数()f x 总为增函数.(2)()f x Q 在x ∈R 上为奇函数,∴(0)0f =,即01021a -=+. 解得12a =. (3)由(2)知,11()221x f x =-+, 由(1) 知,()f x 为增函数,∴()f x 在区间[1,5)上的最小值为(1)f .∵111(1)236f =-=, ∴()f x 在区间[1,5)上的最小值为16.22.(1)2a =,单调递减,理由见解析;(2) 07m <<【解析】【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值.【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =.函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数.(2)由(1)可知()()()221log log 117x m f x x x x +=>---,[]2,6x ∈, 所以()()10117x m x x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立. 当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =. 所以07m <<.【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值.23.(Ⅰ)(){|22R M C N x x =-≤<I 或35}x <≤(Ⅱ)2a ≤【解析】【分析】(Ⅰ)1a =时,化简集合B ,根据集合交集补集运算即可(Ⅱ)由M N M ⋃=可知N M ⊆,分类讨论N =∅,N ≠∅即可求解.【详解】(Ⅰ)当1a =时,{}|23N x x =≤≤ ,{|2R C N x x =<或}3x > .故 (){|22R M C N x x =-≤<I 或35}x <≤.(Ⅱ),M N M ⋃=Q当N =∅时,121a a +>+,即0a <;当N ≠∅时,即0a ≥.N M ⊆Q ,12215a a +≥-⎧∴⎨+≤⎩解得02a ≤≤.综上:2a ≤.【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题.24.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天. 【解析】【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ; (2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案.【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克), 所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+, 当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++, 所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 设平均每天支付的费用为()f x 元, 当06x ≤≤时,2109090()210x f x x x +==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭,可知()f x 在单调递减,在)+∞单调递增,又89<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少.本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.25.(1)()3,1.-(2)1-±3)2【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值.【详解】(1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.- (2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x,得223=1x x --+,即222=0x x +-,解得1x =-±∵1(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦, ∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦, ∴()min log 44a f x ==-,∴144a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.26.(Ⅰ){05},{35}U A B x x C B x x x ⋃=≤≤=或(Ⅱ)02m ≤≤【解析】【分析】(Ⅰ)由3m =时,求得集合{04},{35}A x x B x x =≤≤=≤≤,再根据集合的并集、补集的运算,即可求解;(Ⅱ)由题意,求得{04},{2}A x x B x m x m =≤≤=≤≤+,根据B A ⊆,列出不等式组,即可求解。
山东省济宁市曲阜师范大学附属中学2020-2021学年高一数学文上学期期末试卷含解析
山东省济宁市曲阜师范大学附属中学2020-2021学年高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若曲线在点(0,处的切线方程是,则A. B. C. D.参考答案:D2. sin(﹣)的值是()A.B.﹣C.D.﹣参考答案:A【考点】运用诱导公式化简求值.【分析】原式中的角度变形【解答】解:sin(﹣)=﹣sin=﹣sin(3π+)=﹣sin(π+)=sin=.故选:A.3. 三个平面把空间分成7部分时,它们的交线有A.1条B.2条C.3条D.1或2条参考答案:C4. (5分)曲线y=+1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是()A.(,] B.(,+∞)C.(,)D.(﹣∞,)∪(,+∞)参考答案:A考点:直线与圆相交的性质.专题:直线与圆.分析:根据直线过定点,以及直线和圆的位置关系即可得到结论.利用数形结合作出图象进行研究即可.解答:由y=k(x﹣2)+4知直线l过定点(2,4),将y=1+,两边平方得x2+(y﹣1)2=4,则曲线是以(0,1)为圆心,2为半径,且位于直线y=1上方的半圆.当直线l过点(﹣2,1)时,直线l与曲线有两个不同的交点,此时1=﹣2k+4﹣2k,解得k=,当直线l与曲线相切时,直线和圆有一个交点,圆心(0,1)到直线kx﹣y+4﹣2k=0的距离d=,解得k=,要使直线l:y=kx+4﹣2k与曲线y=1+有两个交点时,则直线l夹在两条直线之间,因此<k≤,故选:A.点评:本题主要考查直线和圆的位置关系的应用,利用数形结合是解决本题的关键,考查学生的计算能力.5. 设数列的前n项和,则的值为()A.15 B.16 C.49 D. 64参考答案:A略6. 下列集合的表示法正确的是()A.实数集可表示为R;B.第二、四象限内的点集可表示为;C.集合;D.不等式的解集为参考答案:A7. 已知角的顶点是坐标原点,始边是x轴的非负半轴,其终边上有一点P的坐标是,则,的值分别是(A),(B),(C),(D),参考答案:D8. 设向量与的夹角为,定义与的“向量积”:是一个向量,它的模,若,,则A. B. C. D.参考答案:B略9. 在下列各对应关系中,是从A到B的映射的有()A.⑴⑶⑷ B.⑵⑶⑸C.⑴⑵⑷⑸D.⑵⑷⑸参考答案:D略10. 已知三角形的三点顶点的及平面内一点满足,则与的面积比为()A. B.C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 如果且,那么=参考答案:12. 若a表示“向东走8km”,b表示“向北走8km”,则a+b表示.参考答案:向东北方向走8km【考点】向量的加法及其几何意义.【分析】利用平行四边形法则求向量的和.【解答】解:|a+b|==8(km).故答案为:向东北方向走8km.【点评】本题考查向量的加减运算法则,是一道基础题.13. 已知函数f (x)的定义域为[0,2],则f (2x﹣1)的定义域.参考答案:[,]【考点】函数的定义域及其求法.【分析】由题意得不等式0≤2x﹣1≤2,解出即可.【解答】解:∵0≤2x﹣1≤2,∴≤x≤,故答案为:[,].14. 给出下列命题:①函数的最小值为5;②若直线y=kx+1与曲线y=|x|有两个交点,则k的取值范围是﹣1≤k≤1;③若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为2,则m的倾斜角可以是15°或75°④设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,若对任意n∈N*,均有S n>0,则数列{S n}是递增数列⑤设△ABC的内角A.B.C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA则sinA:sinB:sinC为6:5:4其中所有正确命题的序号是.参考答案:①③④⑤略15. 如图,己知,为锐角,平分,点为线段的中点,,若点在阴影部分(含边界)内,则在下列给出的关于的式子中,满足题设条件的为(写出所有正确式子的序号).①;②;③;④;⑤.参考答案:16. lg+2lg2﹣()﹣1= .参考答案:﹣1【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用对数的运算法则以及负指数幂的运算化简各项,利用lg2+lg5=1化简求值.【解答】解:原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;故答案为:﹣1.【点评】本题考查了对数的运算以及负指数幂的运算;用到了lg2+lg5=1.17. 若函数f(x)满足关系式f(x)+2f()=3x,则f(2)的值为.参考答案:﹣1【考点】函数的值;抽象函数及其应用.【专题】函数的性质及应用.【分析】由函数f(x)满足关系式f(x)+2f()=3x,分别令x=2和x=,利用加减消元法,可得答案.【解答】解:∵f(x)+2f()=3x,∴f(2)+2f()=6,…①;f()+2f(2)=,…②;②×2﹣①得:3f(2)=﹣3,故f(2)=﹣1,故答案为:﹣1【点评】本题考查的知识点是抽象函数及其应用,函数求值,难度中档.三、解答题:本大题共5小题,共72分。
2020-2021山东师范大学附属中学高一数学上期中试题附答案
2020-2021山东师范大学附属中学高一数学上期中试题附答案一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③4.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >> B .a b c >> C .c a b >> D .c b a >>5.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z6.若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( )A .1log log bab aa b a b >>>B .1log log a bb ab a b a >>>C .1log log b ab aa ab b >>> D .1log log a bb aa b a b >>> 7.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-8.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)210.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .611.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<12.函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( ) A .[)2,+∞B .[]2,4C .[]0,4D .(]2,4二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.15.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是_____.16.函数()f x 的定义域是__________.17.已知函数f(x)=log a x +x -b(a >0,且a≠1).当2<a <3<b <4时,函数f(x)的零点为x 0∈(n ,n +1),n ∈N *,则n= .18.已知函数1)4f x +=-,则()f x 的解析式为_________.19.已知312ab += ,则3a b a=__________. 20.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元). 23.设2{|670},{|24},{|}A x x x B x x C x x a =--≤=-≤=≥ (1)求A B I(2)若A C C =U ,求实数a 的取值范围.24.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x N *∈)件.当20x ≤时,年销售总收人为(233x x -)万元;当20x >时,年销售总收人为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入一年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少? 25.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}. (1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围.26.已知函数()()2log 1f x x -A ,函数()0(11)2xg x x ⎫-⎛=⎪⎭≤ ≤⎝的值域为集合B .(1)求A B I ;(2)若集合{}21C x a x a =≤≤-,且C B B =U ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .5.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.6.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D.7.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.8.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.9.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.10.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.11.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.12.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.二、填空题13.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<14.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞ 【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.15.【解析】试题分析:由题意得函数的定义域为因为所以函数为偶函数当时为单调递增函数所以根据偶函数的性质可知:使得成立则解得考点:函数的图象与性质【方法点晴】本题主要考查了函数的图象与性质解答中涉及到函数解析:1(1)3, 【解析】试题分析:由题意得,函数21()ln(1)1f x x x =+-+的定义域为R ,因为()()f x f x -=,所以函数()f x 为偶函数,当0x >时,21()ln(1)1f x x x =+-+为单调递增函数,所以根据偶函数的性质可知:使得()(21)f x f x >-成立,则21x x >-,解得113x <<. 考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式()(21)f x f x >-成立,转化为21x x >-,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题.16.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.17.2【解析】【分析】把要求零点的函数变成两个基本初等函数根据所给的ab 的值可以判断两个函数的交点的所在的位置同所给的区间进行比较得到n 的值【详解】设函数y=logaxm=﹣x+b 根据2<a <3<b <4解析:2 【解析】 【分析】把要求零点的函数,变成两个基本初等函数,根据所给的a ,b 的值,可以判断两个函数的交点的所在的位置,同所给的区间进行比较,得到n 的值. 【详解】设函数y=log a x ,m=﹣x+b 根据2<a <3<b <4,对于函数y=log a x 在x=2时,一定得到一个值小于1,而b-2>1,x=3时,对数值在1和2 之间,b-3<1在同一坐标系中画出两个函数的图象, 判断两个函数的图形的交点在(2,3)之间,∴函数f (x )的零点x 0∈(n ,n+1)时,n=2.故答案为2.考点:二分法求方程的近似解;对数函数的图象与性质.18.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】 【分析】利用换元法求解析式即可 【详解】 令11t x =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥ 故答案为2()23(1)f x x x x =--≥ 【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点19.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力解析:3【解析】【分析】首先化简所给的指数式,然后结合题意求解其值即可.【详解】由题意可得:1321223333 3a ba b a a ba+-+====.【点睛】本题主要考查指数幂的运算法则,整体数学思想等知识,意在考查学生的转化能力和计算求解能力.20.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2【解析】因为()42(0)f x x ax bx c c=+++<是偶函数,则()()f x f x-=,解得0b=,又()()4240()f f f c c ac c c c==++=+,所以0a=,故4()f x x c=+,令4()0f x x c=+=,40x c=->,所以4x c=±-,故有2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.三、解答题21.(1) (2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域.试题解析:解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中 因为函数开口向上,且对称轴为 函数在上单调递增 的最大值为,最小值为 函数的值域为. 22.(1)A 为()()104f x x x =≥,B 为())504g x x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元【解析】【分析】(1)根据题意给出的函数模型,设()1f x k x =;()g x k x =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()5101044x y f x g x x =+-=-,用换元法,设10t x =-函数可求得利润的最大值.【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元 由题设知()1f x k x =;()g x k x =由图1知()114f =,114k = 由图2知()542g =,254k = 则()()104f x x x =≥,())504g x x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元. ()()5101044x y f x g x x =+-=-, 010x ∴≤≤10x t -=,则010t ≤≤则(221051565010444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.23.(1)[1,6]-(2)1a ≤-【解析】【分析】(1)化简集合,根据集合的交集运算即可求解(2)由A C C =U 可知A C ⊆,结合数轴求解即可.【详解】(1)由2670x x --≤解得17x -≤≤,故[1,7]A =-, 因为24x -≤,所以26x -≤≤,即[2,6]B =-,所以[1,7][2,6][1,6]A B =--=-I I .(2) 因为A C C =U ,所以A C ⊆,故1a ≤-.【点睛】本题主要考查了集合的交集,并集,子集,涉及一元二次不等式及绝对值不等式,属于中档题.24.(1)232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当年产量为16件时,所得年利润最大,最大年利润为156万元.【解析】【分析】(1)根据已知条件,分当20x ≤时和当20x >时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数的解析式,求出最大值点和最大值即可.【详解】(1)由题意得:当20x ≤时,()223310032100y x x x x x =---=-+-,当20x >时,260100160y x x =--=-,故232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当020x <≤时,()223210016156y x x x =-+-=--+,当16x =时,156max y =,而当20x >时,160140x -<,故当年产量为16件时,所得年利润最大,最大年利润为156万元.【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.25.(1)722x x ⎧⎫<≤⎨⎬⎩⎭;(2)3 4.2p p ><-或 【解析】【分析】(1)根据集合的交集得到结果即可;(2)当A∩B=B 时,可得B ⊆A ,分B 为空集和不为空集两种情况即可.【详解】(1)当时,B={x |0≤x ≤}, ∴A∩B={x |2<x ≤};(2)当A∩B=B 时,可得B ⊆A ;当时,令2p -1>p +3,解得p >4,满足题意; 当时,应满足解得; 即综上,实数p 的取值范围.【点睛】 与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.26.(1){}2;(2)3,2⎛⎤-∞ ⎥⎝⎦. 【解析】【分析】(1)求出集合A 、B ,然后利用交集的定义可求出A B I ;(2)由C B B =U ,可得出C B ⊆,然后分C =∅和C ≠∅两种情况讨论,结合C B ⊆得出关于实数a 的不等式组,解出即可.【详解】(1)要使函数()()2log 1f x x -()2log 10x -≥,得11x -≥,解得2x ≥,[)2,A ∴=+∞.对于函数()12x g x 骣琪=琪桫,该函数为减函数,10x -≤≤Q ,则1122x⎛⎫≤≤ ⎪⎝⎭,即()12g x ≤≤,[]1,2B ∴=,因此,{}2A B ⋂=;(2)C B B =Q U ,C B ∴⊆.当21a a -<时,即当1a <时,C =∅,满足条件;当21a a -≥时,即1a ≥时,要使C B ⊆,则1212a a ≥⎧⎨-≤⎩,解得312a ≤≤. 综上所述,实数a 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦. 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数的取值范围,涉及了对数函数的定义域以及指数函数的值域问题,考查分类讨论思想的应用,属于中等题.。
山东师范大学附属中学2020-2021学年高一10月月考数学试卷
则 共4个集合.
故选:B
【点睛】本题考查子集,子集个数,属于基础题型.
7.已知条件: 或 ,条件 ,则 是 的()
A充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】A
【解析】
【分析】
首先判断两个命题中集合的包含关系,再判断充分必要条件.
【详解】 ,解得: ,
【点睛】本题考查一元二次不等式的解法,由命题为真求解参数取值范围,属于基础题
19.(1)设 ,求 的最大值
(2)当 时,求 的最小值
【答案】(1) ;(2) .
【解析】
【分析】
(1)由基本不等式得 ,化简即可求解;
(2)将 变形为 ,再化简结合基本不等式即可求解
【详解】(1) , ,
,当且仅当 ,即 时,等号成立
C.对任意实数 和 ,有 ,当且仅当 时等号成立D.如果 , 那么
【答案】C
【解析】
【分析】
将赵爽弦图中的直角三角形的两直角边长度取作 ,分别求出正方形的面积,以及四个直角三角形的面积,即可得出结果.
【详解】将赵爽弦图中的直角三角形的两直角边长度取作 ,斜边为 ,
则外围的正方形的面积为 ,即 ;
四个阴影部分面积之和刚好为 ,
所以 ,解得
所以 的取值范围为 .
所以实数 的最大值为 .
【点睛】本题考查函数值的求解,作差法比较大小,由不等式恒成立求解参数取值范围,属于中档题
21.已知二次函数 ( , 为常数),其图象的对称轴为直线 ,且方程 有两个相等的实数根
(1)求函数 的解析式;
(2)已知函数 的最大值为 ,解关于 的不等式:
, 的最大值为 ;
山东省济南市山东大学附属中学2021年高一数学理上学期期末试题含解析
山东省济南市山东大学附属中学2021年高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列命题中,正确的是()A.经过两条相交直线,有且只有一个平面B.经过一条直线和一点,有且只有一个平面C.若平面α与平面β相交,则它们只有有限个公共点D.若两个平面有三个公共点,则这两个平面重合参考答案:A【考点】2K:命题的真假判断与应用;LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【分析】利用平面的几个公理和定理分别判断.【解答】解:根据共面的推理可知,经过两条相交直线,有且只有一个平面,所以A正确.若点在直线上,则经过一条直线和一点,有无数多个平面,所以B错误.两个平面相交,交线是直线,所以它们的公共点有无限多个,所以C错误.若三个公共点在一条直线上时,此时两个平面有可能是相交的,所以D错误.故选A.【点评】本题主要考查平面的基本性质,要求熟练掌握几个公理的应用.2. 在△ABC中,已知,则c等于( )A. B. C. D.参考答案:D【分析】由正弦定理,求得,得到,在直角三角形中,应用勾股定理,即可求解.【详解】由正弦定理,可得,即,因为,所以,由勾股定理可得,故选D.【点睛】本题主要考查了正弦定理的应用,以及直角三角形的勾股定理的应用,其中解答中利用正弦定理求得是解答本题关键,着重考查了运算与求解能力,属于基础题.3. 若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为 ()A.5B.4C.3D.2参考答案:C略4. 已知偶函数的定义域为,且在上是增函数,,,则的大小关系()(A) (B) (C) (D)参考答案:A5. 已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10) B.(5, 6) C.(10,12)D.参考答案:C【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.【专题】作图题;压轴题;数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.6. 在等差数列{a n}中,,则()A. 5B. 8C. 10D. 14参考答案:B试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.7. 知函数,又、是锐角三角形的两个内角, 则有( )A. B.C. D.参考答案:A略8. 某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.1040参考答案:D 【考点】B3:分层抽样方法.【分析】先求得分层抽样的抽取比例,根据样本中高二被抽取的人数为30,求总体.【解答】解:由已知条件抽样比为,从而,解得n=1040,故选:D.9. 以点(1,1)和(2,-2)为直径两端点的圆的方程是()A. B.C. D.参考答案:A【分析】可根据已知点直接求圆心和半径.【详解】点(1,1)和(2,-2)的中点是圆心,圆心坐标是,点(1,1)和(2,-2)间的距离是直径,,即,圆的方程是.故选A.【点睛】本题考查了圆的标准方程的求法,属于基础题型.10. 已知函数f(x)=a x+b的图象如图所示,则g(x)=log a(x+b)的图象是()A.B.C.D.参考答案:D【考点】对数函数的图象与性质;指数函数的图象与性质.【分析】结合函数f(x)=a x+b的图象知0<a<1,b>1,故y=log a x的图象单调递减,由此能得到g (x)=log a(x+b)的图象.【解答】解:∵函数f(x)=a x+b的图象如图所示,∴0<a<1,b>1,故y=log a x的图象单调递减,∵g(x)=log a(x+b)的图象是把y=log a x的图象沿x轴向左平移b(b>1)个单位,∴符合条件的选项是D.故选D.二、填空题:本大题共7小题,每小题4分,共28分11. (3分)在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=﹣,sinB=,则cos2(B+C)=.参考答案:考点:二倍角的余弦.专题:三角函数的求值.分析:依题意,可求得cos(A﹣B)=,继而可得sin(A﹣B)=﹣,再由sinB=,求得cosB=,利用两角和的余弦可求得cosA,于是可求得cos2(B+C)=cos=cos2A的值.解答:在△ABC中,cos(2A+C)=cos=﹣cos(A﹣B)=﹣,所以,cos(A﹣B)=,又A为最小角,C为最大角,∴A﹣B<0,∴sin(A﹣B)=﹣;又sinB=,B为锐角,∴cosB==,∴cosA=cos=cos(A﹣B)cosB﹣sin(A﹣B)sinB=×﹣(﹣)×=,∴cos2(B+C)=cos=cos2A=2cos2A﹣1=2×﹣1=.故答案为:.点评:本题考查三角函数的化简求值,着重考查两角和的余弦、二倍角的余弦及同角三角函数间关系式的综合应用,属于中档题.12. 若f(x)=a+是奇函数,则a= .参考答案:﹣【考点】奇函数;函数奇偶性的性质.【分析】充分不必要条件:若奇函数定义域为R (即x=0有意义),则f (0)=0.或用定义:f (﹣x)=﹣f (x )直接求a .【解答】解:函数的定义域为R ,且为奇函数,则 f(0)=a+=0,得a+=0,得 a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.13. _________.参考答案:2314. 化简=参考答案:15. 在数列1、3、7、15、…中,按此规律,127是该数列的第项参考答案:716. 已知角θ的终边经过点P(2x,﹣6),且tanθ=﹣,则x的值为.参考答案:3【考点】任意角的三角函数的定义.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】由任意角的三角函数的定义可得tanθ==﹣,解方程求得x的值.【解答】解:∵角α的终边经过点P(2x,﹣6),且tanθ=﹣,∴=﹣,∴x=3故答案为:3.【点评】本题主要考查任意角的三角函数的定义,属于基础题.17. 已知两点,则线段AB的垂直平分线的方程为_________.参考答案:【分析】求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程。
山东省山东师范大学附属中学2025届数学高一上期末统考模拟试题含解析
A.8 4 3
B.8 2 3
C. 7 4 3
D. 7 2 3
3.已知函数 f (x) ln(ax b) 的定义域是 (1, ) ,那么函数 g(x) (ax b)(x 1) 在区间 (1,1) 上()
A.有最小值无最大值 C.既有最小值也有最大值 4.下列函数为奇函数的是
B.有最大值无最小值 D.没有最小值也没有最大值
A. y x
B. y | sin x |
C. y cos x
D. y ex ex
5.若直线 x+(1+m)y-2=0 与直线 mx+2y+4=0 平行,则 m 的值是
A.1
B.-2
C.1 或-2
D. 3 2
6.在正
ABC 内有一点 M
,满足等式 CM
mCA nCB , MCA
45
,则
m n
用正棱锥截得的棱台叫做正棱台,故 D 正确.
故选:C.
2、A
【解析】先由 log4 3a 2b log2 【详解】因为 log4 3a 2b log2
ab 得到 3 2 1,利用基本不等式“1 的妙用”即可求出最小值. ba
ab ,所以 a 0,b 0 且 log4 3a 2b log2 ab log4
三、解答题:本大题共 5 小题,共 70 分。解答时应写出文字说明、证明过程或演算步骤。
17.已知函数 f (x) lg(1 x) lg(1 x) .
(1)求函数的定义域;
(2)若 f (x) lg(1 x) ,求 x 值;
(3)求证:当 a,b (1,1) 时, f (a) f (b) f ( a b ) 1 ab
④函数 f x sin x cos x 的值域为 2,1
山东省济南市师范大学附属中学2022年数学高一上期末复习检测模拟试题含解析
sin30
即 2c2 c 22 4 ,解得: c 0 , c 4
5
故所求点
P
的坐标为
P
0,
0
或
P
8 5
,
4 5
.
(2)设 CP 的中点为 M ,过 C、A、P 三点的圆是以 CP 为直径的圆 M ,
设
P x0,
y0
,则
M
x0 2
___________
12.已知球 O 有个内接正方体,且球 O 的表面积为 36 ,则正方体的边长为__________
13.一条从西向东的小河的河宽为 3.5 海里,水的流速为 3 海里/小时,如果轮船希望用 10 分钟的时间从河的南岸垂直 到达北岸,轮船的速度应为______; 14.第 24 届冬季奥林匹克运动会(The XXIV Olympic Winter Games),即 2022 年北京冬季奥运会,计划于 2022 年 2 月 4 日星期五开幕,2 月 20 日星期日闭幕.北京冬季奥运会设 7 个大项,15 个分项,109 个小项.某大学青年志愿者 协会接到组委会志愿者服务邀请,计划从大一至大三青年志愿者中选出 24 名志愿者,参与北京冬奥会高山滑雪比赛项 目的服务工作.已知大一至大三的青年志愿者人数分别为 50,40,30,则按分层抽样的方法,在大一青年志愿者中应 选派__________人.
又函数 f x 的图象是一条连续不断的曲线, 由函数零点存在定理可得 f x 在区间 4,5 上一定有零点
故选:C. 2、B 【解析】解出不等式,进而根据不等式所对应集合间的关系即可得到答案.
【详解】由 x 1 2 1 x 3,而x | 0 x 3是x | 1 x 3 的真子集,所以“ x 1 2 ”是“ 0 x 3 ”
【名师推荐资料】山东省师范大学附属中学2020-2021学年高一数学上学期第二次学分认定(期末)考试试题
山东省师范大学附属中学2017-2018学年高一数学上学期第二次学分认定(期末)考试试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分,考试用时120分钟.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔.第I卷(客观题)1.集合U ={1,2,3,4,5,6},S ={1,4,5},T ={2,3,4},则()T C S U 等于A .{1,4,5,6}B .{1,5}C .{4}D .{1,2,3,4,5}2.函数()11lg -+=x x y 的定义域是 A .(-1,+∞) B .[-1,+∞) C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)3.斜率为2的直线经过点A (3,5)、B (a ,7)、C (-1,b )三点,则a 、b 的值为A .a =4,b =0B .a =-4,b =-3C .a =-4,b =3D .a =4,b =-34.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则A .a =-2B .a =2C .a ≤-2D .a ≥2 5.过点(-1,3)且平行于直线x -2y +3=0的直线方程为A .x -2y +7=0B .x -2y -5=0C .2x +y -1=0D .2x +y -5=06.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是A .6cmB .8 cmC .2(1+3) cmD .2(1+2) cm7.下列说法正确的个数是①长方形绕一条直线旋转一周所形成的几何体是圆柱;②过圆锥侧面上一点有无数条母线;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A .0B .1C .2D .38.设,,,1.31.138.027log ===c b a 则A .b <a <cB .c <a <bC .c <b <aD .a <c <b9. 将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为A.361a B.3121a C.3123a D.3122a 10. 已知函数()⎪⎩⎪⎨⎧>+-≤<=10621100lg x x x x x f ,,,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是A .(1,10)B .(5,6)C .(10,12)D .(20,24)11. 已知A (-3,8),B (2,2),在x 轴上有一点M ,使得|MA |+|MB |最短,则点M 的坐标是A .(1,0)B .(-1,0)C.⎪⎭⎫⎝⎛0522, D.⎪⎭⎫ ⎝⎛5220,12.已知x 0是()x x f x121+⎪⎭⎫ ⎝⎛=的一个零点,()01x x ,∞-∈,()002,x x ∈,则 A .()()0021<<x f x f , B .()()0021>>x f x f , C .()()0021<>x f x f , D .()()0021><x f x f ,第II 卷(主观题)二、填空题(本题共4个小题,每小题5分,共20分.请把答案填在答题纸的指定位置)13.已知()bx ax x f +=2是定义在[]a a 21,-上的偶函数,那么=+b a .14.圆()()22121x y -+-=关于直线y x =对称的圆的方程为_________. 15.已知不重合的直线a ,b 和平面α.①若a ∥α,b ⊂α,则a ∥b ;②若a ∥α,b ∥α,则a ∥b ;③若a ∥b ,b ⊂α,则a ∥α; ④若a ∥b ,a ∥α,则b ∥α或b ⊂α,其中正确命题的个数是________. 16.若圆422=+y x 与圆012222=-+-+a ax y x 相内切,则a =________.三、解答题(本题共6个小题,满分70分) 17. (本小题满分10分) 求下列各式的值:(Ⅰ)1313278925--⎪⎭⎫⎝⎛-(Ⅱ)()0214425lg 4lg π--++-18. (本小题满分12分)如图所示,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. (Ⅰ)求证:PA ∥面BDE ; (Ⅱ)求证:平面PAC ⊥平面BDE .19. (本小题满分12分) 已知关于y x ,的方程C :04222=+--+m y x y x . (Ⅰ)若方程C 表示圆,求m 的取值范围;(Ⅱ)若圆C 与直线l :042=-+y x 相交于M ,N 两点,且554=MN ,求m 的值.20. (本小题满分12分)已知圆C 过()11-,D ,()11,-E 两点,且圆心C 在02=-+y x 上. (Ⅰ)求圆C 的方程;(Ⅱ)设点P 是直线0843=++y x 上的动点,PB PA ,是圆C 的两条切线,B A ,为切点,求四边形PACB 面积的最小值.21.(本小题满分12分)已知()x f 是定义在[]11,-上的奇函数,且()11=f ,若[]011≠+-∈n m n m ,,,时,有()()0>++nm n f m f .(Ⅰ)证明)(x f 在[]1,1-上是增函数;(Ⅱ)解不等式0)33()1(2<-+-x f x f .22.(本小题满分12分)已知函数1)(log )(2++=a x x f 过点()44,. (Ⅰ)求实数a ;(Ⅱ)将函数)(x f 的图象向下平移1个单位,再向右平移a 个单位后得到函数)(x g 图象,设函数)(x g 关于y 轴对称的函数为)(x h ,试求)(x h 的解析式; (Ⅲ)对于定义在)0,4(-上的函数)(x h y =,若在其定义域内,不等式()[]()122-⋅>+x h m x h 恒成立,求实数m 的取值范围.山东师大附中2017级第二次学分认定考试数 学 试 卷 答案一、选择题二、填空题 13.31 14. ()()22211x y -+-= 15. 116. ±1 三、解答题17. (本小题满分10分) 解:(Ⅰ)32…………5分 (Ⅱ)23………………10分18. (本小题满分12分) (Ⅰ)证明 连接OE ,如图所示.¡ßO 、E 分别为AC 、PC 的中点,¡¨¤OE ¡ÎP A. ¡ßOE ⊂面BDE ,PA ⊄面BDE , ¡¨¤P A ¡Î面BDE .………………6分 (Ⅱ)证明 ¡ßPO ¡Í面ABCD ,¡¨¤PO ¡ÍBD .在正方形ABCD 中,BD ¡ÍAC , 又¡ßPO ¡ÉAC =O , ¡¨¤BD ¡Í面PAC . 又¡ßBD ⊂面BDE ,¡¨¤面PAC ¡Í面BDE .………………12分 19. (本小题满分12分)解 (Ⅰ)方程C 可化为(x -1)2+(y -2)2=5-m ,………………2分当5-m >0,即m <5时,方程C 表示圆.………………4分 (Ⅱ)圆的方程化为(x -1)2+(y -2)2=5-m , 圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离d =|1+2×2-4|12+22=15.………………8分 ¡ß|MN |=554,¡¨¤12|MN |=552.根据圆的性质有22221⎪⎭⎫⎝⎛+=MN d r ,∴5-m =2255255⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛,得m =4.………………12分 20.(本小题满分12分)解:(Ⅰ)设圆C 的方程为(x -a )2+(y -b )2=r 2,则由条件知()()()()⎪⎪⎩⎪⎪⎨⎧=-+=-+--=--+-021111222222b a r b a r b a ,解得⎪⎩⎪⎨⎧===211r b a ,所以所求圆的方程为:(x -1)2+(y -1)2=4;………………6分 (Ⅱ)连接PC ,AC ,BC ,由条件知S 四边形PACB =2S ¡¡ÂPAC =2×12×|AP |×|AC |=2|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1, 所以当|PC |最小时,|AP |最小. 由点到直线的距离公式可得|PC |min =3438141322=++⋅+⋅.所以|AP |min =9-1=2 2.即四边形PACB 面积的最小值为4 2.………………12分 21.(本小题满分12分)解:(Ⅰ)任取1121≤<≤-x x ,则)()()()()()()(2121212121x x x x x f x f x f x f x f x f ---+=-+=-0)(,112121≠-+∴≤<≤-x x x x ,由已知0,0)()(212121<->--+x x x x x f x f0)()(21<-∴x f x f ,即)(x f 在[]1,1-上是增函数 ………………6分(Ⅱ)因为)(x f 是定义在[]1,1-上的奇函数,且在[]1,1-上是增函数不等式化为)33()1(2-<-x f x f ,所以⎪⎩⎪⎨⎧≤-≤-≤-≤--<-133111133122x x x x ,解得⎥⎦⎤⎝⎛∈34,1x ………………12分22.(本小题满分12分)解:(Ⅰ)由已知41)4(log 2=++a ,4=a ………………3分(Ⅱ)1)4(log )(2++=x x f 向下平移1个单位,,再向右平移4个单位后得到函数x x g 2log )(=,函数)(x g 关于y 轴对称的函数为)(x h )0)((log )(2<-=∴x x x h ………………6分(Ⅲ)1)(log )2)((log 222-->+-x m x 在)0,4(-恒成立∴设)04)((log 2<<--=x x t 则2t <2(2)1t tm ∴+>-即:2(4)+50t m t +->,在2t <时恒成立令5)4()(2+-+=t m t t g∴ ()⎪⎩⎪⎨⎧<--=∆<-02042242m m 8524<<-∴m 或()⎪⎩⎪⎨⎧≥-=≥-02172224m g m 2178≤≤∴m综上可得:217524≤<-m ………………12分。
2020年山东省济南市山东师范大学第二附属中学高一数学理期末试卷含解析
2020年山东省济南市山东师范大学第二附属中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()A.B.C.D.参考答案:D考点:向量数乘的运算及其几何意义.专题:计算题.分析:利用向量的数乘运算和向量加减法的几何意义,结合正方体进行求解.解答:∵,∴,∵,∴,∵,∴==,∵=,∵,∴=.故选D.点评:本题考查向量的数乘运算和向量加减法的几何意义,是基础题.解题时要认真审题,仔细解答.2. 下列函数中,在区间上递增的是()A B C D参考答案:D略3. 已知|a|=3,|b|=5,且a+b与a-b垂直,则等于( )(A) (B) ±(C) ±(D) ±参考答案:B4. 已知角是第三象限角,且,则角的终边在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:D【分析】根据象限角的表示,可得,当为偶数和当为奇数时,得到角的象限,再由,即,即可得到答案.【详解】由题意,角是第三象限角,所以,则,当为偶数时,是第四象限角,当为奇数时,是第二象限角,又由,即,所以第四象限角,故选D.【点睛】本题主要考查了三角函数的符号,以及象限角的表示,其中解答中熟记象限角的表示和三角函数的符号是解答的关键,着重考查了推理与运算能力,属于基础题.5. 函数f(x)=e x﹣的零点所在的区间是()A.B.C.D.参考答案:B【考点】函数零点的判定定理.【分析】根据零点存在定理,对照选项,只须验证f(0),f(),f(),等的符号情况即可.也可借助于图象分析:画出函数y=e x,y=的图象,由图得一个交点.【解答】解:画出函数y=e x,y=的图象:由图得一个交点,由于图的局限性,下面从数量关系中找出答案.∵,,∴选B.【点评】超越方程的零点所在区间的判断,往往应用零点存在定理:一般地,若函数y=f (x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间[a,b]上有零点.6. 化简得()A.B.C.D.参考答案:D 解析:7. 如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2,CC1=4,∠ABC=90°,E,F分别为AA1,C1B1的中点,沿棱柱的表面从点E到点F的最短路径的长度为()A.B.C.3 D.2参考答案:C【考点】表面展开图.【分析】由题意,题中E、F分别在AA1、C1B1上,所以“展开”后的图形中必须有AA1、C1B1,画出图形,分类求出结果,找出最短路径.【解答】解:题中E、F分别在AA1、C1B1上,所以“展开”后的图形中必须有AA1、C1B1;故“展开”方式有以下四种:(ⅰ)沿CC1将面ACC1A1和面BCC1B1展开至同一平面,如图1,求得:EF2=4+18=22;(ⅱ)沿BB1将面ABB1A1和面BCC1B1展开至同一平面,如图2,求得:EF2=8+16=24;(ⅲ)沿A1B1将面ABB1A1和面A1B1C1展开至同一平面,如图3,求得:EF2=4+18=22;(ⅳ)沿A1C1将面ACC1A1和面A1C1B1展开至同一平面,如图4,求得:EF2=18;比较可得(ⅳ)情况下,EF的值最小;故EF的最小值为3.故选C.8. 如图,正六边形ABCDEF中,= ( )A. B. C. D.参考答案:略9. 已知圆锥的高为3,它的底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A. B. C. 16π D. 32π参考答案:B如图:设球心到底面圆心的距离为,则球的半径为,由勾股定理得解得,故半径,故选10. 已知函数f(x)=,则f[f()]的值是()A.B.9 C.﹣9 D.﹣参考答案:A【考点】函数的值.【分析】由已知条件利用分段函数的性质求解.【解答】解:∵,∴f()==﹣2,∴=3﹣2=.故答案为:.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11. 在中,边上的高为,则________参考答案:12. (5分)已知PA垂直平行四边形ABCD所在平面,若PC⊥BD,平行四边形ABCD一定是.参考答案:菱形考点:空间中直线与直线之间的位置关系.专题:常规题型.分析:根据题意,画出图形,利用线面平行的判定定理和性质定理,可知AC⊥BD,由对角线互相垂直的平行四边形是菱形.即可得出结论.解答:根据题意,画出图形如图,∵PA垂直平行四边形ABCD所在平面,∴PA⊥BD,又∵PC⊥BD,PA?平面ABCD,PC?平面ABCD,PA∩PC=P.∴BD⊥平面PAC又∵AC?平面PAC∴AC⊥BD又ABCD是平行四边形∴平行四边形ABCD一定是菱形.故答案为:菱形.点评:此题考查学生的空间想象能力及线面垂直的判定与性质.由对角线互相垂直的平行四边形是菱形即可得出答案.13. 三棱锥S﹣ABC的顶点都在同一球面上,且SA=AC=SB=BC=2,SC=4,则该球的体积为.参考答案:【考点】球的体积和表面积.【分析】通过已知条件,判断SC为球的直径,求出球的半径,即可求解球的体积.【解答】解:由题意,SA=AC=SB=BC=2,SC=4,所以AC2+SA2=SC2,BC2+SB2=SC2,SC是两个截面圆SAC与SCB的直径,所以SC是球的直径,球的半径为2,所以球的体积为.故答案为:.14. 已知函数,若,则__________.参考答案:2017∵函数,,∴,∴.15. (5分)空间两点P1(2,3,5),P2(3,1,4)间的距离|P1P2|=.参考答案:考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:直接利用空间两点间的距离公式求解即可.解答:解:空间两点P1(2,3,5),P2(3,1,4)间的距离|P1P2|==.故答案为:.点评:本题考查空间两点间的距离公式的应用,基本知识的考查.16. 已知数列{a n}满足,且,则,数列{b n}满足,则数列{b n}的前n项和S n= .参考答案:由可得,所以为等差数列,公差首项都为1,由等差数列的通项公式可得,;,,相减.17. 直线﹣x+y﹣6=0的倾斜角是,在y轴上的截距是.参考答案:30°,2.【考点】直线的倾斜角.【专题】方程思想;综合法;直线与圆.【分析】利用直线方程求出直线的斜率,然后求解直线的倾斜角;先根据一次函数的解析式判断出b的值,再根据一次函数的性质进行解答.【解答】解:因为直角坐标系中,直线﹣x+y﹣6=0的斜率为,设直线的倾斜角为α,所以tanα=,所以α=30°∵一次函数x﹣y+6=0的中b=2,∴此函数图象在y轴上的截距式2.故答案为:30°,2.【点评】本题考查直线的斜率与直线的倾斜角的关系以及截距的求法,考查计算能力.三、解答题:本大题共5小题,共72分。
山东省山东师大附中2022-2023学年数学高一上期末学业水平测试试题含解析
AB l,CD l, AE AC,CF AE , CD 5, BE 2, FC 3 3 ,则弧 EC 的长()
A.
B. 3
C. 2
D. 3 2
二、填空题(本大题共 5 小题,请把答案填在答题卡中相应题中横线上)
11.已知函数
f
x
3
x2
2
x3
x
0 ,则满足
f
3
x
0
的
x
的取值范围是___________.
y
2 2x 1
为减函数,
f
x
为增函数.
由 f a2 2a m f 1 2a 0 得: f a2 2a m f 1 2a f 2a 1,
a2 2a m 2a 1,整理得: m a2 4a 1 ,
a 1, 4,a2 4a 1 12 41 1 6 ,m 6 , max
A. a b c
B. b a c
C. c b a
D. b c a
9.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有
关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数 H t 与传染源感染后至隔离前时长 t(单
位:天)的模型: H t ekt .已知甲传染源感染后至隔离前时长为 5 天,与之相关确诊病例人数为 8;乙传染源感
3
33
第 9 次画线:以点 A 为圆心, r 9 ,旋转 2π ,划过的圆弧长为 9 2π 18π 6π ,交 l 累计 6 次,累计画线
3
33
14π 14π 16π 6π 30π ,故选项 A 正确 33
故选:A
另解:由前三次规律可发现,每画三次,与 l 产生两个交点,故要产生 6 个交点,需要画 9 次;每一次画的圆弧长度
山东省师范大学附属中学2023届数学高一上期末达标检测模拟试题含解析
C. a 0 , b 0
D. a 0 , b 0
5.若函数
f
x 的定义域为
D ,满足:①
f
x在
D 内是单调函数;②存在区间,使
f
x 在a,b上的值域为
k b
,
k a
,
则称函数 f x 为“ D 上的优越 k 函数”.如果函数 f x x 2 是“ 0, 上的优越 k 函数”,则实数 k 的取值范
(2)求 cos 的值
21.(1)已知 P 1, 2 2 是角 终边上一点,求 sin , cos , tan 的值;
(2)已知 tan 1,求下列各式的值: tan 1
① sin 3cos ; sin cos
② sin2 sin cos 2cos2
22.已知函数
f
x
4 cos
3
33
第 2 次画线:以点 C 为圆心, r 2 ,旋转 2π ,划过的圆弧长为 2 2π 4π ,交 l 累计 1 次;
3
33
第 3 次画线:以点 A 为圆心, r 3,旋转 2π ,划过的圆弧长为 3 2π 6π 2π ,交 l 累计 2 次;
3
33
第 4 次画线:以点 B 为圆心, r 4 ,旋转 2π ,划过的圆弧长为 4 2π 8π ;
1 C.
D. 3
2
2
8. sin17sin 223 cos17cos(43) 等于
1 A.
B. 1
2
2
C. 3 2
D. 3 2
9.北京 2022 年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、
女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等 个比赛小项,现有甲、乙两名
山东高一高中数学期末考试带答案解析
山东高一高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列四组中表示相等函数的是 ( )A.B.C.D.2.点从出发,沿单位圆逆时针方向运动弧长到达点,则点的坐标为A.B.C.D.3.下列函数是偶函数,且在上单调递减的是()A.B.C.D.4.下列式子正确的是()A.B.C.D.5.三个数,,的大小顺序为()A.B.C.D.6.为了得到函数的图像,只需把函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位7.方程的根所在区间为()A.B.C.D.8.函数+1(a>0,a≠1)的图象必经过定点()A.(0,1)B.(2,1)C.(2,2)D.(2,3)9.已知向量、、,且满足++=,||=3,||=4,||=5,设与的夹角为,与的夹角为,与的夹角为,则它们的大小关系是()A.B.C.D.10.函数(且)的图象为()11.若,则=()A.B.C.D.12.如下图,在△ABC中,设=,=,AP的中点为Q,BQ的中点为R,CR的中点为P,若=m +n,则()A.B.C.D.二、填空题1.已知,则.2.若幂函数的图象经过点(,),则该函数在(0,上是函数(只填单调性).3.若集合,,则:A∩B=.4.已知=(1,2),=(-2,k),若∥(+),则实数的值为.5..6.已知一扇形所在圆的半径为10cm,扇形的周长是45cm,那么这个扇形的圆心角为弧度.7.某商场对顾客实行购物优惠活动,规定一次购物付款总额,①如果不超过200元,则不予优惠,②如果超过200元,但不超过500元,则按标准价给予9折优惠,③如果超过500元,则其500元按第②条给予优惠,超过500元的部分给予7折优惠;某人两次去购物,分别付款168元和423元,假设他只去一次购买上述同样的商品,则应付款是元.8.已知函数,给出下列四个说法:①若,则,②点是的一个对称中心,③在区间上是增函数,④的图象关于直线对称.其中正确说法的序号是 .(只填写序号)三、解答题1.(本小题满分12分)已知||=1,||=;(I)若.=,求与的夹角;(II)若与的夹角为,求|+|.2.(本小题满分12分)已知函数,(Ⅰ)确定函数的单调增区间;(Ⅱ)当函数取得最大值时,求自变量的集合.3.(本小题满分12分)已知函数在一个周期内的部分函数图象如图所示,(I)求函数的解析式;(Ⅱ)求函数在区间上的最大值和最小值.4.(本小题满分14分)已知为锐角的三个内角,向量,,且⊥.(Ⅰ)求的大小;(Ⅱ)求下列函数:的值域.山东高一高中数学期末考试答案及解析一、选择题1.下列四组中表示相等函数的是 ( )A.B.C.D.【答案】B【解析】A.的定义域不同;B.是同一函数;C.的定义域不同;D.的值域不同。
山师附中2019-2020学年高一第一学期期末考试数学试卷
数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息,请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本题共10道小题,每小题5分,共50分) 1. 如果cos 0θ<,且tan 0θ>,则θ是( )(A )第一象限的角(B )第二象限的角(C )第三象限的角(D )第四象限的角 2. 化简AD BC AB -+等于( )(A )CD (B )DC (C )AD (D )CB 3. 若向量 (2,1),(2,)x ab 共线,则实数x 的值是( )(A )2 (B (C )0 (D )24. 函数()cos f x x =的一个单调递增区间是( )(A ) (0)2π, (B )(,)22ππ-(C )(0)-π,(D )(0,)π 5. sin cos y x x =是( )(A )最小正周期为2π的偶函数(B )最小正周期为2π的奇函数 (C )最小正周期为π的偶函数(D )最小正周期为π的奇函数6. 为了得到函数sin(2)4y x π=-的图象,可以将函数sin 2y x =的图象( )(A )向左平移4π个单位长度(B )向右平移4π个单位长度 (C )向左平移8π个单位长度(D )向右平移8π个单位长度7. 若直线x a =是函数sin()6y x π=+图象的一条对称轴,则a 的值可以是( )(A )3π(B )2π(C )6π-(D )3π-8. 已知非零向量a ,b 夹角为45︒,且=22a a b -=,,则b 等于( )(A ) (B )2 (C (D 9. 函数2sin(2)y x =π的图象与直线y x =的交点个数为( )(A )3 (B )4 (C )7 (D )8 10. 关于函数()sin cos f x x x =+,给出下列三个结论:①函数()f x 的最小值是1;②函数()f x ; ③函数()f x 在区间(0,)4π上单调递增. 其中全部正确结论的序号是( )(A )② (B )②③ (C )①③ (D )①②③ 二.填空题(本大题共8小题,每小题5分,共50分). 11. sin45π= _____. 12.已知函数()f x =1,2,1.x x x x ⎧-⎪⎨⎪<⎩≥1,且()(2)0f a f +=,则实数a = _____.13. 角α终边上一点的坐标为(1,2),则tan 2α=_____. 14. 设向量(0,2),(3,1)ab,则,a b 的夹角等于_____.15. 已知(0,)α∈π,且cos sin 8απ=-,则α=_____.16. 已知函数()sin f x x ω=(其中0ω>)图象过(,1)π-点,且在区间(0,)3π上单调递增,则ω的值为_______. 17、 2log =_____,31log 23+=_____.18、已知函数)(x f 是定义在R 上的减函数,如果()(1)f a f x >+在[1,2]x ∈上恒成立,那么实数a 的取值范围是_____. 三.解答题 19.(本小题满分12分)已知2απ∈π(,),且3sin 5α=. (Ⅰ)求tan()4απ-的值;(Ⅱ)求sin2cos 1cos 2ααα-+的值.20.(本小题满分12分)如图所示,C B ,两点是函数()sin(2)3f x A x π=+(0>A )图象上相邻的两个最高点,D 点为函数)(x f 图象与x 轴的一个交点.(Ⅰ)若2=A ,求)(x f 在区间[0,]2π上的值域;(Ⅱ)若CD BD ⊥,求A 的值.21.(本小题满分12分)如图,在ABC △中,1AB AC ==,120BAC ∠=. (Ⅰ)求AB BC ⋅的值;CP(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP xAB y AC =+,其中,x y ∈R . 求xy 的最大值.22、(本小题满分12分)已知函数26()1xf x x =+. (Ⅰ)判断函数)(x f 的奇偶性,并证明你的结论; (Ⅱ)求满足不等式(2)2x x f >的实数x 的取值范围. 23、(本小题满分12分)设a 为实数,函数2()2f x x ax =-.(Ⅰ)当1a =时,求()f x 在区间[0,2]上的值域;(Ⅱ)设函数()()g x f x =,()t a 为()g x 在区间[0,2]上的最大值,求()t a 的最小值数学参考答案及评分标准一、选择题:本大题共10小题,每小题5分,共50分.1.C ;2.B ;3.B ;4.C ;5.D ;6.D ;7.A ;8.A ;9.C ; 10.D. 二、填空题:本大题共8小题,每小题5分,共40分.11. 2-; 12. 1- 13. 43-; 14. 3π; 15. 85π; 16.32 17. 1,62;18、{2}a a <三、解答题:本大题共5小题,共60分. 19.(本小题满分12分)解:(Ⅰ)因为2απ∈π(,),且3sin 5α=,所以4cos 5α==-. ………………3分 所以sin 3tan cos 4ααα==-. ………………5分 所以tan 1tan()741tan αααπ--==-+. ………………7分(Ⅱ)由(Ⅰ)知,24sin 22sin cos 25ααα==-, ………………9分 2321cos 22cos 25αα+==. ………………11分所以244sin2cos 1255321cos 2825ααα-+-==-+. ………………12分 20.(本小题满分12分)(Ⅰ)由题意()2sin(2)3f x x π=+,因为02x π≤≤,所以02x ≤≤π.所以42333x πππ≤+≤. ………………3分所以sin(2)13x π≤+≤. ………………6分 所以2)(3≤≤-x f ,函数)(x f的值域为[. ………………8分 (Ⅱ)由已知(,)12B A π,13(,)12C A π,(,0)3D π, ………………11分 所以(,)4DB A π=-,3(,)4DC A π=.因为CD BD ⊥,所以DC DB ⊥,223016DB DC A -π⋅=+=,解得4A =±. 又0A >,所以4A =. ………………12分21.(本小题满分12分)解:(Ⅰ)()AB BC AB AC AB ⋅=⋅- ………………2分213122AB AC AB =⋅-=--=-.………………4分(Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,1(,22C -. ………………5分 设(cos ,sin )P θθ,[0,]3θ2π∈, (6)分 由AP xAB y AC =+,得1(cos ,sin )(1,0)(2x y θθ=+-. 所以cos ,sin 2y x y θθ=-=.所以cos x θθ=,y θ=,221cos sin 2333xy θθθθ+=+ 2112cos 2)323θθ=-+ ………………10分21sin(2)363θπ=-+. ………………11分 因为2[0,]3θπ∈,2[,]666θππ7π-∈-.所以,当262θππ-=,即3θπ=时,xy 的最大值为1. ………………12分22.(本小题满分10分) 解:(Ⅰ)因为26()1x f x x =+,所以26()1xf x x --=+ ()f x =-. ………………4分 所以()f x 为奇函数. ………………6分(Ⅱ)由不等式(2)2xxf >,得262221xx x ⋅>+. ………………8分整理得225x <, ………………9分所以22log 5x <,即21log 52x <. ………………10分23.(本小题满分12分)解: (Ⅰ)当1a =时,2()2f x x x =-. 二次函数图象的对称轴为1x =,开口向上.所以在区间[0,2]上,当1x =时,()f x 的最小值为1-. ………………2分 当0x =或2x =时,()f x 的最大值为0. ………………3分 所以()f x 在区间[0,2]上的值域为[1,0]-. ………………5分 (Ⅱ)注意到2()2f x x ax =-的零点是0和2a ,且抛物线开口向上.当0a ≤时,在区间[0,2]上2()()2g x f x x ax ==-,()g x 的最大值()(2)44t a g a ==-. ………………6分当01a <<时,需比较(2)g 与()g a 的大小,22()(2)(44)44g a g a a a a -=--=+-,所以,当02a <<时,()(2)0g a g -<;当21a ≤<时,()(2)0g a g ->.所以,当02a <<时,()g x 的最大值()(2)44t a g a ==-. ………8分当21a -≤<时,()g x 的最大值2()()t a g a a ==. 当12a ≤≤时,()g x 的最大值2()()t a g a a ==.当2a >时,()g x 的最大值()(2)44t a g a ==-. ………………10分所以,()g x的最大值244,2,(),22,44, 2.a a t a a a a a ⎧-<⎪⎪=≤≤⎨⎪->⎪⎩ (11)所以,当2a =时,()t a的最小值为12- ………………12分。
山东省山东师范大学附属中学2022-2023学年高一上学期期末数学试题(含答案解析)
【详解】当 sin x cos x 时, 2k x 2k 5 , k Z ,当 sin x cos x 时,
4
4
2k 3 x 2k , k Z
4
4
因为
a
,
b
R
,定义运算
a
b
b, a a, a
b b
,而
f
x
sin
x
cos
x,
因此
f
(x)
sin x, 2k cos x, 2k
x
,t
0 ,若对 x1, x2
1 2
, 2
,都有
h x1
h x2
15 4
,求实
数 t 的取值范围.
试卷第 4页,共 4页
1.B
参考答案:
【分析】先求出 ðU B 1,3,5 ,进而求出 A ðU B .
【详解】 ðU B 1,3,5,故 A ðU B 1,3, 4,5
故选:B
2.D
又 f x 1 为偶函数,则 f x 1 f x 1 f [(x 1)] f (x 1) ,
于是得 f (x 2) f (x) , f (x 4) f (x 2) f (x) ,因此函数 f x 是周期为 4 的周期函数,
当 0 x 1时, f x log2 2x ,则 f (2023) f (4506 1) f (1) f (1) 1,
【分析】根据对数的真数部分大于零,分母不等于零,被开方数不小于零列不等式求解.
4 x 0
【详解】由已知
x
0
,解得 0 x 4 ,
x 0
即函数 y ln 4 x 的定义域是 0, 4
x
故选:D. 3.A 【分析】根据幂运算的规则逐项分析即可.
山东省师范大学附属中学高一数学期末考试试题(含解析)
2017-2018学年山东师大附中高一(上)期末数学试卷选择题(本大题共10小题,共50.0分)1。
已知两条相交直线a,b,平面,则b与的位置关系是A. 平面 B。
平面C。
平面 D. b与平面相交,或平面【答案】D【解析】【分析】由题意结合几何关系确定直线与平面的位置关系即可。
【详解】如图所示,正方体中,取平面为底面,直线为,直线为或,均为满足题中条件的直线与平面,直线为时,平面直线为时,b与平面相交,据此可知b与平面相交,或平面。
本题选择D选项。
【点睛】本题考查了空间几何体的线面位置关系判定与证明,对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键2。
圆的圆心和半径分别是A. ;B. ;2 C。
;1 D。
;【答案】A【解析】【分析】将圆的方程整理为标准型,然后确定其圆心和半径即可.【详解】圆的标准方程为:,据此可知圆心坐标为,圆的半径为.本题选择A选项.【点睛】本题主要考查圆的标准方程,圆的圆心与半径的确定等知识,意在考查学生的转化能力和计算求解能力。
3。
已知,,是两两不重合的三个平面,下列命题中错误的是A. 若,,则B. 若,,则C. 若,,则D。
若,,,则【答案】B【解析】试题分析:由平行的传递性,A.若,则正确;结合“墙角结构"知,“B.若,则”不正确。
故选B.考点:本题主要考查立体几何的平行关系、垂直关系。
点评:简单题,高考常见题型,关键是熟知立体几何中平行与垂直的定理、结论等.4. 一个平面图形用斜二测画法作的直观图是一个边长为1cm的正方形,则原图形的周长是A。
6cm B. 8cm C。
D.【答案】B【解析】【分析】首先还原四边形,然后结合四边形的几何特征整理计算即可求得最终结果。
【详解】如图所示,斜二测画法中的正方形换元为平面直角中的四边形,其中位于轴,长度为,位于轴上,且,故位于轴,且,,则还原之后,且,即四边形为平行四边形,由勾股定理可得,则原图形的周长是.本题选择B选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021山东师范大学附属中学高一数学上期末试题及答案一、选择题1.已知4213332,3,25a b c ===,则A .b a c <<B .a b c <<C .b c a <<D .c a b << 2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12 BCD .23.若函数()f x =的定义域为R ,则实数m 取值范围是( ) A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞4.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( )A .()1,+∞B .(1,8)C .(4,8)D .[4,8) 6.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( )A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦ 7.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3 B .4 C .5 D .68.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( )A .1ln ||y x =B .3y x =C .||2x y =D .cos y x =10.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( ) A .1B .2C .3D .4 11.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥ B .2a ≥- C .52a ≥- D .3a ≥-12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______.14.如果函数()22279919m m y m m x --=-+是幂函数,且图像不经过原点,则实数m =___________.15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑n i n i xx x x ,则1ni i x ==∑__________. 17.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2x f x g x x -=-,则(1)(1)f g +=__________.18.已知函数1()41x f x a =+-是奇函数,则的值为________. 19.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()a f x x =为奇函数,且在()0,∞+上递减,则a 的取值集合为______.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.计算或化简:(1)1123021273log 161664π⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (2)6log 2332log 27log 2log 36lg 2lg 5+⋅-++.22.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)若312f ⎛⎫=- ⎪⎝⎭,求使()0h x <成立的x 的集合. 23.求下列各式的值. (1)2121log 23324()(0)a a a a a -÷>;(2)221g 21g4lg5lg 25+⋅+.24.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为()30030180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,,(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.25.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数.(1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)26.如图,OAB ∆是等腰直角三角形,ABO 90∠=,且直角边长为2,记OAB ∆位于直线()0x t t =>左侧的图形面积为()f t ,试求函数()f t 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】 因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 2.A解析:A【解析】【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值. 【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A . 本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.A解析:A【解析】【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出2080m m m ⎧⎨=-<⎩>,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ;∴不等式mx 2-mx +2>0的解集为R ;①m =0时,2>0恒成立,满足题意;②m ≠0时,则2080m m m ⎧⎨=-<⎩>; 解得0<m <8;综上得,实数m 的取值范围是[0,8)故选:A .【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件. 4.A解析:A【解析】【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值.【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根, 由韦达定理得2134b a +-=+=,133c a=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根,即关于x 的二次方程()24290ax a x a -++=有两相等的根, 则()()()224236102220a a a a ∆=+-=+-=,0a <,解得15a =-,故选:A. 【点睛】 本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.5.D解析:D【解析】【分析】根据分段函数单调性列不等式,解得结果.【详解】 因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a a a ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.6.C解析:C【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=,所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2.当x ∈[0,1]时,()21xh x =-, y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点.绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C【解析】【分析】由题意,函数()()3y f f x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案.【详解】由题意,函数()()3y f f x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象, 如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3f f x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.C解析:C【解析】【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】 ()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数, ()y f x ∴=在[]02,上是增函数()()11f f -=,则()()()012f f f <-<故选C【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.A解析:A【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln ||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x ==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数 故选择A 10.B解析:B【解析】【分析】根据零点存在定理判断023x <<,从而可得结果.【详解】因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =,故选:B.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 11.C解析:C【解析】【分析】【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立, 则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立, 即a ⩾−x −1x 对于一切x ∈(0,1 2)成立, 设y =−x −1x ,则函数在区间(0,1 2〕上是增函数 ∴−x −1x <−12−2=52-,∴a ⩾52-. 故选C. 点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.12.B解析:B【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数,∵()()f x g x x =+,g (﹣1)=1,即f (﹣1)=1+1=2那么f (1)=﹣2.故得f (1)=g (1)+1=﹣2,∴g (1)=﹣3,故选:B二、填空题13.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:0,1【解析】【分析】令0f x ,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案.【详解】由题意,令()10f x mx x =--=,则1mx x =-,则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点.故答案为:0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题. 14.3【解析】【分析】根据幂函数的概念列式解得或然后代入解析式看指数的符号负号就符合正号就不符合【详解】因为函数是幂函数所以即所以所以或当时其图象不过原点符合题意;当时其图象经过原点不合题意综上所述:故 解析:3【解析】【分析】根据幂函数的概念列式解得3m =,或6m =,然后代入解析式,看指数的符号,负号就符合,正号就不符合.【详解】因为函数()22279919m m y m m x --=-+是幂函数,所以29191m m -+=,即29180m m -+=,所以(3)(6)0m m --=,所以3m =或6m =-,当3m =时,12()f x x -=,其图象不过原点,符合题意; 当5m =时,21()f x x =,其图象经过原点,不合题意.综上所述:3m =.故答案为:3【点睛】本题考查了幂函数的概念和性质,属于基础题.15.【解析】【分析】根据题意以及对数的运算性质得出进而可由基本不等式可得出从而可得出函数的值域【详解】由题意即由题意知由基本不等式得(当且仅当时取等号)所以(当且仅当时取等号)即所以的值域为故答案为:【 解析:[)2,+∞【解析】【分析】根据题意以及对数的运算性质得出()21log 2F x x x ⎛⎫=++ ⎪⎝⎭,进而可由基本不等式可得出124x x++≥,从而可得出函数()F x 的值域. 【详解】由题意,()()()()22212log 1log F x f x f x x x =+-=+-,即()222211log log 2x x F x x x x ++⎛⎫==++ ⎪⎝⎭,由题意知,0x >,由基本不等式得12x x +≥=(当且仅当1x =时取等号), 所以124x x ++≥(当且仅当1x =时取等号),即221log 2log 42x x ⎛⎫++≥= ⎪⎝⎭, 所以()F x 的值域为[)2,+∞.故答案为:[)2,+∞.【点睛】本题考查了函数值域的定义及求法,对数的运算性质,基本不等式的运用,考查了计算能力,属于基础题.16.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】【分析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解.【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标 因为lg y x =和10x y =互为反函数,所以函数lg y x =和10x y =图像关于y x =对称所以函数4y x =-+与函数lg y x =和10xy =图像的两个交点也关于y x =对称 所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b += 所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++= 解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x =所以()()12121ni i x ==-+-+=-∑故答案为:1-【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.17.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】【分析】根据函数的奇偶性,令1x =-即可求解.【详解】()f x 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题. 18.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 19.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值.【详解】 因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()a f x x =函数,且在(0,)+∞上递减, a ∴是奇数,且0a <,1a ∴=-.故答案为:1-.【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题解析:{}1,0,1-【解析】【分析】求出函数()f x 的值域,由高斯函数的定义即可得解.【详解】 2(1)212192()2151551x x x x e f x e e e+-=-=--=-+++, 11x e +>,1011x e∴<<+, 2201x e ∴-<-<+, 19195515x e ∴-<-<+, 所以19(),55f x ⎛⎫∈- ⎪⎝⎭, {}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1-【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题21.(1)12-(2)3 【解析】【分析】 (1)根据幂的运算法则计算;(2)根据对数运算法则和换底公式计算.【详解】解:(1)原式1313249314164⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥+⎣⎦ 731444=++- 12=-. (2)原式33log 312lg10=+-+3121=+-+3=.【点睛】本题考查幂和对数的运算法则,掌握幂和对数运算法则是解题关键.22.(1)1,22⎛⎫-⎪⎝⎭;(2)1,23⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)由真数大于0列出不等式组求解即可;(2)由312f ⎛⎫=- ⎪⎝⎭得出14a =,再利用对数函数的单调性解不等式即可得出答案. 【详解】(1)要使函数有意义,则12020x x +>⎧⎨->⎩, 即122x -<<,故()h x 的定义域为1,22⎛⎫- ⎪⎝⎭. (2)∵312f ⎛⎫=-⎪⎝⎭,∴log (13)log 41a a +==-, ∴14a =, ∴1144()log (12)log (2)h x x x =+--,∵()0h x <,∴0212x x <-<+,得123x <<,∴使()0h x <成立的的集合为1,23⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了求对数型函数的定义域以及由对数函数的单调性解不等式,属于中档题.23.(1)0;(2)2【解析】【分析】直接利用指数和对数的运算法则化简求值即得解.【详解】(1)2212521log log 33332420a a a a a a a a ⎛⎫-÷=-÷=-= ⎪⎝⎭(2)22lg 2lg 4lg5lg 252lg 2(lg 2lg5)2lg52(lg 2lg5)2+⋅+=++=+=【点睛】本题主要考查指数和对数的运算法则,意在考查学生对这些知识的理解掌握水平.24.(1) ()45100x ,∈时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析.【解析】【分析】(1)由题意知求出f (x )>40时x 的取值范围即可;(2)分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义.【详解】(1)由题意知,当30100x <<时,()180029040f x x x=+->, 即2659000x x -+>,解得20x <或45x >,∴()45100x ∈,时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当030x <≤时,()()30%401%4010x g x x x =⋅+-=-; 当30100x <<时, ()()218013290%401%585010x g x x x x x x ⎛⎫=+-⋅+-=-+ ⎪⎝⎭; ∴()2401013585010x g x x x ⎧-⎪⎪=⎨⎪-+⎪⎩;当032.5x <<时,()g x 单调递减;当32.5100x <<时,()g x 单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点睛】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.25.(1);(2)每次应拖挂节车厢才能使每天的营运人数最多为人. 【解析】试题分析:(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值. 试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节, 则设. 将点代入,解得 ∴. (2)每次拖挂节车厢每天营运人数为, 则, 当时,总人数最多为人. 故每次应拖挂节车厢才能使每天的营运人数最多为人. 26.()221,022144,2424,4t t f t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩【解析】【分析】分02t <≤、24t <≤和4t >三种情况讨论,当02t <≤时,直线x t =左边为直角边长为t 的等腰直角三角形;当24t <≤时,由AOB ∆的面积减去直角边长为4t -的等腰直角三角形面积得出()f t ;当4t >时,直线x t =左边为AOB ∆.综合可得出函数()y f t =的解析式.【详解】等腰直角三角形OAB ∆中,ABO 90∠=,且直角边长为24OA =, 当02t <≤时,设直线x t =与OA 、OB 分别交于点C 、D ,则OC CD t ==,()212f t t ∴=;当24t <≤时,设直线x t =与OA 、AB 分别交于点E 、F ,则4EF EA t ==-,()()221112222444222f t t t t ∴=⨯⨯--=-+-.当4t >时,()4f t =.综上所述,()221,022144,2424,4t t f t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩. 【点睛】本题考查分段函数解析式的求解,解题时要注意对自变量的取值进行分类讨论,注意处理好各段的端点,考查分析问题和解决问题的能力,属于中等题.。