化工原理课程设计说明书(换热器的设计)

合集下载

化工原理课程设计换热器说明书

化工原理课程设计换热器说明书

化工原理课程设计换热器说明书换热器是化工工艺中常用的设备之一,用于实现不同流体之间的热量传递。

在化工原理课程设计中,编写换热器的说明书是一个重要的任务。

下面我将从多个角度来回答你关于换热器说明书的问题。

首先,换热器说明书应包含基本信息。

这包括换热器的名称、型号、规格、制造商、使用场景等。

此外,还应包括设计要求,如热量传递效率、工作压力、温度范围等。

其次,说明书应包含换热器的结构和工作原理。

这包括换热器的外观图、内部结构示意图以及热量传递的原理图。

同时,应详细介绍换热器的主要组成部分,如壳体、管束、传热介质等,并解释它们的作用和工作原理。

另外,换热器说明书还应包含换热器的性能参数和技术指标。

这包括换热器的传热面积、传热系数、压降、能耗等。

同时,还应提供换热器的设计计算方法和相关公式,以便使用者能够根据具体工艺要求进行设计和计算。

此外,说明书还应包含换热器的安装和维护指导。

这包括换热器的安装位置、安装方法、连接方式等。

同时,还应提供换热器的维护和保养要点,如清洗方法、防腐措施、定期检查等,以确保换热器的正常运行和延长使用寿命。

最后,说明书还应包含换热器的安全注意事项和故障排除方法。

这包括换热器的安全操作规程、应急处理措施、常见故障及解决方法等,以确保使用者在操作和维护过程中的安全。

综上所述,一份完整的换热器说明书应包含基本信息、结构和工作原理、性能参数和技术指标、安装和维护指导,以及安全注意事项和故障排除方法等内容。

通过这份说明书,使用者可以全面了解和正确操作换热器,确保其正常运行和安全使用。

化工原理课程设计说明书 预热器

化工原理课程设计说明书 预热器

第一章列管换热器设计概述1.1.换热器系统方案的确定进行换热器的设计,首先应根据工艺要求确定换热系统的流程方案并选用适当类型的换热器,确定所选换热器中流体的流动空间及流速等参数,同时计算完成给定生产任务所在地需的传热面积,并确定换热器的工艺尺寸且根据实际流体的腐蚀性确定换热器的材料,根据换热器内的压力来确定其壁厚。

1.1.1全塔流程的确定从塔底出来的釜液一部分进入再沸器再沸后回到精馏塔内,一部分进入到冷却器中。

为了节约能源,提高热量的利用率,采用原料液冷却塔底釜液,这样不仅冷却了釜液又加热了原料液,既可以减少预热原料所需要的热量,又可减少冷却水的消耗。

从冷却器出来的釜液直接储存,从冷却器出来的原料液再通往原料预热器预热到所需的温度。

塔顶蒸出的乙醇蒸汽通入塔顶全凝器进行冷凝,冷凝完的液体进入液体再分派器,其中的2/3回流到精馏塔内,另1/3进入冷却器中进行冷却,流出冷却器的液体直接储存作为产品卖掉。

1.1.2加热介质冷却介质的选择在换热过程中加热介质和冷却介质的选用应根据实际情况而定。

除应满足加热和冷却温度外,还应考虑来源方面,价格低廉,使用安全。

在化工生产中常用的加热剂有饱和水蒸气、导热油,冷却剂一般有水和盐水。

综合考虑,在本次设计中的换热器加热介质选择饱和水蒸气,冷却介质选择水。

1.1.3换热器类型的选择列管式换热器的结构简单、牢固,操作弹性大,应用材料广,历史悠久,设计资料完善,并已有系列化标准,特别是在高温、高压和大型换热设备中占绝对优势。

所以本次设计过程中的换热器都选用列管式换热器。

由于本次设计过程中所涉及的换热器的中冷热流体温差不大(小于70℃),各个换热器的工作压力在1.6MP以下,都属于低压容器,因固定管板式换热器两端管板与壳体连在一起,这类换热器结构简单、价格低廉、管子里面易清洗,所以可选择列管式换热器中的固定管板式换热器。

1.1.4流体流动空间的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)。

化工原理课程设计说明书(换热器的设计)

化工原理课程设计说明书(换热器的设计)

中南大学化工原理课程设计2010年01月22日目录一、设计题目及原始数据(任务书) (3)二、设计要求 (3)三、列环式换热器形式及特点的简述 (3)四、论述列管式换热器形式的选择及流体流动空间的选择 (8)五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等) (10)①物性数据的确定 (14)②总传热系数的计算 (14)③传热面积的计算 (16)④工艺结构尺寸的计算 (16)⑤换热器的核算 (18)六、设计结果概要表(主要设备尺寸、衡算结果等等) (22)七、主体设备计算及其说明 (22)八、主体设备装置图的绘制 (33)九、课程设计的收获及感想 (33)十、附表及设计过程中主要符号说明 (37)十一、参考文献 (40)一、设计题目及原始数据(任务书)1、生产能力:17×104吨/年煤油2、设备形式:列管式换热器3、设计条件:煤油:入口温度140o C,出口温度40 o C冷却介质:自来水,入口温度30o C,出口温度40 o C允许压强降:不大于105Pa每年按330天计,每天24小时连续运行二、设计要求1、选择适宜的列管式换热器并进行核算2、要进行工艺计算3、要进行主体设备的设计(主要设备尺寸、横算结果等)4、编写设计任务书5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。

一剖面图,两个局部放大图。

设备技术要求、主要参数、接管表、部件明细表、标题栏。

)三、列环式换热器形式及特点的简述换热器概述换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。

化工原理课程设计丙酮的回收换热器设计说明书

化工原理课程设计丙酮的回收换热器设计说明书

化工原理课程设计丙酮的回收换热器设计说明书标题:丙酮回收换热器设计说明书一、引言本报告详细描述了我们为丙酮回收过程设计的换热器。

在化工生产中,丙酮是一种重要的有机溶剂,其回收利用不仅可以节约成本,而且有利于环保。

因此,一个高效的换热器是丙酮回收过程的关键设备。

二、设计参数1. 工作流体:丙酮2. 进口温度:50℃3. 出口温度:90℃4. 平均温差:20℃5. 换热量:10000kW6. 流量:100m³/h7. 压力降:≤0.1MPa三、换热器类型选择根据丙酮的物理性质和工艺要求,我们选择了管壳式换热器。

管壳式换热器结构简单,制造方便,适应性强,适合于高温、高压和腐蚀性较强的场合。

四、换热器设计计算根据传热学理论和经验值,进行了以下设计计算:1. 确定换热面积:根据所需的换热量和平均温差,计算得到所需换热面积。

2. 选择换热管尺寸:根据流量、压力降和允许的流速,选择合适的换热管尺寸。

3. 计算壳程和管程的压降:根据雷诺数和阻力系数,计算壳程和管程的压降。

五、换热器结构设计考虑到丙酮的化学性质和操作条件,换热器采用碳钢材料制造,并进行防腐处理。

此外,为了便于清洗和维修,换热器设计成可拆卸式的。

六、结论通过以上设计,我们得到了一款能满足丙酮回收过程需求的换热器。

该换热器具有良好的传热性能和稳定的工作状态,可以有效地提高丙酮的回收效率。

七、附录本报告的附录部分包含了所有的设计计算过程和相关数据,供读者参考。

八、致谢感谢所有参与此次设计工作的人员,他们的专业知识和努力工作使这个项目得以顺利完成。

注:此文档仅为示例,具体的设计参数和计算过程需要根据实际情况进行调整。

化工课程设计 换热器设计说明书

化工课程设计 换热器设计说明书

换热器设计说明书姓名学号专业2013-9目录1设计任务 (3)2确定设计方案 (3)2.1换热器类型 (3)2.2流动空间及流速 (3)3确定物性数据 (3)4计算总传热系数 (4)4.1热负荷 (4)4.2冷却水用量 (4)4.3对数平均温度 (4)4.4总传热系数 (5)5计算传热面积 (5)6主要工艺结构基本参数的计算与确定 (6)6.1管程数,换热管数量及长度 (6)6.2平均传热温差校正及壳程数 (6)6.3传热管排列和分程方式 (6)6.4壳体内径 (7)6.5折流板 (7)6.6壳体壁厚 (7)6.7接管 (8)6.8拉杆 (9)6.9定距管 (9)6.10管板 (9)6.11封头与管箱 (9)6.12温度补偿 (10)7换热器核算 (10)7.1热量核算 (10)7.1.1壳程对流传热系数 (10)7.1.2管程对流传热系数 (11)7.1.3总传热系数 (11)7.2传热面积S (11)8换热器内流动阻力计算 (12)8.1管程阻力 (12)8.2壳程阻力 (13)9附表 (15)10参考文献 (17)1设计任务2确定设计方案2.1换热器类型根据设计要求,初步选择固定管板式换热器,换热管选择φ25×2.5mm碳钢。

2.2流动空间及流速由于冷却水较易结垢,为便于水垢清洗,应使循环水走管程,机油走壳程。

管内冷却水的流速取0.5m/s。

3确定物性数据壳程机油的平均温度T=(130+80)/2=105℃管程水的平均温度t=(45+25)/2=35℃根据平均温度,查《化学化工物性数据手册》(刘光启等,化学工业出版社,2013),得到105℃下机油的有关物性数据如下:密度ρO =837kg/m 3定压比热容C pO =2.242kJ/kg.℃导热系数λ0=0.136w/(m.℃) 粘度μ0=14.875mPa.S35℃下水的有关物性数据如下:密度ρi =994kg/m 3定压比热容C pi =4.08kJ/kg.℃导热系数λi=0.626w/(m.℃) 粘度μi =0.725mPa.S4计算总传热系数4.1热负荷 Q O =m o C p 0(T 1-T 2) m o =35×10003600=9.722kg/sQ O =9.722×2.242×﹙130-80﹚=3.9235×106kJ/h =1089.86kw 4.2冷却水用量 W i =Q oC pi Δt i =39235004.08×﹙45−25﹚=4.808×104﹙kg/h ﹚=48.08t/h4.3对数平均温度Δt ’m =Δt 1−Δt 2㏑Δt 1Δt 2=﹙130﹣45﹚−﹙80﹣25﹚㏑130−45=68.92℃4.4总传热系数 管程传热系数Re=d i u i ρi μi=0.02×0.5×9940.000725=1.371×104P r =c pi μi/λi =4080×0.0007250.626=4.725αi =0.023×λi d iRe 0.8P r 0.3=0.023×0.6260.02×﹙1.371×104﹚0.8×1.920.4=2734w/﹙m 2℃﹚假设壳程传热系数αo =300w/﹙m 2℃﹚ 污垢热阻R si =0.00035﹙m 2℃﹚/w R s 0=0.00018﹙m 2℃﹚/w 管壁导热系数λ=50w/﹙m ℃﹚ 所以总传热系数 K=1d o αi d i +R si d o d i +b d o λd i+R s 0+1αo=10.0252734×0.02+0.0025×0.02550×0.02+1300+0.00018+0.00038×0.0250.02=223.7w/﹙m 2℃﹚5计算传热面积S ,=Q iK Δt ′m =1089860223.7×68.92=70.69﹙m 2﹚6主要工艺结构基本参数的计算与确定6.1管程数,换热管数量及长度根据传热管内径和流速确定单程传热管数n s=VΠd2u =48080/(994×3600)0.785×0.022×0.5≈86﹙根)按单程管计算所需传热管长度为L=Sπd0 n s =70.693.14×0.025×86=10.47m按单程管计算,传热管过长,宜采用多管程,现取传热管长l=6m,则该换热器的管程数N p=L/l=10.47/6≈2传热管总根数N=86×2=1726.2平均传热温差校正及壳程数平均传热温差校正系数R=130-8045−25=2.5P=45−25130−25=0.19按单壳程双管程结构,温差校正系数查相关图可查的ψ∆t =0.85,ψ∆t>0.8,可见单壳程,两管程是合适的。

化工原理课程设计__换热器

化工原理课程设计__换热器

化⼯原理课程设计__换热器⼀、设计任务书⼆、确定设计⽅案2.1 选择换热器的类型本设计中空⽓压缩机的后冷却器选⽤带有折流挡板的固定管板式换热器,这种换热器适⽤于下列情况:①温差不⼤;②温差较⼤但是壳程压⼒较⼩;③壳程不易结构或能化学清洗。

本次设计条件满⾜第②种情况。

另外,固定管板式换热器具有单位体积传热⾯积⼤,结构紧凑、坚固,传热效果好,⽽且能⽤多种材料制造,适⽤性较强,操作弹性⼤,结构简单,造价低廉,且适⽤于⾼温、⾼压的⼤型装置中。

采⽤折流挡板,可使作为冷却剂的⽔容易形成湍流,可以提⾼对流表⾯传热系数,提⾼传热效率。

本设计中的固定管板式换热器采⽤的材料为钢管(20R 钢)。

2.2 流动⽅向及流速的确定本冷却器的管程⾛压缩后的热空⽓,壳程⾛冷却⽔。

热空⽓和冷却⽔逆向流动换热。

根据的原则有:(1)因为热空⽓的操作压⼒达到1.1Mpa ,⽽冷却⽔的操作压⼒取0.3Mpa ,如果热空⽓⾛管内可以避免壳体受压,可节省壳程⾦属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较⼤,对流传热系数较⼤者宜⾛管间,因壁⾯温度与对流表⾯传热系数⼤的流体温度相近,可以减少热应⼒,防⽌把管⼦压弯或把管⼦从管板处拉脱。

(3)热空⽓⾛管内,可以提⾼热空⽓流速增⼤其对流传热系数,因为管内截⾯积通常⽐管间⼩,⽽且管束易于采⽤多管程以增⼤流速。

查阅《化⼯原理(上)》P201表4-9 可得到,热空⽓的流速范围为5~30 m ·s -1;冷却⽔的流速范围为0.2~1.5 m ·s -1。

本设计中,假设热空⽓的流速为8 m ·s -1,然后进⾏计算校核。

2.3 安装⽅式冷却器是⼩型冷却器,采⽤卧式较适宜。

空⽓⽔⽔空⽓三、设计条件及主要物性参数3.1设计条件注:要求设计的冷却器在规定压⼒下操作安全,必须使设计压⼒⽐最⼤操作压⼒略⼤,本设计的设计压⼒⽐最⼤操作压⼒⼤0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出⼝温度的平均值。

化工原理课程设计说明书

化工原理课程设计说明书

化工原理课程设计任务书一、设计题目设计一台换热器二、操作条件①油:入口温度130℃,出口温度70℃②冷却介质:循环水,入口温度30℃,出口温度40℃③允许压强降:管侧允许压力损失为5MPa,壳侧允许压力损失为10MPa④生产任务:油的流速为10000kg/h三、设备类型列管式换热器四、设计要求(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作、和维修;(4)经济上合理。

化工原理课程设计说明书1.设计概述换热是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。

换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。

在化工装置中换热设备占设备数量的40%左右,占总投资的35%~46%。

在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

在三类换热器中,间壁式换热器应用最多。

目前,在换热设备中,使用量最大的是管壳(列管)式换热器,尤其在高温、高压和大型换热设备中占有绝对优势。

一般来讲,管壳式换热器具有易于加工制造、成本低、可靠性高,且能适应高温高压的特点。

数据显示2010年中国换热器产业市场规模在500亿元左右,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。

其中,石油化工领域仍然是换热器产业最大的市场,其市场规模为150亿元;电力冶金领域换热器市场规模在80亿元左右;船舶工业换热器市场规模在40亿元以上;机械工业换热器市场规模约为40亿元;集中供暖行业换热器市场规模超过30亿元,食品工业也有近30亿元的市场。

化工原理课程设计换热器

化工原理课程设计换热器
>4管程:0.45-0.65
设计示例
年处理量:6000kg/h, 煤油从140℃-40 ℃
循环水入口温度:30 ℃-40 ℃ 煤油压力:0.3MPa 循环水压力:0.4MPa
1.选择换热器类型
考虑季节操作,选用带有膨胀节的固定管 板式换热器。
2.流动空间及流速的确定
由于循环冷却水较易结垢,为便于水垢清洗, 应使循环水走管程,油走壳程,选用 Ф25×2.5的碳钢管,管内流速取0.5m/s。
化工原理课程设计
• 换热器的设计
• 换热器, 在不同温度的流体间传递热能的
装置称为换热器。
• 在化工、石油、动力、制冷、食品等行业
中广泛使用各种换热器,且它们是上述行 业的通用设备,占有十分重要的地位。
• 列管式换热器的设计
• 1、热力设计 • 2、流动设计 • 3、结构设计 • 4、强度热器的工艺设计
• 1、根据换热任务和有关要求确定设计方案 • 2、初步确定换热器的结构和尺寸 • 3、核算换热器的传热面积和流体阻力 • 4、确定换热器的工艺结构
• 设计方案的设计
• 1、换热器类型的选择 • 固定管板式换热器 • 浮头式换热器 • U型管换热器 • 填料函式换热器
• 2、流动空间的选择
速0.5m/s 2.管程数和传热管数 单程传热管数:
V
ns


4
d
u2
i
58
按单管程设计, 所需的传热管长度为:
L S 10.8m
dons
现取传热管长为6m,
• 则管程数:
NP

L l

2
• 总管数58×2=116
换热器核算
1.热量衡算 由于采用圆缺形折流板,可采用克恩公式

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计1000字
该课程设计的目标是设计一个换热器,用于从一种热流体中传递热量到另一种热流体。

设计过程中需要考虑到热传递的效率和换热器的成本。

设计要求:
1.设定两种热流体的流量和进出口温度。

2.根据流量和温差计算出所需的传热量。

3.选择一种合适的换热器类型并计算出尺寸和效率。

4.根据选择的换热器类型确定换热管的材料,并计算出所需的管道长度。

5.确定换热器外壳材料和绝缘材料,并计算出所需的壁厚度。

在设计过程中,需要进行以下计算:
1.计算热传递量:
热传递量 = 流量 x 热容 x 温差
流量:两种热流体的流量
热容:热流体的比热容
温差:两种热流体的进出口温度差
2.选择换热器类型:
常见的换热器类型包括:管式热交换器、板式热交换器和壳管式热交换器。

在选择时需要考虑到传热效率、材料成本以及维护难度等因素。

3.计算换热管尺寸:
换热管的长度和直径需要根据流量和传热效率来计算,同时需要考虑到管壁的热传递系数和管壁的厚度。

4.确定换热器外壳材料和绝缘材料:
外壳的材料需要考虑到其耐腐蚀性和强度,同时需要计算出所需的壁厚度。

绝缘材料需要选用热传导系数较小的材料,以提高传热效率。

5.总体设计方案:
根据上述计算和选择,得到符合要求的换热器总体设计方案,并进行设计图纸和工艺流程图的绘制。

结论:
在设计过程中,需要考虑到换热器的热传递效率、成本、材料选用和维护难度等因素,从而得出符合要求的总体设计方案。

化工原理课程设计-换热器设计任务书

化工原理课程设计-换热器设计任务书

题目一:用水冷却煤油产品的列管式换热器设计任务书《处理量为XXX吨/年XXXXXXXX的工艺设计》设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计条件使煤油从140℃冷却到40℃,压力1bar ,冷却剂为水,水压力为3bar,处理量为10t/h,进口温度20 ℃,出口温度40 ℃三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括壁厚5 主要进出口管径的确定包括:冷热流体的进出口管6流程图(以图的形式,并给出各部分尺寸)及结构尺寸汇总(以表的形式)7评价之8参考文献一、设计的目的通过对煤油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

总之,通过设计达到让学生自己动手进行设计的实践,获取从事工程技术工作的能力。

二、设计的指导思想1 结构设计应满足工艺要求2 结构简单合理,操作调节方便,运行安全可靠3 设计符合现行国家标准等4 安装、维修方便三、设计要求1 计算正确,分析认证充分,准确2 条理清晰,文字流畅,语言简炼,字迹工整3 图纸要求,图纸、尺寸标准,图框,图签字规范4 独立完成四、设计课题工程背景在石油化工生产过程中,常常需要将各种石油产品(如汽油、煤油、柴油等)进行冷却,本设计以某厂冷却煤油产品为例,让学生熟悉列管式换热器的设计过程。

五、参考文献1 化工过程及设备设计,华南工学院,19862 传热设备及工业炉,化学工程手册第8篇,19873 化工设备设计手册编写组. 金属设备,19754 尾范英郎(日)等,徐忠权译,热交换设计物册,19815 谭天恩等. 化工原理(上、下册)化学工业出版社.六、设计思考题1设计列管式换热器时,通常都应选用标准型号的换热器,为什么?2 为什么在化工厂使用列管式换热最广泛?3 在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?4 说明列管式换热器的选型计算步骤?5 在换热过程中,冷却剂的进出口温度是按什么原则确定的?6 说明常用换热管的标准规格(批管径和管长)。

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书题目:煤油冷却器设计学院:化学化工学院班级:化工0802学号: 1505080802姓名: ******指导教师:邱运仁时间:2010年9月目录§一.任务书 (2)1.1.题目1.2.任务及操作条件1.3.列管式换热器选择及核算§二.概述 (3)2.1.换热器概述2.2.固定管板式换热器2.3.设计背景及设计要求§三.热量设计 (5)3.1.初选换热器类型3.2.管程安排(流动空间选择)及流速确定3.3.确定物性数据3.4.计算总传热系数3.5.计算传热面积§四. 机械结构设计 (9)4.1.管径和管内流速4.2.管程数和传热管数4.3.平均传热温差校正及壳程数4.4.壳程内径及换热管选型汇总4.4.折流板4.6.接管4.7.壁厚确定、封头4.8.管板4.9.换热管4.10.分程隔板4.11拉杆4.12.换热管及管板连接4.13.防冲板或导流筒选择、鞍式支座示意图(BI型)4.14.膨胀节设定讨论§五.换热器核算 (21)5.1.热量核算5.2.压力降核算§六.管束振动 (25)6.1.换热器振动6.2.流体诱发换热器管束振动机理6.3.换热器管束振动计算6.4.振动防止及有效利用§七. 设计结果表汇 (28)§八.参考文献 (29)§附:化工原理课程设计之心得体会 (30)§一.化工原理课程设计任务书1.1.题目煤油冷却器设计1.2.任务及操作条件1.2.1处理能力:40t/h 煤油1.2.2.设备形式:列管式换热器1.2.3.操作条件(1).煤油:入口温度160℃,出口温度60℃(2).冷却介质:循环水,入口温度17℃,出口温度30℃(3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa(4).煤油定性温度下物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃)1.3.列管式换热器选择及核算1.3.1.传热计算1.3.2.管、壳程流体阻力计算1.3.3.管板厚度计算1.3.4.膨胀节计算1.3.5.管束振动1.3.6.管壳式换热器零部件结构§二.概述2.1.换热器概述换热器是化工、炼油工业中普遍应用典型工艺设备。

换热器课程设计说明书

换热器课程设计说明书

化工原理换热器课程设计说明书设计题目煤油冷却器的设计专业班级应化0806学生姓名xxxxx学号xxxxxx指导教师xxxxx日期2010.9.4一、化工原理课程设计任务书(换热器的设计)(一)设计题目:煤油冷却器的设计(二)设计任务及操作条件:1.处理能力:15万吨/年煤油2.设备型式:列管式换热器3.操作条件:(1)煤油入口温度125℃,出口温度40℃;(2)冷却介质循环水,入口温度25℃,出口温度45℃;(3)允许压强降不大于105Pa;(4)煤油定性温度下的物性数据:密度为825kg/m3;粘度为:7.15×10-4Pa.S;比热容为:2.22kJ/(kg. ℃);导热系数为:0.14W/(m. ℃)(5)每年按330天计,每天24小时连续运行。

(三)设计项目1传热计算2管、壳程数的确定及管、壳程流体阻力计算3管板厚度计算4 U形膨胀节计算(浮头式换热器除外)5管壳式换热器零部件结构(四)绘制换热器装配图(A2图纸)二、换热器的选用换热器的选用(即选型) 的过程大体如下, 具体计算可参看列管式换热器设计中有关内容。

①根据设计任务要求计算换热器的热负荷Q。

②按所选定的流动方式, 计算出平均温度差( 推动力)Δtm 及查出温差校正系数ψ。

若ψ< 0 . 8 , 应考虑采用多壳程结构的换热器或用多台换热器串联。

③依所处理流体介质的性质, 凭经验初选一总传热系数K0 (估) , 并由总传热速率方程计算传热面积S'0 :S'0 =Q/K0 估Δtm式中Q———热负荷,W; K0 (估) ———凭经验选取的总传热系数,W /(m2·K) ; Δtm ———平均温度差, ℃。

④根根据计算出的S’0 值, 查有关换热器系列标准, 确定型号规格并列出各结构主要基本参数。

⑤利用总传热系数关联式计算K0 ( 计) , 再由总传热速率方程式求出S0 ( 计) 。

考虑到所用传热计算式的准确程度及其他未可预料的因素, 应使得所选用换热器具有的传热面积S0留有的裕度10%~25% , 即[ ( S0 - S0 ( 计) ) /S0 ( 计) ] = ( 10% ~25% )。

化工原理课程设计换热器 [《化工原理课程设计》报告换热器的设计]

化工原理课程设计换热器 [《化工原理课程设计》报告换热器的设计]

化工原理课程设计换热器[《化工原理课程设计》报告换热器的设计]《化工原理课程设计》报告换热器的设计目录概述1.1.换热器设计任务书-4-1.2换热器的结构形式-7-2.蛇管式换热器-7-3.套管式换热器-7-1.3换热器材质的选择-8-1.4管板式换热器的优点-9-1.5列管式换热器的结构-10-1.6管板式换热器的类型及工作原理-11-1.7确定设计方案-12-2.1设计参数-12-2.2计算总传热系数-13-2.3工艺结构尺寸-14-2.4换热器核算-15-2.4.1.热流量核算-16-2.4.2.壁温计算-18-2.4.3.换热器内流体的流动阻力-19-概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合完善的换热器在设计或选型时应满足以下各项基本要求。

化工原理课程设计--列管式换热器设计说明书(完整版)

化工原理课程设计--列管式换热器设计说明书(完整版)

东莞理工学院《化工原理》课程设计说明书题目:列管式换热器的设计学院:班级:学号:姓名:指导教师:时间:目录一.化工原理课程设计任务书 (4)1.1 设计题目:列管式换热器的设计 (4)1.2 前言 (4)1.3 合成氨工业概述 (5)1.3.1 合成氨工业重要性 (5)1.3.2 合成氨的原料及原则流程 (5)1.4 世界合成氨生产技术及进展 (6)1.4.1 国外合成氨技术现状及发展 (6)1.4.2 我国合成氨技术的基本状况 (6)1.5 概述 (7)1.5.1 换热器概述 (7)1.5.2 固定管板式 (8)1.5.3 列管换热器主要部件 (8)1.5.4 设计背景及设计要求 (10)二.热量设计 (11)2.1 设计条件: (11)2.2 初选换热器的类型 (11)2.3 管程安排(流动空间的选择)及流速确定 (12)2.4 初算换热器的传热面积SO (12)三.机械结构设计 (14)3.1 管径和管内流速 (14)3.2 管程数和传热管数 (14)3.3 换热器筒体尺寸与接管尺寸确定 (16)3.4换热器封头选择 (17)3.4.1 封头选型及尺寸确定 (17)3.4.2 封头厚度选取 (18)3.5 管板的确定 (19)3.5.1 管板尺寸 (19)3.5.2 管板与壳体的连接 (19)3.5.3 管板厚度 (20)3.6换热器支座及法兰选定 (20)3.7 换热器核算 (21)3.7.1管、壳程压强降计及校验 (21)3.7.2 总传热系数计算及校验 (23)四.设计结果表汇 (25)五.参考文献 (26)附:化工原理课程设计之心得体会 (26)一.化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名:学号:指导老师姓名:任务起止日期:1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。

化工原理课程设计换热器设计

化工原理课程设计换热器设计

化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1。

流体流动途径的确定 (6)2. 物性参数及其选型 (6)3。

计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5。

初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件: 1、苯:入口温度80℃,出口温度40℃。

2、冷却介质:循环水,入口温度32。

5℃。

3、允许压强降:不大于50kPa 。

4、每年按300天计,每天24小时连续运行。

三、设备型式: 管壳式换热器四、处理能力: 109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸的设计.3、设计结果概要或设计结果一览表.4、设备简图。

(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。

六、附表:1。

设计概述 1。

1热量传递 出口温度 40。

5℃壳体内部空间利用率 70%选定管程流速u (m/s ) 1壳程流体进出口接管流体流速u1(m/s ) 1的概念与意义1。

1。

1热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热.由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

1.1.2化学工业与热传递的关系化学工业与传热的关系密切.这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

列管式换热器的设计化工原理课程设计说明书

列管式换热器的设计化工原理课程设计说明书

目录一、设计任务书 (1)二、设计方案简介 (2)1、选择换热器类型 (2)2、流径的选择 (3)3、流程安排 (4)4、流速的选择 (4)5、材质的选择 (4)6、管程结构 (4)7、壳程结构与相关公式 (5)三、工艺计算及主要设备计算 (6)1、确定物性参数 (6)2、估算传热面积 (7)3、工艺结构尺寸 (8)4、换热器核算 (11)四、设计结果汇总 (16)五、参考资料 (17)六、后记 (18)七、设计说明书评定 (19)八、答辩过程评定 (19)设计题目:列管式换热器的设计设计条件:某生产过程的流程如图所示,反应器的混合气体经与进料物流换热后,用循环冷却水将其从 ℃进一步冷却至 ℃之后,进入吸收塔吸收其中的可溶组分。

已知混和气体的流量为227301㎏·h -1,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为℃,出口温度为 ℃,要求设计一台列管式换热器,完成该生产任务。

已知该混和气体在80~100℃下的有关物性数据如下(来自生产中的实测值):密度 31/90m kg =ρ定压比热容 1p c =3.297 kJ/(kg ·℃)热导率 1λ=0.0279 W/(m ·℃)粘度 Pas 51105.1-⨯=μ生产过程流程图1、选择换热器类型根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

1).固定管板式换热器这类换热器如图1-1所示。

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

2).U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学化工原理课程设计2010年01月22日<目录一、设计题目及原始数据(任务书) (3)二、设计要求 (3)三、列环式换热器形式及特点的简述 (3)四、论述列管式换热器形式的选择及流体流动空间的选择 (8)五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等) (10)①@14②物性数据的确定………………………………………………③总传热系数的计算 (14)④传热面积的计算 (16)⑤工艺结构尺寸的计算 (16)⑥换热器的核算 (18)六、设计结果概要表(主要设备尺寸、衡算结果等等) (22)七、主体设备计算及其说明 (22)八、主体设备装置图的绘制 (33)九、?33十、课程设计的收获及感想…………………………………………十一、附表及设计过程中主要符号说明 (37)十二、参考文献 (40)一、设计题目及原始数据(任务书)1、生产能力:17×104吨/年煤油#2、设备形式:列管式换热器3、设计条件:煤油:入口温度140o C,出口温度40 o C冷却介质:自来水,入口温度30o C,出口温度40 o C允许压强降:不大于105Pa每年按330天计,每天24小时连续运行二、设计要求1、选择适宜的列管式换热器并进行核算【2、要进行工艺计算3、要进行主体设备的设计(主要设备尺寸、横算结果等)4、编写设计任务书5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。

一剖面图,两个局部放大图。

设备技术要求、主要参数、接管表、部件明细表、标题栏。

)三、列环式换热器形式及特点的简述换热器概述换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。

、在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。

换热器按照换热介质不同可分为水-水换热器和汽-水患热器;按照工作原理不同可分为间壁式、直接接触式、蓄热式和热管式换热器。

1.表面式换热器又称间壁式换热器。

是指通过传热表面间接加热的换热器。

由于表面式换热器冷热流体传热时被固体壁面所隔开,热流体和冷流体通过壁面进行热量传递,所以与直接接触式换热器相比,换热效率较低,常用在两种流体不容渗混的场合。

主要有管式、容积式、板式、螺旋板式等形式。

2.管式换热器是指由圆筒形壳体和装配在壳体内的带有管板的管束所组成的管式换热器。

结构简单、造价低、流通截面较宽、易于清洗水垢;但传热系数低、占地面积大。

管壳式换热器有固定管板式汽-水换热器、带膨胀节管壳式汽-水换热器、浮头式汽-水换热器、u彩管壳式汽-水换热器、波节型管壳式汽-水换热器、分段式水-水换热器等儿种类型。

3.套管式换热器是指由管子制成管套管等构件组成的管式换热器。

4.板式换热器|是指不同温度的流体交错在多层紧密排列的薄壁金属板间流动换热的表面式换热器。

主要由传热板片、固定盖板、活动盖板、定位螺栓及压紧螺栓组成,板片之间用垫片进行密封。

由于板片表面的特殊结构,能使流体在低流速下发生强烈湍动,从而强化了传热过程。

板式换热器结构紧凑,拆洗方便,传热系数高,适应性大,节省材料,但板片间流通截面狭窄,易形成水垢和沉积物,造成堵塞,密封垫片耐热性差时易渗漏。

此种换热器常用于供暖系统。

板式换热器计算时应考虑换热便面污垢的影响,传热系数计算时应考虑污垢修正系数。

其中列管式换热器的应用已经有很悠久的历史。

现在,它作为一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。

同时,管板式换热器已成为高效、近臭的换热设备,大龄的应用于工业中。

列管式换热器的资料较为完善,已有系列化标准。

列管式换热器有三种类型,分别为固定管板式换热器、浮头式换热器、U形管式换热器和填料函式换热器。

1.固定管板式:固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。

固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。

这种换热器管程可以用隔板分成任何程数。

固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。

壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。

当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。

图1 固定管板式换热器固定管板式换热器的特点是:旁路渗流较小;造价低;无内漏。

在相同的壳体直径内,排管较多,比较紧凑;壳侧层清洗困难,加上膨胀节的方法不能照到管子的相对移动。

比较适合温差不大或温差大而壳层压力不高的场合。

固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。

…2.浮头式换热器:其两端管板只有一端与壳体完全固定,另一端课相对于壳体作某些移动,该端称之为浮头。

此种换热器的管束不受壳体的约束,壳体与管束之间不会因为膨胀量的不同而产生热应力。

而且在清洗和检修时,仅将管束从壳体中抽出即可。

特点:该种换热器结构复杂、笨重,造价比固定管板式要高出约20%,材料的消耗量较大,浮头的端盖在操作中无法检查,所以安装时要特别注意其密封,以免发生内漏,且管束和壳体间隙较大,设计图2. 浮头式换热器时避免短路。

该种换热器比较适合管壳壁间温差较大,或易于腐蚀和易于结垢的场合。

型管式换热器仅有一个管板,管子两端均固定于同一管板上。

这类换热器的特点是:管束可以自由伸缩,不会因为管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速—较高,传热性能好;承压能力强;管束课从壳体内抽出,便于检修和清洗,造价便宜。

但是管内清洗不变,管束中间分布的管子难以更换,管板中心部分布管不紧凑,管子数目不能太多。

仅适用于管壳壁温相差较大,或壳程截止易于结垢而管程介质不易结垢,高温高压腐蚀性强的情形。

图型管式换热器4.填料函式换热器此类换热器的管板也仅有一端与壳体固定,另一端采用填料函密封。

特点为它的管束也可以自由膨胀,所以管壳间不会产生热应力,且管程与壳程都能清洗。

造价较低、加工制造简便,材料消耗较少。

填料密封处于泄露,故壳程压力不能过高,也不宜用于易挥发、易燃、易爆、有毒的场合。

四、论述列管式换热器形式的选择及流体流动空间的选择①换热器形式的选择本次任务中两流体的温度变化:煤油热流体进口温度为140℃,$出口温度为40℃;冷却介质水的进口温度为30℃,出口温度为40℃。

该换热器用自来水作冷却介质,受环境影响,进口温度会降低,由此可知该换热器的管壁温度和壳体壁温之差较大,有上一步骤中对换热器形式及特点的陈述,课选用固定管板式换热器。

②流体流动空间的选择在管壳式换热器的计算中,首先要决定何种流体走管程,何种流体走壳程,这需遵循一些一般原则。

㈠宜于通入管内空间的流体不清洁的流体:因为在管内空间得到较高的流速并不困难,而流速高,悬浮物不易沉积,且管内空间便于清洗;体积小的流体:管内空间的流动截面往往要比管外空间的截面要小,流体易于获得理想的流速,而且也便于做成多程流动。

|有压力的流体:管子承压能力强,而且还简化了壳体密封要求。

与外界温差大的流体:可以减少热量的逸散。

㈡宜于通入管间的流体当两流体温度相差较大时,α值大的流体走管间,这样可以减少管壁与壳壁间的温度差,因而也减少了管束与壳体间的相对伸长,故温差应力可以降低。

若两流体给热性能相差较大时,α值霄的流体走管间,此时可以用翅片管来平衡传热面两侧的给热条件,使之相互接近。

黏度大的流体,管间的截面和方向都在不断变化,在低雷诺数下,管外给热系数比管内的大。

泄漏后危险大的流体,可以减少泄露机会,以保安全。

根据所查得的资料,不洁净或易于结垢的物料应流经易于清洗的}一侧,对于直管一般走管内;温度较高的物料宜走管内一减少热损失,但要求被冷却的流体走壳程、黏度大的走壳程,且循环水易于结垢,所以使水走管程,煤油走壳程。

③流体流速的选取:换热器常用流速的范围如下表表一换热器常用流速的范围由上表可得管内循环水流速范围为1m/s-2m/s,现取管内流速s。

④换热管规格的选取换热管规格及排列形式如下表所示表二换热管规格及排列形式选用φ25×碳钢管。

五、过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等)列管式换热器的设计计算[设计步骤目前,我国已经制订了管壳式换热器系列标准,设计中应尽可能选用系列化的标准产品,这样可简化设计和加工。

但是实际生产条件千变万化,当系列化产品不能满足需要时,仍应根据生产的具体要求而自行设计非系列标准的换热器。

两者的设计计算步骤如下:1.非系列标准换热器的一般设计步骤ⅰ了解换热流体的物理化学性质和腐蚀性能。

ⅱ由热平衡计算传热量的大小,并确定第二种换热流体的用量。

ⅲ决定立体通入的空间。

ⅳ计算流体的定性温度,一确定流体的物性数据。

ⅴ初算有效平均温差。

一般先按照逆流计算,然后再校核。

{ⅵ选取管径和管内流速。

ⅶ计算传热系数K值,包括管程对流传热系数和壳程对流传热系数的计算。

由于壳程对流传热系数与壳颈、管束等结构有关,因此一般先假定一个壳程对流传热系数,以计算K值,然后再校核。

ⅷ初估传热面积。

考虑安全系数和初估性质,因而常取实际传热面积是计算值的倍。

ⅸ择管长L。

ⅹ计算管数N并校核管内流速,确定管程数。

Xi校核对流传热系数及有效平均温差;校核传热面积,应有一定安全系数,否则需要重新设计。

Xii计算流体流动阻力。

如果阻力超过允许范围,需要调整设计,直至满意为止。

2.系列标准换热器选用的设计步骤·ⅰ至ⅴ与1相同。

ⅱ选取经验的传热系数K值。

ⅲ计算传热面积。

ⅳ由系列标准选取换热器的基本参数。

ⅴ校核传热系数,包括管程、壳程对流传热系数的计算。

假如核算的K值与原选择的经验值相差不大,就不再进行校核;如果相差较大,则需重新假设K值并重复上述ⅱ一下步骤。

相关文档
最新文档