电磁学基础知识讲课教案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空的磁导率为常数,用 0表示,有:
0 4π107H/m
相对磁导率 r: 任一种物质的磁导率 和真空的磁导率0的比值。
r
0
注意
不同的介质,磁导率µ也不同。磁导率值大的材料,导磁性能好。
材料分类: 非磁性材料
磁导率与真空磁导率近似相等,即 r ≈ 1 。如空气、
木材、纸、铝等。 铁磁性材料
磁导率远远大于真空磁导率,即 r >> 1 ,可达到
I 是穿过闭合回线所围面积的电流的代数和。
安培环路定律电流正负的规定:
任意选定一个闭合回线的围绕方向,凡是
电流方向与闭合回线围绕方向之间符合右螺
旋定则的电流作为正、反之为负。
在均匀磁场中 Hl = IN 或 H IN l
安培环路定律将电流与磁场强度联系起来。
3.1.2 电磁感应
1、电磁感应定律
法拉第电磁感应定律:
B-H 磁化曲线的特征:
B
Oa段:B 与H几乎成正比地增加;
b •B
ab段: B 的增加缓慢下来;
a •
BJ
b点以后:B增加很少,达到饱和。
有磁性物质存在时,B 与 H不成 O
正比,磁性物质的磁导率不是常
非线
对于铁心线圈来说,电感L不为常数。
性电
感 若为线性电感元件
eLdd t d(dL ti)Ld dti (2)
注
式(1)与式(2)是电动势的两种表达式,
意
一般当电感L为常数时,多采用式(2)。 而分析非线性电感Fra Baidu bibliotek,由于L可变,一般采用式(1)。
3、电感元件上电压与电流的关系
习惯上选择电感元件上的电流、电压、自感
在1831年英国科学家法拉第发现:,变化的磁场能使闭合的回路产生感应 电动势和感应电流。感应电动势的大小正比于回路内磁通对电流的变化率。
楞次定律:
1833年,楞次对法拉第电磁感应定律进行补充:闭合回路中感应 电流的方向,总是使它所产生的磁场阻碍引起感应电流的原磁通的变 化。这就是楞次定律。
具体地说,如果回路由于磁通增加而引起的电磁感应,则感应电流的磁场与原 来的磁场反向;如果回路由于磁通减少引起电磁感应,则感应电流的磁场与原 来的磁场相同。简要地说,感应电流总是阻碍原磁通的变化。
程度时,磁性物质的全部磁畴的磁场方向都转向与
外部磁场方向一致,磁化磁场的磁感应强度将趋向
某一定值。如图。
B
BJ 磁场内磁性物质的磁化磁场 的磁感应强度曲线;
B0 磁场内不存在磁性物质时的
b •
B
a •
BJ
磁感应强度直线;
B0
B BJ曲线和B0直线的纵坐标相 加即磁场的 B-H 磁化曲线。
O
磁化曲线 H
几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B
磁场强度H的单位 :安培/米(A/m)
电动势三者参考方向一致,则
电感的欧姆 定律
u e Ldi dt
注意
在直流电路中,由于电流变化率为零,所以电 感电压等于零,电感元件相当于短路。
3.2铁磁性材料
磁性材料主要指铁、镍、钴及其合金等。
3.2.1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 (如坡 莫合金,其 r 可达 2105 ) 。
电磁学基础知识
3.1 磁场与电磁感应 3.1.1 电磁学的基本物理量
1、磁感应强度B
表示磁场内某点磁场强弱和方向的物理量。
方向: 与电流的方向之间符合右手螺旋定则。
大小:
B F lI
单位: 特斯拉(T),1T = 1Wb/m2
均匀磁场: 各点磁感应强度大小相等,方向 相同的磁场,也称匀强磁场。
2、 磁通
法拉第电磁感应定律和楞次定律分别从大小和方向两方面阐 述了感应电动势与磁通的关系。
为了便于分析、表达感应电动势,通常设定感应电动势与磁通的参
考方向符合右螺旋关系,则电磁感应定律可用下式表达:对于一匝
线圈由电磁感应所产生的感应电动势为:
eNdd(N )d
dt dt dt
Φ e(t)
式中,磁通的单位为Wb;时间的单位为S;电动势的单位为V。 若线圈匝数为N匝,每匝线圈内穿过的磁通为φ,则与此线圈相交
链的总磁通称为磁链,用ψ表示,即
(1)
此时线圈的感应电动势为
式(1)不仅表明了感应电动势的大小,而且可以表明其方向。
2、自感L
当闭合线圈通电流,就会产生磁场,那么当电流交变,就会 使磁场交变,从而在线圈自身产生感应电动势,这种现象称为 自感现象,这种电动势称为自感电动势eL。
电流通过线圈时产生的磁链ψ与电流i在大小上成正比,为了 便于分析、计算,引入一个参数L,称为线圈的自感系数,即
e d NLi
dt
式中,ψ为磁链;L为自感系数,简称为电感或自感。通 常选择磁链ψ与电流 i在方向上满足右手螺旋定则。
假设线圈中的电阻等于零(由无电阻的导线绕制而成),那么这 个线圈就称之为电感元件,显然它是一个理想元件。
当自感系数L为一个常数,即不随磁链ψ与电流I的改变而改变,这种电感元件 称为线性电感元件,否则即为非线性电感元件。
磁通 :穿过垂直于B方向的面积S中的磁力线总数。 在均匀磁场中 = B S 或 B= /S
说明: 如果不是均匀磁场,则取B的平均值。
磁感应强度B在数值上可以看成为与磁场方向垂直 的单位面积所通过的磁通,故又称磁通密度。
磁通 的单位:韦[伯](Wb) 1Wb =1V·s
3、磁导率μ 磁导率μ来表示物质的导磁性能。μ的单位是H/m(亨/米)。
磁场强度的大小取决于电流的大小、载流导体的形状及几 何位置,而与磁介质无关。
H和B同为矢量。H的方向就是该点B的方向。在后面学到 的磁路问题中,常常用到磁场强度这个物理量。
3.1.4 安培环路定律(全电流定律)
Hdl I
I1 H
式中: H d l 是磁场强度矢量沿任意闭合
I2
线(常取磁通作为闭合回线)的线积分;
磁性材料能被强烈的磁化,具有很高的导磁性 能。
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
3.2.2 磁饱和性
磁性物质由于磁化所产生的磁化磁场不会随着
外磁场的增强而无限的增强。当外磁场增大到一定
0 4π107H/m
相对磁导率 r: 任一种物质的磁导率 和真空的磁导率0的比值。
r
0
注意
不同的介质,磁导率µ也不同。磁导率值大的材料,导磁性能好。
材料分类: 非磁性材料
磁导率与真空磁导率近似相等,即 r ≈ 1 。如空气、
木材、纸、铝等。 铁磁性材料
磁导率远远大于真空磁导率,即 r >> 1 ,可达到
I 是穿过闭合回线所围面积的电流的代数和。
安培环路定律电流正负的规定:
任意选定一个闭合回线的围绕方向,凡是
电流方向与闭合回线围绕方向之间符合右螺
旋定则的电流作为正、反之为负。
在均匀磁场中 Hl = IN 或 H IN l
安培环路定律将电流与磁场强度联系起来。
3.1.2 电磁感应
1、电磁感应定律
法拉第电磁感应定律:
B-H 磁化曲线的特征:
B
Oa段:B 与H几乎成正比地增加;
b •B
ab段: B 的增加缓慢下来;
a •
BJ
b点以后:B增加很少,达到饱和。
有磁性物质存在时,B 与 H不成 O
正比,磁性物质的磁导率不是常
非线
对于铁心线圈来说,电感L不为常数。
性电
感 若为线性电感元件
eLdd t d(dL ti)Ld dti (2)
注
式(1)与式(2)是电动势的两种表达式,
意
一般当电感L为常数时,多采用式(2)。 而分析非线性电感Fra Baidu bibliotek,由于L可变,一般采用式(1)。
3、电感元件上电压与电流的关系
习惯上选择电感元件上的电流、电压、自感
在1831年英国科学家法拉第发现:,变化的磁场能使闭合的回路产生感应 电动势和感应电流。感应电动势的大小正比于回路内磁通对电流的变化率。
楞次定律:
1833年,楞次对法拉第电磁感应定律进行补充:闭合回路中感应 电流的方向,总是使它所产生的磁场阻碍引起感应电流的原磁通的变 化。这就是楞次定律。
具体地说,如果回路由于磁通增加而引起的电磁感应,则感应电流的磁场与原 来的磁场反向;如果回路由于磁通减少引起电磁感应,则感应电流的磁场与原 来的磁场相同。简要地说,感应电流总是阻碍原磁通的变化。
程度时,磁性物质的全部磁畴的磁场方向都转向与
外部磁场方向一致,磁化磁场的磁感应强度将趋向
某一定值。如图。
B
BJ 磁场内磁性物质的磁化磁场 的磁感应强度曲线;
B0 磁场内不存在磁性物质时的
b •
B
a •
BJ
磁感应强度直线;
B0
B BJ曲线和B0直线的纵坐标相 加即磁场的 B-H 磁化曲线。
O
磁化曲线 H
几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B
磁场强度H的单位 :安培/米(A/m)
电动势三者参考方向一致,则
电感的欧姆 定律
u e Ldi dt
注意
在直流电路中,由于电流变化率为零,所以电 感电压等于零,电感元件相当于短路。
3.2铁磁性材料
磁性材料主要指铁、镍、钴及其合金等。
3.2.1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 (如坡 莫合金,其 r 可达 2105 ) 。
电磁学基础知识
3.1 磁场与电磁感应 3.1.1 电磁学的基本物理量
1、磁感应强度B
表示磁场内某点磁场强弱和方向的物理量。
方向: 与电流的方向之间符合右手螺旋定则。
大小:
B F lI
单位: 特斯拉(T),1T = 1Wb/m2
均匀磁场: 各点磁感应强度大小相等,方向 相同的磁场,也称匀强磁场。
2、 磁通
法拉第电磁感应定律和楞次定律分别从大小和方向两方面阐 述了感应电动势与磁通的关系。
为了便于分析、表达感应电动势,通常设定感应电动势与磁通的参
考方向符合右螺旋关系,则电磁感应定律可用下式表达:对于一匝
线圈由电磁感应所产生的感应电动势为:
eNdd(N )d
dt dt dt
Φ e(t)
式中,磁通的单位为Wb;时间的单位为S;电动势的单位为V。 若线圈匝数为N匝,每匝线圈内穿过的磁通为φ,则与此线圈相交
链的总磁通称为磁链,用ψ表示,即
(1)
此时线圈的感应电动势为
式(1)不仅表明了感应电动势的大小,而且可以表明其方向。
2、自感L
当闭合线圈通电流,就会产生磁场,那么当电流交变,就会 使磁场交变,从而在线圈自身产生感应电动势,这种现象称为 自感现象,这种电动势称为自感电动势eL。
电流通过线圈时产生的磁链ψ与电流i在大小上成正比,为了 便于分析、计算,引入一个参数L,称为线圈的自感系数,即
e d NLi
dt
式中,ψ为磁链;L为自感系数,简称为电感或自感。通 常选择磁链ψ与电流 i在方向上满足右手螺旋定则。
假设线圈中的电阻等于零(由无电阻的导线绕制而成),那么这 个线圈就称之为电感元件,显然它是一个理想元件。
当自感系数L为一个常数,即不随磁链ψ与电流I的改变而改变,这种电感元件 称为线性电感元件,否则即为非线性电感元件。
磁通 :穿过垂直于B方向的面积S中的磁力线总数。 在均匀磁场中 = B S 或 B= /S
说明: 如果不是均匀磁场,则取B的平均值。
磁感应强度B在数值上可以看成为与磁场方向垂直 的单位面积所通过的磁通,故又称磁通密度。
磁通 的单位:韦[伯](Wb) 1Wb =1V·s
3、磁导率μ 磁导率μ来表示物质的导磁性能。μ的单位是H/m(亨/米)。
磁场强度的大小取决于电流的大小、载流导体的形状及几 何位置,而与磁介质无关。
H和B同为矢量。H的方向就是该点B的方向。在后面学到 的磁路问题中,常常用到磁场强度这个物理量。
3.1.4 安培环路定律(全电流定律)
Hdl I
I1 H
式中: H d l 是磁场强度矢量沿任意闭合
I2
线(常取磁通作为闭合回线)的线积分;
磁性材料能被强烈的磁化,具有很高的导磁性 能。
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
3.2.2 磁饱和性
磁性物质由于磁化所产生的磁化磁场不会随着
外磁场的增强而无限的增强。当外磁场增大到一定