数学分析12.3一般项级数
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解
目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
12-3——华东师范大学数学分析课件PPT
从而数列S2 m 1是递减的,而数列S2 m 是递增的.
又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套. 由区间套定理, 存
在惟一的实数 S, 使得
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
lim
m
S2m1
lim
m
S2m
S.
所以数列 {Sn } 收敛, 即级数 (1) 收敛.
推论
若级数(1)满足莱布尼茨判别法的条件, 则收敛 级数(1)的余项估计式为
Rn un1 .
对于下列交错级数, 应用莱布尼茨判别法, 容易检验 它们都是收敛的:
数学分析 第十二章 数项级数
Sn
S,
所以对任何正整数 m,都有 m
S,
即级数(7)收敛, 且其和 S.
由于级数(5)也可看作级数(7)的重排, 所以也有
S , 从而得到 S. 这就证明了对正项级数定
理成立. 第二步 证明(7)绝对收敛.设级数(5)是一般项级数 且绝对收敛, 则由级数(6)收敛第一步结论, 可得
um1 um2 umr
因此由柯西准则知级数(5)也收敛. 对于级数(5)是否绝对收敛,可引用正项级数的各种 判别法对级数(6)进行考察.
数学分析 第十二章Байду номын сангаас数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
例1 级数
n 2
n1 n!
原数列的重排. 相应地称级数 uk(n)为级数(5)的重
一般项级数
一般项级数
一般项级数是指在一个系统中,某个变量的变化与其他变量的变化之间的比例关系。
一般项级数通常用字母q表示,表示为q = m/n,其中m和n分别表示变量m和n的系数。
一般项级数的含义和应用非常广泛,可以用于描述物理学、经济学、工程学等领域中的系统。
例如,在物理学中,一般项级数可以用来描述电路中的电容、电阻、电感等元件之间的关系。
在经济学中,一般项级数可以用来描述市场中的供需关系和价格关系。
在工程学中,一般项级数可以用来描述机械系统中的惯性、刚性、柔性等属性之间的关系。
一般项级数的计算方法非常简单,只需要将变量的系数相除即可。
例如,如果一个系统中有两个变量A和B,它们之间的一般项级数为q = 2/3,那么A的变化与B的变化之间的比例为2/3。
总的来说,一般项级数是一种非常重要的数学概念,它在许多领域中都有广泛的应用。
数学分析12.3一般项级数
第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。
数学分析目录
第一章集合1.1集合1.2数集及其确界第二章数列极限2.1数列极限2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射与实函数3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及应用7.1微分中值定理7.2Taylor展开式及应用7.3LHospital法则及应用第八章导数的应用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类R[a,b]9.5定积分性质9.6广义积分9.7定积分与广义积分的计算9.8若干初等可积函数类第十章定积分的应用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理应用10.5近似求积第十一章极限论及实数理论的补充11.1Cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4Abel-Dirichlet 判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的Abel-Dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章Fourier级数15.1Fourier级数15.2Fourier级数的收敛性15.3Fourier级数的性质15.4用分项式逼近连续函数第十六章Euclid空间上的点集拓扑16.1Euclid空间上点集拓扑的基本概念16.2Euclid空间上点集拓扑的基本定理第十七章Euclid空间上映射的极限和连续17.1多元函数的极限和连续17.2Euclid空间上的映射17.3连续映射第十八章偏导数18.1偏导数和全微分18.2链式法则第十九章隐函数存在定理和隐函数求导法19.1隐函数的求导法19.2隐函数存在定理第二十章偏导数的应用20.1偏导数在几何上的应用20.2方向导数和梯度20.3Taylor公式20.4极值20.5Logrange乘子法20.6向量值函数的全导数第二十一章重积分21.1矩形上的二重积分21.2有界集上的二重积分21.3二重积分的变量代换及曲面的面积21.4三重积分、n重积分的例子第二十二章广义重积分22.1无界集上的广义重积分22.2无界函数的重积分第二十三章曲线积分23.1第一类曲线积分23.2第二类曲线积分23.3Green公式23.4Green定理第二十四章曲面积分24.1第一类曲面积分24.2第二类曲面积分24.3Gauss公式24.4Stokes公式24.5场论初步第二十五章含参变量的积分25.1含参变量的常义积分25,2含参变量的广义积分25.3B函数和函数第二十六章Lebesgue积分26.1可测函数26.2若干预备定理26.3Lebesgue积分26.4(L)积分存在的充分必要条件26.5三大极限定理26.6可测集及其测度26.7Fubini定理练习及习题解答复旦大学数学系的数学分析教材从20世纪60年代起出版了几种版本,随着改革开放和对外交流的发展,现代数学观点和方法融入数学分析教材是必然的趋势。
一般项级数
u3v3
L
L
L
L
L
L
L
L
L
对L 角线顺序L
L
u1v1 u1v2 u2v1 u1v3 u2v2 u3v1 L . (15)
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
定理12.14(柯西定理)
阿贝尔判别法和狄利 克雷判别法
若级数un,vn都绝对收敛,则对(13)中 uiv j
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
由此可以立刻推广到收敛级数 un 与有限项和的乘
n1
积,即
m
(a1 a2 L am ) un
akun ,
n1
n1 k 1
那么无穷级数之间的乘积是否也有上述性质?
设有收敛级数
un u1 u2 L un L A,
S2m (u1 u2 ) (u3 u4 ) L (u2m1 u2m ). 由条件(i), 上述两式中各个括号内的数都是非负的,
从而数列S2 m 1是递减的,而数列S2 m 是递增的.
又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套. 由区间套定理, 存
u1 u2 L un L
(6)
收敛, 则称原级数(5)为绝对收敛级数.
定理12.12
绝对收敛的级数是收敛的.
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收级数及其性质
阿贝尔判别法和狄利 克雷判别法
数学分析之数项级数
推 论 如 果 加 括 弧 后 所 成 的 级 数 发 散 ,则 原 来 级 数 也 发 散 .
性质4 (级数收敛的必要条件)
当 n无限,它 增的 大u 一 时 n趋般 于 ,即 项 零
级数收敛 ln im un 0.
证 s un 则 u nsn sn 1, n1 ln i u m nln i s m nln i s m n 1 ss0.
当q1时, ln i m qnln i m sn
如果q 1时
收敛 发散
当q1时, snn a 级数发散 当q1时,级a 数 a a a 变 为
ln im sn不存在 级数发散
综上 aqn
当q 1 时,收敛;
n0
当q 1 时,发散.
例2 讨论数项级数
11 1
(* )
1223 n (n 1 )
1 1 1 . m mp m
因此, 对 任 意 0,可 取 N1, 当m>N及任意正
整数 p,由上式可得 u m 1u m 2 u m pm 1,
依 级 数 收 敛 的 柯 西 准 则 , 知 级 数 n 1 2收敛.
1
注 级数 n 1 n ( n 1 ) 的收敛性已由例2的证明过程所
( c u n d v n ) cu n dv n . 根据级数收敛的柯西准则, 级数 un 的收敛与否与
级数前面有限项的取值无关.从而可得到以下定理. 定理12.3 去掉、增加或改变级数的有限项并不改变 级数的敛散性.
性质3 若级数 un收敛,则 un也收敛
n1
nk1
(k1).且其逆亦真.
Chapt 12 数项级数
级数是数学分析三大组成部分之一, 是逼近理论的基础,是研究函数、进行近 似计算的一种有用的工具. 级数理论的主要 内容是研究级数的收敛性以及级数的应用.
数学分析级数
项级数, 且存在某正数 N0 及常数 l,
(i) 若对一切 n N0, 成立不等式
n un l 1,
(9)
则级数 un 收敛;
(ii) 若对一切 n N0, 成立不等式
n un 1,
(10)
则级数 un 发散.
前页 后页 返回
证 由(9)式有un ln , 因为等比级数 l n 当 1 l 1 时收敛, 故由比较原则, 这时级数 un 也收敛, 对
(5)
前页 后页 返回
则级数 un 收敛.
(ii) 若对一切 n N0, 成立不等式
un1 1,
(6)
un
则级数 un发散.
证 (i) 不妨设不等式 (5) 对一切 n 1 成立,于是有
u2 q, u3 q, , un q, .
u1
u2
un1
前页 后页 返回
把前n-1个不等式按项相乘后,得到
u n n
n 1 4n 4
根据推论1,级数收敛.
前页 后页 返回
例7 讨论级数 nxn1( x 0) 的敛散性.
解 因为
un1 un
(n 1)xn nx n1
x
n1 n
x(n
),
根据推论1,当 0 < x <1时级数收敛;当 x>1时级数发
散; 而当 x = 1时, 所考察的级数是 n, 它显然也是
散性做出判断.
例如 对
1 n2
和
1 n
,
都有
前页 后页 返回
n un 1(n ), 但
1 n2
是收敛的,
而
1 却是 n
发散的.
若(11)式的极限不存在, 则可根据根式 n un 的上极限
数学分析第12章数项级数
第十二章数项级数目的与要求:1。
使学生掌握数项级数收敛性的定狡和收敛级数的性质,掌握等比级数与调和级数的敛散性;2.掌握判别正项级数敛散性的各种方法,包括比较判别法,比式判别法,根式判别法和积分判别法.重点与难点:本章重点是数项级数收敛性的定爻,基本性质和判别正项级数敛散性的各种方法;难点则是应用柯西收敛准则判别级数的敛散性.第一节级数的收敛性一级数的概念在初等数学中,我们知道:任意有限个实数%,“2,…,心相加,其结果仍是一个实数,在本章将讨论无限多个实数相加所可能出现的情形及特征。
如1 1 1 1- + — + —+ ■-• + ― + …2 222' 2n 从直观上可知,其和为1.又如,l + (-l) + l + (-l) + ∙∙. 其和无意义;若将其改写为:(1-1) + (1-1) + (1-1) +…则其和为:0;若写为:1 + [(—1) + 1] + [(—1) + 1] +…则和为:1.(其结果完全不同)。
问题:无限多个实数相加是否存在和;如呆存在,和等于什么。
1级数的概念定狡1 给定一个数列{u ll},将它的各项依次用加号“ + ”连接起来的表达式W l +w2 +M3 + ∙∙∙ + W zr+ ••・称为数项级数或无穷级数(简称级数),其中心称为级数(1)的通项•级数(1)简记为:力“",或工X。
π-!2级数的部分和S ll =ZHk =II l +U2+ ■ • ■ + H n称之为级数工的第"个部分和,简称部分和•/!-13级数的收敛性定狡2 若数项级数的部分和数列{S,r}收敛于S (即肿卢” =S),则称数项级数π-l "th收敛,称S为数项级数的和,记作π-l ∕r-lS = U iI =Ml +M2 +w3 + ∙∙∙ + U n+ …• n-1若部分和数列{S"}发散,则称数项级数发散. π-i例1 试讨论等比级数(几何级数)∞Y aqZ = a + aq + aq2 + …+ + …,(a ≠ 0)n-l的收敛性.解:见P2.例2 讨论级数1 1 1--- + ------- 1 ----- F 1-2 2-3 3-4 的收敛性.1+ ------ + ∕Z(∕Z +解:见P2。
华东师范数学分析- 一般项级数
1 = ln 2 重排后可发散 n
1 1 2k 1 发散,∴n2 > n1使 C2 k n1
n3 1 1 1 1 发散,∴ n3 > n2使 C3 6 k n2 1 2k 1 k n 1 2k 1
ni 1 1 1 1 2k 1 发散,∴ ni > ni-1使 Ci k 1 2k 1 2i 1 ni-1 k ni-1
v
k 1
n
k k
3 A.
证 由(i)知 1 2 , 2 3 , , n1 n 同号.不妨设为正
k 1
n
k k
v ( 1 2 ) 1 ( 2 3 ) 2 ( n1 n ) n1 n n
= v1 v2 vn = vn
性质2(定理12.13 ) 设∑un绝对收敛, 其和为S,
任意重排后的级数∑vn绝对收敛,且和也为S.
性质2(定理12.13 ) 设∑un绝对收敛, 其和为S, 任意重排后的级数∑vn绝对收敛,且和也为S. 注 定理12.13只对绝对收敛级数成立. 但条件收敛级数 适当重排后, 既可以得到发散级数, 也可以收敛于
m n +1 n
u 收敛. / /
m
P24Ex. 1(2,2-6); 3,8 推论 若 (-1)n+1un满足Leibniz判别法的条件, 收敛级数(-1)n+1un的余项估计式: Rn un1 . 1 1 n 1 1 n 1 1 例:(1)1 ( 1) = ( 1) 收敛 2 3 n n n =1
为原级数的一个重排, 发散, ∴重排后级数可发散
数学分析教案(华东师大版)第十二章数项级数
第十二章数项级数教学目的:1.明确认识级数是研究函数的一个重要工具;2.明确认识无穷级数的收敛问题是如何化归为部分和数列收敛问题的;3.理解并掌握收敛的几种判别法,记住一些特殊而常用的级数收敛判别法及敛散性。
教学重点难点:本章的重点是级数敛散性的概念和正项级数敛散性的判别;难点是一般级数敛散性的判别法。
教学时数:18学时§ 1 级数的收敛性一.概念:1.级数:级数,无穷级数 ; 通项 ( 一般项 , 第项 ), 前项部分和等概念 ( 与中学的有关概念联系 ). 级数常简记为.2.级数的敛散性与和 : 介绍从有限和入手, 引出无限和的极限思想 . 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的和、余和以及求和等概念 .例1讨论几何级数的敛散性.(这是一个重要例题!)解时, . 级数收敛 ;时, 级数发散 ;时, , , 级数发散 ;时, , , 级数发散 .综上, 几何级数当且仅当时收敛, 且和为( 注意从0开始 ).例2讨论级数的敛散性.解(利用拆项求和的方法)例3讨论级数的敛散性.解设,,=, ., .因此, 该级数收敛.例4 讨论级数的敛散性.解, . 级数发散.3.级数与数列的关系 :对应部分和数列{}, 收敛 {}收敛;对每个数列{}, 对应级数, 对该级数, 有=. 于是,数列{}收敛级数收敛.可见 , 级数与数列是同一问题的两种不同形式 .4. 级数与无穷积分的关系 :, 其中. 无穷积分可化为级数 ;对每个级数, 定义函数 , 易见有=.即级数可化为无穷积分.综上所述 , 级数和无穷积分可以互化 , 它们有平行的理论和结果 .可以用其中的一个研究另一个 .二.级数收敛的充要条件——Cauchy准则:把部分和数列{}收敛的Cauchy准则翻译成级数的语言,就得到级数收敛的Cauchy准则 .Th ( Cauchy准则 ) 收敛和N,.由该定理可见, 去掉或添加上或改变 ( 包括交换次序 ) 级数的有限项 , 不会影响级数的敛散性 . 但在收敛时 , 级数的和将改变 . 去掉前项的级数表为或.系( 级数收敛的必要条件 ) 收敛.例5证明级数收敛 .证显然满足收敛的必要条件 . 令, 则当时有应用Cauchy准则时,应设法把式 ||不失真地放大成只含而不含的式子,令其小于,确定.例6判断级数的敛散性.( 验证. 级数判敛时应首先验证是否满足收敛的必要条件 )例7( 但级数发散的例 ) 证明调和级数发散 .证法一( 用Cauchy准则的否定进行验证 )证法二证明{}发散. 利用已证明的不等式. 即得,.三.收敛级数的基本性质:(均给出证明)性质1 收敛,—Const 收敛且有=( 收敛级数满足分配律 )性质2 和收敛,收敛, 且有=.问题 : 、、三者之间敛散性的关系.性质3 若级数收敛 , 则任意加括号后所得级数也收敛 ,且和不变 . ( 收敛数列满足结合律 )例8考查级数从开头每两项加括号后所得级数的敛散性 .该例的结果说明什么问题 ?§ 2 正项级数一. 正项级数判敛的一般原则 :1.正项级数 : ↗; 任意加括号不影响敛散性.2.基本定理 :Th 1 设. 则级数收敛 . 且当发散时, 有, . ( 证 )正项级数敛散性的记法 .3.正项级数判敛的比较原则 :Th 2 设和是两个正项级数 , 且时有, 则ⅰ> <, <;ⅱ> =, =.( ⅱ> 是ⅰ>的逆否命题 )例1考查级数的敛散性 .解有例2设. 判断级数的敛散性 .推论1 ( 比较原则的极限形式 ) 设和是两个正项级数且,则ⅰ> 时 , 和共敛散 ;ⅱ> 时 , <, <;ⅲ> 时 , =, =. ( 证 )推论2 设和是两个正项级数 , 若=,特别地,若~,,则<=.例3判断下列级数的敛散性:⑴; ( ~) ; ⑵ ;⑶ .二.正项级数判敛法:1.检比法:亦称为 D’alembert判别法 .用几何级数作为比较对象 , 有下列所谓检比法 .Th 3 设为正项级数 , 且及时ⅰ> 若, <;ⅱ>若, =.证ⅰ> 不妨设时就有成立 , 有依次相乘 , , 即. 由 , 得, <.ⅱ>可见往后递增 , .推论( 检比法的极限形式 ) 设为正项级数 , 且. 则ⅰ> <, <; ⅱ> >或=, =. ( 证 )註倘用检比法判得=, 则有.检比法适用于和有相同因子的级数,特别是中含有因子者.例4 判断级数的敛散性.解, .例5讨论级数的敛散性.解.因此, 当时, ; 时, ; 时, 级数成为, 发散.例6判断级数的敛散性 .注意对正项级数,若仅有,其敛散性不能确定 . 例如对级数和, 均有,但前者发散, 后者收敛 .2. 检根法( Cauchy判别法 ): 也是以几何级数作为比较的对象建立的判别法.Th 4 设为正项级数 , 且及, 当时 ,ⅰ>若 , <;ⅱ>若, =. ( 此时有.) ( 证 )推论( 检根法的极限形式 ) 设为正项级数 , 且. 则 , <; , =. ( 证 )检根法适用于通项中含有与有关的指数者 . 检根法优于检比法.例7研究级数的敛散性 .解, .例8判断级数和的敛散性 .解前者通项不趋于零 , 后者用检根法判得其收敛 .3.积分判别法:Th 5 设在区间上函数且↘ . 则正项级数与积分共敛散.证对且.例9 讨论级数的敛散性.解考虑函数0时在区间上非负递减 . 积分当时收敛 , 时发散. 级数当时收敛 ,时发散. 时, , 级数发散.综上 , 级数当且仅当时收敛 .例10 讨论下列级数的敛散性:⑴ ; ⑵.习题课一.直接比较判敛:对正项级数,用直接比较法判敛时 , 常用下列不等式:⑴ .⑵对, 有.⑶; 特别地 , 有, .⑷时 , 有.⑸.⑹充分大时 , 有.例1判断级数的敛散性.解时, , ( 或). ……例2判断级数的敛散性 , 其中.解时 , 有;时 , .例3设数列有界 . 证明.证设 .例4设且数列有正下界 . 证明级数.证设.例5 . 若, 则.证 ; 又.例6 设. 若级数和收敛 ,则级数收敛.例7 设. 证明⑴ , , ;⑵和之一或两者均发散时, 仍可能收敛 ;⑶, , .证⑴充分大时 , .⑵取.⑶.二. 利用同阶或等价无穷小判敛 :例8 判断下列级数的敛散性:⑴; ⑵; ⑶ ;⑷ ; ⑸.例9 判断下列级数的敛散性:⑴; ⑵.註设正项级数的通项为的有理分式 . 当为的假分式时, 由于, ; 若为的真分式 , 倘用检比法, 必有.有效的方法是利用等价无穷小判别法.例10 设函数在点有连续的二阶导数, 且. 试证明:⑴若, 则级数发散.⑵若, 则级数收敛.(2002年西北师大硕士研究生入学试题)解把函数在点展开成带二阶Lagrange型余项的Maclaurin 公式, 有, 介于与之间.⑴若,则当充分大时不变号, 可认为是同号级数. 有∽, 发散.⑵若注意到在点连续, 在点的某邻域内有界, 设, 有 ||=., 收敛.如例10所示,当时,常用Maclaurin公式确定的等价无穷小.例11 判断级数的敛散性 , 其中且.解三.利用级数判敛求极限:原理 : 常用判定级数收敛的方法证明或.例12 证明.例13 证明.例14 设↘. 若, .证对, 由, 有, 即;,即.于是 , 时总有. 此即.§ 3 一般项级数一. 交错级数 : 交错级数 , Leibniz型级数 .Th 1 ( Leibniz ) Leibniz型级数必收敛 , 且余和的符号与余和首项相同 , 并有.证( 证明部分和序列的两个子列和收敛于同一极限 . 为此先证明递增有界. ), ↗;又, 即数列有界.由单调有界原理, 数列收敛 . 设.. .由证明数列有界性可见 , . 余和亦为型级数, 余和与同号, 且.例1判别级数的敛散性.解时 , 由Leibniz判别法, 收敛; 时, 通项, 发散.二. 绝对收敛级数及其性质 :1.绝对收敛和条件收敛: 以Leibniz级数为例, 先说明收敛绝对收敛.Th 2 ( 绝对收敛与收敛的关系 ) , 收敛.证( 用Cauchy准则 ).一般项级数判敛时, 先应判其是否绝对收敛.例2判断例1中的级数绝对或条件收敛性 .2. 绝对收敛级数可重排性 :⑴同号项级数:对级数,令则有ⅰ> 和均为正项级数 , 且有和;ⅱ> , .⑵同号项级数的性质:Th 3 ⅰ> 若,则,.ⅱ> 若条件收敛 , 则 , .证ⅰ> 由和, ⅰ> 成立 .ⅱ> 反设不真 , 即和中至少有一个收敛 , 不妨设.由= , =以及和收敛 ,.而, ,与条件收敛矛盾 .⑶绝对收敛级数的可重排性: 更序级数的概念.Th 4 设是的一个更序 . 若, 则, 且=.证ⅰ> 若,则和是正项级数 , 且它们的部分和可以互相控制.于是 , , , 且和相等 .ⅱ>对于一般的, = , =.正项级数和分别是正项级数和的更序 . 由, 据Th 1 , 和收敛 . 由上述ⅰ>所证 , 有, , 且有=, =, =.由该定理可见 , 绝对收敛级数满足加法交换律 .是否只有绝对收敛级数才满足加法交换律呢 ? 回答是肯定的 .Th 5 ( Riemann ) 若级数条件收敛 , 则对任意实数( 甚至是) , 存在级数的更序, 使得=.证以Leibniz级数为样本 , 对照给出该定理的证明 .关于无穷和的交换律 , 有如下结果:ⅰ>若仅交换了级数的有限项 , 的敛散性及和都不变 .ⅱ>设是的一个更序 . 若, 使在中的项数不超过,则和共敛散 , 且收敛时和相等 .三. 级数乘积简介:1. 级数乘积 : 级数乘积 , Cauchy积.[1] P20—21.2.级数乘积的Cauchy定理:Th 6 ( Cauchy ) 设, , 并设=,=. 则它们以任何方式排列的乘积级数也绝对收敛 , 且乘积级数的和为. ( 证略 )例3 几何级数是绝对收敛的. 将按Cauchy乘积排列, 得到.四. 型如的级数判敛法:1.Abel判别法:引理1 (分部求和公式,或称Abel变换)设和()为两组实数.记. 则.证注意到, 有.分部求和公式是离散情况下的分部积分公式. 事实上 ,.可见Abel变换式中的相当于上式中的, 而差相当于, 和式相当于积分.引理2 (Abel ) 设、和如引理1 .若单调 , 又对,有,则.证不妨设↘..系设↘, (). 和如. 有.( 参引理2证明 )Th 7 (Abel判别法 ) 设ⅰ> 级数收敛,ⅱ> 数列单调有界 . 则级数收敛 .证 ( 用Cauchy收敛准则 , 利用Abel引理估计尾项 )设, 由收敛 , 对时 , 对, 有. 于是当时对有.由Cauchy收敛准则 , 收敛.2. Dirichlet判别法:Th 8 ( Dirichlet) 设ⅰ> 级数的部分和有界, ⅱ> 数列单调趋于零 . 则级数收敛 .证设, 则, 对, 有.不妨设↘0 , 对. 此时就有.由Cauchy收敛准则 , 收敛.取↘0 , , 由Dirichlet判别法 , 得交错级数收敛 . 可见Leibniz判别法是Dirichlet判别法的特例.由Dirichlet判别法可导出Abel判别法 . 事实上 , 由数列单调有界 , 收敛 , 设. 考虑级数, 单调趋于零 , 有界, 级数收敛 , 又级数收敛, 级数收敛.例4 设↘0. 证明级数和对收敛.证,时,,.可见时, 级数的部分和有界 . 由Dirichlet判别法推得级数收敛 . 同理可得级数数收敛 .习题课例1判断级数的敛散性 .解注意到, 所论级数绝对收敛 , 故收敛. ( 用D-判法亦可).例2 考查级数的绝对及条件收敛性 .解时为Leibniz型级数, ……, 条件收敛 ;时 , 绝对收敛 .例3 若. 交错级数是否必收敛 ?解未必. 考查交错级数.这是交错级数 , 有. 但该级数发散 . 因为否则应有级数收敛 . 而.由该例可见 , 在Leibniz判别法中 , 条件单调是不可少的.例4 判断级数的敛散性.解从首项开始,顺次把两项括在一起, 注意到, 以及级数, 所论级数发散.例5设级数收敛. 证明级数收敛.证 . 由Abel或Dirichlet判法, 收敛.例6, 判断级数的敛散性.解., 现证级数收敛 : 因时不,又↘, 由Dirichlet判法, 级数收敛.故本题所论级数发散.例7判断级数的绝对收敛性.解由Dirichlet判法,得级数收敛.但.仿例6 讨论,知本题所论级数条件收敛.例8 设级数绝对收敛,收敛. 证明级数收敛.证先证数列收敛 . 事实上,收敛 ,收敛.令, 则数列收敛 ,故有界 . 设, 于是由Abel变换, 有, ( 或而,收敛. 又数列和收敛, 数列收敛 , 部分和数列收敛.例9设数列收敛 , 级数收敛 . 证明级数收敛 .证注意到,收敛 .例10设↘,.证明级数收敛.证法一由↘,↘,. 因此,所论级数是Leibniz型级数, 故收敛.证法二 , ↘,. 由Dirichlet判法, 收敛.. .。
《数学分析》 第十二章 数项级数 1
(
1 2m
1
1 2m
2
1 2m1
)
每项均大于1
2m项
2
即前m 1项大于(m 1) 1 2
级数发散 .
由性质4推论,调和级数发散.
五、小结
常数项级数的基本概念
基本审敛法
1.由定义,若sn s,则级数收敛;
2.当lim n
un
0,则级数发散;
3.按基本性质.
思考题
设 bn 与 cn 都收敛,且bn an cn
lim
n
sn不存在
发散
综上
n0
aq
n
当q 当q
1时,收敛 1时, 发散
例 2 判别无穷级数
1 1
1
的收敛性.
13 35
(2n 1) (2n 1)
解
un
(2n
1 1)(2n
1)
1( 1 2 2n
1
1 2n
), 1
sn
1 1
1
13 35
(2n 1) (2n 1)
1 (1 1) 1 (1 1) 1 ( 1 1 )
1 (4)2 39
1 (4)n2 ]} 39
n 2,3,
于是有
lim
n
Pn
1
lim
n
An
A1
(1
1
3
4
)
A1 (1
3) 5
2 3. 5
9
雪花的面积存在极限(收敛).
结论:雪花的周长是无界的,而面积有界.
例 1 讨论等比级数(几何级数)
aqn a aq aq2 aqn (a 0)
n0
的收敛性.
§12.3 一般项级数 数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件解析
定理12.11(莱布尼茨判别法) 交错级数11234(1)(1)n n u u u u u +-+-++-+>=(0,1,2,),n u n 若级数的各项符号正负相间, 即则称为交错级数. 若交错级数(1)满足:(i){};n u 数列单调递减→∞=(ii)lim 0,n n u 则级数(1)收敛.后退 前进 目录 退出证 考察交错级数(1)的部分和数列{S n }, 和偶数项分别为---=-----211232221()(),m m m S u u u u u -=-+-++-21234212()()().m m m S u u u u u u 由条件(i), 上述两式中各个括号内的数都是非负的,(ii)又由条件知道从而{ [S 2m , S 2m-1] }是一个区间套.212200(),m m m S S u m -<-=→→∞在惟一的实数 S, 使得它的奇数项 {}是递减的,从而数列12-m S {}.2是递增的而数列m S 由区间套定理, 存推论-→∞→∞==212lim lim .m m m m S S S {},(1).n S 所以数列收敛即级数收敛若级数(1)满足莱布尼茨判别法的条件, 则收敛级数(1)的余项估计式为+≤1.n n R u 对于下列交错级数, 应用莱布尼茨判别法, 容易检验 它们都是收敛的:+-+-++-+-111111(1);(3)3!5!7!(21)!n n 12341234(1).(4)1010101010n n n +-+-++-+11111(1);(2)231n n +-+++-++定理12.1212(5)n u u u ++++++++12(6)n u u u 收敛,各项绝对值组成的级数绝对收敛的级数是收敛的.绝对收敛级数及其性质若级数则称原级数(5)为绝对收敛级数.由于++++++12m m m ru u u 因此由柯西准则知级数(5)也收敛.+++≤+++12m m m r u u u <ε对于级数(5)是否绝对收敛,可引用正项级数的各种 判别法对级数(6)进行考察.整数 r , 有++++++<12m m m r u u u ε证 由于级数(6)收敛,根据级数的柯西收敛准则, 对 ,ε于任意正数N 总存在正数,n N >使得对和任意正=++++∑2.!2!!nnn n αααα+→∞→∞==+1lim lim 0,1n n n nu u n α的各项绝对值所组成的级数是因此, 所考察的级数对任何实数 α都绝对收敛.例1 级数∞==++++∑21!2!!nnn n n αααα,α应用比式判别法,对于任意实数都有全体收敛的级数可分为绝对收敛级数与条件收敛级 数两大类.若级数(5)收敛,但级数(6)不收敛,则称级数(5)为条 件收敛. 12(5)n u u u ++++++++12(6)n u u u ()∑∞=--1111n n n 条件收敛,例如级数()()21111110,nn nn n n n ∞∞==--∑∑而.均绝对收敛相应地称级数 ()1k n n u ∞=∑为级数(5)的重++++12,(7)n v v v 作:()f n k n →称为正整数列的重排, →()(){}:{}n n k n k n u F u u u 按映射所得到的数列称为我们把正整数列{1,2,…,n , …}到它自身的一一映射1.级数的重排下面讨论绝对收敛级数的两个重要性质. 相应地对于数列原数列的重排. .排(),n k n v u =为叙述上的方便,记()写即把级数∑∞=1n n k u定理12.13第一步 设级数(5)是正项级数, 部分和. =+++12m mv v v σ表示级数(7)的第m 个部分和. ≤≤(1)k v k m ki u 的重排, 所以每一 应等于某一 (1).k m ≤≤记=12max{,,},m n i i i *证 只要对正项级数证明了定理的结论, 对绝对收 敛级数就容易证明定理是成立的.所得到的级数(7)绝对收敛且和也为S .设级数(5)绝对收敛, 且其和等于S , 则任意重排后 用S n 表示它的第 n 个 用因为级数(7)为级数(5)即级数(7)收敛, 且其和 ≤.S σ由于级数(5)也可看作级数(7)的重排, 所以也有 S σ≤S =σ, 从而得到 . 这就证明了对正项级数定 理成立.第二步 证明(7)绝对收敛.且绝对收敛, ∑nv收敛, 则对于任何,m .n m S n ≤σ,使都存在,lim S S n n =∞→由于,,m m S σ≤所以对任何正整数都有设级数(5)是一般项级数 则由级数(6)收敛第一步结论, 可得即级数(7)是绝对收敛的.0,0,0;n n n n u p u q ≥=≥=当时0,0,0.n n n n n u p q u u 当时从而<===-≥要把一般项级数(5)分解成正项级数的和. 第三步 证明绝对收敛级数(7)的和也等于S . 一步的证明, 收敛的正项级数重排后和不变, 根据第 所以先 为此令,2nn n u u p +=)8( .2n n n u u q -=,0n n u p ≤≤)9( ,0n n u q ≤≤,n n n u q p =+)10( .n n n u q p =-==-∑∑∑.n n n S u p q 对于级数(5)重排后所得到的级数(7), ''=-∑∑∑,n nn v p q ''∑∑∑∑,,nn n n p q p q 显然分别是正项级数的重排,办法, 把它表示为两个收敛的正项级数之差其和不变, 从而有''=-=-=∑∑∑∑∑.n nn n n v p q p q S ∑∑,n n p q 知 都是收敛的正项级数. 因此由级数(5)绝对收敛, 及(9)式, 也可按(8)式的注 定理12.13只对绝对收敛级数成立. 数重排后得到的新级数不一定收敛,不一定收敛于原来的和.适当重排后, 既可以得到发散级数,设其和为A , 即+-=-+-+-+-+=∑111111111(1)1.2345678n A n 1,2乘以常数后有例如级数 ()1111n n n ∞-=-∑条件收敛, 条件收敛级 即使收敛, 也 更进一步, 条件收敛级数 也可以收敛于 任何事先指定的数.+-=-+-+=∑1111111(1).224682n An +-++-+=1111131.325742A 将上述两个级数相加, 得到的是(2)的重排: 我们也可以重排(2)使其发散(可参考数学分析学习指导书下册). 2. 级数的乘积=∑∑,n n a u au ∑n u 由定理12.2知道, 若 为收敛级数, a 为常数, 则由此可以立刻推广到收敛级数 ∞=∑1n n u 与有限项和的乘积,即∞∞===+++=∑∑∑12111(),mm n k n n n k a a a u a u 那么无穷级数之间的乘积是否也有上述性质? =++++=∑12,(11)nn uu u u A 12.(12)nn vv v v B =++++=∑将级数(11)与(12)中每一项所有可能的乘积列成下设有收敛级数表:111213121222323132333123(13)n n n n n n n nu v u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v i j u v 这些乘积可以按各种方法排成不同的级数, 用的有按正方形顺序或按对角线顺序.依次相加后,有 +++++1112222113u v u v u v u v u v ++++23333231(14)u v u v u v u v 常111213121222323132333123n n n n n n n nu v u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v ↓↓↓↓←↓↓↓←←↓↓←←←↓↓←←←←正方形顺序111221132231.(15)u v u v u v u v u v u v ++++++111213212223313233u v u v u v u v u v u v u v u v u v ↓→↵↵←↵←对角线顺序定理12.14(柯西定理)i ju v 则对(13)中 且其和等于AB.*证 ,n n S w 以表示级数的部分和即∑==(1,2,,),k k k i j w u v k n 其中记=+++12,n n S w w w =1122max{,,,,,,},n n m i j i j i j =+++12,m m A u u u =+++12,m m B v v v ∑∑都绝对收敛,若级数n n v u ,∑n w 按任意顺序排列所得到的级数 也绝对收敛,≤.(16)n m m S A B 则必有∑n v 与{}{}n n A B 和的部分和数列 都是有界的.因而∑nu{}n S ∑nw 于是由不等式(16)知 是有界的, 从而级数∑n w .S AB = 下面证明 的和 由于绝对收敛级数具有可重排的性质,与采用哪一种排列的次序无关, 顺序并对各被加项取括号, 即由定理条件,级数(11)与(12)都绝对收敛, 绝对收敛. 即级数的和 为此, 采用正方形+++++123,(17)n p p p p 将每一括号作为一项, 得到新级数++++11122221()u v u v u v u v +++++1323333231(),u v u v u v u v u v ∑n w 它与级数同收敛, 且和相同. =.n n n P A B n P 与 n n A B 与则 有关系式:从而n P 表示(17)的用 部分和, n n n n n B A P S ∞→∞→==lim lim n n n n B A ∞→∞→=lim lim .AB =211,11nr r r r r=+++++<-例2 等比级数 ∑2()n r 将按(15)的顺序排列, 则得到2222111()()(),(1)nnn r r r r r r r r +=++++++++++-=++++++2123(1).nr r n r 注 级数乘积在幂级数(第十四章)中有重要应用.是绝对收敛的.引理(分部求和公式,也称阿贝尔变换)阿贝尔判别法和狄利克雷判别法下面介绍两个判别一般项级数收敛性的方法.,(1,2,,),,i j v i n ε设两组实数若令==+++=12(1,2,,),k k v v v k n σ121232111()()().(18)ni in n n n n i vεεεσεεσεεσεσ--==-+-++-+∑则有如下分部求和公式成立:证 -==-=111,(2,3,,)k k k v v k n σσσ以 分别乘以=(1,2,,),k k n ε 整理后就得到所要证的公式(18).推论(阿贝尔引理)=12(i),,,max{};n k kεεεεε是单调数组,记(ii)(1),k k k n A σ对任一正整数有则有≤≤≤=≤∑13.(19)nk kk vA εε12231n n-若证 由(i)知 都是同号的. 121232111()()()nk kn n n n nk v εεεσεεσεεσεσ--==-+-++-+∑12231()()()n n nA A εεεεεεε-≤-+-++-+1n n A A εεε=-+1(2)n A εε≤+3.A ε≤于是由分部求和公式及条件(ii)推得定理12.15(阿贝尔判别法)且级数 ∑n b 收敛, {}n a 0,.n M a M 使>≤证 由于数列 单调有界, 使当 n >N 时,对任一正整数 p ,都有+=<∑.n p kk nbε1122(20)n n n n a b a b a b a b =++++∑现在讨论形如级数的收敛性的判别法.若 {}n a 为单调有界数列,故存在 ,收敛又由于∑n b ,ε数依柯西准则,对任意正存在正数N , 则级数(20)收敛.定理12.16(狄利克雷判别法)+=≤∑3.n p k kk na bM ε这就说明级数(20)收敛.若数列{a n }单调递减, →∞=lim 0,n n a 且 ∑n b 又级数 的部分和数列有界, 则级数(20)收敛.∑n b 1nn n k V b ==∑证 由于 部分和数列 有界, 数M , 使 ||,n V M ≤ 因此当 n , p 为任何正整数时,(阿贝尔引理条件(ii)). 应用(19)式得到故存在正12||||2.n n n p n p n b b b V V M +++++++=-≤{}n a →∞=lim 0,n n a 又由于数列 单调递减, 且 0,ε∀> 对 ++++++11||n n n p n p a b a b <6.M ε有了阿贝尔判别法就知道: 若级数 ∑n u 收敛, 则(0),1nnp u u p nn >+∑∑级数都收敛.,N ∃.ε<>n a N n 时,有当)式得到于是根据(19++≤+12(||2||)n n p M a a例3 若数列{a n }具有性质:→∞≥≥≥≥=12,lim 0,n n n a a a a ∈∑∑sin cos (0,2)n n a nx a nx x π则级数和对任何都收敛.=⎛⎫⎛⎫+=+-+⎪ ⎪⎝⎭⎝⎭∑1132sin cos sin sin sin 22222nk x x x kx x ⎡⎤⎛⎫⎛⎫++-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦11sin sin 22n x n x 解 因为1sin ,2n x ⎛⎫=+ ⎪⎝⎭∈≠(0,2),sin 0,2x x π当时故得到=⎛⎫+ ⎪⎝⎭+=∑11sin 12cos .(21)22sin 2n k n x kx x ∑cos nx ∈(0,2)x π所以级数 的部分和数列当 时有sin .n a nx ∑理可证级数也是收敛的∈(0,2).x π对一切都收敛sin cos nx nx n n∑∑和作为例3 的特例, 级数 界,.cos 收敛数由狄利克雷判别法得级∑nx a n 同例4* 级数 21sin (1)n n n n ∞=-∑收敛但不绝对收敛. 解 由于 21sin (1)n n n n ∞=-∑的绝对值级数为 211sin 11cos2,2n n n n n n n ∞∞==⎛⎫=- ⎪⎝⎭∑∑∞=∑21sin n n n 发散.21sin (1cos2),2n n =-又因得发散,其中∑∞=11n n 123cos n n n ∞=∑收敛(根据例结论),故∞=-∑11(1),n n n 由于级数收敛而11cos2cos(2)(1),n n n n n n n π∞∞==+-=∑∑21sin (1)n n n n ∞=-∑所以级数 为条件收敛. 211sin 11cos2(1)(1)2n n n n n n n n n ∞∞==⎛⎫-=-- ⎪⎝⎭∑∑,也收敛,根据例321sin (1).n n n n ∞=-∑因此级数收敛复习思考题n u ∑n v ∑1. 假设级数 绝对收敛, 级数 条件收敛, 问级数 ()n n u v +∑是绝对收敛还是条件收敛?lim 0,2,n n n n nu u v l v →∞=≠∑∑对于一般项级数与从.能?n n u v ∑∑否得出与同敛散3. 总结一般项级数条件收敛或绝对收敛的判别步 骤.。
数学分析(下)12-3一般项级数
§3 一般项级数由于非正项级数(一般项级数)的收敛性问题要比正项级数复杂得多, 所以本节只对某些特殊类型级数的收敛性问题进行讨论.一、交错级数二、绝对收敛级数及其性质三、阿贝尔判别法和狄利克雷判别法返回一、交错级数11234(1)(1)n n u u u u u +-+-++-+>=(0,1,2,),n u n 若级数的各项符号正负相间, 即则称为交错级数.定理12.11(莱布尼茨判别法)若交错级数(1)满足:(i){};n u 数列单调递减®¥=(ii)lim 0,n n u 则级数(1)收敛.证考察交错级数(1)的部分和数列{S n },它的奇数项和偶数项分别为---=-----211232221()(),m m m S u u u u u -=-+-++-21234212()()().m m m S u u u u u u 由条件(i), 上述两式中各个括号内的数都是非负的,212{}{}.m m S S -从而数列是递减的,而数列是递增的(ii)又由条件知道从而{ [S 2m , S 2m-1] }是一个区间套.由区间套定理,存212200(),m m m S S u m -<-=®®¥二、绝对收敛级数及其性质整数r, 有若级数(5)收敛,但级数(6)不收敛,则称级数(5)为条件收敛.例如级数(2)是条件收敛,而级数(3)、(4)则是绝对收敛.全体收敛的级数可分为绝对收敛级数与条件收敛级数两大类.下面讨论绝对收敛级数的两个重要性质.1.级数的重排我们把正整数列{1,2,…,n, …}到它自身的一一映射原数列的重排. 相应地称级数()1k n n u ¥=å为级数(5)的重¥==å()()1.,,n k n k n n v u u 排为叙述上的方便记即把级数写++++12,(7)n v v v 作定理12.13 设级数(5)绝对收敛, 且其和等于S , 则任意重排后所得到的级数(7)绝对收敛且和也为S .:()f n k n ®称为正整数列的重排, 相应地对于数列®()(){}:{}n n k n k n u F u u u 按映射所得到的数列称为第一步设级数(5)是正项级数, 用S n 表示它的第n 个部分和. 用=+++12m mv v v s 表示级数(7)的第m 个部分和. 因为级数(7)为级数(5) ££(1)k v k m ki u 的重排, 所以每一应等于某一(1).k m ££记=12max{,,},m n i i i *证只要对正项级数证明了定理的结论,对绝对收敛级数就容易证明定理是成立的.==-ååå.n n n S u p q 对于级数(5)重排后所得到的级数(7), 也可按(8)式的¢¢=-ååå,n nn v p q ¢¢åååå,,nn n n p q p q 显然分别是正项级数的重排,办法, 把它表示为两个收敛的正项级数之差其和不变, 从而有¢¢=-=-=ååååå.nnnnnv p q p qS åå,n n p q 由级数(5)绝对收敛, 及(9)式, 知都是收敛的正项级数. 因此111111A由此可以立刻推广到收敛级数¥=å1n n u 与有限项和的乘积,即¥¥===+++=ååå12111(),mm n k n n n k a a a u a u 那么无穷级数之间的乘积是否也有上述性质?=++++=å12,(11)nn u u u u A 12.(12)nn vv v v B =++++=å将级数(11)与(12)中每一项所有可能的乘积列成下设有收敛级数表:¯¯¯¯依次相加,于是分别有=+++,S w w w{}n S ån w 于是由不等式(16)知是有界的, 从而级数ån w .S AB =绝对收敛. 下面证明的和由于绝对收敛级数具有可重排的性质, 即级数的和与采用哪一种排列的次序无关,为此,采用正方形+++++123,(17)n p p p p 顺序并对各被加项取括号, 即将每一括号作为一项, 得到新级数++++11122221()u v u v u v u v +++++1323333231(),u v u v u v u v u våw它与级数P1三、阿贝尔判别法和狄利克雷判别法下面介绍两个判别一般项级数收敛性的方法.引理(分部求和公式,也称阿贝尔变换),(1,2,,),,i j v i n e 设两组实数若令==+++=12(1,2,,),k k v v v k n s 121232111()()().(18)ni in n n n n i ve e e s e e s e e s e s --==-+-++-+å则有如下分部求和公式成立:证-==-=111,(2,3,,)k k k v v k n s s s 以分别乘以enåbn p +1æöå2n n sin11cos2¥¥æö¥1复习思考题作业P25-26:1(2)(6)(7)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。