《平方根》教学设计(第1课时)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平方根》教学设计(第1课时)

一、内容和内容解析

1.内容

算术平方根的概念,被开方数越大,对应的算术平方根也越大.

2.内容解析

算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要.作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备.

算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定.由算术平方根的概念引出其符号表示、读法及什么是被开方数.

根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根.根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法.

基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.

二、目标和目标解析

1.教学目标

(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方

根.

(2)会求一些数的算术平方根.

2.目标解析

(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数.

(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大.

三、教学问题诊断分析

在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识.但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯.还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解.

基于以上分析,本节课的教学难点是:深化对算术平方根的理解.

四、教学过程设计

1.创设情境,引入新课

教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题.

问题1 请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?

师生活动学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性.

设计意图:通过“神州七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情.

2.师生互动,学习新知

问题2学校要举行美术作品比赛,小鸥想裁出一块面积为25dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

师生活动:学生可能很快答出边长为5dm.

追问请说一说,你是怎样算出来的?

师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.

设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材.

问题3完成下表:正方形的面积/dm191636边长/dm

师生活动:学生可能很快答出.

设计意图:通过多个已知正方形面积求边长问题的解答,加强学

生对这种运算的理解,为引出算术平方根作好铺垫.

问题4 你能指出问题2与问题3的共同特点吗?

师生活动:学生可能回答:上述问题都是“已知一个正方形的面积,求这个正方形的边长”的问题,教师可引导学生进一步归纳为“已知一个正数的平方,求这个正数”的问题,从而揭示问题的本质.在此基础上教师给出算术平方根的定义.

一般地,如果一个正数的平方等于,即,那么这个正数叫做的算术平方根.的算术平方根记为,读作“根号”,叫做被开方数.

问题5 上面就一个正数给出了算术平方根的定义,那么,你认为“0的算术平方根是多少?”“怎样表示”比较合适呢?

师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;

教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分.

追问(1) 根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?

师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.

追问(2) 为什么负数没有算术平方根呢?

师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.

设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯.

追问(3) 请判断正误:

(1)-5是-25的算术平方根;

(2)6是的算术平方根;

(3)0的算术平方根是0;

(4)0.01是0.1的算术平方根;

(5)一个正方形的边长就是这个正方形的面积的算术平方根.

师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.

设计意图:检验对算术平方根的理解.

3.例题示范,学会应用

例1 求下列各数的算术平方根:

(1)100;(2);(3)0.0001.

师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流.

追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?

师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论.如有困难,教师再举一些具体例子加以引导,说明.

设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大.为下节课学习估计平方根的大小做准备.

相关文档
最新文档