东北大学10数值分析A(研)答案
东北大学10数值分析B(研)答案
为什么? 解 由于 f ( x, y ) xye y 关于 y 满足 Lipschitz 条件, 2分 5分 的差分公式:
所以,改进 Euler 法收敛。
h y n 1 y n 4 (3k1 k 2 ) k f (x , y ) n n 1 k 2 f ( x n 2h, y n 2hk1 ) y0
1 3 1 3 , x2 2 6 2 6
4分
1 1 1 3 1 3 ) f( )] 积分公式为: f ( x)dx [ f ( 0 2 2 6 2 6
6分
解得: a 1 / 3, b 13 / 18 0.7222 , 拟合曲线为: y
13 2 1 x 18 3
y ( x n 1 ) y ( x n ) y ( x n )h
y n hf n
h2 h3 y ( x n ) y ( x n ) O(h 4 ) 2 6
5分
h 2 f n f n ( fn ) 2 x y
2 fn 2 f n 2 f n f n f h3 2 f n [ 2 2 fn fn ( n ) 2 f h ] O(h 4 ) 2 6 x xy x y y y
。
解
3 2 4.(6 分)设 xk 1 xk axk bxk c, k 0,1,2,... 是求方程根 1 的迭代法,试确定
1/ 3 1/ 3 0 0 1 / 3 ,所以 B 由于 B 13 1/ 2 1/ 4 0
1 1 9 所以, H 3 ( x) ( x 2)( x 2 4 x 1) x 3 3x 2 x 1 2 2 2 9. 分)给定离散数据 (7
东北大学 数值分析 08数值分析(研)答案
y n1 y n
f 1 h 2 f n hfn ( n fn ) 3 3 x y ( 2
2 2 fn 2 fn 2 fn 2 f f n2 ) O(h 4 ) n xy x 2 y 2
问应取 n 为多少?并求此近似值。 2 2 1.由 A0 A1 A2 , A0 A1 x1 A2 0, A0 A1 x12 A2 , 3 5 1 4 3 A0 A1 x1 A2 0, 可得: A0 A2 , A1 , x1 0 ,具有 3 次代数精度。 5 15 2. n 4
五、 (12 分)已知求解常微分方程初值问题:
y f ( x, y) , x [a, b] y ( a)
的差分公式:
h y n 1 y n 3 (k1 k 2 ) k f (x , y ) n n 1 k 2 f ( x n h, y n hk1 ) y0
( A)
5 33 , Cond( A)1 21。 2
6.求区间[0,1]上权函数为 ( x) 1 的二次正交多项式 P2 ( x) 。
P0 ( x) 1, P1 ( x) x
9 x 3 3. x 为何值时,矩阵 A x 8 4 可分解为 GG T ,并求 x 6 时的分解式,其中 3 4 3
由 A 正定可得, 0 x 8 , x 6 时有:
9 6 3 3 3 2 1 A 6 8 4 = 2 2 2 1 3 4 3 1 1 1 1
试求形如 y a bx2 的拟合曲线。 由于 0 ( x) 1,1 ( x) x 2 ,所以 0 (1,1,1,1)T ,1 (1,0,1,4)T , f (2,1,3,2)T
东北大学数值分析答案
第一周解答:π=0.31415926×10M=1|π-3.141|=0.0005926<1/2 ×10m−n=0.5 ×101−n≤0.5×10−2所以n=3|π-3.142|=0.0004074<1/2 ×10m−n=0.5 ×101−n≤0.5×10−3所以n=4即3.141作为π的近似值具有3位有效数字3.142 有4位解答:√3=1.73205081…=0.173205081…M=1|√3−x|≤0.5×101−n|n=2时0.5×101−n=0.051.73205-x≤0.05x≥1.68205x=1.68205|√3−x|≤0.5×101−n|n=3时0.5×101−n=0.0051.73205-x≤0.005x≥1.72705x=1.72705解答:2256=2128×2128=264×264×2128=232×232×264×2128=216×216×232×264×2128=2×2×22×24×28×216×232×264×2128共计算8次乘法第二周解答:因为在n取一定位数时,1/n过于小导致系统计算为0.因此计算机求和在一定位数以后其余的数字都是0,结果为一常数解答:由于y0=28没有误差,可见误差是由√783引起的,设x=27.982σ=x-√783利用已知的递推算法,y n=y n−1−√783100和实际计算中的递推公式Y n=Y n−1−x/100(Y0=y0)两公式相减,e(Y n)=Y n−y n=Y n−1−y n−1−x−√783100e(Y n)= e(Y n−1)- σ/100此为绝对误差因为σ=x-√783数值恒定不变,因此该递推过程稳定解答:(1)原式=2x2(1−2x)(1−x)(2)e x 在x=0处的泰勒展开式可得: e x =1+x +12!x 2+⋯1n!x 2+R n (x) 所以1−e x x=x+12!x 2+⋯1n!x2x=1+12!x 2+⋯1n!x n−1第三周解答:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡61-12001-101-1131-11-301-101-11101112-2-211-11消元消元回代得解,;3,2,2321===x x x解答:1. 使用条件:当系数矩阵 A 的各阶顺序主子式非零时,顺序高斯消去法可以顺利进行;而一般只要系数矩阵 A 的行列式非零,列主元高斯消去法就可以顺利进行。
习题10(答案)《数值分析》(第二版)第10章_习题参考答案
习题参考答案习题一1.(1) 0.05ε=,0.0185r ε=,有2位有效数字 (2) 0.0005ε=,0.000184r ε=,有4位有效数字 (3) 0.000005ε=,0.000184r ε=,有4位有效数字 (4) 0.0000005ε=,0.000184r ε=,有4位有效数字 2.0.0005ε=,0.00016r ε≈;有4位有效数字 3.|d | 1.210.005 3.650.0050.0050.02930.03a ≤⨯+⨯+≈≤4.*1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字5.(1) ***124()x x x ε++31.0510−=⨯ (2) ***123()x x x ε=0.21479 (3) *2*4()x x ε50.8865410−=⨯6.略。
7.最小刻度x 满足0.002cm x ≤ 8.*3()10000 mm V επ=,*()0.02r V ε= 9.设正方形边长为a ,*2()0.510a ε−≤⨯10.*1()1%0.00333r R ε=⨯≈11.1||||14x =,2||||9.89949x ≈,||||9x ∞= 12.1|||||1.25||0.02|| 5.15||0| 6.42x =++−+=22221/22||||[(1.25)(0.02)( 5.15)(0)] 5.2996x =++−+=||||| 5.15| 5.15x ∞=−=13.||||10A ∞=,1||||9A =,2||||82.05125A ≈14.||||16A ∞=,1||||16A =,2||||12A =15.(1) ||()||1f x ∞=,1||()||8f x =,2||()||f x π=(2) ||()||23f x ∞=,1||()||17f x =,2||()||10.6427f x ≈ 16.略。
东北大学-数值分析-课后习题详细解析
2-6(1).给定方程组
10 2 x y 1
x
y
2
a.用Cramer法则求其精确解. b.用Gauss消元法和列主元
Gauss消元法求解,并比较结果.(用两位浮点计算).
解 a.x=-1/-0.99=1.010101,y=-0.98/-0.99=0.989899
b.用Gauss消元法
7
10 2 x y 1
1.01
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
解 有效数位分别为: 3位,1位,0位.
1
1-3.为了使101/2的相对误差小于0.01%,试问应取几位有效
数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效数字,
则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
解 (1)J迭代法和G-S迭代法的迭代格式分别为
x(k 1
x(k 2
1) 1)
3
2
x
(k 2
)
2 1.5x1(k)
计算结果如下:
k
东北大学10年所有博士点
003 机械工程与自动化学院
080201 机械制造及其自动化
01 磨削及精密加工 02 并联机床及机器人自动化 03 成套自动化装备设计理论
01 磨削及精密加工 02 加工过程的智能控制 03 数字化设计与制造 04 逆向工程与快速原型制造
01 磨削与精密加工 02 数字样机与虚拟制造 03 微尺度加工
002 理学院
娄成武 孙萍
①1001 英语、1002 日语 选一 ②2003 管理学基础知识③3005 土地管理学
国务院学科评议组成员 同等学力考生要求同上
①1001 英语、1002 日语 选一 ②2003 管理学基础知识③3005 土地管理学
同等学力考生要求同上
070302 分析化学
01 微流控/介观流控分析 02 流动分析与联用技术 03 金属组学与形态分析 04 复杂样品系统分离富集与检 测技术 01 流动分析及联用技术研究
同等学力考生要求同上
①1001 英语 ②2004 分析化学 ③3006 分析化学前沿、3007 现 代分离分析技术 选一
同等学力考生要求同上
ofacuntbily,redsph.Sg-wk
01 化学传感 02 复合膜化学
刘晓霞
①1001 英语②2004 分析化学、 2005 生物化学 选一③3006 分 析化学前沿、3007 现代分离分 析技术 选一
李小武
①1001 英语、1002 日语 选一 ②2007 材料物理③3008 电子显 微分析学
01 高分子材料 02 共混材料
徐僖
①1001 英语、1002 日语 选一 ②2006 固体物理、2007 材料物 理 选一③3008 电子显微分析 学、3009 热力学与统计物理 选 一
东北大学10年所有博士点
魏淑艳
①1001 英语②2003 管理学基础 知识③3002 行政学专业知识
同等学力考生要求同上
01 政治与行政管理
周光辉
①1001 英语②2003 管理学基础 知识③3002 行政学专业知识
校外兼职导师,同等学力考生 要求同上
120403 教育经济与管理
01 教育行政管理 02 比较高等教育管理 史万兵 ①1001 英语、1002 日语选一 ②2003 管理学基础知识③ 3003 高等教育学 01 高等教育政策研究 02 高等教育发展战略研究 03 高等学校管理研究 张德祥 ①1001 英语、1002 日语 选一 ②2003 管理学基础知识③3003 高等教育学 校外兼职导师,同等学力考生 要求同上 同等学力考生要求同上
01 化学材料
刘晓霞
①1001 英语②2006 固体物理、 2007 材料物理 选一③3008 电 子显微分析学、3009 热力学与 统计物理 选一
同 学 考 需 备 已 过CET6 或 等 力 生 具 :通 ( CET6 成 在425 分 以 ) 具 本 绩 及 上 或 有 领 较 富 研 经 域 丰 的 究 历
2010 年博士研究生招生专业目录
学院、专业及研究方向
001 文法学院 010108 科学技术哲学
01 技术哲学 02 科学技术与社会(STS) 03 技术发明与技术创新 陈凡 ①1001 英语、1002 日语、1003 俄语、1004 德语、1005 法语 选 一②2001 科学技术哲学③3001 科学技术史 01STS 基本理论和实践研究 02 科学技术学研究 03 东北老工业基地改造研究 04 科技计量学研究 01 科技创造方法论 02 设计哲学 罗玲玲 郑文范 ①1001 英语、1002 日语、1003 俄语、1004 德语、1005 法语 选 一②2001 科学技术哲学③3001 科学技术史 ①1001 英语、1002 日语、1003 俄语、1004 德语、1005 法语 选 一②2001 科学技术哲学③3001 科学技术史 01 工程哲学与工程演化 殷瑞钰 ①1001 英语、1002 日语、1003 俄语、1004 德语、1005 法语 选 一②2001 科学技术哲学③3001 科学技术史 院士,校外兼职导师
东北大学10年所有博士点
①1001英语、1002日语、1003俄语、1004德语选一②2008应用数理统计、2009数值分析选一③3014机械振动、3015机械可靠性工程选一
01设备失效分析及能力评价技术
02冶金工具技术
孙大乐
①1001英语、1002日语、1003俄语、1004德语、1005法语选一②2008应用数理统计、2009数值分析选一③3014机械振动、3015机械可靠性工程选一
院士,校外兼职导师。同等学力考生需具备:已通过CET6(或CET6成绩在425分及以上)或具有本领域较丰富的研究经历
003机械工程与自动化学院
080201机械制造及其自动化
01磨削及精密加工
02并联机床及机器人自动化
03成套自动化装备设计理论
蔡光起
①1001英语②2008应用数理统计、2009数值分析选一③3010先进制造技术、3011数字制造选一
01先进结构材料的力学性能
02金属晶体的疲劳与断裂
03生物医用复合材料制备及表征
李小武
①1001英语、1002日语选一②2007材料物理③3008电子显微分析学
01高分子材料
02共混材料
徐僖
①1001英语、1002日语选一②2006固体物理、2007材料物理选一③3008电子显微分析学、3009热力学与统计物理选一
王建华
①1001英语②2004分析化学、2005生物化学选一③3006分析化学前沿、3007现代分离分析技术选一
同等学力考生需具备:已通过CET6(或CET6成绩在425分及以上)或具有本领域较丰富的研究经历
01流动分析及联用技术研究
范世华
①1001英语②2004分析化学、2005生物化学选一③3006分析化学前沿、3007现代分离分析技术选一
数值分析参考答案
数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。
可以参照课本的例1.5来编写函数。
8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。
(汇总)东北大学-数值分析--考试题解析.ppt
构造函数(t)=(t)-H3(t)-C(x)t(t-1)2(t-2) 于是,存在x,使(4)(x)=0,即(4)(x)-4!C(x)=0
R(x) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是
Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=1精0品/文9档,B=16/9,=(12/5)1/2 7
令2(x)=cx(x-1)2,可得2(x)=0.5x(x-1)2;
令1(x)=cx(x-1)(x-2),可得1(x)=-x(x-1)(x-2),
于是
H3(x)==-x(3x--21.)5x2(2x+-22.)5-x3+x2(精x品-2文)档+2.5x(x-1)2
–0.5x(x-1)(x-2) 6
由于,R(0)=R(1)=R(2)=R(1)=0, 故可设 R(x)=C(x)x(x-1)2(x-2)
(3)因为0<</2,所以() cos / 2 1 sin 0
故,此迭代法线性收敛(收敛阶为1).
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式);
(2)讨论这两种迭代法的收敛性.
数值分析课后习题及答案
数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。