定积分高考试题
【高考数学】定积分的概念、基本定理及其简单应用18
3
3
()
1
A.
9
2
B.
9
1
C.
3
2
D.
3
28 .若当 积
1p → +∞时,
分
2p 3p nP 1
np ( p 0) 无限趋近于一个常数 A,则 A 可用定
表
示
为
() 11
A . dx 0x
B. 1 x p dx 0
C. 1 ( 1 ) pdx 0x
D. 1 ( x ) pdx 0n
试卷第 4 页,总 12 页
44.把区间 [1,3] n 等分,所得 n 个小区间中每个小区间的长度为 ( )
1
A.
n
2
B.
n
试卷第 6 页,总 12 页
3
C.
n
45.下列命题不正确的是 ( )
1
D.
2n
A .若 f(x) 是连续的奇函数,则
a
f x dx=0
a
B .若 f(x) 是连续的偶函数,则
a
a
f x dx = 2 f x dx
【高考数学】定积分的概念、基本定理及其简单应用
18
未命名
一、单选题 1.在区间
内随机取两个实数 , ,则满足
的概率是( )
A.
B.
C.
D.
2.由曲线 y
1
,直线
x
1, x
2 及 x 轴所围成图形的面积是(
)
x
2
1 A . ln 2
2
B . 2 ln 2
15
C.
4
17
D. [
4
3.如图 ,函数 y=-x 2+2x+1 与 y=1 相交形成一个闭合图形 (图中的阴影部分 ),则该闭合图形
高三数学积分试题答案及解析
高三数学积分试题答案及解析1.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【答案】C【解析】由题意知,这是一个几何概型概率的计算问题.正方形的面积为,阴影部分的面积为,故选.【考点】1.定积分的应用;2.几何概型.2.如图,在边长为(为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】【解析】由对数函数与指数函数的对称性,可得两块阴影部分的面积相同..所以落到阴影部分的概率为.【考点】1.几何概型.2.定积分.3.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.4. [2013·江西高考]若S1=,S2=,S3=,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1==x3=,S2==lnx=ln2,S3==e x=e2-e=e(e-1)>e>,所以S2<S1<S3,故选B.5. [2014·琼海模拟]如图所示,则由两条曲线y=-x2,x2=-4y及直线y=-1所围成图形的面积为________.【答案】【解析】由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由得C(1,-1).同理,得D(2,-1).故所求图形的面积S=2{[--(-x2)]dx+[--(-1)]dx}=2[-]=2[-(-x)]=.6.如图,阴影区域是由函数的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是()A.B.C.D.【答案】B【解析】根据余弦函数的对称性可得,曲线从到与x轴围成的面积与从到与轴围成的面积相等,∴由函数的一段图象与轴围成的封闭图形的面积,,故选B.【考点】定积分求面积。
高考数学定积分应用选择题
高考数学定积分应用选择题1. 定积分在几何应用中,计算一个矩形的面积,面积为10平方单位,则该矩形的长和宽分别为()A. 2, 5B. 10, 2C. 5, 2D. 2, 22. 定积分在物理应用中,一个物体从静止开始沿直线加速运动,已知初速度为2m/s,加速度为5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程3. 定积分在物理应用中,已知物体沿直线运动的位移s与时间t 的关系为s=3t^2-2t+1,求物体在t=1秒时的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程4. 定积分在物理应用中,一个物体沿直线加速运动,已知初速度为5m/s,加速度为2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程5. 定积分在物理应用中,一个物体沿直线加速运动,已知初速度为3m/s,加速度为4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程6. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为5m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程7. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为3m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程8. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为2m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程9. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为1m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程10. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为2m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程11. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为3m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分D. 积分方程12. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为4m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程13. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为5m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程14. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为6m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()B. 不定积分C. 微积分D. 积分方程15. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为7m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程16. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为8m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程17. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为9m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程18. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为10m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程19. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为11m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程20. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为12m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程21. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为13m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程22. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为14m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程23. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为15m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程24. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为16m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程25. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为17m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程26. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为18m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程27. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为19m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程28. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为20m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程29. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为21m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程30. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为22m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程31. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为23m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程32. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为24m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程33. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为25m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程34. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为26m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程35. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为27m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程36. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为28m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程37. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为29m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程38. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为30m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程39. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为31m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程40. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为32m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程41. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为33m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程42. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为34m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程43. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为35m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程44. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为36m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程45. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为37m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程46. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为38m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程47. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为39m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程48. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为40m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程49. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为41m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程50. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为42m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程。
【高考数学】定积分的概念、基本定理及其简单应
①设函数
可导,则
;
试卷第 8 页,总 60 页
②过曲线
外一定点做该曲线的切线有且只有一条;
③已知做匀加速运动的物体的运动方程是 的瞬时速度是 米 秒;
米,则该物体在时刻
秒
④一物体以速度 的位移为 米;
(米 /秒)做直线运动,则它在
到
秒时间段内
⑤已知可导函数
,对于任意
时,
是函数
在
上单调递增的充要条件.
涉及微积分定理的应用, 属于中
档题;在利用几何概型的概率公式来求其概率时, 几何 “测度 ”可以是长度、 面积、体积、
角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域
Ω
上任置都是等可能的, 而对于角度而言, 则是过角的顶点的一条射线落在 Ω的区域 (事
实也是角)任一位置是等可能的.
1
x3 1 1
2 ,所以 m
log 5 2 log 5 5
1 , n log 2 3 1 , 2
1 p.
2 所以 m p
n ,选 B.
【点睛】
本题考查定积分以及对数函数单调性,考查基本分析判断能力,属中档题
.
15. 2 (sin x | sin x |)dx ( )
2
A.0 【答案】 C
B. 1
【解析】
的
几何意义是介于 轴、曲线
以及直线
之间的曲边梯形面积的代
试卷第 2 页,总 60 页
数和 ,其中在 轴上方的面积等于该区间上的积分值, 在 轴下方的面积等于该区间上
积分值的相反数 ,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还
是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解
导数与定积分(一):高考数学一轮复习基础必刷题
导数与定积分(一):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.已知991001101,,ln100100a b e c -===,则,,a b c 的大小关系为()A .a b c <<B .a c b <<C .c a b<<D .b a c<<2.曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积是()A .0B .2C .4D .π3.已知某商品的进价为4元,通过多日的市场调查,该商品的市场销量y (件)与商品售价x (元)的关系为e x y -=,则当此商品的利润最大时,该商品的售价x (元)为()A .5B .6C .7D .84.21232x dx x -+=+⎰()A .22ln +B .32ln -C .62ln -D .64ln -5.数列{}n a 为等差数列,且2020202204a a x π+=⎰,则()2021201920212023a a a a ++=()A .1B .3C .6D .126.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征,如函数2()af x x x=+(a R ∈)的图像不.可能..是()A .B .C .D .7.设函数()()211ln 2f x x a x a x =-++有两个零点,则实数a 的取值范围为()A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭8.已知21232m x dx =-⎰,则4()(2)m m x y x y ++-中33x y 的系数为()A .80-B .40-C .40D .80二、填空题9.211x dx x ⎛⎫+= ⎪⎝⎭⎰=________.10.若211(2)3ln 2mx dx x+=+⎰,则实数m 的值为____________.11.设R a ∈,若不等式ln xa x>在()1,x ∈+∞上恒成立,则a 的取值范围是______.三、解答题12.已知函数21(log )f x x x=-(1)求()f x 的表达式;(2)不等式2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.13.求由曲线2y x=与直线3x y +=所围图形的面积.14.已知函数3()2f x x ax b =++在2x =-处取得极值.(1)求实数a 的值;(2)若函数()y f x =在[0,4]内有零点,求实数b 的取值范围.15.已知函数()ln f x ax x x =+的图像在e x =(e 为自然对数的底数)处取得极值.(1)求实数a 的值;(2)若不等式()(1)f x k x >+在[e,)+∞恒成立,求k 的取值范围.参考答案:1.C 【解析】【分析】利用两个重要的不等式1x e x ≥+,ln 1≤-x x 说明大小即可【详解】先用导数证明这两个重要的不等式①1x e x ≥+,当且仅当0x =时取“=”()1x y e x =-+'1x y e =-()',0,0x y ∈-∞<,函数递减,()'0,,0x y ∈+∞>函数递增故0x =时函数取得最小值为0故1x e x ≥+,当且仅当0x =时取“=”②ln 1≤-x x ,当且仅当1x =时取“=”()ln 1y x x =--'11y x=-()'0,1,0x y ∈>,函数递增,()'1,,0x y ∈+∞<函数递减,故1x =时函数取得最大值为0,故ln 1≤-x x ,当且仅当1x =时取“=”故991009911100100e->-+=1011011ln 1100100100c =<-=故选:C 2.C 【解析】根据积分的几何意义化为求20sin (sin )S xdx x dx πππ=+-⎰⎰可得结果.【详解】曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积20sin (sin )S xdx x dx πππ=+-⎰⎰20cos cos x xπππ=-+(cos cos 0)cos 2cos πππ=--+-(11)1(1)=---+--4=.故选:C 【点睛】结论点睛:由上下两条连续曲线2()y f x =与1()y f x =及两条直线x a =与x b =()b a >所围成的平面图形的面积为[]21()()baS f x f x dx =-⎰.3.A 【解析】【分析】根据题意求出利润函数的表达式,结合导数的性质进行求解即可.【详解】根据题意可得利润函数()()4e xf x x -=-,()e x f x -'=()()4e 5e x x x x ----=-,当5x >时,0,()f f x '<单调递减,当05x <<时,0,()f f x '>单调递增,所以当5x =时,函数()f x 取最大值,故选:A .4.D 【解析】先求出不定积分,再代入上下限来求定积分.【详解】由题,2211231d 2d 22x x x x x --+⎛⎫=- ⎪++⎝⎭⎰⎰21[2ln(2)]x x -=-+(4ln 4)(2ln1)6ln 4=----=-.故选:D 【点睛】本题考查定积分的运算,属于基础题.【解析】【分析】根据定积分的几何意义求20202022a a +,再应用等差中项的性质求目标式的值.【详解】∵0x ⎰表示半径为2的四分之一圆面积(处于第一象限),∴20202022044a a x π+==⎰,又{}n a 为等差数列,∴20212020202224a a a =+=,则()220212019202120232021312a a a a a ++==.故选:D.6.A 【解析】【分析】根据函数的奇偶性,分类0a =,0a <和0a >三种情况分类讨论,结合选项,即可求解.【详解】由题意,函数2()()af x x a R x=+∈的定义域为(,0)(0,)x ∈-∞⋃+∞关于原点对称,且()()f x f x -=,所以函数()f x 为偶函数,图象关于原点对称,当0a =时,函数2()f x x =且(,0)(0,)x ∈-∞⋃+∞,图象如选项B 中的图象;当0a <时,若0x >时,函数2()a f x x x =+,可得322()0x af x x-'=>,函数()f x 在区间(0,)+∞单调递增,此时选项C 符合题意;当0a >时,若0x >时,可得2()a f x x x =+,则3222()2a x af x x x x -'=-=,令()0f x '=,解得x =当x ∈时,()0f x '<,()f x 单调递减;当)x ∈+∞时,()0f x '>,()f x 单调递增,所以选项D 符合题意.故选:A.【解析】【分析】求出导函数()()()1x x a f x x--'=,分a 的符号,以及a 与1的大小关系讨论函数的单调性,从而分析其零点情况,得出答案.【详解】由()()211ln 2f x x a x a x =-++()0x >,则()()()()11x x a a f x x a x x--'=-++=,①0a <时,()f x 在()0,1上递减,在()1,+∞上递增,0x →时,()f x →+∞,x →+∞时,()f x →+∞,所以,要使函数()f x 有2个零点,则()10f <,所以有102a -<<,②0a =时,()212f x x x =-在()0,∞+上只有1个零点,不符合题意,③01a <<时,()f x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增,因为()21ln 02f a a a a a =--+<,所以()f x 在()0,∞+上不可能有2个零点,不符合题意,④1a =时,()f x 在()0,∞+上递增,不可能有2个零点,不符合题意,⑤1a >时,()f x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增,因为()1102f a =--<,所以()f x 在()0,∞+不可能有2个零点,综上,1,02a ⎛⎫∈- ⎪⎝⎭时,方程()f x 有两个零点.故选:B .8.C 【解析】【分析】先计算积分得到m =1,利用二项式展开式对33x y 的构成进行分类,求出33x y 的系数.【详解】32232222213321122322(32)2(32)2[(3)|]2[(3)|]1m x dx x dx x dx x x x x =-=-+-=-+-=⎰⎰⎰,则45()(2)()(2)m m x y x y x y x y ++-=+-,5(2)x y -的通项公式555155(2)()(1)2r r r r r r r r r T C x y C x y ---+=⋅⋅-=-⋅⋅⋅⋅,则两个通项公式为5615(1)2r r r r r r x T C x y --+⋅=-⋅⋅⋅⋅,当3r =时3335440C x y -⋅⋅=-,55115(1)2r r r r r r y T C x y --++⋅=-⋅⋅⋅⋅,当2r =时2335880C x y ⋅⋅=,则33x y ⋅的系数为408040-+=.故选:C.【点睛】方法点睛:在与二项式定理有关的问题中,主要表现为一项式和三项式转化为二项式来求解;若干个二项式积的某项系数问题转化为乘法分配律问题.9.3ln 2+2【解析】【分析】直接利用微积分基本原理求211x dx x ⎛⎫+ ⎪⎝⎭⎰的值.【详解】根据题意得211x dx x ⎛⎫+ ⎪⎝⎭⎰=221113ln |ln 22(0)ln 2222x x +=+-+=+.故答案为3ln2+2【点睛】本题主要考查微积分基本原理求定积分,意在考查学生对该知识的掌握水平和分析推理能力.10.1【解析】【分析】先求12mx x+的原函数()F x ,再令(2)(1)3ln 2F F -=+即可.【详解】易得12mx x+的原函数2()ln F x x mx =+,所以211(2)(2)(1)3ln 2mx dx F F x +=-=+⎰,即ln 243ln 2m m +-=+,故1m =故答案为1【点睛】本题主要考查定积分的基本运算,属于基础题型.11.1e>a 【解析】【分析】构造ln ()xf x x=,利用导数求其最大值,结合已知不等式恒成立,即可确定a 的范围.【详解】令ln ()xf x x=,则21ln ()x f x x -'=且()1,x ∈+∞,若()0f x '>得:1e x <<;若()0f x '<得:e x >;所以()f x 在(1,e)上递增,在(e,)+∞上递减,故1()(e)ef x f ≤=,要使ln xa x >在()1,x ∈+∞上恒成立,即1e>a .故答案为:1e>a .12.(1);(2).【解析】【详解】试题分析:(1)令,利用换元法进行求解;(2)分离参数,将不等式恒成立问题转化为求函数的最值问题.试题解析:(1)令,则,则,即;(2)22112(2)(222t t tt tm o -+-≥即1112(2)(2(20222t tt t t t tm +-+-≥1[1,2],202t tt ∈-> 2(21)t m ∴≥-+所以对于上恒成立;因为,即,所以考点:1.函数的解析式;2.不等式恒成立问题.13.32ln 22-.【解析】【分析】联立方程组,求得积分上限和下限,结合微积分基本定理,即可求解.【详解】由方程组32x y y x +=⎧⎪⎨=⎪⎩,解得1x =或2x =,由定积分的几何意义,可得面积为2221123=[(3)](32ln )|2ln 222x S x dx x x x --=--=-⎰.14.(1)6a =-;(2)1616b - .【解析】【分析】(1)由题意可得(2)1220f a -=+=',从而可求出a 的值;(2)先对函数求导,求得函数的单调区间,从而可由函数的变化情况可知,要函数()y f x =在[0,4]内有零点,只要函数在[0,4]内的最大值大于等于零,最小值小于等于零,然后解不等式组可得答案【详解】解:(1)23()32,()2f x x a f x x ax b =+=++'在2x =-处取得极值,∴(2)1220f a -=+=',∴6a =-.经验证6a =-时,()f x 在2x =-处取得极值.(2)由(1)知32()12,()3123(2)(2)f x x x b f x x x x =-+=-=-+',∴()y f x =极值点为2,2-.将x ,()f x ,()'f x 在[0,4]内的取值列表如下:x0(0,2)2(2,4)4()'f x /-0+/()f x b极小值16b -16b +由此可得,()y f x =在[0,4]内有零点,只需max min ()160,()160,f x b f x b =+⎧⎨=-⎩∴1616b -.15.(1)2a =-(2)ee 1k <-+【解析】【分析】(1)由(e)0f '=求得a 的值.(2)由()(1)f x k x >+分离常数k ,通过构造函数法,结合导数求得k 的取值范围.(1)因为()ln f x ax x x =+,所以()ln 1f x a x '=++,因为函数()ln f x ax x x =+的图像在点e x =处取得极值,所以(e)20f a '=+=,2a ∴=-,经检验,符合题意,所以2a =-;(2)由(1)知,()2ln f x x x x =-+,所以()1f x k x <+在[e,)+∞恒成立,即2ln 1x x x k x -+<+对任意e x ≥恒成立.令2ln ()1x x xg x x -+=+,则2ln 1()(1)x x g x x +-'=+.设()ln 1(e)h x x x x =+-≥,易得()h x 是增函数,所以min ()(e)e 0h x h ==>,所以2ln 1()0(1)x x g x x +-'=>+,所以函数()g x 在[e,)+∞上为增函数,答案第9页,共9页则min e ()(e)e 1g x g ==-+,所以e e 1k <-+.。
定积分高考题
定积分复习题1. 下列等于1的积分是( ) A .dx x ⎰10 B .dx x ⎰+10)1( C .dx ⎰101 D .dx ⎰1021 2. dx e e x x ⎰-+10)(= ( )A .ee 1+ B .2e C .e 2 D .e e 1- 3. 曲线]23,0[,cos π∈=x x y 与坐标轴围成的面积 ( )A .4B .2C .25D .3 4、由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、5、由曲线y=x 2,y=x 3围成的封闭图形面积为( )A 、B 、C 、D 、6、由曲线xy=1,直线y=x ,y=3所围成的平面图形的面积为( )A 、B 、2﹣ln3C 、4+ln3D 、4﹣ln37、从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为( )A 、B 、C 、D 、 8、⎰+10)2(dx x e x 等于( ) A 、1B 、e ﹣1C 、eD 、e 2+1 9、dx x ⎰421等于( )A 、﹣2ln2B 、2ln2C 、﹣ln2D 、ln2 A 、π B 、2C 、π﹣2D 、π+2 10、已知则⎰-a a xdx cos =)0(21>a ,则⎰a xdx 0cos =( ) A 、2 B 、1 C 、 D 、11、曲线y=x 2+2与直线y=3x 所围成的平面图形的面积为( )A 、B 、C 、D 、112、下列计算错误的是( )A 、0sin =⎰-ππxdx B 、3210=⎰dx xC 、⎰⎰=-2022cos 2cos πππxdx xdx D 、0sin 2=⎰-ππxdx 13、计算⎰-2024dx x 的结果是( )A 、4πB 、2πC 、πD 、14、若0)32(02=-⎰dx x x k,则k 等于( )A 、0B 、1C 、0或1D 、以上均不对15、曲线y=x 2和曲线y=围成一个叶形图(阴影部分),其面积是( )A 、1B 、C 、D 、16、在113)23(x x -的展开式中任取一项,设所取项为有理项的概率为p ,则dx x p ⎰10=( ) A 1 B 76 C 67 D 131117. 计算dx x ⎰-+22)cos 1(ππ的值为( )A .πB .2C .2π-D .2π+18、已知1220()(2)f a ax a x dx =⎰-,则()f a 的最大值是A .23 B .29 C .43 D .4919. 由直线1x =,x=2,曲线sin y x =及x 轴所围图形的面积为A .πB .sin 2sin1-C .sin1(2cos11)-D .21cos12cos 1+-20. 22-⎰的值是A .2πB .πC .2πD .4π21. 给出下列四个结论:①⎰=π200sin xdx ;②命题“2,0"x R x x ∃∈->的否定是“2,0x R x x ∀∈-≤”;③“若22,am bm < 则a b <”的逆命题为真;④集合}1)(|{},014|{2<-=<--=a x x B x x x A ,则“)3,2(∈a ”是“A B ⊆”充要条件. 则其中正确结论的序号为A.①③ B.①② C.②③④ D.①②④22. 设函数()m f x x ax =+的导函数'()21f x x =+,则21()f x dx -⎰的值等于( )A.56B.12C.23D.1623、如图中阴影部分的面积是( )A 、B 、C 、D 、24、由曲线x y =,直线2-=x y 及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、625、设)(x f y =为区间[0,1]上的连续函数,且恒有1)(0≤≤x f ,可以用随机模拟方法近似计算积分⎰10)(dx x f ,先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…x N 和y 1,y 2,…y N ,由此得到N 个点(x i ,y i )(i=1,2,…,N ),再数出其中满足)(i i x f y ≤(i=1,2,…,N )的点数N 1,那么由随机模拟方案可得积分⎰10)(dx x f 的近似值为 .26、如图所示,计算图中由曲线22x y =与直线2=x 及x 轴所围成的阴影部分的面积S= .27、由曲线和直线y=x ﹣4,x=1,x=2围成的曲边梯形的面积是 .28、从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分部分的概率为 .29、设函数f (x )=ax 2+c (a≠0),若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为 .30、由三条曲线y=x 2,4y=x 2,y=1 所围图形的面积 .31、由曲线y 2=2x 和直线y=x ﹣4所围成的图形的面积为 .。
高三数学积分试题
高三数学积分试题1..【答案】【解析】=.考点:定积分2.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.3.直线在第一象限内围成的封闭图形的面积为()A.B.C.D.4【答案】D【解析】由已知得,,故选D.【考点】定积分的应用.4. [2014·汕头模拟]设f(x)=,则等于()A.B.C.D.不存在【答案】C【解析】本题画图求解,更为清晰,如图,=+=x3+(2x-x2)=+(4-2-2+)=.5.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于() A.B.2C.D.【答案】C【解析】由C:x2=4y,知焦点P(0,1).直线l的方程为y=1.所求面积S===.6.已知二次函数的图象如图所示,则它与轴所围图形的面积为()A.B.C.D.【答案】B【解析】根据图像可得:,再由定积分的几何意义,可求得面积为.7.设函数的图象与直线轴所围成的图形的面积称为在上的面积,则函数上的面积为.【答案】【解析】用积分表示面积.【考点】定积分8.设,若曲线与直线,,所围成封闭图形的面积为2,则()A.2B.e C.2e D.【答案】D【解析】,∴.【考点】定积分.9.已知t>0,若(2x-1)dx=6,则t的值等于()A.2B.3C.6D.8【答案】B【解析】(2x-1)dx=2xdx-1·dx=x2-x=t2-t,由t2-t=6得t=3或t=-2(舍去).【方法技巧】定积分的计算方法(1)利用定积分的几何意义,转化为求规则图形(三角形、矩形、圆或其一部分等)的面积.(2)应用微积分基本定理:求定积分f(x)dx时,可按以下两步进行,第一步:求使F'(x)=f(x)成立的F(x);第二步:计算F(b)-F(a).10.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为.【答案】-1【解析】f'(x)=-3x2+2ax+b,∵f'(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).=-(-x3+ax2)dx=a4=,∴a=-1.S阴影11.________.【答案】1【解析】.【考点】定积分的应用.12.dx + .【答案】+1【解析】,,所以的图像是半圆,由定积分的几何意义可知,所以。
【高考数学】定积分的概念、基本定理及其简单应用1
【高考数学】定积分的概念、基本定理及其简单应用1未命名一、单选题1.由曲线2y x = ,3y x =围成的封闭图形的面积为( ) A .13B .14C .112D .7122.由曲线y =直线2y x =-及y 轴所围成的平面图形的面积为( )A .6B .4C .103D .1633.若20sin a xdx π=⎰,则函数1()x f x ax e -=+的图象在1x =处的切线方程为( )A .20x y -=B .20x y +=C .20x y -=D .20x y +=4.二项式()()310mx m ->展开式的第二项的系数为-3,则22mx dx -⎰的值为( )A .3B .73C .83D .25.已知函数()())11001x x f x x ⎧+-≤≤=<≤,则()1-1x f x d ⎰的值为( ) A .1+2π B .1+24π C . 1+4π D .1+22π6.1(e )d x x x --=⎰A .11e --B .1-C .312e-+D .32-7.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( ) A .1112B .3316C .3516D .125488.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为( )A.6B .13C .23D .439.若2,a ln =125b -=,201cos 2c xdx π=⎰,则,,a b c 的大小关系( )A .a b c <<B .b a c <<C .c b a <<D .b c a <<10.平面直角坐标系中,过坐标原点O 作曲线:x C y e =的切线l ,则曲线C 、直线l 与y 轴所围成的封闭图形的面积为( )A .112e - B .2e C .12e -D .32e -11.正方形的四个顶点 分别在抛物线 和 上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是 ( )A .B .C .D .12.曲线4y x=与直线5y x =-围成的平面图形的面积为( ) A .152B .154C .154ln 24- D .158ln 22- 13.曲线()22f x x =,()22g x x x =-以及直线14x =所围成封闭图形的面积为( )A .132B .116C .18 D .1414.曲线 , 和直线 围成的图形面积是( ) A . B .C .D .15.()22310xk dx +=⎰,则k =( )A .1B .2C .3D .416.若1201ln 2,5,sin 4a b c xdx π-===⎰,则a ,b ,c ,的大小关系( ) A .a b c <<B .b a c <<C .c b a <<D .b c a <<17.已知()6cos 1x t dx π-=⎰,则常数t 的值为( )A .3π-B .1π-C .32π-D .52π-18.已知函数()f x 满足()()4f x f x =-,()524f x dx =⎰,则()51f x d x -⎰等于( )A .0B .2C .8D .不确定19.函数()1f x x=与两条平行线x e =,4x =及x 轴围成的区域面积是( ) A .2ln21-+B .2ln 21-C .ln 2-D .ln 220.由曲线y =x 2和曲线y =( )A .13B .310C .14D .1521.在812x ⎛⎫+ ⎪⎝⎭二项展开式中3x 的系数为m ,则()120x mx dx +=⎰( ) A .176B .206C .236D .26622.已知函数3,1()1,1x x f x x x⎧⎪=⎨≥⎪⎩<,(e 为自然对数的底数)的图象与直线x e =,x 轴围成的区域为E ,直线x e =与1y =围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为( ) A .58eB .18eC .43eD .12e23.曲线21:C y x =,22:4C y x x =-以及直线:2l x =所围成封闭图形的面积为( )A .1B .3C .6D .824.已知曲线cos y x =,其中30,2x π⎡⎤∈⎢⎥⎣⎦,则该曲线与坐标轴围成的面积等于( )A .1B .2C .52D .325.曲线2sin (0)y x x π=≤≤与直线1y =围成的封闭图形的面积为( ) A.43π B.23π C.43π D.23π 26.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .785427.用S 表示图中阴影部分的面积,若有6个对面积S 的表示,如图所示,()caS f x dx =⎰①;()caS f x dx =⎰②;()c a S f x dx =⎰③;()()b ca bS f x dx f x dx =-⎰⎰④;()()c b baS f x dx f x dx =-⎰⎰⑤;()()b cabS f x dx f x dx =-⎰⎰⑥.则其中对面积S 的表示正确序号的个数为( )A .2B .3C .4D .528.如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )A .21π-B .2πC .22πD .221π-29.函数()2,? 0,2,x x f x x -≤=<≤,则()22f x dx -⎰的值为 ( ) A .6π+B .2π-C .2πD .830.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为()A .16B.6C .13D .2331.111d ex x ⎛⎫- ⎪⎝⎭⎰的值为( ) A .e 2-B .eC .e 1+D .e 1-32.已知412(1)x a x x ⎛⎫++- ⎪⎝⎭展开式中3x 项的系数为5,则0⎰=( ) A .2πB .πC .2πD .4π33.在4(1)(21)x x +-的展开式中,2x 项的系数为a ,则0(2)ax e x dx +⎰的值为( )A .1e +B .2e +C .23e +D .24e +34.1012x dx ⎫=⎪⎭⎰( ) A .14π+ B .12π+ C .124π+D .14π+35.已知,由抛物线2y x =、x 轴以及直线1x =所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S 的值为( )A .12B .13C .14D .2536.计算2131dx x ⎛⎫+ ⎪⎝⎭⎰的值为( ) A .ln21+ B .2ln 21+ C .3ln23+D .3ln 21+37.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[]1,+∞上的单调递减,则实数k 的取值范围是( )A .[)0,+∞B .()0,∞+C .[)1,+∞D .()1,+∞38.设[](]2,0,1,(){1,1,e x x f x x x∈=∈(其中为自然对数的底数),则0()ef x dx ⎰的值为( )A .43B .54C .65D .39.若ln 2a =,125b -=,201cos 2c xdx π=⎰,则a ,b ,c 的大小关系()A .a b c <<B .b a c <<C .c b a <<D .b c a <<40.定积分)232sin x x dx -+⎰的值是( )A .πB .2πC .2π+2cos2D .π+2cos241.如图所示,阴影部分的面积为()A .()41f x dx -⎰B .()41f x dx --⎰C .()()3413f x dx f x dx --⎰⎰D .()()4331f x dx f x dx --⎰⎰42.在平面直角坐标系中,由坐标轴和曲线3cos 02y x x π⎛⎫=≤≤⎪⎝⎭所围成的图形的面积为( ) A .2 B .52C .3D .443.已知()12201,log 3,cos6a x dxbc π=-==⎰,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .a c b <<D .b c a <<44.定积分()1214d x x x --=⎰( )A .0B .1-C .23-D .2-45.由曲线22y x x =+与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .56D .2346.函数f x ()在区间[15]-, 上的图象如图所示,0()()xg x f t dt =⎰,则下列结论正确的是( )A .在区间04(,)上,g x ()先减后增且0g x <()B .在区间04(,)上,g x ()先减后增且0g x >()C .在区间04(,)上,g x ()递减且0g x >()D .在区间04(,)上,g x ()递减且0g x <() 47.若函数f (x)= +x ,则= A .B .C .D .48.已知225sin )a x dx -=⎰,且2am π=.则展开式212(1)m x x ⎛⎫-- ⎪⎝⎭中x 的系数为( ) A .12B .-12C .4D .-449.设,则的展开式中的常数项为A .20B .-20C .120D .-120二、填空题50.设抛物线C :22(0)y px p =>,过抛物线的焦点且平行于y 轴的直线与抛物线围成的图形面积为6,则抛物线的方程为________.51.若曲线y =x m =,0y =所围成封闭图形的面积为2m ,则正实数m =______.52.由曲线3y x =(x ≥0)与它在1x =处切线以及x 轴所围成的图形的面积为___________.53.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 54.定积分=⎰____________.55.若函数的图象如图所示,则图中的阴影部分的面积为 ;56.已知1a -=⎰,则61[(2)]2a x xπ+--展开式中的常数项为______.57.已知实数x ,y 满足不等式组2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,且z =2x -y 的最大值为a ,则1e a dx x ⎰=______.58.如图放置的边长为1的正方形 沿 轴滚动,点 恰好经过原点.设顶点 的轨迹方程式 ( ),则对函数 有下列判断: ①函数 是偶函数;②对任意的 ,都有 ; ③函数 在区间 上单调递减; ④.其中判断正确的序号是 .59.222(3)x sinx dx --=⎰______.60.由x 的正半轴、2y x =和4x =所围成的封闭图形的面积是______61.12xdx ⎰的值为________.62.0=⎰_________.63.(434sin x dx -⎰的值为__________.64.若04sin n xdx π=⎰,2⎛⎝nx 的展开式中常数项为________.65.如图,在平面直角坐标系xoy 中,将直线y 2x=与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥1=⎰π(2x )2dx 310|1212x ππ==据此类比:将曲线y =x 2(x ≥0)与直线y =2及y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =_____.66.若()12143a x dx --=⎰,则a =______. 67.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____. 68.(12x dx +=⎰________69.1||-1x e dx ⎰值为______.70.22sin )x dx -+=⎰___________71.已知数列{}n a 是公比120=⎰q x dx 的等比数列,且312a a a =⋅,则10a =________.72.33(sin cos x x dx -+=⎰______.73.设计一个随机试验,使一个事件的概率与某个未知数有关,然后通过重复试验,以频率估计概率,即可求得未知数的近似解,这种随机试验在数学上称为随机模拟法,也称为蒙特卡洛法。
(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解
定积分与微积分基本定理习题一、选择题1. a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.由曲线y =x 2,y =x 3围成的封闭图形面积为( )练习、设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169C.⎝⎛⎭⎫43,157 D.⎝⎛⎭⎫45,1373.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64. ⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3π C.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值 D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11) 8.如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( ) A.32B .1C .4D.1210.设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.1、 [答案] D[解析] a =⎠⎛02x d x =12x 2|02=2,b =⎠⎛02e x d x =e x |02=e 2-1>2,c =⎠⎛02sin x d x =-cos x |02=1-cos2∈(1,2),∴c <a <b .A.112B.14C.13D.7122、[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x 3得交点为(0,0),(1,1). ∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎝⎛⎭⎫13x 3-14x 401=112.练习; [答案] A[解析] 设P (t ,t 2)(0≤t ≤2),则直线OP :y =tx ,∴S 1=⎠⎛t (tx -x 2)d x =t 36;S 2=⎠⎛t2(x 2-tx )d x =83-2t +t 36,若S 1=S 2,则t =43,∴P ⎝⎛⎭⎫43,169. 3、[答案] A[解析] S =⎠⎛2x 3d x =⎪⎪x 4402=4.4、[答案] B[解析] ⎠⎛1(sin x +1)d x =(-cos x +x )|-11=(-cos1+1)-(-cos(-1)-1)=2.5、[答案] A[解析] 如右图,S =∫02π(1-cos x )d x =(x -sin x )|02π=2π.6、[答案] B[解析] F ′(x )=x (x -4),令F ′(x )=0,得x 1=0,x 2=4, ∵F (-1)=-73,F (0)=0,F (4)=-323,F (5)=-253.∴最大值为0,最小值为-323. 7、[答案] D ;[解析] f (x )=⎠⎛1x 1td t =ln t |1x =ln x ,a 3=S 3-S 2=21-10=11,由ln x <11得,0<x <e 11.8、[答案] A[解析] 由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =⎠⎛0πsin x d x=-cos x |0π=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率P =S S 矩形OABC =22π=1π.9、[答案] C[解析] 面积S =∫π2-2f (x )d x =⎠⎛0-2(x +2)d x +∫π202cos x d x =2+2=4.10、 [答案] A[解析] 由题意可得,当0<x <1时,[x ]=0,f (x )=x ,当1≤x <2时,[x ]=1,f (x )=x -1,所以当x ∈(0,2)时,函数f (x )有一个零点,由函数f (x )与g (x )的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛mn g (x )d x =⎠⎛14⎝⎛⎭⎫-x 3d x =⎪⎪-x 2614=-52.11、[答案] A ;[解析] 方程x 2+2bx +c =0有实根的充要条件为Δ=4b 2-4c ≥0,即b 2≥c , 由题意知,每场比赛中甲获胜的概率为p =⎠⎛01b 2db 1×1=13.12、[答案] C ;[解析] 如图,正方形面积1,区域M 的面积为S =⎠⎛01x 2d x =13x 3|01=13,故所求概率p =13.13、 [答案] -1或13;[解析] ∵⎠⎛1-1f (x )d x =⎠⎛1-1(3x 2+2x +1)d x =(x 3+x 2+x )|-11=4,⎠⎛1-1f (x )d x =2f (a ),∴6a 2+4a +2=4,∴a =-1或13.14、 [答案] -192;[解析] 由已知得a =∫π20(sin x +cos x )d x =(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C 6r ×26-r ×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 61×25=-192.15、[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x y =4-x解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y∴S =⎠⎛2-4[(4-y )-y 22]dy =(4y -y 22-y 36)|-42=18.16、 [答案] 16x -8y +1=0[解析] 由题意知⎠⎛01ax d x =23,∴a =1,设l :y =2x +b 代入y 2=x 中,消去y 得,4x 2+(4b -1)x +b 2=0,由Δ=0得,b =18,∴l 方程为16x -8y +1=0. 17、 [答案] -1[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0,∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,∴a =-1.18、 [解析] 由题意得S 1=t ·t 2-⎠⎛0t x 2d x =23t 3,S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13,所以S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).又S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12,令S ′(t )=0,得t =12或t =0. 因为当0<t <12时,S ′(t )<0;当12<t ≤1时,S ′(t )>0.所以S (t )在区间⎣⎡⎦⎤0,12上单调递减,在区间⎣⎡⎦⎤12,1上单调递增.所以,当t =12时,S min =14.。
高三数学积分试题
高三数学积分试题1.若函数,则____________.【答案】【解析】∵,∴.【考点】利用微积分基本定理求解定积分的知识.2.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.3.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【答案】【解析】由图可知阴影部分面积由几何概型可知概率为.选.【考点】定积分的应用,几何概型.4.由曲线,直线及轴所围成的图形的面积为A.B.4C.D.6【答案】C【解析】用定积分求解,选C5.抛物线与直线及y=0所围成的图形的面积.【答案】【解析】由题意,作出图形(如图所示),解方程组得或 (舍去),所以与直线的交点为(2,4),所以所求面积为.6.设函数,若,则x的值为______.【答案】【解析】,又,∴.7.在平面直角坐标系中,记抛物线与x轴所围成的平面区域为,该抛物线与直线y=(k>0)所围成的平面区域为,向区域内随机抛掷一点,若点落在区域内的概率为,则k的值为()A.B.C.D.【答案】A【解析】∵,,∴,∴,故选A.【考点】1.积分的运算;2.几何概型.8.计算定积分(x2+sinx)dx=.【答案】【解析】(x2+sinx)dx=x2dx+sinxdx=2x2dx+0=.9.给出下列命题:①函数y=在区间[1,3]上是增函数;②函数f(x)=2x-x2的零点有3个;③函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=sin x d x;④若X~N(1,σ2),且P(0≤X≤1)=0.3,则P(X≥2)=0.2,其中真命题的序号是________.【答案】②④【解析】①y′=,由y′>0得-2<x<2,即函数的增区间为(-2,2),①错误;②正确;③当-π≤x≤0时,sin x≤0,S=|sin x|d x,所以②错误;④P(X≥2)==0.2,所以④正确.10.已知某随机变量X的概率密度函数为P(x)=,则随机变量X落在区间(1,2)内的概率为( )A.e2+e B.C.e2-e D.【答案】D【解析】画出概率密度曲线,随机变量X落在区间(1,2)内的概率相当于和以及密度曲线和围成的阴影部分面积,.【考点】1、函数的图象;2、定积分的运算和几何意义.11.若函数f(a)=,则f等于【答案】p+1【解析】因为f(a)==.所以.故填p+1.本题考查定积分的知识点,易错点:求函数的导数的逆运算易错,最后结果的两组数对减易错.【考点】1.定积分的知识.2.函数的导数的逆运算.12.若函数,,则的值为__________.【答案】【解析】由题意知,,所以,解得.【考点】1.分段函数;2.定积分13.已知为常数,则使得成立的一个充分而不必要条件是 ( )A.B.C.D.【答案】C.【解析】由已知及牛顿-莱布尼茨公式得.由已知要求选项能推出,但不能推出选项.,但不能推出,故选C.【考点】1.定积分的计算;2充分、必要、充要条件的判断.14.若则的值为()A.B.C.D.【答案】A【解析】.【考点】积分的运算.15.由曲线,直线及轴所围成的图形的面积为_______.【答案】【解析】曲线y=,直线y=x-2及y轴所围成的图形如图所示,故:= .【考点】定积分的计算16.曲线和曲线围成的图形面积是.【答案】【解析】解得,或,则所求面积为 .【考点】定积分17.二项式的展开式的第二项的系数为,则的值为()A.B.C.或D.或【答案】C【解析】,所以,解得,当时,,当时, ,故选C.【考点】定积分的应用,二项式定理的应用,二项式定理的通项以及组合数的计算.18.从如图所示的正方形OABC区域内任取一个点,则点M取自阴影部分的概率为()A.B.C.D.【答案】B【解析】根据题意由定积分的几何意义可得如图所示阴影部分的面积为,所以点取自阴影部分的概率为.【考点】定积分的几何意义及几何概率.19.若,则常数T的值为.【答案】3【解析】.【考点】定积分.20.如下图,过曲线:上一点作曲线的切线交轴于点,又过作轴的垂线交曲线于点,然后再过作曲线的切线交轴于点,又过作轴的垂线交曲线于点,,以此类推,过点的切线与轴相交于点,再过点作轴的垂线交曲线于点(N).(1) 求、及数列的通项公式;(2) 设曲线与切线及直线所围成的图形面积为,求的表达式; (3) 在满足(2)的条件下, 若数列的前项和为,求证:N.【答案】(1) ,,;(2) ;(3)见解析.【解析】(1)利用导数求直线切线和切线的方程,从而易得的值,再得直线的方程,知点在直线上,所以,既得通项公式;(2)观察图形利用定积分求表达式;(3)分别求得及表达式,再用数学归纳法、二项式定理及导数的方法证明即可.试题解析:(1) 由,设直线的斜率为,则.∴直线的方程为.令,得, 1分∴,∴. ∴.∴直线的方程为.令,得. 2分一般地,直线的方程为,由于点在直线上,∴. 3分∴数列是首项为,公差为的等差数列.∴. 4分(2). 6分(3)证明: , 8分∴,.要证明,只要证明,即只要证明. 9分证法1:(数学归纳法)①当时,显然成立;②假设时,成立,则当时,,而,,,时,也成立,由①②知不等式对一切都成立. 14分证法2:.所以不等式对一切都成立. 14分证法3:令,则,当时, ,∴函数在上单调递增. ∴当时, .∵N, ∴, 即.∴.∴不等式对一切N都成立. 14分【考点】1、利用导数求切线方程;2、数列的运算;3、定积分计算图形面积.21.如图,在矩形ABCD中,AB =2.AD =3,AB中点为E,点F,G分别在线段AD,BC上随机运动,则∠FEG为锐角的概率为。
高考数学定积分应用选择题
高考数学定积分应用选择题1. 定积分可以用来求解什么问题?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是2. 定积分表示的物理意义是什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是3. 求解曲线下的面积,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分4. 定积分的基本性质是什么?A. 定积分与被积函数单调性无关B. 定积分与积分区间长度无关C. 定积分与积分上下限无关D. 以上都是5. 定积分在物理学中的一个应用是求解什么?A. 物体的质量B. 物体的速度C. 物体的加速度D. 物体的位移6. 求解物体的质量,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分7. 定积分可以用来求解物体的体积,这是因为在三维空间中,物体的体积可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是8. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分9. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分10. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分11. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分12. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分13. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分14. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分15. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分16. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分17. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分18. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分D. 三重积分19. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分20. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分21. 求解物体的位移,应该使用哪种积分?A. 定积分C. 双重积分D. 三重积分22. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分23. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分24. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分25. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分26. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分27. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分28. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分29. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分30. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分31. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分32. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分33. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分34. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分35. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分36. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分37. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分38. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分39. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分40. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分41. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量D. 物体的速度与时间的积分42. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分43. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分44. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积C. 物体的体积D. 物体的速度与时间的积分45. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分46. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分47. 求解物体的速度,应该使用哪种积分?A. 定积分C. 双重积分D. 三重积分48. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分49. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分50. 求解物体的加速度,应该使用哪种积分?B. 不定积分C. 双重积分D. 三重积分。
十年高考真题——导数,定积分,微积分
专题三 导数及其应用第七讲 导数的几何意义、定积分与微积分基本定理2019年1.(2019全国Ⅰ理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________.2.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==−, B .a=e ,b =1C .1e 1ab −=,D .1e a −= ,1b =−2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+−+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =−B .y x =−C .2y x =D .y x =2.(2016年四川)设直线1l ,2l 分别是函数()f x = ln ,01,ln ,1,x x x x −<< >图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x =B .ln y x =C .x y e =D .3y x =4.(2015福建)若定义在R 上的函数()f x 满足()01f =−,其导函数()f x ′满足()1f x k ′>> ,则下列结论中一定错误的是A .11()f kk <B .11()1f k k >−C .11()11f k k <−− D .1()11kf k k >−− 5.(2014新课标Ⅰ)设曲线ln(1)y ax x =−+在点(0,0)处的切线方程为2y x =,则a = A .0 B .1 C .2 D .36.(2014山东)直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C .2D .4 7.(2013江西)若22221231111,,,x S x dx S dx S e dx x ===∫∫∫则123,,S S S 的大小关系为A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S << 8.(2012福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14 B .15C .16 D .179.(2011新课标)由曲线y =,直线2y x =−及y 轴所围成的图形的面积为A .103 B .4 C .163D .6 10.(2011福建)1(2)x e x dx +∫等于A .1B .1e −C .eD .1e + 11.(2010湖南)421dx x∫等于 A .2ln 2− B .2ln 2 C .ln 2− D .ln 2 12.(2010新课标)曲线3y 21x x =−+在点(1,0)处的切线方程为A .1y x =−B .1y x =−+C .22y x =−D .22y x =−+ 13.(2010辽宁)已知点P 在曲线y=41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A .[0,4π) B .[,)42ππC .3(,]24ππD .3[,)4ππ二、填空题14.(2018全国卷Ⅱ)曲线2ln(1)+yx 在点(0,0)处的切线方程为__________.15.(2018全国卷Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2−,则a =____. 16.(2016年全国Ⅱ)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .17.(2016年全国Ⅲ) 已知()f x 为偶函数,当0x <时,()ln()3f x x x =−+,则曲线()y f x =,在点(1,3)−处的切线方程是_________.18.(2015湖南)2(1)x dx −∫= .19.(2015陕西)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .20.(2015福建)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .(第15题) (第17题)21.(2014广东)曲线25+=−x e y 在点)3,0(处的切线方程为 .22.(2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.23.(2014江苏)在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(−P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 24.(2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线0:=y l 在点()0,0P 处“切过”曲线C :3y x = ②直线1:−=x l 在点()0,1−P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:−=x y l 在点()0,1P 处“切过”曲线C :x y ln =.25.(2013江西)若曲线1y x α=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= . 26.(2013湖南)若209,Tx dx T =∫则常数的值为 .27.(2013福建)当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=− 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=−∫∫∫∫∫从而得到如下等式:23111111111()()...()...ln 2.2223212n n +×+×+×++×+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()()2223212n n n n n n C C C C n +×+×+×+⋅⋅⋅+×+= .28.(2012江西)计算定积分121(sin )x x dx −+=∫___________.29.(2012山东)设0>a ,若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a . 30.(2012新课标)曲线(3ln 1)yx x +在点(1,1)处的切线方程为________.31.(2011陕西)设2lg 0()30ax x f x x t dt x >= + ∫ ,若((1))1f f =,则a = .32.(2010新课标)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ∫,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ∫的近似值为 .33.(2010江苏)函数2y x =(0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++= .三、解答题34.(2017北京)已知函数()cos x f x e x x =−.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.35.(2016年北京)设函数()a x f x xe bx −=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =−+,(I )求a ,b 的值; (II )求()f x 的单调区间.36.(2015重庆)设函数23()()e xx ax f x a R +=∈. (Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f处的切线方程;(Ⅱ)若()f x 在[3,)+∞上为减函数,求a 的取值范围. 37.(2015新课标Ⅰ)已知函数31()4f x x ax =++,()ln g x x =−. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()h x f x g x =(0)x >,讨论()h x 零点的个数.38.(2014新课标Ⅰ)设函数1()ln x xbe f x ae x x−=+,曲线()y f x =在点(1,(1))f 处的切线为(1)2y e x =−+. (Ⅰ)求,a b ;(Ⅱ)证明:()1f x >.39.(2013新课标Ⅱ)已知函数()()ln xf x e x m =−+ (Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.40.(2012辽宁)设()()()=ln +1+,,,f x x ax b a b R a b ∈为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切. (1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x . 41.(2010福建)(1)已知函数3()=f x x x −,其图象记为曲线C .(i )求函数()f x 的单调区间;(ii )证明:若对于任意非零实数1x ,曲线C 与其在点111(,())P x f x 处的切线交于另一点222(,())P x f x ,曲线C 与其在点222(,())P x f x 处的切线交于另一点333(,())P x f x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值; (2)对于一般的三次函数32()g x ax bx cx d +++(0)a ≠,请给出类似于(1)(ii )的正确命题,并予以证明.。
高考数学定积分应用选择题
高考数学定积分应用选择题1. 定积分可以用来求解函数在区间上的最大值和最小值,已知函数f(x)在区间[a, b]上的最大值为M,最小值为m,则定积分∫[a,b]f(x)dx等于什么?2. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递增的,那么在区间[a, b]上f(x)的值域为[____,____]。
3. 已知函数f(x)在区间[a, b]上是单调递减的,那么在区间[a,b]上f(x)的定积分∫[a,b]f(x)dx等于什么?4. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递减的,那么在区间[a, b]上f(x)的值域为[____,____]。
5. 函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx等于什么?6. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,那么在区间[a, b]上f(x)的值域为[____,____]。
7. 已知函数f(x)在区间[a, b]上是单调递增的,那么在区间[a,b]上f(x)的定积分∫[a,b]f(x)dx等于什么?8. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递减的,那么在区间[a, b]上f(x)的值域为[____,____]。
9. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx等于什么?10. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,那么在区间[a, b]上f(x)的值域为[____,____]。
11. 已知函数f(x)在区间[a, b]上是单调递增的,那么在区间[a,b]上f(x)的定积分∫[a,b]f(x)dx等于什么?12. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递减的,那么在区间[a, b]上f(x)的值域为[____,____]。
定积分在高考试题中的应用
丢 z .一 + 百z + (+ z 一 (+ 一 1 1 = ) z }
一
) S 一 .( )
, S 一 4 而 1( 号
一
1 ): i 3
高
百 7
,
得 (+ )百・4 1 z 丢z 3 7 (), 一 一 一 即 +
,
耄
围 地
一9 ) 3 ; 1 , 2 ( x 一 ) 因为 3 1 2 1 得 + z z+z ≠z , 1
…
分 O 的 积 析 AX 面 为 P 1
3
,
,
)由曲 , 线积分的定义,m } 1 ± i
一
△ 0x + P + 的 面 积 为 1
+
一 丢 丢
一
J
,
一l [ ) l r 1 + ( ) i ( m + … + ( ) ] 旦
一 [ )+ (
在 曲线 Y 一 上 与 之 对
应 的点 列为 P 1 1 , ( , )
( _ + … + ( ) ]. _) 竺 兰 l ・
1
.
P24 2 , 3 z , / 3 , ( ,) P ( 3  ̄ )
3
…
如 图 1设 [ ,] , 0 1 为
设 L为 平面 上 光滑 或 逐段 光 滑连 续 曲线 , f x, 为 定 义 在 L 上 的 函数 . 曲线 L作 分 ( ) 对 割 T. 它把 L 分 成 个 小段 △L ( 一 1 2 … , i ,, n , As ) 以 记 △L 的 弧 长 , 割 丁 的 细 度 分
方形 区 域 内任 取 一 个 点
M ( Y , 点 M 取 自阴 x, ) 则
0 1 j
高三数学积分试题
高三数学积分试题1.直线与抛物线所围图形的面积等于_____________.【答案】【解析】由解得或,所以其围成图形的面积为= =.【考点】定积分的应用2.如图,在边长为(为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】【解析】由对数函数与指数函数的对称性,可得两块阴影部分的面积相同..所以落到阴影部分的概率为.【考点】1.几何概型.2.定积分.3.已知函数,则的值等于 .【答案】【解析】由题意知.【考点】1.分段函数;2.定积分4.直线与抛物线,所围成封闭图形的面积为【答案】【解析】解与联立的方程组得,所以,由定积分的几何意义,直线与抛物线,所围成封闭图形的面积为.【考点】定积分的应用5. [2013·湖南高考]若x2dx=9,则常数T的值为________.【答案】3【解析】∵′=x2,∴x2dx=x3=T3-0=9,∴T=3.6. [2014·琼海模拟]如图所示,则由两条曲线y=-x2,x2=-4y及直线y=-1所围成图形的面积为________.【答案】【解析】由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由得C(1,-1).同理,得D(2,-1).故所求图形的面积S=2{[--(-x2)]dx+[--(-1)]dx}=2[-]=2[-(-x)]=.7.若,则s1,s2,s3的大小关系为()A.s1<s2<s3B.s2<s1<s3C.s2<s3<s1D.s3<s2<s1【答案】B【解析】选B.【考点】此题主要考查定积分、比较大小,考查逻辑推理能力.8.由直线与曲线y=cosx所围成的封闭图形的面积为()A.B.1C.D.【答案】D【解析】由定积分可求得阴影部分的面积为S=cosxdx==﹣(﹣)=,所以围成的封闭图形的面积是.故选D.9.已知二次函数的图象如图所示,则它与轴所围图形的面积为()A.B.C.D.【答案】B【解析】根据图像可得:,再由定积分的几何意义,可求得面积为.10.设.若曲线与直线所围成封闭图形的面积为,则______.【答案】【解析】.11.曲线与曲线以及x轴所围成的图形的面积.【答案】.【解析】如图,,,两图形的交点坐标为A(2,1),所求图形的面积为.12.设满足约束条件,则所在平面区域的面积为___________.【答案】【解析】画出对应的平面区域,如图所示.所在平面区域的面积为.【考点】不等式组表示的平面区域,定积分的应用.13.若a=x2dx,b=x3dx,c=sinxdx,则a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<b<a D.c<a<b【答案】D【解析】a=x2dx=x3=,b=x3dx=x4=4,c=sinxdx=-cosx=1-cos2<2,∴c<a<b.14.物体A以v=3t2+1(m/s)的速度在一直线l上运动,物体B在直线l上,且在物体A的正前方5m 处,同时以v=10t(m/s)的速度与A同向运动,出发后物体A追上物体B所用的时间t(s)为() A.3B.4C.5D.6【答案】C【解析】因为物体A在t秒内行驶的路程为(3t2+1)dt,物体B在t秒内行驶的路程为10tdt,所以(3t2+1-10t)dt=(t3+t-5t2)=t3+t-5t2=5(t-5)(t2+1)=0,即t=5.15.等比数列中,,前3项和为,则公q的值是()A. 1B.-C. 1或-D.- 1或-【答案】C【解析】,设公比为,又,则,即,解得或,故选.【考点】定积分牛顿莱布尼茨公式16.________.【答案】1【解析】.【考点】定积分的应用.17.dx + .【答案】+1【解析】,,所以的图像是半圆,由定积分的几何意义可知,所以。
高考数学定积分面积专题
在定积分几何意义的教学中,不少学生对多条曲线围成阴影面积的习题类型感到力不从心,这种现象产生的原因是因为学生不能准确的作出基本函数的图象,不能对曲线围成的面积进行合理的分割,有时用定积分表示面积时也会出错,这个专题考查了各种基本函数图象中的面积问题,希望能对大家的学习有所帮助.1.已知曲线2y x =和曲线y =围成一个叶形图(如图中阴影部分),则其面积为( )1.答案:D A. 1B. 12C.2D. 13解析:13231200211)()|333S x dx x x =-=-=⎰,故选D. 2.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A.1B.23 C. 43 D.22.答案:D解析:s =−∫x 210−1dx +∫x 221−1dx =−(−23)+43=23.曲线()2sin 0y x x π=≤≤与直线1y =围成的封闭图形的面积为( )A. 43πB. 23πC. 43πD. 23π+3.答案:B解析:由()2sin 0y x x π=≤≤,直线1y =. 令2sin 1x =,可得:6x π=或56π. ∴曲线()2sin 0y x x π=≤≤与直线1y =交于点,16A π⎛⎫ ⎪⎝⎭和5,16B π⎛⎫⎪⎝⎭.因此,围成的封闭图形的面积()5665262sin 12cos 36S x dx x xπππππ=-=--=-⎰. 4.片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积( )A .16BC .13D .234.答案:C 解析:s =∫(√x−x 2)dx =(23x 32−13x 3)|0110=135.已知曲线e =x y ,直线1x =及41y x =-+围成的封闭图形的面积为( )A .e 1+B .eC . e 1-D .1e 8-5.答案:B解析:s =∫(e x +4x −1)dx =(e x +2x 2−x )|0110=e6.如图,由曲线sin y x =,0x =,32x π=与x 轴围成的阴影部分的面积是__________.6.答案:3 解析:s =∫sinxdx−∫sinxdx 3π2π=(−cosx )|0ππ0+cosx|π3π2=37.由曲线11y x =-直线1y x =-及3y =所围成的封闭图形的面积为( ) A.2ln3- B.2ln3+ C.4ln3- D.4ln3+7.答案:C解析:封闭图形如图,计算得4,3,(2,1),(3,3)3A B C ⎛⎫⎪⎝⎭2432113224ln3312S dx x =⨯-+⨯⨯=--⎰,故选C.8.由曲线e x y =,e x y -=以及1x =所围成的图形的面积等于( ) A.2 B.2e 2- C.12e - D.1e 2e+-8.答案:D解析:曲线e ,e x x y y -==和直线1x =围成的图形面积, 就是()10e e x x dx --⎰()1102x xe e e e --=+=+-.故选:D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分与微积分
一、知识回顾:
1.用定义求定积分的一般方法是:
①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:
1
()n
i i b a
f n ξ=-∑; ④取极限:
()
1
()lim n
b
i a
n i b a
f x dx f n
ξ→∞
=-=∑⎰
2.曲边图形面积:()b
a
S f x dx =⎰;
变速运动路程2
1
()t t S v t dt =⎰
;
变力做功 ()b
a
W F r dr =
⎰
.
3.定积分有如下性质: 性质1 =⎰b
a
dx 1
性质2 =⎰
b
a
dx x kf )( (其中k 是不为0的常数) (定积分的线性性质)
性质3
⎰=±b
a
dx x f
x f )]()([2
1
(定积分的线性性质)
性质4
⎰⎰⎰
+=c
a
b
c
b
a
dx x f dx x f dx x f )()()( 其中(b c a <<)
4.定积分的计算(微积分基本定理)
(1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有
二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( )
A 、
B 、1
C 、
D 、
2.由曲线y=x 2
,y=x 3
围成的封闭图形面积为( )
A 、
B 、
C 、
D 、
⎰
-==b
a
b a a F b F x F dx x f )
()()()(
3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( )
A 、
B 、4
C 、
D 、6
4. ⎰
+1
)2(dx x e x
等于( )
A 、1
B 、e ﹣1
C 、e
D 、e 2
+1
5. ⎰
4
2
1
dx x
dx 等于( ) A 、﹣2ln2
B 、2ln2
C 、﹣ln2
D 、ln2
6. dx x ⎰--2
2
)cos 1(π
π等于( )
A 、π
B 、2
C 、π﹣2
D 、π+2
7. 已知则⎰
-=
a a
xdx 2
1
cos (a >0),则⎰a xdx 0cos =( )
A 、2
B 、1
C 、
D 、
8. 下列计算错误的是( ) A 、
⎰-
=π
π
0sin xdx
B 、
⎰
=
1
32dx x
C 、
⎰⎰
-=22
2
cos 2cos π
ππ
xdx xdx
D 、
⎰-
=π
π0sin
2
xdx
9 计算dx x ⎰
-2
24的结果是( )
A 、4π
B 、2π
C 、π
D 、
10. 若
0)32(0
2=-⎰
dx x x k
,则k 等于( )
A 、0
B 、1
C 、0或1
D 、以上均不对 11.下列结论中成立的个数是( )
①∑⎰=⨯=
n
i n n i dx x 133
1
031;②∑⎰=⨯-=n i n n i dx x 131031)1(
;③∑⎰=∞→⨯=n i n n n i dx x 1331031lim 。
A .0 B .1 C .2 D .3
12.根据定积分的定义,⎰202
dx x =( )
A . ∑=⨯-n
i n n i 1
21)1(
B . ∑=∞→⨯-n i n n n i 121)1(lim
C . ∑=⨯n i n n
i 122)2( D . ∑=∞→⨯n i n n n i 122
)2(lim
13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为
( )
A .
⎰
1
)(t dt t v
B .dt t v s t ⎰
+
1
0)( C .00
1
)(s dt t v t -⎰ D .dt t v s t ⎰-1
0)(
二填空题 15.由曲线
和直线y=x ﹣4,x=1,x=2围成的曲边梯形的面积是___________.
16. 设函数f (x )=ax 2
+c (a≠0),若⎰
≤≤=1
0010),()(x x f dx x f ,
0≤x 0≤1,则x 0的值为 ____. 17.
=⎰
dx x T
29,则T=_______.
18.若dx x S ⎰
=
2
1
2
1,dx x
S ⎰
=2
1
21
,dx e S x ⎰=213,则S 1,S 2,S 3的大小关系是__________.
19.给出下列定积分:
①20
sin xdx π
⎰
②0
2
sin xdx π-⎰
③2
3
xdx -⎰
④2
31
x dx -⎰
其中为负值的有 。
20.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为______. 三解答题
21..求由两抛物线28x y -=,2x y =所围成的图形的面积.
22.求定积分:(1)⎰--31
2)4(dx x x ;(2)⎰-2
1
5)1(dx x ;
(3)dx x x ⎰+20
)sin (π;(4)dx x ⎰-22
2cos π
π;
23.已知c bx ax x f ++=2)(,且2)1(=-f ,0)0('=f ,⎰1
0)(dx x f = – 2,求,,a b c 的值。
24.已知自由落体的运动速度为gt v =,求在时间区间[0,t]内物体下落的距离。