整式的乘法习题含详细解析答案

合集下载

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。

通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。

本文将提供一些整式乘法的练习题,以及它们的详细解答。

1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。

2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。

(完整版)整式的乘法习题(含详细解析答案)

(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

整式乘法计算50题(含解析)

整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
16.解:A、应为 2x3•3x4=6x7,故本选项错误; B、应为 3x3•4x3=12x6,故本选项错误; C、应为 2a3+3a3=5a3,故本选项错误; D、4a3•2a2=4×2×a3•a2=8a5,正确. 故选 D.
17.解:A、(a5)2=a10,故正确; B、2a2•(-3a3)=2×(-3)a2•a3=-6a5,正确; C、b•b3=b4,故正确;
39.解:(-2a)3•b4÷12a3b2=-8a3b4÷12a3b2=- b2.
40.解:(9ab5)÷(3ab2)=3b3;(4a2b)÷(-12a3bc)=-3ac; (4x2y-8x3)÷4x2=y-2x.
整式乘法与因式分解 500 题--基础篇解析
41.解:(am+1bn+2)•(a2n-1b2m),
5.解:①根据零指数幂的性质,得(-3)0=1,故正确; ②根据同底数的幂运算法则,得 a3+a3=2a3,故错误; ③根据负指数幂的运算法则,得 4m-4= ,故错误;
④根据幂的乘方法则,得(xy2)3=x3y6,故正确. 故选 C.
6.解:A、应为 a2•a3=a2+3=a5,故 A 错误 B、应为(2a)•(3a)=6a2,故 B 错误
23.解:2x2•(-3x3)=2×(-3)•(x2•x3)=-6x5.
24.解:(-2x2)•3x4=-2×3x2•x4=-6x6.
整式乘法与因式分解 500 题--基础篇解析
25.解:(3x2y)(- x4y)=3×(- )x2+4y2=-4x6y2.
26.解:2a3•(3a)3=2a3•(27a3)=54a3+3=54a6. 27.解:(-3x2y)•( xy2)=(-3)× ×x2•x•y•y2=-x2+1•y1+2=-x3y3.

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)北师大版数学七年级下册第一章1.4整式的乘法课时练一、选择题1.(-5a^2b)·(-3a)等于()A。

15a^3bB。

-15a^2bC。

-15a^3bD。

-8a^2b解析:解答:(-5a^2b)·(-3a)=15a^3b,故A项正确。

分析:根据单项式乘单项式法则与同底数幂的乘法法则可完成此题。

2.(2a)^3·(-5b^2)等于()A。

10a^3bB。

-4a^3b^2C。

-40a^3bD。

-40a^2b解析:解答:(2a)^3·(-5b^2)=-4a^3b^2,故B项正确。

分析:先根据积的乘方法得到(2a)^3=8a^3,再根据单项式乘单项式法则可完成此题。

3.(2a^3b)^2·(-5ab^2c)等于()A。

-20a^6b^4cB。

10a^7b^4cC。

-20a^7b^4cD。

20a^7b^4c解析:解答:(2a^3b)^2·(-5ab^2c)=-20a^7b^4c,故C项正确。

分析:先根据积的乘方法得到(2a^3b)^2=-4a^6b^2,再根据单项式乘单项式法则与同底数幂的乘法可完成此题。

4.(2x^3y)^2·(5xy^2)·x^7等于()A。

-20x^6y^4B。

10xyy^4C。

-20x^7y^4D。

20x^14y^4解析:解答:(2x^3y)^2·(5xy^2)·x^7=-20x^14y^4,故D项正确。

分析:先根据积的乘方法得到(2x^3y)^2=-4x^6y^2,再根据单项式乘单项式法则与同底数幂的乘法法则可完成此题。

5.2a^3·(b^2-5ac)等于()A。

-20a^6b^2cB。

10a^5b^2cC。

2a^3b^2-10a^4cD。

a^7b^4c-1a^4c解析:解答:2a^3·(b^2-5ac)=2a^3b^2-10a^4c,故C项正确。

整式的乘法专题训练

整式的乘法专题训练

整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。

题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。

题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。

题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。

题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。

题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。

题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。

题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
10.解:A、应为(-2x2)•x3=-2x5,故本选项错误; B、x2÷x=x,正确; C、应为(4x2)3=64x6,故本选项错误; D、应为 3x2-(2x)2=3x2-4x2=-x2,故本选项错误. 故选 B.
11.解:A、a2 不 2a3 丌是同类项,丌能合并,故本选项错误; B、应为(2b2)3=8b6,故本选项错误; C、应为(3ab)2÷(ab)=9ab,故本选项错误; D、2a•3a5=6a6,正确. 故选 D.
28.解:-3x3•(-2x2y)=-3×(-2)•x3x2•y=6x5y.
29.解:3x2•(-2xy3)=3×(-2)•(x2•x)y3=-6x3y3.
30.解:(-2a)(-3a)=(-2)×(-3)a•a=6a2.
31.解:8b2(-a2b)=-8a2b3.
32.解:8a3b3•(-2ab)3=8a3b3•(-8a3b3)=-64a6b6.
49.解:(-2a3+3a2-4a)(-5a5)=10a8-15a7+20a6.
50.解:(x-2)(x+3)=x2+x-6.
51.解:(x-2y)(2x+y)=2x2+xy-4xy-2y2=2x2-3xy-2y2.
52.解:3x(5x-2)-5x(1+3x)=15x2-6x(- 5x+15x2)=15x2-6x-5x-15x2=-11x.
48.解:A、应为 2ac(5b2+3c)=10ab2c+6ac2,故本选项错误; B、应为(a-b)2(a-b+1)=(a-b)3+(b-a)2,故本选项错误; C、应为(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a-b-c,故本选项错误; D、(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)2. 故选 D.

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。

]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。

整式的乘法练习题含解析答案

整式的乘法练习题含解析答案

北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题2b)·(-3a)等于(1.(-5a )3232b -8a DC.-15a.b 15a b B.-15a b A.答案:A23b,故A项正确15a. b)·(-3a)解析:解答:(-5a=分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.32)等于()-5b.(2a)·(233232ba D.-40a40b B.-40a b C.A.10a-b答案:B3232,故B项正确.b )=-40a解析:解答:(2a)b·(-533,再由单项式乘单项式法则可完成此题a). =8分析:先由积的乘方法则得(2a322c)等于(ab)b)·(-3.(2a564747474c bD.C .-20a20bacA.-20a b c B.10a b c答案:C32274c,故C项正确20a.)b·(-5ab c)=-解析:解答:(2ab3262,再由单项式乘单项式法则与同底数幂的乘法=-4aab)b分析:先由积的乘方法则得(2可完成此题.3227 等于())·2xxy)·(5xy4.(6y4y474144 y20 D20x.yx B.10x y C.-20A.-x答案:D3227 144,故D项正确y.)·x =-解析:解答:(2x20y)·(5xyx3262,再由单项式乘单项式法则与同底数幂的乘法y=-4分析:先由积的乘方法则得(2xxy)法则可完成此题.32-5ac)等于(a)·(b 5.26252324744c 0ac .Da.10a2b c C.a-1bb-10acaA.-20Bbc答案:C32324c,故C项正确.2ab -10解答:解析:2aa·(b-5ac)=分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.32 等于()(xy)+zx6. y·4333144 433yz y.+x yz Czxy+x xD.xyB xA.y+xyz .答案:D32 433yz ,故D项正确xz(x解析:解答:y·xy+)=y+x.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.1 / 4723 等于()x)y+7.(-xz)·(1714331714 173yz xy+x z yx+z B.-xyx+xDyz C.-xA.x.y+答案:A723 1714z ,故xA项正确y+z.)=x 解析:解答:(-xy)+·(x7214,再由单项式乘多项式法则与同底数幂的乘法法则可-x=)x分析:先由幂的乘方法则得(完成此题.34 2-ac)等于(.(b8.[(-6))]1222521221244c -bac ac -b c C.6DbA.-6.b--bc B.10a6答案:C34 212212ac ,故C项正确6ac)=.b解析:解答:[(-6)]-.(b6-3412,再由单项式乘多项式法则与同底数幂的乘法法)=]6分析:先由幂的乘方法则得[(-6则可完成此题.33y+z)等于()(2x).(x9.6146363 63yz x D..8x8y+8xxz 8A.x y+xyz B.-8xy+x+yz C 答案:C3363z,故C项正确.x y+x)8.(xxy+z)=8解析:解答:(233,再由单项式乘多项式法则与同底数幂的乘法法则可=8先由积的乘方法则得(2x)x分析:完成此题.222+z]等于((-y ))10.(2x).[4242242 242z +4xD.4xxz C.2x yy+2xz xA.4xyxz+B.-4 y +4答案:D222242z ,故D项正确.]=4x y4解析:解答:(2x).[(-y+)x+z22224再由单项式乘多项y=x))=4xy,由幂的乘方法则得(-分析:先由积的乘方法则得(2式法则与同底数幂的乘法法则可完成此题.254+z)等于().x .(yx11.747242242 242z +4xD.4x4xy2+4xz C.x yy+2xz .Ax y+xz B.-答案:A254747z ,故A项正确=z)x.y 解析:解答:x+.x.(yx+257,再由单项式乘多项式法则可完成此题xx. x分析:先由同底数幂的乘法法则得=.22x+z)等于(x)·(y 12.242322 242zy+.Cxxy+xz .Dx xB +.Axyxz .-y+xz答案:C22322x z ,故C项正确x)(解答:解析:x.y+z=y+x.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.2 / 432)·(-5acb)等于()13.(a +625232442c 5aabc - c D-b.c C.5a-b5-10A.-5aabc-B.5a 答案:D3242c,故D项正确-5ab.(-5ac)=-5a 解析:解答:(ac+b )·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.252+z)等于(·(y14.(x)+y )2227522252225 2275z y D.xy++xyz +y zxz +y +y z B.2xyy+x+z +y z C.Ax.yx+答案:A25222275z ,故A项正确+y(y.+z)=x+yy+x 解析:解答:(xz+y.)分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.252等于()·(aa+b )15.225452452 42+ba D C.a.+2b2A.aac+bac B.2a+2b a答案:B252452,故B项正确.+2ab+b )·aa=2a解析:解答:2(分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题22+z)等于16.5x ·(xy;322z xy +5答案:5x22222322zxx+yxy+5x5·x解析:解答:5z·(xy=+z)=5x5·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+4c)等于·(ab ;17.2a322c +8答案:2aab22222322c +c=2a)=2a8·abb+2aa·2解析:解答:a4·(abc+4分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+7c)等于.182a ·(3ab;322c 14aab +答案:622222322cab +a=·7c6a解答:2a·(3abc+7=2a14·3ab+2解析:分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3a+c)等于(-19.2a ;32c 2a答案:-6a -22232c -6·)c=-6a2a(+·(3ac)=-2a)·3+(-aaa-解析:解答:2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3x+1)等于x(-20.4 ;32 412答案:-x-x3 / 422232 4xxx-)·1=-+1)=(-4x12)·3x+(-4解析:解答:(-4x3)·(x分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题24z)(210xxyy)·21.(-35 z20 x y答案:-242+14+135 z 20 x·y y··(2xyzz)= -20 x=-解析:解答:解:(-10x)y分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题224)·(- x y3 x)y22.(-2 x y )·(-47y-答案:6 x2241+2+12+4+147y=-6 x)·(- x y)= -6 x解析:解答:解:(-2 x y()·-3 xyy·分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22-1) (a 23a- 2)+a·23.2a(a+1)- a(42+4a3a答案:2a -22224242+4aa2a a+2a- -2a3)(3a-2+2a= (a-1) =2a+2a - 3a+2)(解答:解:解析:2a·a+1- a分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.22- ab b+ ab)ab24.3·(a322322- b3a abb+3 a 3 答案:2222322322--- b ab ab·ab =3a 3b a+a(解答:解:解析:3ab·a+b ab= ab )3ab·3b+ab·ab3 3分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)22y89xy +答案:x-1+11+122y+8xy x8xy- x)yx·y-(解析:解答:解:x8)(- =-xy8+y=-9分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.4 / 4。

整式的乘法精选试题(含答案解析)

整式的乘法精选试题(含答案解析)

第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题(题型注释)1.若x 2-4x +m 2是完全平方式,则m 的值是( ) A 、2 B 、-2 C 、±2 D 、以上都不对2.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知该图案的面积为,小正方形的面积为4,若用表示小矩形的两边长,请观察图案,指出以下关系式中不正确的是( )A. B.C.D.3.下列计算正确的是A .-1-32a a a ÷=B .0103()=C .532)(a a = D . -21124=()4.下列图形都是由同样大小的棋子按一定规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为【 】A .51B .70C .76D .81 5.一个长方形的长为,它的周长为3a+2b ,则它的宽为( ) A .B .C . aD . 2a6.观察一串数:0,2,4,6,….第n 个数应为( ) A.2(n -1) B.2n -1 C.2(n +1) D.2n +1 7.下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-8.下列运算正确的是( )A .222()a b a b +=+ B .()()22a b b a a b --=-C .001= D .326a a a a ⋅⋅=9.用“○+”定义新运算:对于任意实数a 、b ,都有a ○+b=b 2+1,例如7○+2=22+1=5,当m 为实数时,m ○+(m ○+2)的值是 A. 25B. m 2+1C. 5D. 2610.下列计算正确的是 A. maa 22ma =⋅ B. 523)(a a =C. 523x x x x =⋅⋅ D. 104553---=÷n n n a a a11.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、–3 B 、3 C 、0 D 、112.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③44144mm-=;④(xy 2) 3=x 3y 6,他做对的个数是( )A .0B .1C . 2D .3 13.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x+a)(x-a)B 、(b+m)(m-b)C 、(-x-b)(x-b)D 、(a+b)(-a-b) 14.已知多项式x 2+kx +41是一个完全平方式,则k 的值为( ) A 、±1 B 、-1 C 、 1D 、21±15.已知(m ﹣n)2=8,(m+n)2=2,则m 2+n 2=A 、10B 、6C 、5D 、3 16.若a b 3a b 7+=-=,,则ab=A .-10B .-40C .10D .4017.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A .2mnB .(m+n )2C .(m-n )2D .m 2-n 218.求1+2+22+23+ +22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+ +52012的值为( )A .52012﹣1 B .52013﹣1 C .2013514- D .2012514-19.化简:22(2)(2)a a +--=( )A .2B .4C .8aD .2a 2+220.若35-==+ab b a ,,则2)(b a -的值是( ) A. 25 B. 19 C. 31D. 3721.下列计算正确的是( )A. 03310=⨯⎪⎭⎫⎝⎛B. 1055x x x =+C. 428x x x =÷D. ()623a a=-22.已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+, 43|3|a a =-+,…,依次类推,则2012a 的值为A .1005-B .1006-C .1007-D .2012- 23.(2011山东济南,14,3分)观察下列各式: (1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72… 请你根据观察得到的规律判断下列各式正确的是( ) A .1005+1006+1007+…+3016=20112 B .1005+1006+1007+…+3017=20112 C .1006+1007+1008+…+3016=20112 D .1007+1008+1009+…+3017=20112 24.如图是长10cm ,宽6cm 的长方形,在四个角剪去4个边长为x cm 的小 正方形,按折痕做一个有底无盖的长方体盒子,这个盒子的容积是 A .(6-2x )(10-2x ) B .x (6-x )(10-x ) C .x (6-2x )(10-2x ) D .x (6-2x )(10-x )25.已知整式252x x-的值为6,则2256x x -+的值为 A. 9 B. 12 C. 18 D. 24 26.计算20085()4-×0.82009得:( )A 、0.8B 、-0.8C 、+1D 、-1二、填空题(题型注释)27.已知2a b +=,则224a b b -+的值是 .28.x 2﹣4x+4=( )2.29. 如图中每一个小方格的面积为1,则可根据面积计算得到如下算式: 1+3+5+7+…+(2n ﹣1)= (用n 表示,n 是正整数)30.如果1kx x 2++是一个完全平方式,那么k 的值是 . 31.若4p q -=,2pq =-,则22p q +的值为_______________. 32.如果0542=-+y x ,则 x 4·=y16 .33.若2x 2x 3-=,则代数式22x 4x 3--的值为 .34.若,23,83==n m则=+-1323n m35.已知a+b=3,a 2+b 2=5,则ab 的值是36.当x 2+2(k-3)x+25是一个完全平方式,则k 的值是 . 37.计算:=⨯-200220035)2.0( 。

整式的乘法练习题有详解

整式的乘法练习题有详解

每个学生都应该用的“超级学习笔记”整式的乘法练习题作者:风之痕重点难点提示注意:天之骄的函授材料可是很好的复习资料,练习之前一定翻出来看看. 1. 基本运算技能(请你填出运算法则或公式):整式乘除,包括:(1)同底数幂的乘法——____________________; (2)幂的乘方——__________________;(3)积的乘方——________________________________; (4)单项式和单项式相乘——__________________________; (5)多项式和多项式相乘——_____________________________; (6)同底数幂相除——_________________________; (7)单项式相除——____________________________; (8)多项式除以单项式——__________________________.乘法公式:(1) 平方差公式——______________________; (2) 完全平方公式——_____________________. 因式分解方法:(1)_______________;(2)___________________.3.特别关注:()010a a =≠!中考经常拿它作文章.复习题1.要使(6x-a)(2x+1)的结果中不含x 的一次项,则a 等于( )(A)0 (B)1 (C)2 (D)32.若x 、y 是正整数,且5222xy= ,则x 、y 的值有( ).A .4对B .3对C .2对D .1对3.计算(2+1)(22+1)(24+1)(28+1)得( ) (A )48-1;(B )264-1;(C )26-1;(D )23-1 4.若16n m n a a a ++= ,且21m n -= ,求n m 的值. 5.下列结论错误的是( ) (1)1)1(0=--;(2))0(2121≠-=--m mm;(3)1)1(1-=---;每个学生都应该用的“超级学习笔记”(4))0(1)(22≠-=--x x x ;(5))2()2(33----=--;(6)234169-⎪⎭⎫ ⎝⎛=A 、1个;B 、2个;C 、3个;D 、4个6.先化简并求值:()()()()()b a b a b a b a b a 222222+--+--+,其中2,21-==b a ;7.计算:()()()··2421210353517223ab a b ab a b a b ---⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪+-(.)8.计算:423324211322343a x a x a x a ⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭9.如图,一块直径为a+b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,求剩下的钢板的面积。

人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案

人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案

人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案一、选择题1.计算a3•a2的结果是()A.2a5B.a5C.a6D.a92.计算(x3)5的结果是()A.x2B.x8C.x15D.x163.已知2x+y=3,则4x×2y的值为()A.2 B.4 C.8 D.164.计算(−13)2021×32020的结果是()A.−3B.3 C.−13D.135.已知a=355,b=444,c=533则a、b、c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.a<c<b 6.如果(2x+m)与(x+3)的乘积中不含x的一次项,那么m的值为()A.﹣6 B.﹣3 C.0 D.17.下列计算正确的是()A.x10÷x2=x5B.(x3)2÷(x2)3=xC.(15x2y﹣10xy2)÷5xy=3x﹣2y D.(12x3﹣6x2+3x)÷3x=4x2﹣2x8.设(x m−1y n+2)(x5m y2)=x5y7,则(−12m)n的值为()A.−18B.−12C.1 D.12二、填空题9.已知33x+1=81,则x=.10.计算:(x−1)2⋅x3=.11.已知(a n b m+2)3=a6b15,则m n=.12.计算(x+3)(x+4)−2(x+6)的结果为.13.已知(x+4)(x﹣9)=x2+mx﹣36,则m的值为三、解答题14.计算:(1)(a2)3⋅(a2)4÷(a2)5;(2)(x-4y)(2x+3y)(3)[(3x+4y)2−3x(3x+4y)]÷(−4y)(4)(−7x2y)(2x2y−3xy3+xy);15.已知n是正整数,且,求的值.16.在计算(x+a)(x+b)时,甲把错b看成了6,得到结果是:x2+8x+12;乙错把a看成了-a,得到结果:x2+x−6.(1)求出a,b的值;(2)在(1)的条件下,计算(x+a)(x+b)的结果.17.学习了《整式的乘除》这一章之后,小明联想到小学除法运算时,会碰到余数的问题,那么类比多项式除法也会出现余式的问题.例如,如果一个多项式(设该多项式为A)除以的商为,余式为,那么这个多项式是多少?他通过类比小学除法的运算法则:被除数=除数×商+余数,推理出多项式除法法则:被除式=除式×商+余式.请根据以上材料,解决下列问题:(1)请你帮小明求出多项式A;(2)小明继续探索,如果一个多项式除以3x的商为,余式为,请你根据以上法则求出该多项式参考答案1.B2.C3.C4.C5.A6.A7.C8.A9.110.x11.912.x2+5x x+x213.-514.(1)解:(a2)3⋅(a2)4÷(a2)5=a6·a8÷a10=a14÷a10=a4(2)解:(x-4y)(2x+3y)=2x2−8xy+3xy−12y2=2x2−5xy−12y2(3)解:[(3x+4y)2−3x(3x+4y)]÷(−4y)=(9x2+24xy+16y2−9x2−12xy)÷(−4y)=(12xy+16y2)÷(−4y)=−3x−4y(4)解:(−7x2y)(2x2y−3xy3+xy)=−14x4y2+21x3y4−7x3y215.解:原式∵∴=9×4+[-8×4]=416.(1)解:由甲计算得:(x+a)(x+6)=x2+8x+12∴6a=12∴a=2;代入乙的式子,得(x−2)(x+b)=x2+x−6∴−2b=−6∴b=3.(2)解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6.17.(1)解:由题意得;(2)解:由题意可得该多项式为:。

初一数学整式的乘法试题答案及解析

初一数学整式的乘法试题答案及解析

初一数学整式的乘法试题答案及解析1.计算:(m3n)2的结果是()A.m6n B.m6n2C.m5n2D.m3n2【答案】B【解析】根据幂的乘方的性质和积的乘方的性质进行计算即可.解:(m3n)2=m6n2.故选:B.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】根据积的乘方的性质进行计算,然后直接选取答案即可.解:(ab2)3=a3•(b2)3=a3b6.故选D.3.若x n=5,y n=3,则(xy)2n的值为()A.15B.45C.75D.225【答案】D【解析】把(xy)2n化成(x n)2(y n)2,代入求出即可.解:∵x n=5,y n=3,∴(xy)2n=x2n y2n=(x n)2(y n)2=52×32=25×9=225.故选D.4.计算(a2b3)3的结果是()A.a2b3B.a5b6C.a6b6D.a6b9【答案】D【解析】根据积的乘方:把积的每一个因式分别乘方,再把所得的幂相乘,进行计算即可.解:原式=a2×3b3×3=a6b9.故选D.5.(ab3)2=()A.ab6B.a2b6C.a2b2D.a2b3【答案】B【解析】首先利用积的乘方展开,然后利用幂的乘方进行计算即可.解:(ab3)2=a2(b3)2=a2b6故选B.6.计算(2x2)3的结果是()A.6x6B.8x5C.8x6D.6x5【解析】根据幂的乘方与积的乘方法则进行解答即可.解:由幂的乘方与积的乘方法则可知,(2x2)3=8x2×3=8x6.故选C.7.计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a4【答案】C【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算即可.解:(﹣3a2)2=32a4=9a4.故选C.8.如果正方体的棱长是(1﹣2b)3,那么这个正方体的体积是()A.(1﹣2b)6B.(1﹣2b)9C.(1﹣2b)12D.6(1﹣2b)6【答案】B【解析】根据幂的乘方,底数不变指数相乘计算即可.幂的乘方法则:(am)n=amn.解:正方体的体积等于棱长的三次方:[(1﹣2b)3]3=(1﹣2b)9.故选B.9.计算(﹣3a2b)4的结果正确的是()A.﹣12a8b4B.12a8b4C.81a8b4D.81a6b8【答案】C【解析】根据积的乘方与幂的乘方计算.解:(﹣3a2b)4=(﹣3)4•(a2)4•b4=81a8b4.故选C.10.计算(﹣ab2)3的结果是()A.﹣a3b6B.﹣a3b5C.﹣a3b5D.﹣a3b6【答案】D【解析】利用积的乘方与幂的乘方的运算法则求解即可求得答案.解:(﹣ab2)3=(﹣)3•a3(b2)3=﹣a3b6.故选D.11.计算(﹣xy2)3,结果正确的是()A.x2y4B.﹣x3y6C.x3y6D.﹣x3y5【答案】B【解析】根据积的乘方的性质进行计算,然后再选取答案.解:原式=﹣()3x3y6=﹣x3y6.12.地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.【答案】7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,根据题意得出方程32n﹣1=323﹣1×324,求出方程的解即可.解:设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n﹣1=323﹣1×324,32n﹣1=326,n﹣1=6,n=7.故答案为:7.13.计算(a2b)3的结果是.【答案】a6b3【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,求解即可.解:(a2b)3=(a2)3×b3=a6×b3=a6b3.故答案为:a6b3.14.计算:(3x2y)2=.【答案】9x4y2【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.解:(3x2y)2=32x4y2=9x4y2.15.计算(﹣a2b)2的结果是.【答案】a4b2【解析】根据幂的乘方的性质,积的乘方的性质即可求得答案.解:(﹣a2b)2=a4b2.故答案为:a4b2.16.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y2【答案】A【解析】根据积的乘方的知识求解即可求得答案.解:(2x3y)2=4x6y2.故选:A.17.下列运算正确的是()A.a2•a3=a6B.(a4)3=a12C.(﹣2a)3=﹣6a3D.a4+a5=a9【答案】B【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解:A、a2•a3=a2+3=a5≠a6,故本选项错误;B、(a4)3=a4×3=a12,故本选项正确;C、(﹣2a)3=(﹣2)3a3=﹣8a3,故本选项错误;D、a4与a5不是同类项,不能合并,故本选项错误.故选B.18.计算(﹣a)2•a3的结果是()A.a5B.a6C.﹣a5D.﹣a6【答案】A【解析】利用同底数幂的乘法运算,即可求得答案;注意同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.解:(﹣a)2•a3=a2•a3=a5.故选A.19.(﹣x2)2n﹣1等于()A.x4n﹣1B.﹣x4n﹣1C.x4n﹣2D.﹣x4n﹣2【答案】D【解析】直接利用幂的乘方的性质求解即可求得答案.解:(﹣x2)2n﹣1=﹣x4n﹣2.故选D.20. [(﹣b)2]3的计算结果为()A.﹣b5B.b5C.﹣b6D.b6【答案】D【解析】根据幂的乘方,底数不变指数相乘进行计算即可求解.解:[(﹣b)2]3=(b2)3=b6.故选D.21.已知a=75,b=57,则下列式子中正确的是()A.ab=1212B.ab=3535C.a7b5=1212D.a7b5=3535【答案】D【解析】根据幂的乘方和积的乘方求出ab和a7b5的值,再进行判断即可.解:∵a=75,b=57,∴ab=75×57≠1212,ab≠3535,a7b5=(75)7×(57)5=735×535=(7×5)35=3535,而a7b5≠1212,∴选项A、B、C都不正确;只有选项D正确;故选D.22.若(﹣a m)n=﹣a mn成立,则下列说法正确的是()A.m、n均为奇数B.m、n均为偶数C.n一定是偶数D.n一定是奇数【答案】D【解析】根据幂的乘方与积的乘方的运算法则进行计算即可.解:∵(﹣a m)n=﹣a mn成立,∴n是奇数,与m无关.故选D.23.已知10m=2,10n=3,则103m+2n=.【答案】72【解析】根据同底数幂相乘的逆运算和幂的乘方的逆运算法则计算.解:103m+2n=103m102n=(10m)3(10n)2=23•32=8×9=72.24.计算:(2a2)2=.【答案】4a4【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.解:(2a2)2=22a4=4a4.25.计算(a3)2的结果是.【答案】a6【解析】根据幂的乘方乘方法则:幂的乘方,底数不变指数相乘,即可求解.解:(a3)2=a3×2=a6.故答案是:a6.26.计算:(3a3)2=.【答案】9a6【解析】利用积的乘方的性质:积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘,首先计算积的乘方,再利用幂的乘方乘方性质:底数不变,指数相乘,计算(a3)2可得答案.解:(3a3)2=32•(a3)2=9•a3×2=9a6.故答案为:9a6.27.已知3a=m,3b=n,则3a+b=;3a+2b=.【答案】mn;mn2【解析】由3a+b=3a•3b,3a+2b=3a•32b=3a•(3b)2,代入进行计算即可.解:∵3a=m,3b=n,∴3a+b=3a•3b=mn,3a+2b=3a•32b=3a•(3b)2=mn2.故答案为:mn;mn2.28.比较大小:(23)4(34)2.【答案】<【解析】根据幂的乘方把两个数写成指数相同的数,再比较.解:∵(23)4=642,(34)2=812,而642<812∴(23)4<(34)2.29. 2m=8,则4m的值为.【答案】64【解析】将4m的变形为(2m)2,再将2m=8代入计算即可求解.解:4m=(2m)2=82=64.故答案为:64.30.已知a m=4,a n=3,则a2m+n=.【答案】48【解析】根据同底数幂的乘法得出a2m•a n,根据幂的乘方得出(a m)2•a n,代入求出即可.解:∵a m=4,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=42×3=48,故答案为:48.。

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)北师大版数学七年级下册第一章1.4整式的乘法课时练一、选择题1.(-5a2b)·(-3a)等于()A.15a3bB.-15a2bC.-15a3bD.-8a2b答案:A解析:解答:(-5a2b)·(-3a)=15a3b,故A项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.2.(2a)3·(-5b2)等于()A.10a3bB.-4a3b2C.-40a3bD.-40a2b答案:B解析:解答:(2a)3·(-5b2)=-4a3b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式乘单项式法则可完成此题.3.(2a3b)2·(-5ab2c)等于()A.-20a6b4cB.10a7b4cC.-20a7b4cD.20a7b4c答案:C 剖析:解答:(2a3b)2·(-5ab2c)=-20a7b4c,故C项正确.阐发:先由积的乘办法例得(2a3b)2=-4a6b2,再由单项式乘单项式法例与同底数幂的乘法可完成此题.4.(2x3y)2·(5xy2)·x7即是()A.-XXX.-20x7y4D.20x14y4答案:D解析:解答:(2x3y)2·(5xy2)·x7=-20x14y4,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式乘单项式法则与同底数幂的乘法法则可完成此题.5.2a3·(b2-5ac)等于()A.-20a6b2cB.10a5b2cC.2a3b2-10a4cD.a7b4c-1a4c答案:C剖析:解答:2a3·(b2-5ac)=2a3b2-10a4c,故C项正确.阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题.6.x3y·(xy2+z)即是()A.x4y3+xyzB.xy3+x3yzC.zx14y4D.x4y3+x3yz答案:D解析:解答:x3y·(xy2+z)=x4y3+x3yz,故D项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.7.(-x7)2·(x3y+z)等于()A.x17y+x14zB.-xy3+x3yzC.-x17y+x14zD.x17y+x3yz答案:A解析:解答:(-x7)2·(x3y+z)=x17y+x14z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.8.[(-6)3]4.(b2-ac)等于()A.-612b2-b2cB.10a5-b2cC.612b2-612acD.b4c-a4c答案:C解析:解答:[(-6)3]4.(b2-ac)=612b2-612ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.9.(2x)3.(x3y+z)等于()A.8x6y+x14zB.-8x6y+x3yzC.8x6y+8x3zD.8x6y+x3yz答案:C解析:解答:(2x)3.(x3y+z)=8x6y+8x3z,故C项正确.阐发:先由积的乘办法例得(2x)3=8x3,再由单项式乘多项式法例与同底数幂的乘法法例可完成此题.10.(2x)2.[(-y2)2+z]等于()A.4xy4+xzB.-4x2y4+4x2zC.2x2y4+2x2zD.4x2y4+4x2z答案:D剖析:解答:(2x)2.[(-y2)2+z]=4x2y4+4x2z,故D项正确.阐发:先由积的乘办法例得(2x)2=4x2,由幂的乘办法例得(-y2)2=y4再由单项式乘多项式法例与同底数幂的乘法法例可完成此题.11.x2.x5.(y4+z)等于()A.x7y4+x7zB.-4x2y4+4x2zC.2x2y4+2x2zD.4x2y4+4x2z答案:A剖析:解答:x2.x5.(y4+z)=x7y4+x7z,故A项正确.分析:先由同底数幂的乘法法则得x2.x5=x7,再由单项式乘多项式法则可完成此题.12.x2·(xy2+z)等于()A.xy+xzB.-x2y4+x2zC.x3y2+x2zD.x2y4+x2z答案:C解析:解答:x2.(xy2+z)=x3y2+x2z,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.13.(a3+b2)·(-5ac)等于()A.-5a6b2-cB.5a5-b2cC.5a3b2-10a4cD.-5a4c-5ab2c答案:D剖析:解答:(a3+b2)·(-5ac)=-5a4c-5ab2c,故D项正确.阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题.14.(x2+y5)·(y2+z)即是()A.x2y2+x2z+y7+y5zB.2x2y2+x2z+y5zC.x2y2+x2z+y5 zD.x2y2+y7+y5z答案:A解析:解答:(x2+y5).(y2+z)=x2y2+x2z+y7+y5z,故A项正确.分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.15.2(a2+b5)·a2等于()A.a2c+b5cB.2a4+2b5a2C.a4+2b5a2D.2a4+ba2答案:B剖析:解答:2(a2+b5)·a2=2a4+2b5a2,故B项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题16.5x2·(xy2+z)即是;答案:5x3y2+5x2z剖析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题17.2a2·(ab2+4c)即是;答案:2a3b2+8a2c剖析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题18.2a2·(3ab2+7c)即是;答案:6a3b2+14a2c剖析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题19.(-2a2)·(3a+c)即是;答案:-6a3-2a2c剖析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题20.(-4x2)·(3x+1)即是;答案:-12x3-4x2剖析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题三、计算题21.(-10x2y)·(2xy4z)答案:-20x3y5z解析:解答:解:(-10x2y)·(2xy4z)= -20x2+1·y4+1·z=-20x3y5z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22.(-2x y2)·(-3x2y4)·(-x y)答案:-6x4y7解析:解答:解:(-2x y2)·(-3x2y4)·(-x y)= -6x1+2+1·y2+4+1=-6x4y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题23.2a·(a+1)-a(3a-2)+2a2(a2-1)答案:2a4-3a2+4a剖析:解答:解:2a·(a+1)-a(3a-2)+2a2(a2-1)=2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a阐发:先由单项式乘多项式法例与同底数幂的乘法法例计算,再归并同类项可完成此题.24.3ab·(a2b+ab2-ab)答案:3a3b2+3a2b3-3a2b2解析:解答:解:3ab·(a2b+ab2-ab)=3ab·a2b+3ab·ab2-3ab·ab=3a3b2+3a2b3-3a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)。

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题)例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =-- 巩固练习1.①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-;④323(2)(2)b ac ab ⋅-⋅-.2.①2223(23)xy xz x y ⋅+=_____________________;②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________;③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________;④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3.①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---;④2(2)x y +;⑤()()a b c a b c -+++.4.若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5.若圆形的半径为(21)a +,则这个圆形的面积为()A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6.①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7.①32(32)(3)x yz x y xy -÷-=____________;②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-.8.计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.思考小结1.老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可.()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】巩固练习1.①445a b ②522m n ③12272x y -④3524a b c -2.①222336+9x y z x y ②428xy xy-+③232321334a b c a b c -④442584a b a b -⑤432323a a a a--++3.①229x y -②2242a b a b-+-③224212m mn n -++④2244x xy y ++⑤2222a b c ac-++4.D5.C6.①223x z ②12③48x y④34x y -⑤22mn 7.①223x z x -+②2246b ab a -+-③222n m --④3222132m n m n m -+-8.①322a c ②7③23a ab+ 思考小结()()a b p q ap aq bp bq ++=+++22()(2)32a b a b a ab b ++=++。

初中数学整式的乘法(含答案)

初中数学整式的乘法(含答案)

第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。

整式的乘法习题含解析答案.doc

整式的乘法习题含解析答案.doc

整式的乘法测试1.列各式中计算结果是x2-6x+5 的是 ()A. ( x-2)( x-3)B.( x-6)( x+1)C.( x-1)( x-5)D.( x+6)( x-1)2.下列各式计算正确的是( )A.2 x+3x=5B.2x?3x=6C.( 2x)3=8D.5x6÷x3=5 x23.下列各式计算正确的是( )A.2 x( 3x-2)=5x2-4xB.( 2y+3x)( 3x-2y) =9 x2-4y2C.( x+2)2 =x2+2 x+4D.( x+2)( 2x-1) =2x2 +5x-24.要使多项式 (x2+px+2)( x-q)展开后不含 x 的一次项,则p 与 q 的关系是 ()A. p=qB. p+q=0C.pq=1D.pq=225.若 (y+3)( y-2)= y +my+n,则 m、 n 的值分别为 ()B.m=1, n=-6C.m=1, n=6D.m=5, n=-66.计算: (x-3)(x+4)=_____ .7.若 x2+px+6=( x+q)(x-3) ,则 pq=_____ .8.先观察下列各式,再解答后面问题:( x+5)( x+6)= x2+11x+30; (x-5)( x-6)= x2-11x+30 ;(x-5)(x+6)= x2 +x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①( a+99)( a-100)=_____ ;② (y-500)( y-81)=_____ .9. (x-y)(x2+xy+y2 )=_____ ; (x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n -1y+y n -2y2+⋯+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若 (x+4)( x-3)= x2+mx-n,则 m=_____ , n=_____.12.整式的乘法运算(x+4)( x+m), m 为何值时,乘积中不含x 项? m 为何值时,乘积中x 项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片 A 类, B 类和长方形卡片 C 类若干张,如果要拼一个长为(a+2 b),宽为( a+b)的大长方形,则需要 C 类卡片 ()张.14.计算:(1)(5 mn2-4m2n)(-2 mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2 x+4x2)-x(3x-1)(3x+1)+( x2+x+1)( x-1)-(x-3) 的值与 x 无关.参考答案1.答案: C解析:【解答】 A 、( x-2)( x-3) =x2-6x+6,故本选项错误;B、( x-6)( x+1) =x2-5x-6,故本选项错误;C、( x-1)( x-5) =x2-6x+5,故本选项正确;D、( x+6)( x-1) =x2+5x-6,故本选项错误;故选 C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案: A解析:【解答】 A 、 2x+3 x=5x,故 A 选项正确;B、 2x?3x=6x2,故 B 选项错误;C、( 2x)3=8x3,故 C 选项错误;D、 5x6÷x3=5x3,故 D 选项错误;故选 A .【分析】根据整式乘法和幂的运算法则.3.答案: B解析:【解答】 A 、 2x( 3x-2) =6x2-4x,故本选项错误;B、( 2y+3 x)( 3x-2y)=9x2-4y2,故本选项正确;C、( x+2)2=x2+4x+4,故本选项错误;2D、( x+2)( 2x-1) =2x +3x-2,故本选项错误.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案: D解析:【解答】(x2+px+2)( x-q) =x3-qx2+px2-pqx+2x-2q=x3+( p-q)x2 +( 2-pq) x-2q,∵多项式不含一次项,∴p q-2=0 ,即 pq=2 .故选 D【分析】利用多项式乘以多项式法则计算,次项,令一次项系数为0 即可列出p 与5.答案: B合并同类项得到最简结果,q 的关系.由结果中不含x 的一解析:【解答】∵(y+3)( y-2)=y2-2y+3 y-6= y2+y-6,∵( y+3)( y-2) =y2+my+n,∴y2+my+n=y2+y-6,∴m=1, n=-6 .故选 B .【分析】先根据多项式乘以多项式的法则计算( y+3)( y-2),再根据多项式相等的条件即可求出 m、 n 的值.6.答案: x2+x-12解析:【解答】(x-3)( x+4) =x2+4x-3x-12=x2+x-12【分析】根据(a+b)( m+n) =am+an+bm+bn 展开,再合并同类项即可.7.答案: 10解析:【解答】∵(x+q)( x-3)=x2+( -3+q) x-3q,∴x2+px+6= x2+( -3+q) x-3q,∴p=-3+ q, 6=-3q,∴p=-5 , q=-2 ,∴pq=10.故答案是 10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为( a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、 q 的方程组,求解即可.8.答案:① a2-a-9900 ;② y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)( x+a)( x+b) =x2+( a+b) x+ab.(3)①( a+99 )( a-100) =a2-a-9900 ;②( y-500)( y-81) =y2-581y+40500 .【分析】( 1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据( 1)中呈现的规律,列出公式;(3)根据( 2)中的公式代入计算.9.答案: x3-y3; x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2 y+xy2-x2y-xy2 -y3=x3-y3;原式 =x4+x3 y+x2 y2+xy3-x3y-x2 y2-xy3-y4 =x4-y4;原式 =x n+1+x n y+xy n-2+x2y n-1 +xy n -x n y-x n-1y2-y n-1y2-⋯ -x2y n -1 -xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案: -3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)( 2b-3a)÷2=(a+b)( 2b-3a) =-3 a2+2b2-ab.【分析】根据三角形的面积=底×高÷2 列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案: 1, 12.解析:【解答】∵(x+4)( x-3)=x2-3x+4 x-12=x2+x-12=x2+mx-n,∴m=1, -n=-12 ,即 m=1, n=12 .【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与 n 的值,代入所求式子中计算,即可求出值.12.答案: -4, 2解析:【解答】∵(x+4)( x+m) =x2+mx+4 x+4m若要使乘积中不含x 项,则∴4+ m=0∴m=-4若要使乘积中x 项的系数为6,则∴4+ m=6∴m=2提出问题为: m 为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x 项,则令含x 项的系数为零;若要使乘积中x 项的系数为6,则令含x 项的系数为6;根据展开的式子可以提出多个问题.13.答案: 3 张.解析:【解答】(a+2b)( a+b) =a2+3ab+2b2.则需要 C 类卡片 3 张.【分析】拼成的大长方形的面积是(a+2b)( a+b)=a2+3 ab+2b2,即需要一个边长为 a 的正方形, 2 个边长为 b 的正方形和 3 个 C 类卡片的面积是 3ab.14.答案:( 1) 10m2n3+8m3 n2;( 2) 2x-40.解析:【解答】( 1)原式 =-10m2n3+8m3n2;(2)原式 =x2-6x+7 x-42-x2-x+2x+2=2x-40.【分析】( 1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与 x 无关解析:【解答】原式 =2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+ x-3=-3 ,则代数式的值与x 无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

整式乘法10道题及答案

整式乘法10道题及答案

整式乘法10道题及答案1、5x2·(xy2+z)等于;答案:5x3y2+5x2z解析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2、2a2·(ab2+4c)等于;答案:2a3b2+8a2c解析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c 分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题3、2a2·(3ab2+7c)等于;答案:6a3b2+14a2c解析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c 分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题4、(-2a2)·(3a+c)等于;答案:-6a3-2a2c解析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c 分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题5、(-4x2)·(3x+1)等于;答案:-12x3-4x2解析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题6、(-10x2y)·(2xy4z)等于;答案:-20x3y5z解析:解答:(-10x2y)·(2xy4z)=-20x2+1·y4+1·z=-20x3y5z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题7、(-2xy2)·(-3x2y4)·(-xy)等于;答案:-6x4y7解析:解答:(-2xy2)·(-3x2y4)·(-xy)=-6x1+2+1·y2+4+1=-6x4y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题8、2a·(a+1)-a(3a-2)+2a2(a2-1)等于;答案:2a4-3a2+4a解析:解答:2a·(a+1)-a(3a-2)+2a2(a2-1)=2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.9、3ab·(a2b+ab2-ab)等于;答案:3a3b2+3a2b3-3a2b2解析:解答:3ab·(a2b+ab2-ab)=3ab·a2b+3ab·ab2-3ab·ab=3a3b2+3a2b3-3a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.10、(x-8y)·(x-y)等于;答案:x2-9xy+8y2解析:解答:(x-8y)·(x-y)=x1+1-xy-8xy+8y1+1=x2-9xy+8y2分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档整式的乘法测试2-6x+5的是( ) 1.列各式中计算结果是xA.(x-2)(x-3)
B.(x-6)(x+1)
C.(x-1)(x-5)
D.(x+6)(x-1)
2.下列各式计算正确的是( )
A.2x+3x=5
B.2x?3x=6
3=8 x)C.(2632 =5÷xxD.5x3.下列各式计算正确的是( )
2-4x )=5x(A.2x3x-222-4=9xy)(3x-2y)xB.(2y+322+2x=xxC.(+2)+4
2+5x=2x-2
+2)(2x-1)D.(x2+px+2)(x-q)展开后不含x的一次项,则xp与q的关系是( ) 4.要使多项式(A.p=q B.p+q=0 C.pq=1 D.pq=2
2+my+n,则m、n的值分别为( y5.若(y+3)(-2)=y)
A.m=5,n=6
B.m=1,n=-6
C.m=1,n=6
D.m=5,n=-6
6.计算:(x-3)(x+4)=_____.
2+px+6=(x+q)(x-3),则pq=_____..若7x22-11x+30-6)=x;-5)(x+5)(x+6)=+30+11x;(xxx.先观察下列各式,再解答后面问题:8(2+x-30+6)=x;xx(-5)((1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?
(2)根据以上各式呈现的规律,用公式表示出来;
精品文档.
精品文档(3)试用你写的公式,直接写出下列两式的结果;
-500)(y.-81)=_____(a+99)(a-100)=_____;②(y①322322)=_____
++xyy++xy+y)()=_____;(x-yxxy-9.(xy)(x n-2n-1-1n-222nnn x+…+ xy)=_____yyy+xn根据以上等式进行猜想,当是偶数时,可得:(x-y)(.+x+yy+ _____.2b-3a,则这个三角形的面积是10.三角形一边长2a+2b,这条边上的高为2,n=_____.xn+mx-,则m=_____+4)(11.若(xx-3)=项x项?m 为何值时,乘积中+xm),m为何值时,乘积中不含x12.整式的乘法运算(x+4)( ?你能提出哪些问题?并求出你提出问题的结论.的系数为6
,宽+2b)B类和长方形卡片C类若干张,如果要拼一个长为(a13.如图,正方形卡片A类,()张.b)的大长方形,则需要C类卡片为(a+
14.计算:22) n)(-2(1)(5mnm-4mn+1) -2)(x+7)((2)(xx-6)-(x
22无关.x-3)-1)-(+1)(xxxx+4+1)(1-2(215.试说明代数式xxx)-(3-1)(3+1)+(+xxx的值与
精品文档.
精品文档参考答案C
.答案:12,故本选项错误;x)=x+6-6解析:【解答】A、(x-2)(x-32,故本选项错误;x=x-6-5B、(x-6)(x+1)2 +5x=x,故本选项正确;-6C、(x-1)(x-5)2-6x,故本选项错误;+5x、(x+6)(x-1)=D C.故选,进行计+bnan+bm)(m+n=am+【分析】根据多项式乘以多项式的法则,可表示为(a+b)算即可得出正确答案.A
2.答案:A选项正确;=5x,故解析:【解答】A、2x+3x2选项错误;,故B?3、2xx=6xB33选项错误;,故2x)C=8xC、(336选项错误;,故÷xD=5D、5xx .故选A 【分析】根据整式乘法和幂的运算法则.
3.答案:B
2-4x,故本选项错误;-2)=6x解析:【解答】A、2x(3x22,故本选项正确;y=9x -4+3x)(3x-2y)B、(2y22+4x+4x,故本选项错误;C、(x+2)=2+3x-2,故本选项错误.x-1)=2x)(D、(x+22故选B.
【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.
4.答案:D
232232+(2-pq)xq)x-2q,-(=-2+2pxx)-)(px解析:【解答】(x++2xq=-qx+-pqxxqx+p∵多项式不含一次项,
∴pq-2=0,即pq=2.
故选D
精品文档.
精品文档的一x利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含【分析】的关系.与q次项,令一次项系数为0即可列出pB
.答案:522,yy-6=y-6)(y-2)=y+-2y+3解析:【解答】∵(y+32,+yn+my∵(y+3)(y-2)=22,y=y-6∴y++my+n =-6.m=1,n∴B.故选),再根据多项式相等的条件即y-2【分析】先根据多项式乘以多项式的法则计算(y+3)(n的值.可求出m、2-12
+6.答案:xx22-12
+-12=x=xx+4x-3x解析:【解答】(x-3)(x+4)展开,再合并同类项即可.bm+bn+n)=aman+【分析】根据(a+b)(m+10
.答案:72,x-3q+(-3+qx解析:【解答】∵(x+q)(-3)=x)22,-3q(-3+q∴x)+px+6=xx+ ,6=-3qp=-3+q,∴=-2q,∴p=-5,=10.∴pq 10.故答案是bnbm++an+(m+n)=ama【分析】等式的右边根据多项式乘以多项式的法则,可表示为(+b)的方程组,求解即可.p、q进行计算,再根据等式的性质可得关于22.y+40500a-9900;②y.答案:①8a-581-)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积1解析:【解答】(中的常数项;2.+)xab=x+(a+bba2()(x+)(x+)2-9900;=a-a)+99(3)①(a)(a-1002 +40500.=y-81)yy-581)(y
②(-500 )根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;【分析】(1 )中呈现的规律,列出公式;)根据((21 精品文档.
精品文档)中的公式代入计算.3)根据(2(+1n4n+1334;x-y.;xy-y-x9.答案:33233222 y=x-x;
y-xy-解析:【解答】原式=x-+xyy+xy443433224322 x;y--+xxyy+xyyxy+--xyy-x原式
=x=+1nnn+1+1n-122n-1nnnn+1n-22n-1nn-12 y…-x-x+xy+xy=y+xyx,+xyx--y-xxy-y-y-yy原式=先用一个多项式的每一项多项式与多项式相乘,【分析】根据多项式与多项式相乘的法则:乘另外一个多项式的每一项,再把所得的积相加.22.-.答案:-3aab+2b10 ,-3a2a+2b,这条边上的高为b解析:【解答】∵三角形一边长222 ab+2b.-b)(2b-3a)=-3a)a∴这个三角形的面积为:(2+2b)(2b-3a÷2=(a+
列出表示面积是式子,再根据多项式乘以多项式的法÷2=底×高【分析】根据三角形的面积则计算即可.
12..答案:1,11
222,-nx-12=x+-3x)=xx-3x+4-12=xmx+x解析:【解答】∵(+4)(=12.=1,即m,nm∴=1,-n=-12
m【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出n的值,代入所求式子中计算,即可求出值.与2 ,12.答案:-4
2 +4mmx++4x=x解析:【解答】∵(x+4)(+m)x x项,则若要使乘积中不含=0 m∴4+=-4
m∴,则6若要使乘积中x项的系数为=6 4+∴m=2 m∴精品文档.
精品文档m为何值时,乘积中不含常数项?提出问题为:若要使乘积中不含常数项,则=0 4m ∴=0 ∴m
项x项,则令含x项的系数为零;若要使乘积中【分析】把式子展开,若要使乘积中不含x ;根据展开的式子可以提出多个问题.x项的系数为6的系数为6,则令含张.13.答案:322 b.=a+3ab+2解析:【解答】(a+2b)(a+b)张.类卡片3则需要C22的正a,即需要一个边长为+3ab+2)(a+b)=abb【分析】拼成的大长方形的面积是(a+2 ab.个C类卡片的面积是3方形,2个边长为b的正方形和32332.2)mxn-40;(.答案:(141)10m2n+8
2323 nn;+8m)原式解析:【解答】(1=-10m22-40.+2x+2=2x-6x+7x-42-x-x=(2)原式x 1)原式利用单项式乘以多项式法则计算,合并即可得到结果;【分析】()原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.2(无关15.答案:代数式的值与x
32332 x无关.xx-1+-3=-3,则代数式的值与+x+4x-4=2解析:【解答】原式xx+8+1-2xx-9-x
【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.
精品文档.。

相关文档
最新文档