UG NX 8.0数控加工基础教程第5章 固定轴曲面轮廓铣

合集下载

NX固定轴曲面轮廓铣

NX固定轴曲面轮廓铣
创建临 时边界
永久边界名
边界生成驱 动点的方式
数控机床加工程序编制 11
第六章 自动编程
6.5 固定轴曲面轮廓铣 区域驱动(Area Milling) 是通过 指定切削区域来定义投影区域。这种驱 动方法与边界驱动方法类似,但不需要 驱动几何,直接由选取的切削区域生成 刀具轨迹。
数控机床加工程序编制
第六章 自动编程
6.5 固定轴曲面轮廓铣
固定轴曲面轮廓铣是曲面半精加工 或精加工曲面的方法。在固定轴铣中,刀 轴与指定的方向始终保持平行,即刀轴固 定。
工件
型腔铣后的结果
数控机床加工程序编制
1
第六章 自动编程
6.5 固定轴曲面轮廓铣
固定轴曲面轮廓铣刀具轨迹生成
固定轴铣的刀具路径,是通过投 射驱动点到零件几何上来创建的, 其生成过程如下: 首先:从驱动几何如曲线、边界、 表面或曲面产生驱动点; 然后:刀具沿着指定的投射矢量 从驱动点开始往零件移动,当刀具 与零件接触时,刀具停止运动,刀 具中心位置点就是刀具轨迹上的一 个位置点。 最后:若干个驱动点将形成若干 个刀具轨迹位置点,连接这些刀具 轨迹位置点所形成的轨迹就是刀具 路径。
清根驱动方法 在精加工前去除零件拐角多余的余量; 去除上一把大的刀具没有切除的毛坯;
数控机床加工程序编制
17
第六章 自动编程
6.5 固定轴曲面轮廓铣 清根驱动方法
清根驱动方法:沿由零件表面形成的凹角与沟槽 创建刀具路径。 在创建清根操作过程中,刀具必须与零件的两 个表面在不同点接触。 如果零件几何表面曲率半径大于刀具半径,则 无法产生双切线接触点.也就无法生成清根切削 路径。
6.5 固定轴曲面轮廓铣
2、投影矢量 投影矢量确定驱动点如何投射到零件 表面上。以及刀具与零件表曲哪一侧接触。 刀具则总是沿投影矢量靠近零件接触并生

NX固定轴曲面轮廓铣

NX固定轴曲面轮廓铣

选择C1 添加新集 选择C2 添加新集…
数控机床加工程序编制
15
第六章 自动编程
6.5 固定轴曲面轮廓铣 径向驱动方法
径向驱动方法,是通过指定横向进给量、带宽 与切削方法,来创建沿给定边界并垂直于边界的 刀具路径,它特别适合于清根操作中。
数控机床加工程序编制
16
第六章 自动编程
6.5 固定轴曲面轮廓铣
数控机床加工程序编制 2
第六章 自动编程
6.5 固定轴曲面轮廓铣
1.驱动方法 驱动方法用于定义创建刀具路径的驱动点。 NX在曲面加工中提供了多种类型的驱动 几何体 方法。 其中,有些驱动方法允许沿曲线创建驱 动点集。另外一些驱动方法则允许在一个区 域中创建驱动点阵列。
数控机床加工程序编制
3
第六章 自动编程
6.5 固定轴曲面轮廓铣
2、投影矢量 投影矢量确定驱动点如何投射到零件 表面上。以及刀具与零件表曲哪一侧接触。 刀具则总是沿投影矢量靠近零件接触并生
成刀轨。
驱动方法 投影矢量刀轴
数控机床加工程序编制
4
第六章 自动编程
6.5 固定轴曲面轮廓铣
2、投影矢量 投影矢量确定驱动点如何投射到零件 表面上。以及刀具与零件表曲哪一侧接触。 刀具则总是沿投影矢量靠近零件接触并生
以便为不同的区域 设定不同的切削模 式
陡峭区刀轨
非陡峭区刀轨
陡峭区
非陡峭区
数控机床加工程序编制
21
第六章 自动编程
6.5 固定轴曲面轮廓铣 清根驱动方法-不同区域的切削模式
单刀轨 陡峭区和 非陡峭区 的切削模 式 多刀轨 及参考刀 具陡峭区 和非陡峭 区的切削 形模式。
数控机床加工程序编制

05UGCAM教材模块五--固定轴曲面轮廓铣-区域铣削

05UGCAM教材模块五--固定轴曲面轮廓铣-区域铣削

模块五 固定轴曲面轮廓铣创建一、学习目标学习本项目后,掌握UG 软件加工模块Fixed_Contour (固定轴曲面轮廓铣)加工操作,利用区域铣削驱动完成小型腔曲面的半精加工,并合理定义各加工参数。

1、掌握固定轴曲面轮廓铣的特点 2、掌握刀轴与投影的概念 3、掌握区域铣削驱动的创建 4、掌握区域铣削的特点 5、掌握定向陡峭区域的概念 6、掌握主要切削参数的定义 二、工作任务 1、创建区域铣削驱动 2、定义主要切削参数 三、相关实践知识在实践操作中,利用区域铣削驱动完成小型腔曲面的半精加工,定义各项内容如表7-5-1所示。

表7-5-1 加工程序五:小型腔曲面的半精加工程序名 AREA_MILLING01定 义 项参 数作 用程序组 NC_PROGRAM 指定程序归属组使用几何体 MILL_GEOM001 指定MCS 、加工部件、毛坯 使用刀具 MILL_D10R5 指定直径10的球刀 使用方法 MILL_SEMI_FINISH 指定加工过程余量 驱动方式 区域铣削 定义切削范围 切削区域 小型腔底面 定义加工范围 裁剪 未定义 约束加工范围图样 “跟随周边”确定刀具切削方式 加 工 操 作步进恒定的,数值0.1确定刀具切削横跨距离切削部件余量0.1 指定加工过程保留余量转速S=2600rpm 确定刀轴转速进给率进刀速度F=400第一刀速度F=400步进速度F=800切削速度F=1000横越速度F=1200退刀速度F=2000定义加工中各过程速度(数值仅作参考,具体加工根据机床功率、部件材料、刀具类型及材料来指定。

)其他按默认值固定轴曲面轮廓铣加工的创建步骤如下:1、进入固定轴曲面轮廓铣加工选择“加工生成”工具条中“创建加工操作”命令,在类型中选择“mill_contour”。

子类型中选择第五项“Fixed_Contour”(固定轴曲面轮廓铣)。

“程序”选项里按默认;“使用几何体”选择“MILL_GEOM001”;“使用刀具”选择“MILL_D10R5”;“使用方法”选择“MILL_SEMI_FINISH”;名称命名为“AREA_MILLING01”。

UG数控加工编程_固定轴、可变轴曲面轮廓铣解读

UG数控加工编程_固定轴、可变轴曲面轮廓铣解读
Planar Mill, Profile cut type
径向驱动方法,是通过指定横向进给量、 带宽与切削方法,来创建沿给定边界并 垂直于边界的刀具路径,它特别适合于 清根操作中。
清根驱动方法是固定轴铣操作中特有的驱动方 法,它可沿由零件表面形成的凹角与沟槽创建 刀具路径。 在创建清根操作过程中,刀具必 须与零件两个表面在不同点接触。如果零件几
边界驱动:边界驱动方法与平面铣的工 作过程非常相似,用边界、内环或两者 联合来定义切削区域,从定义的切削区 域、沿指定的投射矢量方向、把驱动点 投射到零件几何表面上,来创建刀具路 径。
区域驱动(Area Milling)方法只 能用于固定轴铣操作中,它是通过指定 切削区域来定义一个固定轴铣操作,在 该驱动方法中可指定陡峭约束与修剪边 界约束。这种驱动方法与边界驱动方法 类似,但不需要驱动几何。
CONTOUR_TE 刻字加 投影字到零件表面,进行三维的字体的加工。
XT

固定轴铣对话框
零件几何体 检查几何体
驱动方法(Drive Method)用来定 义创建刀具路径的驱动点。
曲线与点驱动:当选择点时,就 是所选点间用直线段创建驱动路径; 当选择曲线时,则沿与其他驱动方法不同, 螺旋驱动方法创建的刀具路径,在从 一道切削路径向下一道切削路径过渡 时,没有横向进刀,也铣不存在切削 方向上的突变,而是光顾地、持续地 向外螺旋展开过渡,因为这种驱动方 法能保持恒定切削速度的光顺运动, 所以特别适合于高速加工。

件的外轮廓决定区域。
非陡峭区 和区域轮廓铣类似,仅仅加工非陡峭区域 域轮廓铣
陡峭区域 和区域轮廓铣类似,仅仅加工陡峭区域 轮廓铣
曲面区域 按照曲面的 U-V 方向生成驱动路径。 轮廓铣

模块5 固定轴曲面轮廓铣

模块5 固定轴曲面轮廓铣

课程名称CAD/CAM实训(UG)教学主题曲面铣授课班级数控授课时间授课地点机房教学目标:1、掌握固定轴铣加工复杂曲面。

;2、掌握UG后置处理的方法及仿真操作。

;3、了解UG注塑模的操作流程。

职业技能教学点:1、能灵活应用固定轴功能加工复杂零件;2、能根据生成的轨迹产生G代码并进行仿真加工。

教学设计:讲授、演示、举例-----完成单元项目教学手段:实例法、练习教学过程教学内容与板书备注【清点人数】【要求】1、出勤2、遵守机房的规章制度3、完成的单元项目并存储在共享文件夹中对应姓名的文件夹中2分钟5分钟四、固定轴铣固定轴曲面轮廓铣Fix_Contour是沿曲面轮廓的深度切削材料,在每一位置,刀具始终沿着几何体的外轮廓同时有X、Y、Z轴的运动,即刀具路径始终与外轮廓曲面保持同距离(预留量)运动,用于半精加工或精加工,适用于加工一个或多个复杂曲面FIXED_CONTOUR 曲面轮廓铣基本的固定轴曲面轮廓铣操作,用于以各种驱动方式、包容和切削模式轮廓铣部件或切削区域。

刀具轴可以设为用户定义的矢量。

1、基本原理先由驱动几何(Drive Geometry)产生驱动点,在每个驱动点处,按投影方向(Projection V ector)驱动刀具向着加工几何(Part Geometry)移动,直至刀具接触到加工几何为止,此时,得到接触点,最后,系统根据接触点处的曲率半径和刀具半径值,补偿得到刀具定位点,见下图。

得到理想的刀具路径受如下因素影响:1.加工几何。

加工几何选择合适与否,将决定是否得到正确的工件外型。

2.驱动几何。

驱动几何的形状、面积、方位不同,产生不同的驱动点,将得到不同的刀具路径。

3.投影方向。

即使选择相同的加工和驱动几何,投影方相不同,将直接影响刀具定位点的位置。

由驱动方法(Drive Method)确定选择何种方式的驱动几何和投影方向。

注意:可允许不选择加工几何,此时,由驱动点直接得到刀具路径。

但是,必须选择其中之一的驱动方法。

第五章-固定轴轮廓铣加工

第五章-固定轴轮廓铣加工

朝向驱动体

如果使用曲面区域驱动 方法,则使用朝向驱动 体投影矢量以避免铣削 到非预期的部件几何体。 朝向驱动体的工作方法 与垂直于驱动体投影方 式类似,如图所示为使 用朝向驱动体来铣削型 腔的内部。
驱动方式



驱动方法用于定义创建刀轨所需的驱动点。某些驱动方法可 以沿一条曲线创建一串驱动点,而其他驱动方法厕可以在边 界内或在所选曲面上创建驱动点阵列。驱动点一旦定义,就 可用于创建刀轨。如果没有选择部件几何体,则刀轨直接从 驱动点创建。否则,驱动点投影到部件表面以创建刀轨。 选择合适的驱动方法,应该由加工表面的形状和复杂性以及 刀轴和投影矢量要求决定。所选的驱动方法决定可以选择的 驱动几何体的类型,以及可用的投影矢量、刀轴和切削类型。 投影矢量是大多数驱动方法的公共选项。它确定驱动点投影 到部件表面的方式,以及刀具接触部件表面的哪一侧。可用 的投影矢量选项将根据使用的驱动方法而变化。
朝向点

创建从部件表面延伸至 指定焦点的投影矢量。 此选项可用于加工焦点 在球中心处的外侧球形 (或类似球形)曲面。图中 的球面同时用作驱动曲 面和部件表面。因此, 驱动点以零距离从驱动 曲面投影到部件表面。 投影矢量的方向确定部 件表面的刀具侧,使刀 具从外侧向焦点定位。
远离直线

创建从指定的直线延伸至部件 表面的投影矢量。投影矢量作 为从中心线延伸至部件表面的 垂直矢量进行计算。此选项有 助于加工内部圆柱面,其中指 定的直线作为圆柱中心线。刀 具位置将从中心线移到部件表 面的内侧。驱动点沿着偏离所 选聚焦线的直线从驱动曲面投 影到部件表面。聚焦线与部件 表面之间的最小距离必须大于 刀具半径。
曲面区域

“曲面区域”驱动方法创建一个位于驱动曲面 栅格内的驱动点阵列。将驱动曲面上的点按 指定的投影矢量的方向投影,这样即可在选 定部件表面上创建刀轨。

UG数控加工讲义(5――可变轴曲面轮廓铣)汇总

UG数控加工讲义(5――可变轴曲面轮廓铣)汇总

UG 数控加工讲义(5可变轴曲面轮廓铣削加工操作流程与实例一、操作流程1、创建程序、刀具、几何体以及加工方法。

2、创建操作,选择操作子类型。

选择程序、刀具、几何体以及加工方法父节点。

3、在创建操作对话框中指定驱动方式、设定驱动参数、刀轴矢量及投影矢量。

4、设置切削参数、非切削参数和进给率等。

5、生成刀轨。

6、通过切削仿真进行刀轨校验、过切及干涉检查。

7、输出 CLSF 文件,进行后处理,生成 NC 程序。

二.使用可变轴曲面轮廓铣实例操作本例对零件上半部分进行加工。

步骤:1、打开文件:via_contour.prt, 进入加工环境。

在加工环境中, CAM 进程配置“ cam_general” , CAM 配置选择“ mill_multi-axis” ,单击“ 初始化” 按钮。

2、创建加工几何体,选择零件几何体,设定毛坯几何体偏置零件表面0.2mm 。

3、创建加工刀具,刀具类型选择“ mill_multi-axis” ,子类型选择第二个“ ball_mill” 。

刀具球头直径 5mm ,刀具长度 35mm , 刃口长度为 10mm 。

4、选择创建好的刀具, 右键后选择插入操作,选择“ mill_multi-axis” ,子类型选择第一行第一个类型“ V ARIBLE_CONTOUR” 。

单击确定。

在弹出的“ V ARIBLE_CONTOUR”对话框中指定驱动方式为“ 曲面区域驱动” ,驱动几何体依次选择叶身表面(为了能够选择驱动曲面 , 通常需要调整尺寸链公差 :选择菜单“ 预设置” → “选择” → 设置尺寸链公差为 0.5 。

指定切削步长为“ 公差” ,设置切削步长的内公差与切出公差为 0.05。

指定步进为“ 残余波峰高度” , 并且残余高度设置为 0.05。

指定刀轴为“ 相对于驱动” ,设定前倾角为 15°,设定侧倾角为30°, 勾选“ 应用光顺” 。

指定投影方向为刀轴。

这时可以单击“ 显示驱动路径” 按钮来查看驱动轨迹。

UG数控加工编程_固定轴、可变轴曲面轮廓铣

UG数控加工编程_固定轴、可变轴曲面轮廓铣

刀具路径驱动方法,即先沿着存在的刀 具路径创建驱动点,然后沿投射矢量把 驱动点投射到当前定义的零件几何表面 上,从而在零件几何表面轮廓上创建新 的刀具路径。
Planar Mill, Profile cut type
径向驱动方法,是通过指定横向进给量、 带宽与切削方法,来创建沿给定边界并 垂直于边界的刀具路径,它特别适合于 清根操作中。
2、投射矢量 投射矢量确定驱动点如何投 射到零件表面上.以及刀具与零件 表曲哪一侧接触。刀具则总是沿投 射矢量与零件表面的一侧接触。
3、刀具路径 固定轴铣的刀具路径,是通过投射驱动点到零件几何上来 创建的,首先,从驱动几何如曲线、边界、表面或曲面产生驱动 点;然后沿着指定的投射矢量把驱动点投射到零件几何上。刀具 于在零件几何表面上的投射点接触,随着刀具在零件几何上从一 个点移动到下一个点,刀具中心位置点形成的轨迹就是刀具路径。
区域驱动(Area Milling)方法只 能用于固定轴铣操作中,它是通过指定 切削区域来定义一个固定轴铣操作,在 该驱动方法中可指定陡峭约束与修剪边 界约束。这种驱动方法与边界驱动方法 类似,但不需要驱动几何。
曲面驱动:曲面驱动方法,是在驱动曲 面上创建建网格状的驱动点阵列(UV方 向),产生的驱动点,沿指定的投射矢 量投射到零件几何表面上创建刀具路径。 如果没有定义零件几何表面,则直接在 驱动曲面上创建刀具路径。因为该驱动 方法可灵活控制刀抽与投射矢量,主要 用于变轴铣中,加工形状复杂的表面。
陡峭区域 和区域轮廓铣类似,仅仅加工陡峭区域 轮廓铣 曲面区域 按照曲面的 U-V 方向生成驱动路径。 轮廓铣
FLOWCUT_SI NGLE FLOWCUT_M ULTIPLE
单路径 清根 多路径 清根
用于对零件根部刀具未加工的部分进行铣削 加工,单路径。 用于对零件根部刀具未加工的部分进行铣削 加工,多路径。 用于对零件根部刀具未加工的部分进行铣削 加工,以参考刀具作为参照来生成清根刀具 路径。 类似于参考刀具清根,在刀具横向移动和抬 刀时使用光顺移动方法,适合于高速加工 投影字到零件表面,进行三维的字体的加工。

NX8数控铣编程简明教程 第5章

NX8数控铣编程简明教程 第5章

图 5-25
图5-26
(4) 创建刀具:分别创建R6和R3立铣刀各一把,具体 过程请参考加工创建一章中的相关内容。
(5) 创建等高轮廓工序:单击 ,打开创建工序对 话框,选择如图5-27所示的工序子类型和父节点,单击确 定,打开工序对话框,设置如图5-28所示的参数。
图 5-27
图5-28
(6) 设置切削参数:单击,设置如图5-29和图5-30所 示的切削参数,单击确定。
本练习可参考视频文件 x:\nxcam_video\zlevel\zlevelprofile_milling_2_v.exe或以下 的步骤完成。
(1) 打开零件: Open→x:\nxcam_parts\zlevel\zlevelprofile_milling_2.prt。
(2) 运行加工模块:Start→Manufacturing。
图 5-3
5.3 创建等高轮廓铣的工序步骤
创建等高轮廓工序的步骤如图5-4所示,主要内容包括 创建/编辑父节点、创建工序(选择工序子类型和指定父节点) 以及设置工序参数。
图5-4
【练习5.1】 创建等高轮廓铣工序,学习在层之间切 削参数设置。本练习可参考视频文件 x:\nxcam_video\zlevel\zlevelprofile_milling_1_v.exe或按以 下步骤完成。
② 在工序导航器工具条中,单击 切换到刀具视图, 单击ZLEVEL_PROFILE工序,单击鼠标右键,打开快捷 菜单,选择COPY,复制此工序,单击刀具M6,单击鼠 标右键,打开快捷菜单,选择paste inside,粘贴此工序, 结果如图5-34所示。
③ 双击ZLEVEL_PROFILE_COPY工序,打开其对话 框,设置如图5-35所示参数。

ug固定和可变轮廓铣

ug固定和可变轮廓铣
驱动方式允许定义创建刀轨时所需的驱动点。有些驱动方式允许沿着曲线创建一串驱动点,而其它方式则允许在一个区域内创建驱动点阵列。“驱动点”一旦定义就可用于创建“刀轨”。如果没有选择“工件”几何体,则“刀轨”直接从“驱动点”创建。否则,可通过将驱动点沿投影矢量投影到工件表面来创建刀轨。
投影矢量允许定义如何将驱动点投影到工件表面,以及定义刀具将接触的工件表面的侧面。所选的驱动方式决定了哪些投影矢量是可用的。可为除“自动清根”(不使用投影矢量)以外的所有驱动方式定义投影矢量。如果未定义工件几何体,则当直接在驱动几何体上加工时,不使用投影矢量。
固定和可变轮廓铣是用于精加工由轮廓曲面形成的区域的加工方式。它们允许通过精确控制刀轴和投影矢量以使刀具沿着非常复杂的曲面的复杂轮廓运动。
使用驱动曲面的可变轮廓铣
可通过将驱动点投影到工件几何体上来创建刀轨。驱动点从曲线、边界、面或曲面等驱动几何体生成,并沿着指定的投影矢量投影到工件几何体上。然后,刀具定位到工件几何体以生成刀轨。
在“固定轮廓铣”对话框中,选择“自动清根”作为驱动方式。在“自动清根”对话框中指定所需的参数,然后按“确定”接受。在“固定轮廓铣”对话框中,选择“切削区域”和“选择”以定义切削区域几何体。如果不指定“切削区域”,系统将使用完整定义的“工件几何体”(刀具无法接近的区域除外)作为切削区域。
“检查几何体”使您能够指定刀轨不能干扰的几何体(如工件壁、岛、夹具等等)。当刀轨遇到检验曲面时,刀具退出,直至到达下一个安全的切削位置。“编辑”和“选择/取消选择”所显示的对话框与定义“工件几何体”时使用的那些对话框十分相似。
在曲面轮廓铣中,所有工件几何体都是作为有界实体处理的。相应的,由于曲面轮廓铣实体是有限的,因此刀具只能定位到工件几何体(包括实体的边)上现有的位置。刀具不能定位到工件几何体的延伸部分。但驱动几何体是可延伸的。

固定轴曲面轮廓铣(优化刀路)UG模型

固定轴曲面轮廓铣(优化刀路)UG模型

固定轴曲面轮廓铣(优化刀路)UG模型固定轴曲面轮廓铣(优化刀路)建议完成时间:30分钟(档案名称:Counter1.prt)1. 进入加工环境应用2. 放置坐标系(设计)到零件顶部上方3. 重合加工坐标系4. 插入一个新的操作Fix_counter5. 新建或选择一把铣刀M14R76. 选择零件几何体为实体7. 选择驱动方法为AreaMilling8. 发现不需要驱动几何体(介绍与边界的区别)9. 生成刀轨(缺点介绍)10. 重新选择pattern 类型为Follow periphery(介绍其他类型)跟随外形11. 生成刀轨(缺点介绍)12. 选择参数Aplly —— on part13. 生成刀轨(时间较长)14. 介绍加工方法(一把刀打天下不合适)(硬质合金刀适用性)15. 介绍Steep Containment 参数 nonenone_steep 平坦面Directional Steep 方向陡峭面16. 设定none_steep=50°17. 生成刀轨,介绍18. 选择一个新的操作Zlevel_Profile_steep19. 选择同一把铣刀(M14R7)20. 选择Steep Angle=50°21. 介绍Merge Distance值(以刀具直径为限)、Minimum CutLength (碎片)避免跳刀22. 选择零件几何体为实体23. 设定Depth per Cut (Range1)=5(层设定)24. 生成刀轨 (观察,介绍纯90°不加工)Tolerant Machining (Trim by)——Exterior edge (外形边缘) 、Silhouette (外形轮廓)25. 去掉角度值26. 生成刀轨(观察介绍0°不加工)27. 利用Cut Level选项去除下部不加工区域28. 重新生成刀轨(观察)29. 更改层 (Range1)=230. 重新生成刀轨 (如何使刀轨不跳刀)31. 点击Cutting→Level to Level参数(介绍多种方法,生成,观察)32. 采用Stagger Ramp on part方式33. 采用螺旋加工方法进刀角度=1Ramp on part34. 生成刀轨(观察介绍)。

固定轴轮廓铣(使用手工驱动曲面选择创建流线操作)

固定轴轮廓铣(使用手工驱动曲面选择创建流线操作)

固定轴轮廓铣(使用手工驱动曲面选择创建流线操作)流线驱动方法根据选中的几何体来构建隐式驱动曲面。

流线使您可以灵活地创建刀轨。

规则面栅格无需进行整齐排列。

流线示例:较大的面由许多较小的不规则的面包围刀轨在圆角处封闭。

流线和曲面区域驱动方法之间的差异包括:可变流线可变流线支持所有在可变轴曲面轮廓铣中可用的刀轴选项。

自动驱动曲面创建对于更简单的加工,选择切削区域并将选择方法设置为自动。

软件:根据“切削区域”边界边缘生成流曲线集和交叉曲线集。

消除孔和小的内部修剪区域。

填充流曲线集和交叉曲线集内的小缝隙并光顺其中的小纽结。

如果切削区域几何体是从若干个不相连的区域选择的,则系统会标识并处理具有最长周边的单一连续区域。

所有其他区域均被忽略。

如果切削区域几何体是从不同体选择的,则自动将它们看作是不相连的。

您可以使用指定手工定义具有缝隙的曲线集或从多个体选择曲线。

请参见带缝隙的曲线集选择提示了解更多信息。

手工驱动曲面创建要更精确地控制刀轨,将选择方法设置为指定并手工定义驱动曲面的选择曲线。

系统填充流曲线集和交叉曲线集内的小缝隙并光顺其中的小纽结。

您通过选择流 (A) 和可选的交叉 (B) 曲线为流线驱动方法定义驱动曲面。

选择面边缘、线框曲线或点来创建任意数目的流曲线和交叉曲线组合。

如果您未选择交叉曲线,则软件使用线性段(C) 将流曲线的末端连接起来。

使用手工驱动曲面创建:如果您指定切削区域,它将起到空间范围的作用。

您可以仅根据线框加工。

不必选择部件几何体。

如果选择部件几何体,线框曲线会(沿指定的投影矢量)投影到部件几何体上。

刀轨生成默认情况下,刀轨先在第一条交叉曲线上开始,并沿流曲线移刀直到抵达最后一条交叉曲线,然后添加步距并进行下一次移动。

您可以使用指定切削方向矢量将刀轨方向更改为所需的方向。

位于何处?单击加工创建工具栏上的创建操作。

在创建操作对话框中:要创建固定轴操作,请从类型列表中选择mill_contour,并从操作子类型组中选择STREAMLINE。

UG数控加工编程_固定轴、可变轴曲面轮廓铣

UG数控加工编程_固定轴、可变轴曲面轮廓铣

刀具路径驱动方法,即先沿着存在的刀 具路径创建驱动点,然后沿投射矢量把 驱动点投射到当前定义的零件几何表面 上,从而在零件几何表面轮廓上创建新 的刀具路径。
Planar Mill, Profile cut type
径向驱动方法,是通过指定横向进给量、 带宽与切削方法,来创建沿给定边界并 垂直于边界的刀具路径,它特别适合于 清根操作中。
螺旋驱动: 与其他驱动方法不同, 螺旋驱动方法创建的刀具路径,在从 一道切削路径向下一道切削路径过渡 时,没有横向进刀,也铣不存在切削 方向上的突变,而是光顾地、持续地 向外螺旋展开过渡,因为这种驱动方 法能保持恒定切削速度的光顺运动, 所以特别适合于高速加工。
边界驱动:边界驱动方法与平面铣的工 作过程非常相似,用边界、内环或两者 联合来定义切削区域,从定义的切削区 域、沿指定的投射矢量方向、把驱动点 投射到零件几何表面上,来创建刀具路 径。
刀具轴:刀轴矢量用于定义固定刀轴与 可变刀轴的方向。固定刀轴与指定的矢 量平行。而可变刀轴在刀具沿刀具路径 移动时,可不断地改变方向。刀轴矢量 的方向是沿刀端指向刀柄。
Surface Area Drive Method
铣实例4(可变轴加工例):
非切削运动情况(CASE):在刀具运动的不 同阶段和不同情况下,可以定义不同的非 切削运动状态。系统默认状态为Default状 态。
固定轴铣实例1(固定轴铣):
固定轴铣实例2(清根加工):
铣实例3(综合实例):
多轴铣: 可变轴曲面轮廓铣(variable Contour)简称变轴铣。它与 固定轴铣相似.只是在加工过程中刀轴可以摆动.可满足一些 特殊部位的加上需要。
清根驱动方法是固定轴铣操作中特有的驱动方 法,它可沿由零件表面形成的凹角与沟槽创建 刀具路径。 在创建清根操作过程中,刀具必 须与零件两个表面在不同点接触。如果零件几 何表面曲率半径大于刀具半径,则无法产生双 切线接触点.也就无法生成清根切削路径。

固定轴曲面轮廓铣的加工几何体及驱动方式

固定轴曲面轮廓铣的加工几何体及驱动方式

固定轴曲面轮廓铣的加工几何体1、部件几何体部件几何体用于和“驱动几何体”(通常是边界)结合起来使用,共同定义“切削区域”可以用“体”(片体或实体)、“平面体”“曲线区域”或“面”来指定部件几何体。

2、检查几何体用于定义刀轨不能干涉的几何体,如加工壁、岛、夹具等。

3、切削区域几何体切削区域几何体适用于“区域驱动方式”和“自动清根驱动方式”,用于指定切削總加工的范围,若没有指定切削区域几何体,系统将会以整个部件几何体的表面作为切削区域几何体。

4、修剪边界几何体修剪几何体可进一步约束切削区域。

在“区域铣削”和“淸根”驱动方式中,可使用修剪边界几何体。

5、文本几何体用于文本驱动方式中。

固定轴曲面轮廓铣常用驱动方式Drive Method可以定义生成刀路所需要的Drive Points。

Drive Points投影到Part Geometry上以产生刀路(如果没定义Part Geometry,刀路就直接从Drive Points生成)。

Drive Method 的类型有下面几种,可以根据Part Geometry的形状及复杂程度来选择各种Drive Method。

一、固定轴曲面轮廓铣常用驱动方式驱动方法原理Point / Curve (点/曲线)用一系列点或曲线为驱动几何体产生驱动点投影到被加工零件。

Spiral (螺旋线)通过定义中心点、半径和螺距产生螺旋线形驱动点,然后投影到Part Geometry产生刀轨。

Boundary (边界)通过选择一个或多个边界,在边界之内(或之外)的区域内产生一系列驱动点(驱动点的排列图案由Cut Type决定),从而投影产生刀路。

Area Milling(区域铣) 通过选择要加工的切削面(Cut Area),以Cut Area的外边为Boundary 产生驱动点。

(利用此驱动方法,可以很安全地将Cut Area切削,又不会对Part Geometry上的非Cut Area曲面造成过切。

UG NX8.0机械设计基础及应用第五章_细节特征与特征操作

UG NX8.0机械设计基础及应用第五章_细节特征与特征操作

◆ 对特征形成图样
◆ 阵列面
◆ 镜像特征和镜像体
SIEMENS UG NX 8.0
(一)对特征形成图样的创建方法
对特征形成图样操作可以一次性阵列多个具有规则参数的相同特 征,是产品设计师工作中常用到的命令。和之前版本比较,NX 8提供 功能十分强大的对特征形成图样命令。【对特征形成图样】命令提供 丰富多样的阵列布局方式,包括线性、圆形、多边形、螺旋式、沿路 径、常规和参考等。
二次曲线法选项意义
SIEMENS UG NX 8.0
3. 可变半径圆角
【可变半径点】选项通过修改控制点处的半径,从而实现沿选择 边指定多个点,以不同半径对实体或片体进行倒圆角。 创建步骤 选取要倒圆角的边激活 【可变半径点】; 利用【点构造器】指定 该边上多个点的位置; 设置不同参数值;
SIEMENS UG NX 8.0
4. 与多个面相切方式
该方式适用于对相切表面拔模后要求仍然保持相切的情况。
创建步骤 选择【与多个面相切】类型并指定脱模方向;
选取与要拔模的平面相切的面,并设置拔模角度值;
SIEMENS UG NX 8.0
5. 至分型边方式
该方式是沿指定的分型边缘,使需要拔模的实体表面与指定 的拔模方向成一定角度来创建拔模特征。 创建步骤 选择【至分型边】类型 并指定脱模方向; 选取拔模的分型面并设 置拔模角度值;
SIEMENS UG NX 8.0
2. 固定形状倒圆角
直接选取要倒圆的边,通过 【形状】选项组设置倒圆角的形 状并设置相应参数,即可创建固 定形状的倒圆角。 (1)倒圆角集的应用 如果在【要倒圆的边】选 择【添加新集】 ,则新建一 个倒圆角集,此时可为该集选 择一条或多条边。不同的倒圆 角集,其半径可以不同。在实 际设计中,巧妙利用倒圆角集 可以为更改设计带来便利。

30第5章 固定轮廓铣

30第5章 固定轮廓铣
固定轮廓铣的驱动和加工方法很多,可以产生多样的精加 工刀位轨迹。本章将先介绍固定轮廓铣的特点和关键点,再通 过实例向读者讲解固定轮廓铣的各种驱动方式的应用思路。固 定轮廓铣是UG NX 10.0提供的三轴加工的操作,固定轴曲面 轮廓铣使用驱动几何体通过某种驱动方法在工件几何体上产生 三轴刀位轨迹。
5.1
切削运动、切削参数、切削图样3个知识点进行详细讲解。
图5-3【固定轮廓侁】对话框
5.2
非切削运动
非切削运动是指刀具在不进行切刚时的所有的空间运动。在操作对话框 中,单击【非切削运动】按钮,系统弹出如图5-4所示的【非切削移动 】对话框。其中包括其中包括【开放区域】【相对部件/检查】和【初始 】3个选项。
固定轮廓铣特点
固定轮廓铣特点如下:
1.刀具沿复杂的曲面进行三轴联动,常用于半精加工和精加工 ,也可用于粗加工。
2.可设置是活多样的驱动方式和驱动几何体,从而得到简捷而 精准的刀位轨迹。
3.提供了智能化的清根操作。
4.非切削方式设置灵活。
5.1
固定轮廓铣的适用范围
固定轮廓铣的适用范围非常广,几乎应用于所有曲面工件的精 加工和半精加工,适用于固定轮廓铣的工件类型,如图5-1和 图5-2所示。
后,不论曲面形状如何,轨间总保持均匀的距离。
图5-21非陡峭角度的设定
图5-22 【步距】的选项
5.2 切削模式
切削模式用于定义刀轨的形状。有些切削模式切削整个切削区域,而有些 切削模式只沿切削区域的外周边进行铣削:有些切削模式跟随切削区域的形状 进行切削,而有些切削模式独立于切削区域的形状进行切削。
缘跟踪的示意图。移除边缘跟踪缩短了刀轨长度,避免了刀具滚过边缘可能产生的过切。
图5-16在凸角上延伸
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 创建固定轴铣操作 1. 固定轴曲面轮廓铣操作的创建步骤 1)创建操作 创建操作时,选择类型“mill_contour”,子类型为固定轴曲面轮廓铣 (FIXED_CONTOUR),点击【确定】按钮,打开操作对话框。 2)指定几何体 选择几何体,可以指定几何体组参数,也可以直接指定部件几何体和检 查几何体。在某些驱动方法下,还需要指定切削区域几何体和修剪边界。 3)选择刀具 在刀具组中可以选择已有的刀具,也可以创建一个新的刀具作为当前操 作的刀具。 4)选择驱动方法并设置驱动参数 在固定轴曲面铣操作中,驱动方法的选择是非常重要的。可用的驱动方 法总共有9种,应根据加工表面的形状与复杂性,以及刀轴与投射矢量的 要求来确定适当的驱动方法,一旦选择了驱动方法,也就决定了可选择的 驱动几何类型,以及可用的投射矢量、刀轴与切削方法。在驱动方法的对 话框中设置驱动方法参数,不同驱动方法的参数差异很大。
5.1 固定轴与可变轴曲面轮廓铣概述 1. 基本原理 先由驱动几何(Drive Geometry)产生驱动点,并按投影方向投影 到部件几何体上,得到投影点。刀具在该点处与部件几何体接触,故又 称为接触点。然后,系统根据接触点位置的部件表面曲率半径、刀具半 径等因素,计算得到刀具定位点。刀具位于与零件表面接触的点上,从 一个点运动到下一个切削点,如此重复,就形成了刀轨。驱动点可以从 整个或部分零件几何体生成,或者从与零件几何体无关的其它几何体产 生,然后再投射到零件几何体上。其原理如图5-1所示。
5)设置合理的投射矢量 可用投射矢量的类型取决于所指定的驱动方法,投射矢量类型总共有9种, 当设置的投射矢量平行于刀轴矢量、或垂直于零件几何表面法向时, 一定要仔细考虑,因为在这些情况下,可能引起刀具路径垂直方向的 波动。 6)指定正确的刀轴 刀轴矢量可以通过指定坐标、选择几何、垂直或相对于零件表面、以及 垂直或相对于驱动表面等方式来定义。 7)刀轨设置 在操作对话框打开参数组进行各选项参数的设置。一般来说需要对刀轨 设置中的切削参数、非切削移动、进给和速度选项进行设置。 8)生成操作并模拟刀轨 生成当前操作的刀轨并进行模拟加工。
驱动几何 刀具
投影方向
驱 动 面轮廓铣原理示意图
2. 基本术语 1)零件几何体(part geometry):用于加工的几何体。 2)驱动几何体(drive geometry):用来产生驱动点的几何体。在曲面 轮廓铣中除了定义几何体外,还可用驱动几何体进一步引导刀具的运 动。驱动几何体可以是点、曲线、曲面,也可以是零件几何体。 3)驱动点(drive point):驱动点是从驱动几何上产生的,按投影矢量 投影到部件几何体上的点。 4)驱动方式(drive method):驱动方式用于定义创建刀具路径所需的 驱动点。NX在曲面加工中提供了多种类型的驱动方法。有些驱动方法 允许沿曲线创建驱动点集,另外一些驱动方法则允许在一个区域中创 建驱动点阵列。沿指定的投射矢量将驱动点投射到零件表面上创建刀 具路径,如果没有定义零件几何,则直接在驱动几何上创建刀具路径。 5)投射矢量(project vector):投射矢量确定驱动点投射到零件表面 上的方法,以及定义刀具接触的零件曲面的侧面。在一般情况下,驱 动点沿投射矢量方向投射到零件表面上,有时当驱动点从驱动曲面向 零件表面投射时,可能会沿投射矢量的相反方向投射。不管如何投射, 刀具则总是沿投射矢量与零件表面的一侧接触。
螺旋线驱动
图5-9 螺旋线驱动方法
指定螺旋中心点
螺旋中心点用于定义螺旋的中心位置,也定义了刀具的开始切削点。如果没 有指定螺旋中心点,系统就用绝对坐标原点作为螺旋中心点;如果螺旋中心点不 在零件几何表面上,则沿投射矢量投射到零件几何表面上。定义螺旋中心时,可 先单击图标,然后用弹出的“点构造器”对话框,定义一个点作为螺旋驱动路径 的中心点。 1)最大螺旋半径 最大螺旋半径用于限制加工区域的范围,从而限制产生驱动点的数目。螺旋 半径在垂直于投射矢量的平面内进行测量。如果指定的半径超出了零件几何表面, 刀具在不能切削到零件几何表面时,会退刀、跨越,直至与零件几何表面接触, 再进刀、切削。 2)步距 横向进给量用于控制两相邻切削路径间的距离,即切削宽度。可按刀具直径 的百分比或绝对距离设置。
第5章 固定轴曲面轮廓铣
固定轴曲面轮廓铣(Fixed Contour)简称为固定轴铣,在铣削过程中 刀轴与指定的方向始终保持平行,即刀轴固定。固定轴铣适用于精加工由 轮廓曲面形成的区域的加工方式,它允许通过精确控制刀具轴和投影矢量 以使刀具沿着非常复杂的曲面的复杂轮廓运动。固定轴铣一般采用球头铣 刀,进行零件的半精加工或精加工。
2.创建操作 采用与创建平面铣和型腔铣操作相似的步骤,在“加工配置”对话框 中选择“通用”(cam general)加工配置,指定子模板为“轮廓铣” (mill_contour),初始化加工环境。 在“创建”工具栏中单击“创建操作”图标图标,弹出如图5-2所示 “创建工序”对话框。在“类型”下拉列表框中选择“轮廓铣” (mill_contour),在“子类型”中选择“固定轴曲面轮廓铣”图标,指 定4个父节点组,输入操作名称,单击【确定】按钮进入固定轴铣操作对 话框。
边界 零件 投射矢量 刀轴
图5-4 曲线驱动方法
5.3.2 螺旋驱动 螺旋驱动方法,产生从指定的中心点向外螺旋的“驱动点”,驱动 点在垂直于投影矢量并包含中心点的平面上生成,驱动点沿着投影矢量 投影到所选择的部件表面。该方法属于区域加工,适用于加工圆形的工 件。如图5-9所示。
零件表面 从平面投射的驱动点 中心点 投射矢量
图5-2 “创建操作”对话 框
5.3 驱动方式 驱动方法(Drive Method)用来定义创建刀具路径的驱动点。在固定 轴铣铣操作中,可用的驱动方法有10种,一些驱动方法允许沿一条曲线创 建一个驱动点集,另外—些驱动方法则允许在一个区域中创建—个驱动点 阵列,如图5-3所示。在具体操作中,应该根据加工表面的形状与复杂性 来确定适当的驱动方法,一旦选择了驱动方法,也就决定了可选择的驱动 几何类型,以及可用的投射矢量、刀轴与切削方法。 5.3.1 曲线/点驱动 曲线与点驱动方法,是用选择的点或曲线来定义驱动几何。按指定的 投影方向投影到加工面上而产生刀具路径,适用于在工件表面上加工筋槽 图5-4 曲线驱动方法 或雕刻字体。
相关文档
最新文档