【常考题】高三数学上期末试卷(带答案)

合集下载

高三数学上学期期末试卷(含解析)-人教版高三全册数学试题

高三数学上学期期末试卷(含解析)-人教版高三全册数学试题

2015-2016学年某某省某某市正定中学高三(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.805.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.226.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.87.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.129.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.5010.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ=.14.若x,y满足约束条件,则z=x﹣2y的最大值为.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.2015-2016学年某某省某某市正定中学高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}【考点】交、并、补集的混合运算.【分析】先求出M∩N,从而求出M∩N的补集即可.【解答】解:集合M={x|x<3},N={x|x>﹣1},全集U=R,则M∩N={x|﹣1<x<3},则∁U(M∩N)={x|x≤﹣1或x≥3},故选:D.2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解: =1+i,∴=(3+i)(1+i)=2+4i,∴z=2﹣4i,则复数z在复平面上对应点(2,﹣4)位于第四象限.故选:D.3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】用二倍角公式把二倍角变为一倍角,然后同底数幂相乘公式逆用,变为二倍角正弦的平方,再次逆用二倍角公式,得到能求周期和判断奇偶性的表示式,得到结论.【解答】解:∵f(x)=(1+cos2x)sin2x=2cos2xsin2x=sin22x==,故选D.4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.80【考点】等比数列的通项公式.【分析】由题意可得等比数列的公比q,而7+a8=(a1+a2)q6,代值计算可得.【解答】解:设等比数列{a n}的公比为q,∴q2===,∴a7+a8=(a1+a2)q6=40×=135,故选:C.5.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.22【考点】函数的值.【分析】利用分段函数的性质及对数函数性质、运算法则和换底公式求解.【解答】解:∵函数f(x)=,∴f(﹣98)=1+lg100=3,f(lg30)=10lg30﹣1==3,∴f(﹣98)+f(lg30)=3+3=6.故选:B.6.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.8【考点】由三视图求面积、体积.【分析】几何体为四棱锥,底面为直角梯形,高为侧视图三角形的高.【解答】解:由三视图可知几何体为四棱锥,棱锥底面为俯视图中的直角梯形,棱锥的高为侧视图中等腰三角形的高.∴四棱锥的高h==2,∴棱锥的体积V==4.故选A.7.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.【考点】圆的一般方程.【分析】设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),求出b,r,利用勾股定理求出|MN|.【解答】解:设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),可得,解得:b=2,r=5,所以|MN|=2=2,故选:D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.12【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,r=12,m=30,n=12,不满足退出循环的条件;第二次执行循环体后,r=6,m=12,n=6,不满足退出循环的条件;第三次执行循环体后,r=0,m=6,n=0,满足退出循环的条件;故输出的m值为6,故选:C;9.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.50【考点】球内接多面体.【分析】求出△ABC的外接圆的半径,可得O到平面ABC的距离,计算△ABC的面积,即可求出四面体OABC的体积.【解答】解:∵AB=12,AC=BC=12,∴cos∠ACB==﹣,∴∠ACB=120°,∴△ABC的外接圆的半径为=12,∴O到平面ABC的距离为5,∵S△ABC==36,∴四面体OABC的体积是=60.故选:A.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【考点】函数的图象与图象变化.【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】根据△ABM是顶角θ满足cosθ=﹣的等腰三角形,得出|BM|=|AB|=2a,cos∠MBx=,进而求出点M的坐标,再将点M代入双曲线方程即可求出离心率.【解答】解:不妨取点M在第一象限,如右图:∵△ABM是顶角θ满足cosθ=﹣的等腰三角形,∴|BM|=|AB|=2a,cos∠MBx=,∴点M的坐标为(a+,2a•),即(,),又∵点M在双曲线E上,∴将M坐标代入坐标得﹣=1,整理上式得,b2=2a2,而c2=a2+b2=3a2,∴e2==,因此e=,故选:C.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)【考点】利用导数研究函数的单调性;函数奇偶性的性质.【分析】令g(x)=xf(x),判断出g(x)是R上的奇函数,根据函数的单调性以及奇偶性求出f(x)<0的解集即可.【解答】解:令g(x)=xf(x),g′(x)=xf′(x)+f(x),当x∈(﹣1,1)时,xf′(x)+f(x)<0,∴g(x)在(﹣1,1)递减,而g(﹣x)=﹣xf(﹣x)=﹣xf(x)=﹣g(x),∴g(x)在R是奇函数,∵f(x)在区间(0,+∞)上的唯一零点为2,即g(x)在区间(0,+∞)上的唯一零点为2,∴g(x)在(﹣∞,﹣1)递增,在(﹣1,1)递减,在(1,+∞)递增,g(0)=0,g(2)=0,g(﹣2)=0,如图示:,x≥0时,f(x)<0,即xf(x)<0,由图象得:0≤x<2,x<0时,f(x)<0,即xf(x)>0,由图象得:﹣2<x<0,综上:x∈(﹣2,2),故选:D.二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ= 2 .【考点】平面向量数量积的运算.【分析】根据向量垂直,令数量积为零列方程解出.【解答】解:∵向量,是相互垂直的单位向量,∴=0,.∵λ+与﹣2垂直,∴(λ+)•(﹣2)=λ﹣2=0.解得λ=2.故答案为2.14.若x,y满足约束条件,则z=x﹣2y的最大值为 2 .【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=x可得.【解答】解:作出约束条件所对应的可行域(如图△ABC及内部),变形目标函数可得y=x﹣z,平移直线y=x可知,当直线经过点A(2,0)时,截距取最小值,z取最大值,代值计算可得z的最大值为2,故答案为:2.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m= 0 .【考点】二项式定理的应用.【分析】在所给的等式中,分别令x=1、x=﹣1,可得2个等式,再结合a1+a3+a5+a7=32,求得m的值.【解答】解:对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,令x=1,可得(m+1)(1+1)6=a0+a1+a2+…+a7①,再令x=﹣1,可得(m﹣1)(1﹣1)6=0=a0﹣a1+a2+…﹣a7②,由①﹣②可得 64(m+1)=2(a1+a3+a5+a7)=2×32,∴m=0,故答案为:0.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.【考点】数列的求和.【分析】通过对a n=(n≥2)变形可知2S n S n﹣1=S n﹣1﹣S n,进而可知数列{}是首项为1、公差为2的等差数列,计算即得结论.【解答】解:∵a n=(n≥2),∴2=2S n a n﹣a n,∴2﹣2S n a n=S n﹣1﹣S n,即2S n S n﹣1=S n﹣1﹣S n,∴2=﹣,又∵=1,∴数列{}是首项为1、公差为2的等差数列,∴S2016==,故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.【考点】正弦定理;余弦定理.【分析】(I)由正弦定理化简已知等式,整理即可得解.(II)设b=5t(t>0),由(I)可求a=3t,由已知可求c=7t,由余弦定理得cosC的值,利用特殊角的三角函数值即可求解.【解答】(本题满分为12分)解:(I)由正弦定理得,,…即,故.…(II)设b=5t(t>0),则a=3t,于是.即c=7t.…由余弦定理得.所以.…18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.【考点】点、线、面间的距离计算;空间中直线与直线之间的位置关系.【分析】(1)由题目条件结合勾股定理,即可证得结论;(2)建立空间直角坐标系,代入运用公式进行计算即可得出答案.【解答】(1)证明:由题设知,三棱柱的侧面为矩形.∵D为AA1的中点,∴DC=DC1.又,可得,∴DC1⊥DC.而DC1⊥BD,DC∩BD=D,∴DC1⊥平面BCD.∵BC⊂平面BCD,∴DC1⊥BC.…(2)解:由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1A1,∴CA,CB,CC1两两垂直.以C为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系C﹣xyz.由题意知,,.则,,.设是平面BDC1的法向量,则,即,可取.设点P到平面BDC1的距离为d,则.…12分19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.【考点】线性回归方程.【分析】(I)根据分层抽样原理计算,使用组合数公式得出样本个数;(II)(i)使用乘法原理计算;(ii)根据回归方程计算回归系数,得出回归方程.【解答】解:(I)应选女生位,男生位,可以得到不同的样本个数是.(II)(i)这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选3个与数学优秀分数对应,种数是(或),然后将剩下的5个数学分数和物理分数任意对应,种数是,根据乘法原理,满足条件的种数是.这8位同学的物理分数和数学分数分别对应的种数共有种.故所求的概率.(ii)变量y与x的相关系数.可以看出,物理与数学成绩高度正相关.也可以数学成绩x为横坐标,物理成绩y为纵坐标做散点图如下:从散点图可以看出这些点大致分布在一条直线附近,并且在逐步上升,故物理与数学成绩高度正相关.设y与x的线性回归方程是,根据所给数据,可以计算出,a=84.875﹣0.66×77.5≈33.73,所以y与x的线性回归方程是.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.【考点】直线和圆的方程的应用.【分析】(Ⅰ)利用代入法,求曲线E的方程;(Ⅱ)分类讨论,设直线l:y=kx+2与椭圆方程联立,利用韦达定理,向量得出坐标关系,求出直线的斜率,即可求直线l的方程.【解答】解:(I)设M(x,y),则P(x,2y)在圆x2+4y2=4上,所以x2+4y2=4,即…..(II)经检验,当直线l⊥x轴时,题目条件不成立,所以直线l存在斜率.设直线l:y=kx+2.设C(x1,y1),D(x2,y2),则.…△=(16k)2﹣4(1+4k2)•12>0,得.….①,…②.…又由,得,将它代入①,②得k2=1,k=±1(满足).所以直线l的斜率为k=±1.所以直线l的方程为y=±x+2…21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(1)即可;(Ⅱ)问题转化为对x>0恒成立,根据函数的单调性求出h(x)的最小值,从而求出正整数k的最大值.【解答】解:(Ⅰ)∵f′(x)=﹣+,∴…(Ⅱ)当x>0时,恒成立,即对x>0恒成立.即h(x)(x>0)的最小值大于k.…,,记ϕ(x)=x﹣1﹣ln(x+1)(x>0)则,所以ϕ(x)在(0,+∞)上连续递增.…又ϕ(2)=1﹣ln3<0,ϕ(3)=2﹣2ln2>0,所以ϕ(x)存在唯一零点x0,且满足x0∈(2,3),x0=1+ln(x0+1).…由x>x0时,ϕ(x)>0,h'(x)>0;0<x<x0时,ϕ(x)<0,h'(x)<0知:h(x)的最小值为.所以正整数k的最大值为3.…请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.【考点】与圆有关的比例线段.【分析】(I)由PA是圆的切线结合切割线定理得比例关系,求得PD,再由角相等得三角形相似:△PAC∽△CBA,从而求得AC的长;(II)欲求证:“BE=EF”,可先分别求出它们的值,比较即可,求解时可结合圆中相交弦的乘积关系.【解答】解:(I)∵PA2=PC•PD,PA=2,PC=1,∴PD=4,…又∵PC=ED=1,∴CE=2,∵∠PAC=∠CBA,∠PCA=∠CAB,∴△PAC∽△CBA,∴,…∴AC2=PC•AB=2,∴…证明:(II)∵,CE=2,而CE•ED=BE•EF,…∴,∴EF=BE.…[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)对极坐标方程两边同乘ρ,得到直角坐标方程;(II)将l的参数方程代入曲线C的普通方程,利用参数意义和根与系数的关系列出方程解出α.【解答】解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα﹣4cosα)t﹣7=0,所以,所以,或,即或.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=﹣时,根据f(x)=的最小值为3,可得lnf(x)最小值为ln3>lne=1,不等式得证.(Ⅱ)由绝对值三角不等式可得 f(x)≥|a﹣|,可得|a﹣|≥a,由此解得a的X围.【解答】解:(Ⅰ)证明:∵当a=﹣时,f(x)=|x﹣|+|x+|=的最小值为3,∴lnf(x)最小值为ln3>lne=1,∴lnf(x)>1成立.(Ⅱ)由绝对值三角不等式可得 f(x)=|x﹣|+|x﹣a|≥|(x﹣)﹣(x﹣a)|=|a﹣|,再由不等式f(x)≥a在R上恒成立,可得|a﹣|≥a,∴a﹣≥a,或 a﹣≤﹣a,解得a≤,故a的最大值为.。

高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。

【常考题】高三数学上期末试卷(附答案)

【常考题】高三数学上期末试卷(附答案)

【常考题】高三数学上期末试卷(附答案)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .43.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-4.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭5.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <6.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 7.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 8.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .39.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =10.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .3211.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5712.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .60二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________; 14.若为等比数列的前n 项的和,,则=___________15.计算:23lim 123n n nn→+∞-=++++L ________16.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223)S a b c =+-,则角C =__________. 17.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.18.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .19.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 20.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题21.设 的内角 的对边分别为 已知.(1)求角 ;(2)若,,求的面积.22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

高三期末数学试卷及答案

高三期末数学试卷及答案

一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = √(x - 1)B. g(x) = |x|C. h(x) = 1/xD. k(x) = √(x^2 - 4)2. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则该极值为()A. 1B. -1C. 3D. -33. 下列各对点中,与点P(2,3)关于直线y=x对称的是()A. A(3,2)B. B(2,4)C. C(4,2)D. D(3,3)4. 在△ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB 的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在6. 下列各对数函数中,单调递减的是()A. y = 2^xB. y = log2(x)C. y = 3^xD. y = log3(x)7. 已知数列{an}的通项公式为an = n^2 - 3n + 2,则数列{an}的前n项和S_n 为()A. n(n-1)(n-2)/3B. n(n+1)(n-2)/3C. n(n-1)(n+2)/3D. n(n+1)(n+2)/38. 已知等差数列{an}的前n项和为S_n,若S_5 = 50,公差d=2,则数列{an}的第六项a_6为()A. 16B. 18C. 20D. 229. 下列各不等式中,恒成立的是()A. x^2 + 1 < 0B. |x| > 1C. x^2 - 1 > 0D. x^2 + 1 > 010. 若函数f(x) = ax^2 + bx + c在x=1处取得极小值,则a、b、c应满足的关系式是()A. a > 0, b = 0, c > 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c ≠ 0D. a < 0, b ≠ 0, c ≠ 0二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。

2025届河南省信阳市第四高级中学数学高三第一学期期末检测试题含解析

2025届河南省信阳市第四高级中学数学高三第一学期期末检测试题含解析

2025届河南省信阳市第四高级中学数学高三第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}(2)0A x x x =->,{}10B x x =->,则A B =A .{}10x x x ><或B .{}12x x <<C .{|2}x x >D .{}1x x >2.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ). A .16 B .283C .5D .43.已知点(A 在双曲线()2221010x y b b-=>上,则该双曲线的离心率为( )A .3B .2C D .4.已知命题p :任意4x ≥,都有2log 2x ≥;命题q :a b >,则有22a b >.则下列命题为真命题的是( ) A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨5.若()*3nx n N⎛+∈ ⎝的展开式中含有常数项,且n 的最小值为a ,则aa-=( ) A .36πB .812πC .252πD .25π6.已知定义在R 上的奇函数()f x 满足:(2)()f x e f x +=-(其中 2.71828e =),且在区间[,2]e e 上是减函数,令ln 22a =,ln33b =,ln 55c =,则()f a ,()f b ,()f c 的大小关系(用不等号连接)为( ) A .()()()f b f a f c >> B .()()()f b f c f a >> C .()()()f a f b f c >>D .()()()f a f c f b >>7.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319-D .12-8.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4πB .16πC .163πD .323π9.已知实数x ,y 满足约束条件2202202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则22x y +的取值范围是( )A .25,225⎡⎤⎢⎥⎣⎦B .4,85⎡⎤⎢⎥⎣⎦C .2,85⎡⎤⎢⎥⎣⎦D .[]1,810.函数3()cos ln ||f x x x x x =+在[,0)(0,]ππ-的图象大致为( )A .B .C .D .11.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( ) A .12i -B .1i +C .1i -+D .12i +12.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

【常考题】高三数学上期末试卷及答案

【常考题】高三数学上期末试卷及答案

【常考题】高三数学上期末试卷及答案一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S3.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .14.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1765.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A.2+B1C.2D16.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD7.已知实数x 、y 满足约束条件00134x y x ya a ⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .18.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形9.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且223tan 2S B =+,则A 等于( )A .6π B .4π C .3π D .2π 10.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .911.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .50512.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .3二、填空题13.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.14.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .15.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.16.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________.17.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.18.已知平面四边形ABCD 中,120BAD ∠=︒,60BCD ∠=︒,2AB AD ==,则AC 的最大值为__________.19.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 20.若log 41,a b =-则+a b 的最小值为_________.三、解答题21.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a+的值; (2)若2a =,求ABC ∆面积的最大值.22.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 23.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S ,满足()*2N n n S a n n =-∈.(Ⅰ)证明:{}1n a +是等比数列; (Ⅱ)求13521n a a a a -+++⋯+的值.25.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .26.在ABC ∆中,3sincos a C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若3ABC S ∆=,223b c +=+,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.C解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.3.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.4.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=,解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=⨯⨯将2AC =,22BC =,代入等式得到AB=5 再由等面积法得到112252522222CD CD ⨯=⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.8.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C.【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.9.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.10.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.11.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.12.C解析:C【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.二、填空题13.【解析】【分析】直接利用分组法和分类讨论思想求出数列的和【详解】数列满足:(且为常数)当时则所以(常数)故所以数列的前项为首项为公差为的等差数列从项开始由于所以奇数项为偶数项为所以故答案为:【点睛】 解析:1849【解析】 【分析】直接利用分组法和分类讨论思想求出数列的和. 【详解】数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩, 当100a =时,则1100a =, 所以13n n a a +-=-(常数), 故()10031n a n =--,所以数列的前34项为首项为100,公差为3-的等差数列. 从35项开始,由于341a =,所以奇数项为3、偶数项为1,所以()()1001001346631184922S +⨯=+⨯+=,故答案为:1849 【点睛】本题考查了由递推关系式求数列的性质、等差数列的前n 项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.14.【解析】【分析】【详解】考查等价转化能力和分析问题的能力等比数列的通项有连续四项在集合四项成等比数列公比为=-9 解析:9-【解析】 【分析】 【详解】考查等价转化能力和分析问题的能力,等比数列的通项,{}n a 有连续四项在集合{}54,24,18,36,81--,四项24,36,54,81--成等比数列,公比为32q =-,6q = -9. 15.【解析】【分析】【详解】所以所以故答案为 解析:41n -【解析】 【分析】 【详解】()()145[415]4n n q a a n n -=-=-+---+=-,124253b a ==-⨯+=-,所以()11134n n n b b q --=⋅=-⋅-,()113434n n n b --=-⋅-=⋅,所以211214334343434114n n n n b b b --++⋯+=+⋅+⋅+⋯+⋅=⋅=--,故答案为41n -.16.4980【解析】【分析】表中第行共有个数字此行数字构成以为首项以2为公差的等差数列根据等差数列求和公式及通项公式确定求解【详解】解:表中第行共有个数字此行数字构成以为首项以2为公差的等差数列排完第行解析:4980 【解析】 【分析】表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.根据等差数列求和公式及通项公式确定求解. 【详解】解:表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.排完第k 行,共用去1124221k k -+++⋯+=-个数字,2018是该表的第1009个数字, 由19021100921-<<-,所以2018应排在第10行,此时前9行用去了921511-=个数字, 由1009511498-=可知排在第10行的第498个位置, 即104984980m n =⨯=g, 故答案为:4980 【点睛】此题考查了等比数列求和公式,考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.17.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8 【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C18.4【解析】【分析】由题知:四边形为圆内接四边形的最大值为四边形外接圆的直径由正弦定理即可求出的最大值【详解】因为所以故的最大值为四边形外接圆的直径当为四边形外接圆的直径时得到:又因为所以在中由正弦定解析:4 【解析】 【分析】由题知:四边形ABCD 为圆内接四边形,AC 的最大值为四边形外接圆的直径,由正弦定理即可求出AC 的最大值.【详解】因为120BAD ∠=︒,60BCD ∠=︒,所以 故AC 的最大值为四边形外接圆的直径. 当AC 为四边形外接圆的直径时,得到:90ADC ABC ∠=∠=︒,又因为2AB AD ==,60BCD ∠=︒, 所以30ACD ACB ∠=∠=︒. 在ABC V 中,由正弦定理得:sin 90sin 30AC AB=︒︒,解得:4AC =.故答案为:4 【点睛】本题主要考查正弦定理得应用,判断四边形ABCD 为圆内接四边形是解题的关键,属于中档题.19.【解析】【分析】利用1的代换将求式子的最小值等价于求的最小值再利用基本不等式即可求得最小值【详解】因为等号成立当且仅当故答案为:【点睛】本题考查1的代换和基本不等式求最值考查转化与化归思想的运用求解 解析:25【解析】 【分析】利用1的代换,将求式子43a b +的最小值等价于求43()(3)a b a b++的最小值,再利用基本不等式,即可求得最小值. 【详解】因为4343123123()(3)4913225b a b a a b a b a b a b a b+=++=+++≥+⋅, 等号成立当且仅当21,55a b ==. 故答案为:25. 【点睛】本题考查1的代换和基本不等式求最值,考查转化与化归思想的运用,求解时注意一正、二定、三等的运用,特别是验证等号成立这一条件.20.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1 【解析】试题分析:由log 41,a b =-得104a b=>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.三、解答题21.(1)2224b c a+=(2 【解析】 【分析】(I )由题意2sin 3tan c B a A =,利用正、余弦定理化简得2224b c a +=,即可得到答案. (II )因为2a =,由(I )知222416b c a +==,由余弦定理得6cos A bc=,进而利用基本不等式,得到6cos bc A =,且(0,)2A π∈,再利用三角形的面积公式和三角函数的性质,即可求解面积的最大值. 【详解】解:(I )∵2sin 3tan c B a A =, ∴2sin cos 3sin c B A a A =, 由正弦定理得22cos 3cb A a =,由余弦定理得22222?32b c a cb a bc+-=,化简得2224b c a +=,∴2224b c a+=. (II )因为2a =,由(I )知222416b c a +==,∴由余弦定理得2226cos 2b c a A bc bc+-==, 根据重要不等式有222b c bc +≥,即8bc ≥,当且仅当b c =时“=”成立, ∴63cos 84A ≥=. 由6cos A bc =,得6cos bc A =,且0,2A π⎛⎫∈ ⎪⎝⎭,∴ABC ∆的面积116sin sin 3tan 22cos S bc A A A A==⨯⨯=. ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==,∴tan 3A =≤=∴3tan S A =≤∴ABC ∆的面积S . 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.22.(1)3π;(2 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 24ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.23.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q-⎡⎤=++++-+++++⎣⎦L L()()213112n n n q q q --=+++++L .∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-.24.(I )见解析;(II )()2413n n --【解析】 【分析】(I )计算1n S -,根据,n n S a 关系,可得121n n a a -=+,然后使用配凑法,可得结果. (II )根据(1)的结果,可得n a ,然后计算21n a -,利用等比数列的前n 和公式,可得结果. 【详解】(I )由2n n S a n =-①当1n =时,可得111211S a a =-⇒= 当2n ≥时,则()1121n n S a n --=--② 则①-②:()12212n n n a a a n -=--≥ 则()1121121n n n n a a a a --=+⇒+=+ 又112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列(II )由(I )可知:1221n nn n a a +=⇒=-所以2121121412n n n a --=-=⋅-记13521n n T a a a a -=+++⋯+ 所以()2144 (42)n n T n =+++- 又()()241444144 (414)3n n n --+++==-所以()()4412411233nnnT n n --=⋅-=- 【点睛】本题考查,n n S a 的关系证明等比数列以及等比数列的前n 和公式,熟练公式,以及掌握,n n S a 之间的关系,属基础题.25.(1)n a n =(2)1(1)22n n T n +=-⋅+【解析】试题分析:(Ⅰ)因为数列是等差数列,所以根据等差数列的通项公式建立关于首项和公差的方程组11246{434102a d a d +=⨯+=,即可解得11{1a d ==,从而写出通项公式n a n =; (Ⅱ)由题意22n n n n b a n =⋅=⋅,因为是等差数列与等比数列相乘的形式,所以采取错位相减的方法,注意错位相减后利用等比数列前n 项和公式,化简要准确得1(1)22n n T n +=-⋅+.试题解析:(Ⅰ)设等差数列{}n a 的公差为d,由2446,10a a S +==,可得11246{434102a d a d +=⨯+=, 即1123{235a d a d +=+=, 解得11{1a d ==, ∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =(Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++L231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅L ,又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅L ,两式相减得2311(22222)2n n n n T n -+-=+++++-⋅L()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,∴1(1)22n n T n +=-⋅+考点:1、等差数列通项公式;2、等差数列的前n 项和;3、等比数列的前n 项和;4、错位相减法. 26.(1) 6A π=;(2) 2a =.【解析】试题分析:(1sin sin cos A C C A ⋅=⋅.消去公因式得到所以tan 3A =. 进而得到角A ;(2)结合三角形的面积公式,和余弦定理得到2b c +=+式得到2a =. 解析:(Isin cos C c A =,所以cos 0A ≠, 由正弦定理sin sin sin a b c A B C==,sin sin cos A C C A ⋅=⋅. 又因为 ()0,C π∈,sin 0C ≠,所以 tan 3A =. 又因为 ()0,A π∈, 所以 6A π=.(II )由11sin 24ABC S bc A bc ∆===bc =, 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-,即()()222212a b c bc b c =+-=+-,因为2b c +=+ 解得 24a =. 因为 0a >, 所以 2a =.。

高三数学上学期期末考试试题含解析试题_1_1

高三数学上学期期末考试试题含解析试题_1_1

2021届高三数学上学期期末考试试题〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题{}16,M x x x N =<<∈,{}1,2,3N =-,那么MN =〔 〕A. {}1,2,3,4B. {}1,2,3,4,5C. {}2,3D.{}2,3,4【答案】C 【解析】 【分析】求出集合M ,然后利用交集的定义可求出集合M N ⋂. 【详解】{}{}16,2,3,4,5M x x x N =<<∈=,因此,{}2,3MN =,应选C.【点睛】此题考察交集的计算,考察计算才能,属于根底题.22y x 149-=的渐近线方程是 ( ) A. 3y x 2=±B. 2y x 3=±C. 9y x 4=±D.4y x 9=±【答案】B 【解析】由双曲线HY 方程可知,2,3a b ==,且焦点在x 轴上,所以双曲线的渐近线方程为32y x =±,应选A.{}n a 的公差为d ,前n 项和为n S ,那么“1532S S S +<〞是“0d <〞的〔 〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】 【分析】利用等差数列的定义以及前n 项和公式,结合充要条件的定义即可得到结论. 【详解】由1532S S S +<,得()111510233a a d a d ++<+,即0d <, 所以“1532S S S +<〞是“0d <〞的充分条件, 由0d <,()151********a a S S a a d ++=+=+,()1331322662a a S a d +=⨯=+, 所以,151********S S a d S a d +=+<=+, 所以“1532S S S +<〞是“0d <〞的必要条件, 综上,“1532S S S +<〞是“0d <〞的充要条件. 应选:C.【点睛】此题主要考察充分条件和必要条件的判断,根据充分条件和必要条件的定义结合不等式的性质是解决此题的关键,属于根底题.4.某几何体的三视图如图,那么该几何体的体积为〔 〕A.76B.476C.72D.236【答案】D 【解析】 【分析】由三视图可得几何体是三棱柱挖去一个三棱锥,用三棱柱体积减去三棱锥的体积即为该几何体的体积.【详解】由三视图得到几何体是三棱柱挖去一个三棱锥,所以几何体的体积为111232*********V ⎛⎫⎛⎫=⨯⨯⨯-⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.应选:D.【点睛】此题考察了几何体的三视图,属于根底题.()()2ln122x x f x xx ++=++-的图象大致是〔 〕A.B.C.D.【答案】D 【解析】 【分析】利用函数为奇函数,且()00f =,即可得到结论.【详解】由于()f x 是奇函数,故排除A ,B ;又()0f x =,那么0x =,即函数有唯一零点,再排除选C .应选:D.【点睛】此题主要考察函数图象的识别和判断,判断函数的奇偶性,利用排除法是解决此题的关键,属于根底题.X 的分布列是假设()116E X =,那么()D X 的值是〔 〕 A.1736B.1718C.239D.2318【答案】A 【解析】 【分析】根据分布列的性质得23a b +=,再由()116E X =,解得12a =,16b =,进而求得()D X 的值.【详解】由1231P P P ++=,得23a b +=①. 由()1112336a E Xb =++=②,得3232a b +=,联立①②,得12a =,16b =.所以()2221111111111712363626636D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.应选:A.【点睛】此题考察了离散型随机变量的分布列的性质,期望与方差,属于根底题.x 的二项式(x +3ax)n 展开式的二项式系数之和为32,常数项为80,那么a 的值是( ) A. 1 B. +1 C. 2 D. ±2【答案】C 【解析】由题意知2n=32,n =5,T r +1=5rC (x )5-r a r·r x13=5rC a r 5526r x -,令55026r -=,得3r =,∴a 335C =80,解得a =2.应选C. 8.1F ,2F 为椭圆E :()222210x y a b a b+=>>的左右焦点,在椭圆E 上存在点P ,满足212PF F F =且2F 到直线1PF 的间隔 等于b ,那么椭圆E 的离心率为〔 〕A.13B.12C.23D.34【答案】B 【解析】 【分析】过2F 做直线1PF 的垂线,交1PF 于点H ,根据题意以及椭圆的定义,利用等腰三角形三线合一,得关于a ,b ,c 的方程,进而可求得离心率的值. 【详解】由得2122PF F F c ==,根据椭圆的定义可得121222PF PF a PF a c +=⇒=-, 又2F 到直线1PF 的间隔 等于b ,即2F H b =, 由等腰三角形三线合一的性质可得:21F H PF ⊥, 可列方程:()()22222220a c b c a ac c -+=⇒--=()()120202a c a c a c e ⇒-+=⇒-=⇒=,应选:B.【点睛】此题考察椭圆的方程及其简单几何性质,考察等腰三角形性质及勾股定理的应用,椭圆的离心率的取值,考察数形结合思想,属于中档题.()()()21,111,1x x a x x x e f x f x +⎧-+≥-⎪=⎨+--<-⎪⎩,假设函数()2y f x =-恰有两个零点,那么实数a 的取值范围为〔 〕A. )1,2B.}[)11,2C.}[)11,+∞D.)1,+∞【答案】B 【解析】 【分析】利用分段函数的单调性讨论a 的范围即可得到答案.【详解】由()()()21,111,1x x a x x x f x e f x +⎧-+≥-⎪=⎨+--<-⎪⎩()2221222(0)2(10)21(1)x x ax a x f x ax a x e a a x +⎧-+≥⎪⇒=-+-≤<⎨⎪++-<-⎩, 当0a <时,函数()f x 在R 上单调递增,不满足条件; 当0a =时,显然不满足条件;当0a >时,()f x 在(],1-∞-上为增函数,在1,2a ⎡⎤-⎢⎥⎣⎦上为减函数,在,2a ⎡⎫+∞⎪⎢⎣⎭上为增函数,∵x →-∞,()221f x a a →+-且()2f x =恰有两个零点,那么()12f -=或者221222a a a f a f ⎧⎛⎫+-< ⎪⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩或者222122212a a a f a f a a ⎧⎛⎫+-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪<≤+- ⎪⎪⎝⎭⎩,解得31a 或者12a ≤<.应选:B.【点睛】此题考察了利用函数有零点求参数的范围,分段函数单调性,属于中档题.ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD ∆沿对角线BD 翻折得到三棱锥'A BCD -,在此过程中,二面角'A BC D --、'A CD B --的大小分别为α,β,直线'A B 与平面BCD 所成角为γ,直线'A D 与平面BCD 所成角为δ,那么〔 〕 A. γδβ<<B. γαβ<<C. αδβ<<D.γαδ<<【答案】B 【解析】 【分析】利用定量分析结合最大角原理即可得到结论. 【详解】如图,因为AB AD >,所以点A 在BD 上的投影点H 靠近点D ,由翻折的性质,知点'A 在底面的投影点在AH 所在的直线上,如图设为点O ,那么'A FO α∠=,'A EO β∠=,'A BO γ∠=,'A DO δ∠=,由最大角原理知:γα<,δβ≤,当且仅当D 与E 重合时,取到等号;而'tan A O OB γ=,'tan A OOD δ=,如图易得,OB OD >,所以tan tan γδ<,即γδ<;又'tan A O OF α=,'tan A OOEβ=,由图易得,OF OE >,所以αβ<; 综上可得:γαβ<<. 应选:B.【点睛】此题考察二面角,线面角,利用平面四边形ABCD 中,90A C ∠=∠=︒,构造圆面解决问题是关键,属于中档题. 二、填空题()1z a i a R =+∈,21z i =+〔i 为虚数单位〕,那么2z =______;假设12z z 为纯虚数,那么a 的值是______.【答案】 (2). 1 【解析】 【分析】利用复数的模,复数的乘除运算化简,在令实部为0,即可得到答案.【详解】2z ==假设12z z 为纯虚数,那么()1211101z z a a i a a =-++⇒-=⇒=.;1.【点睛】此题考察复数代数形式的乘除运算,考察了复数的根本概念,属于根底题. 12.中国古代数学专著?九章算术?有问题:“五只雀,六只燕,一共重一斤〔等于16两〕,雀重燕轻,互换其中一只,恰好一样重〞,那么雀重______两,燕重______两. 【答案】 (1).3219 (2). 2419【解析】 【分析】分别设出雀与燕的重量,互换一只后,列出方程,解得即可. 【详解】设雀重x 两,燕重y 两, 由题意得:互换后有458x y y x +=+=,解得:3219x =,2419y =, 故答案为:3219;2419. 【点睛】此题考察了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解,属于根底题.x 、y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,且可行域表示的区域为三角形,那么实数m 的取值范围为______,假设目的函数z x y =-的最小值为-1,那么实数m 等于______. 【答案】 (1). 2m > (2). 5m = 【解析】 【分析】作出不等式组对应的平面区域,利用目的函数的几何意义,结合目的函数z x y =-的最小值,利用数形结合即可得到结论. 【详解】作出可行域如图,那么要为三角形需满足()1,1B 在直线x y m +=下方,即11m +<,2m >; 目的函数可视为y x z =-,那么z 为斜率为1的直线纵截距的相反数, 该直线截距最大在过点A 时,此时min 1z =-,直线PA :1y x =+,与AB :21y x =-的交点为()2,3A , 该点也在直线AC :x y m +=上,故235m =+=, 故答案为:2m >;5m =.【点睛】此题主要考察线性规划的应用,利用目的函数的几何意义,结合数形结合的数学思想是解决此类问题的根本方法,属于根底题.ABC ∆中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,cos cos 2cos a B b AC c+=,那么C =______;又23ABC S ∆=6a b +=,那么c =______. 【答案】 (1). 3π(2). 23【解析】 【分析】利用正弦定理或者余弦定理将边化为角或者角化为边,在结合三角形的面积公式,整理化简即可得到结论.【详解】解析1:〔边化角〕∵cos cos sin cos sin cos sin a B b A A B B A c C ++=()sin 1sin A B C+==,∴2cos 1C =,∴1cos 2C =, ∵0C π<<,∴3C π=;∵1sin 24ABC ab C b S a ∆===8ab =,又∵6a b +=〔可消元求出边a 、b 〕 ∴()()22222cos 21cos c a b ab C a b ab C =+-=+-+216281122⎛⎫=-⨯+= ⎪⎝⎭,∴c =.解析2:〔任意三角形射影定理〕∵cos cos 1a B b A cc c+==下同.故答案为:3π,【点睛】此题考察了正弦定理、余弦定理在解三角形中的应用,属于根底题. 15.a ,b 均为正实数,那么()124a a b b ⎛+⎫+ ⎪⎝⎭的最小值为______.【答案】【解析】 【分析】利用根本不等式即可得到结论.【详解】()1412284a b a b ab a b⎛⎫+=+++≥= ⎪⎝⎭+,当且仅当a =b =.故答案为:【点睛】此题考察了根本不等式的应用,构造根本不等式是解题的关键,属于根底题. 16.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,那么使a b c d e ⋅⋅+⋅为奇数的不同排列方法有______种.【答案】180 【解析】 【分析】分类讨论,先选后排,最后相加即可.【详解】假设a b c ⋅⋅为奇数d e ⋅为偶数时,有323336A A ⨯=种; 假设a b c ⋅⋅为偶数d e ⋅为奇数时,有2334144A A ⨯=种; 一共180种. 故答案为:180.【点睛】此题考察计数原理,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类,属于根底题.17.(b c k k ==>,0b c ⋅=,假设存在实数λ及单位向量a ,使得不等式()()()1112ab bc c b c λλ-+-++--≤成立,那么实数k 的最大值为______. 【答案】5【解析】 【分析】利用三点一共线,将不等式转化为求最值的间隔 问题,或者利用绝对值不等式a b a b +≥-,解得即可.【详解】解析:原题等价于()()()min1112a b b c c b c λλ⎧⎫-+-++--≤⎨⎬⎩⎭解析1:几何法〔三点一共线+将HY 饮马〕如图,()()()112a b b c c b c λλ-+-++--()()1112a b c c b c λλλλ⎡⎤⎡⎤=--++--+⎣⎦⎣⎦AP EP =+〔A 为单位圆上的,a OA =,b OB =,c OC =,P 为BC 上一点,E 为OC中点〕,由将HY 饮马模型,作E 关于BC 对称点'E ,那么()min '''1AP EP E A OE +==-225'112OC E C k =+-=-,所以,5451125k k -≤⇒≤.解析2:代数法〔建系坐标运算+将HY 饮马〕 设(),0c k =,()0,b k =,()cos ,sin a θθ=,()()()112a b b c c b c λλ-+-++--()()()2222221cos sin (1)12k k k k θλθλλλ⎛⎫=-+---+- ⎪⎝⎭()()()2222222212cos 21sin 1112k k k k k k λλθλθλλλ⎛⎫=---+-+-+- ⎪⎝⎭()()()()222222222222121sin 1112k k k k k k λλλθαλλλ⎛⎫=-+-++-+-+- ⎪⎝⎭()()222211112λλλλ⎛⎫≥+-+-+- ⎪⎝⎭那么k≤,由将HY 饮马可得2⎭2≥=⎝⎭,所以5k≤.解析3:绝对值不等式a b a b+≥-+将HY饮马因为()22122112b c k k aλλλλ--=-+≥≥=,所以()()()112a b b c c b cλλ-+-++--()()1112b c b caλλλλ⎛⎫≥--+-+--⎪⎝⎭12=-⎭,由解析2可得k≤解析4:绝对值不等式a b a b+≥-,{}max,a b a b a b+≥+-+对称转化因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()()112a b b c c b cλλ-+-++--()()1112b c b c aλλλλ⎛⎫≥--+-+--⎪⎝⎭,因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=-++-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=+-+-+-⎪⎝⎭,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭max,max,22222c c kb⎧⎫⎧⎫⎪⎪⎪⎪≥+==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,所以1125k k-≤⇒≤.故答案为:5.【点睛】此题考察不等式成立问题,构造不等式解不等式是关键,“将HY饮马〞模型的使用,对称问题,两点之间,线段最短,点到直线的间隔 ,垂线段最短,属于难题. 三、解答题()()()sin 0f x x ωϕϕπ=+<<图象上相邻两个最高点的间隔 为π.〔1〕假设()y f x =的图象过10,2⎛⎫ ⎪⎝⎭,且局部图象如下图,求函数()f x 的解析式;〔2〕假设函数()y f x =是偶函数,将()y f x =的图象向左平移6π个单位长度,得到yg x 的图象,求函数()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值. 【答案】〔1〕()5sin 26f x x π⎛=⎫+ ⎪⎝⎭〔2〕()max 52f x =,()min 13f x =【解析】 【分析】〔1〕由题意得2ω=,再由()102f =,进而可得解析式; 〔2〕由()y f x =是偶函数,得2ϕπ=,从而()cos2f x x =,经过平移得()g x ,再表示出()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦,利用余弦型函数即可得最值. 【详解】解析:由题意得,2T ππω==,所以2ω=,()()sin 2f x x ϕ=+.〔1〕由于()102f =,那么1sin 2ϕ=,又0ϕπ<<, 那么56πϕ=或者6π=ϕ〔舍去〕,故()5sin 26f x x π⎛⎫=+⎪⎝⎭.〔2〕由于()()sin 2y f x x ϕ==+是偶函数,那么()0sin 1f ϕ==±, 又0ϕπ<<,所以2ϕπ=,()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,将()cos2y f x x ==的图象向左平移6π个单位长度, 得到()cos 23x y g x π=⎛⎫=+ ⎪⎝⎭的图象,故()2222cos cos 223x y fg x x x π⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦13331cos 2cos 2sin 21cos 2sin 22222x x x x x =++-=+-3113cos 2sin 213cos 2226x x x π⎛⎫⎛⎫=+-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,72666x πππ≤+≤, 所以()()max 502f x f ==,()min 51312x f f π⎛⎫= ⎪⎭=-⎝. 【点睛】此题考察三角函数的图象与性质,图象的平移问题,余弦型函数求最值,属于根底题.19.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AD =,1AB =,PA ⊥平面PCD ,且1PC PD ==,设E ,F 分别为PB ,AC 的中点.〔1〕求证://EF 平面PAD ;〔2〕求直线DE 与平面PAC 所成角的正弦值.【答案】〔1〕证明见解析〔2〕33020【解析】 【分析】〔1〕利用线面平行的性质定理即可得到结论;〔2〕方法一:利用几何法求线面角,一作,二证,三求解;方法二:利用空间直角坐标系,线面角的向量关系即可得到结论.【详解】〔1〕解析:因为底面ABCD 为平行四边形,F 是AC 中点,所以F 是BD 中点,所以1//2EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD ,所以//EF 平面PAD . 〔2〕解析1:〔几何法〕 因为DE ⊂平面PBD ,平面PBD平面PAC PF =,所以直线DE 与平面PAC 的交点即为DE 与PF 的交点,设为G ,1PC PD CD ===,所以PCD ∆为等边三角形,取PC 中点O ,那么DO PC ⊥,因为PA ⊥平面PCD ,所以平面PAC ⊥平面PCD , 平面PAC平面PCD PC =,DO PC ⊥,所以DO ⊥平面PAC ,所以DGO ∠是直线DE 与平面PAC 所成角,因为E ,F 分别为PB ,AC 的中点,所以G 是PBD ∆的重心, 在Rt PAD ∆中,3PA =2PB AC ==,在平行四边形ABCD 中,6BD =,在PBD ∆中,4161cos 2214BPD +-∠==-⨯⨯,在PED ∆中,2511211cos 2DE EPD =+-⨯⨯⨯∠=,所以102DE =, 所以21033DG DE ==,又因为32OD =, 所以3sin 3020OD DGO DG ∠==,即直线DE 与平面PAC 所成角的正弦值为33020. 解析2:〔向量法〕取PC 中点O ,那么1//2OF PA ,因为PA ⊥平面PCD , 所以OF ⊥平面PCD ,因为1PC PD CD ===,所以PCD ∆为等边三角形, 所以OD PC ⊥,此时OD ,OF ,OP 两两垂直,如图,建立空间直角坐标系,10,0,2P ⎛⎫ ⎪⎝⎭,3,0,02D ⎛⎫ ⎪ ⎪⎝⎭,在Rt PAD ∆中,3PA =3F ⎛⎫ ⎪ ⎪⎝⎭,由12FE DP =,得3314E ⎛⎫ ⎪ ⎪⎝⎭,所以3333,,424DE ⎛⎫= ⎪ ⎪⎝⎭,平面PAC 的法向量为32OD ⎛⎫= ⎪ ⎪⎝⎭, 所以3cos ,3020DE OD DE OD DE OD⋅==-⋅, 所以3sin cos ,3020DE OD θ==即直线DE 与平面PAC 所成角的【点睛】此题考察线面平行,线面角,应用几何法求线面角,向量法求线面角,属于根底题.{}n a 满足212a a =,459a a +=,n S 为等比数列{}n b 的前n 项和,122n n S S +=+.〔1〕求{}n a ,{}n b 的通项公式;〔2〕设23,41,n n nn a b n n a c ⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,证明:12313...6n c c c c +++⋅⋅+<.【答案】〔1〕n a n =,112n n b -=〔2〕证明见解析 【解析】 【分析】〔1〕由根本量思想的等差数列{}n a 的通项公式,由n b 与n S 的关系即可得到结论; 〔2〕利用放缩法和数列求和即可得到不等式.【详解】〔1〕由题意得11112349a d a a d a d +=⎧⎨+++=⎩,解得:111a d =⎧⎨=⎩,∴n a n =,即数列{}n a 的通项公式为n a n =, 由122n n S S +=+,得21322222S S S S =+⎧⎨=+⎩,两式相减整理得:322b b =,∴12q =,11b =, ∴112n n b -=,即数列{}n b 的通项公式为112n n b -=〔2〕解析1:〔应用放缩和错位相减求和证明不等式〕解:123n n C c c c c =+++⋅⋅⋅+,1321k k A c c c -=++⋅⋅⋅+,242k k B c c c =++⋅⋅⋅+,012110123135214444431352144444k k k k k A k A -+⎧-⎛⎫=+++⋅⋅⋅+ ⎪⎪⎪⎝⎭⎨+⎛⎫⎪=+++⋅⋅⋅+ ⎪⎪⎝⎭⎩两式相减整理得5511023346k k A k ⎛⎫=-+< ⎪⎝⎭,又因为()()()222121k k k >-+,∴()222111242k B k =++⋅⋅⋅+1111111213352121k k ⎛⎫<-+-+⋅⋅⋅- ⎪-+⎝⎭1326<=. 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 〔2〕解析2:〔应用放缩和裂项求和证明不等式〕 令()114n n d an b -=+,11214n n n n d d +--=-化简整理得:1841394n n d n -⎛⎫=-+ ⎪⎝⎭,∴115511023346k k k A d d k +⎛⎫=-=-+< ⎪⎝⎭,22221111123n T n =+++⋅⋅⋅+()111112231n n <+++⋅⋅⋅⨯⨯-⨯122n=-<,()222211111112242422n T n n =++⋅⋅⋅+<-<, 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 【点睛】此题考察等差数列与等比数列的通项公式,考察数列求和,考察放缩法,属于中档题.E :()220y px p =>过点()1,2Q ,F 为其焦点,过F 且不垂直于x 轴的直线l 交抛物线E 于A ,B 两点,动点P 满足PAB ∆的垂心为原点O .〔1〕求抛物线E 的方程;〔2〕求证:动点P 在定直线m 上,并求PABQABS S ∆∆的最小值.【答案】〔1〕24y x =〔2〕证明见解析,PABQABS S ∆∆的最小值为【解析】 【分析】〔1〕直接将()1,2Q 代入抛物线方程即可得到答案; 〔2〕设直线方程为1ty x =-,联立方程,表示出PABQABS S ∆∆,运用根本不等式即可得到结论. 【详解】〔1〕由题意,将点()1,2Q 代入22y px =,即222p =,解得2p =,所以,抛物线E 的方程为24y x =. 〔2〕解析1:〔巧设直线〕证明:设l :1ty x =-,()11,A x y ,()22,B x y ,联立24y x =,可得2104y ty --=,那么有121244y y ty y +=⎧⎨=-⎩,可设AP :()2112x y y x x y -=--,即21344y y x y =-+,同理BP :12344y y x y =-+,解得()3,3P t -,即动点P 在定直线m :3x =-上. 211221342122PAB QABAB d t S d S d t AB d ∆∆+===322t t =+≥,当且仅当3t =±1d ,2d 分别为点P 和点Q 到直线AB 的间隔 . 〔2〕解析2:〔利用向量以及同构式〕证明:设l :()10x my m =+≠,()11,A x y ,()22,B x y ,联立24y x =,可得2440y my --=,那么有121244y y m y y +=⎧⎨=-⎩.21001,4y PA y x y ⎛⎫=-- ⎪⎝⎭,222,4y y OB ⎛⎫= ⎪⎝⎭,又O 为PAB ∆的垂心,从而0PA OB ⋅=,代入化简得:20202304x y y y ++=,同理:20101304x y y y ++=,从而可知,1y ,2y 是方程200304xx y x ++=的两根,所以012012044124y y y m x y y x ⎧+=-=⎪⎪⎨⎪==-⎪⎩00000333y mx y m x x =-=⎧⎧⇒⇒⎨⎨=-=-⎩⎩,所以动点P 在定直线m :3x =-上. 211221342122PAB QABAB d m S d S d m AB d ∆∆+===322m m =+≥,当且仅当m =1d ,2d 分别为点P 和点Q 到直线AB 的间隔 .【点睛】此题考察抛物线的HY 方程,直线与抛物线的位置关系,考察韦达定理,考察根本不等式的应用,考察计算才能,属于中档题.()ln f x a x x b =-+,其中,a b ∈R .〔1〕求函数()f x 的单调区间;〔2〕使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【答案】〔1〕()f x 在()0,a 上单调递增,在(),a +∞单调递减〔2〕14,2e e e ⎡⎤++⎢⎥⎣⎦〔3〕42,2b c e ⎡⎤+∈+⎢⎥⎣⎦【解析】 【分析】〔1〕求出函数的导函数,通过讨论a 的范围,求出函数的单调区间即可;〔2〕别离变量k 得不等式,由恒成立把[]1,2a ∈,[]1,x e ∈放缩程一个新不等式,再构造一个新函数,讨论出c 的范围,即可得到结论. 【详解】〔1〕因()f x 的定义域为()0,∞+,()()'10af x x x=->,当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; 〔2〕()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x +-++-+-=⇒=,由〔1〕()ln p x x x b ⇒=-+-在()1,+∞上递增;〔1〕当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增; ∴()()min 122c g x g b b c b ===⇒+==.〔2〕当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.〔3〕当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,那么当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>.∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增,()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 【点睛】此题考察函数的单调区间,考察不等式的恒成立转化为求函数的最值问题,运用不等式放缩、分类讨论思想是解题的关键,属于难题.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

新高三数学上期末试卷(含答案)

新高三数学上期末试卷(含答案)

新高三数学上期末试卷( 含答案 )一、选择题1. 以下结论正确的选项是()A .若 a b ,则 ac 2bc 2B .若 a 2b2,则 a bCa b,c 0 ,则 a cbc D.若 a b ,则 ab.若2. 已知数列a 的前 n 项和为 S ,且 1a n4nn21 p S4n3 建立,则实数p的取值范围是(nn 1,若对随意nN * ,都有)A .2,3B . 2,3C . 2,9D . 2,9223. 已知数列 a n 的前 n 项和 S n n 2 , b nnb n 的前 n 项和 T n 知足1 a n 则数列()A . T n1nB . T n nn为偶数,C . T nnD . T nn, n为奇数 .2n, n4. ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 b2 , B , C = ,64则ABC 的面积为()A .223B .31C .232D .315. 在 ABC 中, AC2, BC2 2,ACB 135o ,过 C 作 CDAB 交AB 于D ,则CD () A .2 5B . 2C . 3D . 556. “干支纪年法”是中国历法上自古以来就向来使用的纪年方法,干支是天干和地支的总 称,把干支次序相当正好六十为一周,循环往复,循环记录,这就是俗称的“干支表” 甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元 1984 年阴历为甲子年,公元 1985年阴历为乙丑年,公元 1986 年阴历为丙寅年,则公元 2047 年阴历为A .乙丑年B .丙寅年C .丁卯年D .戊辰年7. 数列 a n , b n为等差数列,前 n 项和分别为 S n ,T n S n3n 2 a 7 ( ),若,则b 7T n2n4123 1111A .B .C .D .2614 768. 已知 ABC 的三个内角 A 、B 、C 所对的边为 a 、b 、c ,面积为 S ,且S(bcc 2 ) tan B ,则 A 等于()2 3 tan B 2A .6B .C .D .4329. 数列 { a n } 为等比数列,若 a 11, a 78a 4 ,数列1的前 n 项和为 S n ,则 S 5( a n)B .15A . 31C . 7D . 31168xy 3 0,102x 上存在点 (x, y) 知足x 2y30, 则实数 m 的最大值为. 若直线 yx m,A . 2B . 1C . 1D . 311. 已知 0 x 1 , 0y 1,则x 2 y 2x 21 y 21 x21 x 21y 2y 2的最小值为()A . 5B .2 2C . 10D .2 312.设 S 为等差数列a的前 n 项和, (n 1)S < nSn 1 (n N ).若a 81 ,则( )nnna 7A . S n 的最大值为 S 8B . S n 的最小值为 S 8C . S n 的最大值为 S 7D . S n 的最小值为 S 7二、填空题13. 数列 a n 知足: a 1a ( aR 且为常数), a n 1a n 3 a n 3 n N * ,当4 a n a n3a 100 时,则数列 a n 的前 100项的和 S 100 为________.14. 已知数列a n 知足: a 1 1, a n 1 a n a 1 , a 2 , , a n n N * ,记数列 a n 的前 n项和为 S n ,若对全部知足条件的a n , S 10 的最大值为 M 、最小值为m,则M m ______.rrx, y 2 ,此中 xr ry的最小值为15. 已知向量 a1, x ,b,若 a 与 b 共线,则x__________.ABC A B C 所对的边分别为 a b c ,若 acosB 5bcosA , asinA ﹣ bsinB= 16.△ 中,角 , , , , =2sinC ,则边 c 的值为 _______. a b ac b c17. 已知 a 、b 、c R , c 为实常数,则不等式的性质”能够用一个“函数在 R 上的单一性来分析,这个函数的分析式是f ( x) =_________18. 数列11 2 n N * ,则通项公式an 知足a 1,且1 an 11 a na n _______.19. 设正项数列a n 的前 n 项和是 S n ,若 a n和 S n 都是等差数列,且公差相等,则a 1 = _______.20. 已知等比数列S 4an 的公比为2,前n项和为 S n ,则 a 2=______.三、解答题21. 已知 a , b , c 分别为ABC 三个内角 A , B , C 的对边,且3b sin A acos B 2a0 .(Ⅰ)求 B 的大小;(Ⅱ)若 b 7 ,ABC 的面积为3,求 a c 的值.222. 在ABC 中,角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,且知足b sin A a cosB.6(1)求角 B 的大小;(2)若 D 为 AC 的中点,且 BD1,求 S ABC 的最大值 .23. 已知函数 f x a x x bc.a >0,b >0,c >0, (1) 当 a b c 1 时 , 求不等式 f x >3 的解集;(2) 当 fx 的最小值为 3 时,求11 1 的最小值 .a b c24. 已知等差数列n 的前 n 项和为 S n , a 2a 5 12, S 4 16 .a(1) 求 a n 的通项公式;1, T n 为数列(2)数列b n 知足 b nb n 的前 n项和,能否存在正整数m4S n 1,k 1 mk ,使得 T k3T m 2 ?若存在,求出 m , k 的值;若不存在,请说明原因.x y 6 025. 已知实数 x 、 y 知足x y 0 ,若 zaxy 的最大值为 3a 9 ,最小值为x 33a3,务实数 a 的取值范围 .26. 在ABC 中, 3a sin C c cos A .(Ⅰ )求角 A 的大小;(Ⅱ )若S ABC3 , b c 2 2 3 ,求 a 的值.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.D 分析: D【分析】选项 A 中,当 c=0 时不符,所以 A 错.选项 B 中,当 a2, b 1时,切合 a2知足 ab ,B 错.选项 C 中 , ac bc , 所以 C 错.选项 D 中,因为 0a22b .选 D.b ,由不等式的平方法例,ab ,即 a 2.B分析: B【分析】11n 1S n 414124221 n1n22 24n114n32132Q 1 p S n4 3nn即 1p2 2 1 33 32对随意 n N * 都建立,当 n 1 时, 1 p 3当 n 2时, 2 p6当 n3时,4p43 概括得: 2 p 3应选 B点睛:依据已知条件运用分组乞降法不难计算出数列a n 的前 n 项和为 S n ,为求值范围则依据 n 为奇数和 n 为偶数两种状况进行分类议论,求得最后的结果3.A分析: A【分析】【剖析】b 2 ,不p的取先依据 S n n 2 ,求出数列 a n的通项公式 ,而后利用错位相减法求出b n的前 n 项和 T n .【详解】解: ∵ S n n 2 ,∴当 n 1 时 , a 1 S 1 1;当 n2 时 , a nS n Sn 1 n 222n 1 ,n 1又当 n 1 时 , a 1 1切合上式 ,∴ a n 2n1,∴1n1n 2 1 ,b n a nn∴ T n 1123n1 3 1 511 2n 1 ①,∴ T n1 1234 n131 5112n 1 ②,①-② ,得 2T n1 22341nn 11112n 11121n 11 212n 11n 11 n112n,∴ T n 1 n n ,∴数列b 的前 n 项和T n1 n n .n应选 :A. 【点睛】本题考察了依据数列的前 n 项和求通项公式和错位相减法求数列的前 n 项和 ,考察了计算能力,属中档题 .4.B分析: B【分析】试题剖析:依据正弦定理,,解得 , ,而且,所以考点: 1.正弦定理; 2.面积公式.5.A分析: A【分析】【剖析】先由余弦定理获得 AB 边的长度,再由等面积法可获得结果 .【详解】2 22 依据余弦定理获得ACBCAB2.将 AC 2, BC 2 2 ,代入等式获得2 AC BC2AB= 2 5,再由等面积法获得1 25CD 12 2 22 CD 2 52 22 5故答案为 A.【点睛】这个题目考察认识三角形的应用问题,波及正余弦定理,面积公式的应用,在解与三角形 相关的问题时,正弦定理、余弦定理是两个主要依照.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现ab 及b 2 、 a 2 时,常常用余弦定理,而题设中假如边和正弦、余弦函数交错出现时,常常运用正弦定理将边化为正弦函数再联合和、差、倍角的正余弦公式进行解答.6.C分析: C【分析】记公元 1984 年为第一年,公元 2047 年为第 64 年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯” , 所以公元 2047 年阴历为丁卯年 . 应选 C.7.A分析: A【分析】a 1 a 13 13S 13412a 72依题意,b13T13.2b 7 b 1132628.C分析: C【分析】【剖析】利用三角形面积公式可得1acsinBbc c 2 tanB2 ,联合正弦定理及三角恒等变换知识23tanB 2可得 3sinA cosA 1,从而获得角A.【详解】bc c 2 tanB∵ S3tanB 22∴1acsinB bc c 2 tanB2 3tanB 22即 asinBb c tanBb c,3tanB 1, acosB3sinB∴3sinAsinB sinAcosB sinB sinC sinB sin A B ∴ 3sinA cosA1∴ sin A1,62∴ A6或5(舍)66∴ A3应选 C【点睛】本题考察了正弦定理、三角形面积公式,以及三角恒等变换,娴熟掌握边角的转变是解本题的重点.9.A分析: A【分析】【剖析】先求等比数列通项公式,再依据等比数列乞降公式求结果.【详解】Q 数列a n为等比数列,a11, a78a4,q68q3,解得 q2,a n a1q n 12n 1,Q 数列1的前n项和为na n S ,11 1111131S52514816116.212应选 A.【点睛】本题考察等比数列通项公式与乞降公式,考察基本剖析求解能力,属基础题. 10.B分析: B【分析】【剖析】第一画出可行域,而后联合交点坐标平移直线即可确立实数m 的最大值 .【详解】不等式组表示的平面地区以以下图所示,y 2xx 1 由2 y3 0,得:,x y2即 C 点坐标为(- 1,- 2),平移直线 x =m ,移到 C 点或 C 点的左侧时,直线 y 2x 上存在点 (x, y) 在平面地区内,所以, m ≤- 1,即实数 m 的最大值为- 1.【点睛】本题主要考察线性规划及其应用,属于中等题.11.B分析: B【分析】【剖析】x2y 2x y ,则x2y2x y , x 21 y2x 1 y ,依据均值不等式,可有22221 2y21 xy , 1 221 x 1y,再利用不等式的基天性质,两xx1 y2 2边分别相加求解。

2019-2020年高三上学期期末数学试卷含解析(I)

2019-2020年高三上学期期末数学试卷含解析(I)

2019-2020年高三上学期期末数学试卷含解析(I)一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B=.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为.4.根据如图所示的伪代码,则输出S的值为.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a的值为.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.8.若函数的最小正周期为,则的值为.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.11.若实数x,y满足,则的最小值为.12.已知非零向量满足,则与夹角的余弦值为.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.16.(14分)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD 为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.17.(14分)如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P ,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km 、4万元∕km . (1)求A ,B 两镇间的距离;(2)应该如何铺设,使总铺设费用最低?18.(16分)在平面直角坐标系xOy 中,已知椭圆C : +=1(a >b >0)的离心率为,且右焦点F 到左准线的距离为6.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .(i )当直线PA 的斜率为时,求△MFN 的外接圆的方程; (ii )设直线AN 交椭圆C 于另一点Q ,求△PAQ 的面积的最大值.19.(16分)已知函数ax ex x f -=2)(2,ax x x g -=ln )(,R a ∈(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.20.(16分)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 取值范围;(3)当a=2时,将数列{a n }中的部分项按原来的顺序构成数列{b n },且b 1=a 2,证明:存在无数个满足条件的无穷等比数列{b n }.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.[选修4-2:矩阵与变换](本小题满分0分)22.已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b的值.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t为参数).当圆心C到直线l的距离为时,求m的值.[选修4-5:不等式选讲](本小题满分0分)24.已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B 题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).26.已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.2016-2017学年江苏省苏北四市(徐州、淮安、连云港、宿迁)联考高三(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B={﹣2,0,3} .【考点】并集及其运算.【分析】利用并集定义直接求解.【解答】解:∵集合A={﹣2,0},B={﹣2,3},∴A∪B={﹣2,0,3}.故答案为:{﹣2,0,3}.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.【考点】复数代数形式的乘除运算.【分析】由(1﹣i)z=2i,得,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由(1﹣i)z=2i,得=,则z的模为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为14.【考点】茎叶图.【分析】求出剩下的4个分数平均数,代入方差公式,求出方差即可.【解答】解:剩下的4个分数是:42,44,46,52,平均数是:46,故方差是:(16+4+0+36)=14,故答案为:14.【点评】本题考查了读茎叶图问题,考查求平均数以及方差问题,是一道基础题.4.根据如图所示的伪代码,则输出S的值为20.【考点】程序框图.【分析】根据条件进行模拟计算即可.【解答】解:第一次I=1,满足条件I≤5,I=1+1=2,S=0+2=2,第二次I=2,满足条件I≤5,I=2+1=3,S=2+3=5,第三次I=3,满足条件I≤5,I=3+1=4,S=5+4=9,第四次I=4,满足条件I≤5,I=4+1=5,S=9+5=14,第五次I=5,满足条件I≤5,I=5+1=6,S=14+6=20,第六次I=6不满足条件I≤5,查询终止,输出S=20,故答案为:20【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,再用列举法求出所取2个数的和能被3整除包含的基本事件个数,由此能求出所取2个数的和能被3整除的概率.【解答】解:从1,2,3,4,5,6这六个数中一次随机地取2个数,基本事件总数n=,所取2个数的和能被3整除包含的基本事件有:(1,2),(1,5),(2,4),(3,6),(4,5),共有5个,∴所取2个数的和能被3整除的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a 的值为1.【考点】双曲线的简单性质.【分析】求得抛物线的焦点,双曲线的右焦点,由题意可得方程,解方程即可得到a的值.【解答】解:抛物线y2=8x的焦点为(2,0),双曲线的右焦点为(,0),由题意可得为=2,解得a=1.故答案为:1.【点评】本题考查双曲线的方程和性质,同时考查抛物线的焦点,考查运算能力,属于基础题.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.【考点】旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面直径与高都是2,∴母线长为:=,∴圆锥的侧面积为:πrl=.故答案为:.【点评】本题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.8.若函数的最小正周期为,则的值为﹣.【考点】正弦函数的图象.【分析】利用正弦函数的周期性求得ω,再利用诱导公式求得的值.【解答】解:∵函数的最小正周期为=,∴ω=10,则=sin(10π•﹣)=sin=sin=﹣sin=﹣,故答案为:.【点评】本题主要考查正弦函数的周期性,利用诱导公式求三角函数的值,属于基础题.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:∵S2=2a2+3,S3=2a3+3,∴a1=a1q+3,a1(1+q)=+3,∴q2﹣2q=0,q≠0.则公比q=2.故答案为:2.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为(﹣∞,﹣3] .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].故答案为:(﹣∞,﹣3].【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.11.若实数x,y满足,则的最小值为8.【考点】基本不等式.【分析】实数x,y满足,可得x=∈,解得y>3.则=y+3+=y﹣3++6,利用基本不等式的性质即可得出.【解答】解:∵实数x,y满足,∴x=∈,解得y>3.则=y+3+=y﹣3++6≥+6=8,当且仅当y=4(x=)时取等号.故答案为:8.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.12.已知非零向量满足,则与夹角的余弦值为.【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,余弦定理,数形结合求得与夹角的余弦值.【解答】解:非零向量满足,不妨设=1,设与夹角为θ,如图所示:设=,=,=+,则OA=0B=0C=1,设=2=2,则=2﹣,∠ODA即为θ,△OAC和△OBC都是边长等于3的等边三角形.利用余弦定理可得BD==,cosθ==,故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,余弦定理的应用,属于中档题.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为[7,13] .【考点】圆与圆的位置关系及其判定.【分析】求出AB的中点的轨迹方程,即可求出的取值范围.【解答】解:取AB的中点C,则=2||,C的轨迹方程是x2+y2=,|C1C2|=5由题意,||最大值为5+1+=,最小值为5﹣1﹣=.∴的取值范围为[7,13],故答案为[:7,13].【点评】本题考查圆与圆的位置关系,考查学生的计算能力,正确转化是关键.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为[﹣20,﹣16] .【考点】分段函数的应用.【分析】因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,只需g(x)=x3﹣9x2+24x+a (x≥1)与x轴有3个交点即可,【解答】解:因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,令g(x)=x3﹣9x2+24x+a(x≥1),g′(x)=3x2﹣18x+24=3(x2﹣6x+8)=2(x﹣2)(x﹣4),当x∈(1,2),(4,+∞)时g(x)单调递增,当x∈(2,4)时g(x)单调递减,依题意只需g(x)=x3﹣9x2+24x+a(x≥1)与x轴有3个交点即可,及g(1)=16+a≤0,g(2)=20+a≥0,∴﹣20≤a≤﹣16.故答案为[﹣20,﹣16]【点评】题主要考查函数的图象的交点以及数形结合方法,数形结合是数学解题中常用的思想方法,属于基础题.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)(2016秋•淮安期末)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理化简已知等式可得2cosAsinA=sinA,结合sinA≠0,可求,结合范围A∈(0,π),可求A的值.(2)由已知利用同角三角函数基本关系式可求sinB,利用倍角公式可求sin2B,cos2B,由sin(B﹣C)=sin(2B﹣),利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,…(2分)即2cosAsinA=sinA,因为A∈(0,π),所以sinA≠0,所以2cosA=1,即,…(4分)又A∈(0,π),所以.…(6分)(2)因为,B∈(0,π),所以,…(8分)所以,,…(10分)所以=…(12分)==.…(14分)【点评】本题主要考查了正弦定理,同角三角函数基本关系式,倍角公式,两角差的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.16.(14分)(2016秋•淮安期末)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)取BE中点F,连结CF,MF,证明四边形MNCF是平行四边形,所以MN∥CF,即可证明直线MN∥平面EBC;(2)证明BC⊥平面EAB,得到BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,即可证明直线EA⊥平面EBC.【解答】证明:(1)取BE中点F,连结CF,MF,又M是AE的中点,所以MF=AB,又N是矩形ABCD边CD的中点,所以NC=AB,所以MF平行且等于NC,所以四边形MNCF是平行四边形,…(4分)所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.…(7分)(2)在矩形ABCD中,BC⊥AB,又平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,…(10分)又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.…(14分)【点评】本题考查线面平行、线面垂直的证明,考查学生分析解决问题的能力,属于中档题.17.(14分)(2016秋•淮安期末)如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB 在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB 在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求A,B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?【考点】导数在最大值、最小值问题中的应用.【分析】(1)由tan∠BAN=,∠BCN=,得到|AD|,|DB|、|AB|间的关系,然后利用直角三角形的性质求解;(2)方案①:总铺设费用为5×4=20(万元).方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,则总铺设费用为.设,则,,求出函数的极小值,即函数的最小值得答案.【解答】解:(1)过B作MN的垂线,垂足为D,如图示:在Rt△ABD中,,所以,在Rt△BCD中,,所以CD=BD.则,即BD=3,所以CD=3,AD=4,由勾股定理得,(km).所以A,B两镇间的距离为5km.…(4分)(2)方案①:沿线段AB在水下铺设时,总铺设费用为5×4=20(万元).…(6分)方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,所以.则总铺设费用为.…(8分)设,则,令f'(θ)=0,得,列表如下:所以f(θ)的最小值为.所以方案②的总铺设费用最小为(万元),此时.…(12分)而,所以应选择方案②进行铺设,点P选在A的正西方向km处,总铺设费用最低.…(14分)【点评】本题考查了简单的数学建模思想方法,考查了利用导数求函数的最值,是中档题18.(16分)(2016秋•淮安期末)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求△MFN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求△PAQ的面积的最大值.【考点】椭圆的简单性质.【分析】(1)由题意可知:离心率e==,则a=c,右焦点F到左准线的距离c+=6,即可求得c和a的值,则b2=a2﹣c2=8,即可求得椭圆方程;(2)(i)设直线方程为:y=(x+4),求得M点,即可求得NF的方程和N的坐标,则丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9;(ii)设直线方程为:y=k(x+4),代入椭圆方程,求得P点坐标,求得直线PF方程,则求得N点坐标,则直线AN:y=﹣﹣,代入椭圆方程,求得M点坐标,求得丨AM丨,△PAQ的面积S===≤=10.【解答】解:(1)由题意可知:椭圆C: +=1(a>b>0)焦点在x轴上,由离心率e==,则a=c,由右焦点F到左准线的距离c+=6,解得:c=2,则a=4,由b2=a2﹣c2=8,∴椭圆的标准方程为:;(2)(i)由(1)可知:椭圆的左顶点(﹣4,0),F(2,0),设直线方程为:y=(x+4),即y=x+2,则M(2,0),k MF==﹣,则k NF=,直线NF:y=(x﹣2)=﹣4,则N(0,﹣4),丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9,(ii)设直线方程为:y=k(x+4),∴,整理得:(1+2k2)x2+16k2x+32k2﹣16=0,解得:x1=4,x2=,则y2=,则P(,),∴k MF==﹣k,由M(0,4k),F(2,0),∴k NF=,则NF:y=(x﹣2),则N(0,﹣),则直线AN:y=﹣﹣,代入椭圆方程:整理得:(1+)x2+x+﹣16=0,解得:x1=4,x2=,则y2=,则Q(,),∴k PQ=,直线PQ:y﹣=(x﹣),则x M =﹣=,∴丨AM 丨=+4=,△PAQ 的面积S==••=,=≤=10,当且仅当2k=,即k=时,取最大值,△PAQ 的面积的最大值10.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考三角形的面积公式的应用,考查基本不等式的综合应用,属于难题.19.(16分)已知函数ax ex x f -=2)(2,ax x x g -=ln )(,R a ∈(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)通过讨论a 的范围,求出不等式的解集即可;(2)设h (x )=f (x )﹣g (x ),求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值,证出结论即可;(3)假设存在,得到对任意的x >0恒成立,根据函数的单调性判断即可.【解答】解:(1)当a=0时,,所以f (x )≤0的解集为{0};当a ≠0时,,若a>0,则f(x)≤0的解集为[0,2ea];若a<0,则f(x)≤0的解集为[2ea,0].综上所述,当a=0时,f(x)≤0的解集为{0};当a>0时,f(x)≤0的解集为[0,2ea];当a<0时,f(x)≤0的解集为[2ea,0].…(4分)(2)设,则.令h'(x)=0,得,列表如下:所以函数h(x)的最小值为,所以,即f(x)≥g(x).…(8分)(3)假设存在常数a,b使得f(x)≥ax+b≥g(x)对任意的x>0恒成立,即对任意的x>0恒成立.而当时,,所以,所以,则,所以恒成立,①当a≤0时,,所以(*)式在(0,+∞)上不恒成立;②当a>0时,则,即,所以,则.…(12分)令,则,令φ'(x)=0,得,当时,φ'(x)>0,φ(x)在上单调增;当时,φ'(x)<0,φ(x)在上单调减.所以φ(x)的最大值.所以恒成立.所以存在,符合题意.…(16分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.20.(16分)(2016秋•淮安期末)已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)(a n+1+1)=6(S n+n),n∈N*.(1)求数列{a n}的通项公式;(2)若对于∀n∈N*,都有S n≤n(3n+1)成立,求实数a取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b n},且b1=a2,证明:存在无数个满足条件的无穷等比数列{b n}.【考点】数列的求和;等比数列的通项公式.【分析】(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),可得(a n+1)(a n+1﹣a n﹣1)=6(a n+1),因此a n+1﹣a n﹣1=6,分奇数偶数即可得出.(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,利用单调性即可得出.当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,即可得出.(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),可得5×4m(n﹣1)=5×[3(1+4+42+...+4k﹣1)+1],=3[5(1+4+42+ (4)﹣1)+2]﹣1,….因为5(1+4+42+…+4k﹣1)+2为正整数,可得数列{b n}是数列{a n}中包含的无穷等比数列,进而证明结论.解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,n≥2时,,可得k n是正整数,因此以数列{b n}是数列{a n}中包含的无穷等比数列,即可证明.【解答】解:(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),所以(a n+1)(a n+1+1)﹣(a n﹣1+1)(a n+1)=6(S n+n)﹣6(S n﹣1+n﹣1),即(a n+1)(a n+1﹣a n﹣1)=6(a n+1),又a n>0,所以a n+1﹣a n﹣1=6,…(3分)所以a2k﹣1=a+6(k﹣1)=6k+a﹣6,a2k=5+6(k﹣1)=6k﹣1,k∈N*,故…(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,令,则,所以a≤f(1)=4.…(8分)当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,所以a≤9.又a1=a>0,所以实数a的取值范围是(0,4].…(10分)(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),因为,所以5×4m(n﹣1)=5×[3(1+4+42+…+4k﹣1)+1],=3[5(1+4+42+…+4k﹣1)+2]﹣1,…(14分)因为5(1+4+42+…+4k﹣1)+2为正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=4m(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,而当n≥2时,,即,…(14分)又因为k1=2,5m(3m+1)n﹣2都是正整数,所以k n也都是正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=3m+1(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)【点评】本题考查了构造方法、等差数列与等比数列的通项公式及其求和公式,考查了分类讨论方法、推理能力与计算能力,属于难题.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.(2016秋•淮安期末)如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.【考点】与圆有关的比例线段.【分析】证明△ABD∽△BDE,即可证明结论.【解答】证明:因为D为弧BC的中点,所以∠DBC=∠DAB,DC=DB,因为AB为半圆O的直径,所以∠ADB=90°,又E为BC的中点,所以EC=EB,所以DE⊥BC,所以△ABD∽△BDE,所以,所以AB•BC=2AD•BD.…(10分)【点评】本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-2:矩阵与变换](本小题满分0分)22.(2016秋•淮安期末)已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b的值.【考点】特征向量的定义.【分析】由条件知,Aα=2α,从而,由此能求出a,b的值.【解答】解:∵矩阵A=的一个特征值为2,其对应的一个特征向量为a=,∴由条件知,Aα=2α,即,即,…(6分)∴,解得∴a,b的值分别为2,4.…(10分)【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意特征向量的性质的合理运用.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2016秋•淮安期末)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t为参数).当圆心C到直线l的距离为时,求m的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】根据极坐标方程,参数方程与普通方程的关系求出曲线的普通方程,利用点到hi直线的距离公式进行求解即可.【解答】解:由ρsin(θ﹣)=m得ρsinθcos﹣ρcosθsin=m,即x﹣y+m=0,即直线l的直角坐标方程为x﹣y+m=0,圆C的普通方程为(x﹣1)2+(y+2)2=9,圆心C到直线l的距离,解得m=﹣1或m=﹣5.【点评】本题主要考查参数方程,极坐标方程与普通方程的关系,结合点到直线的距离公式解决本题的关键.[选修4-5:不等式选讲](本小题满分0分)24.(2016秋•淮安期末)已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【考点】绝对值不等式的解法.【分析】根据基本不等式的性质求出m的值,从而解不等式即可.【解答】解:因为a,b,c>0,所以=,当且仅当时,取“=”,所以m=18.…(6分)所以不等式|x+1|﹣2x<m即|x+1|<2x+18,所以﹣2x﹣18<x+1<2x+18,解得,所以原不等式的解集为.…(10分)【点评】本题考查了基本不等式的性质,考查解不等式问题,是一道基础题.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(2016秋•淮安期末)甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)利用古典概率计算公式、相互独立事件概率计算公式即可得出.(2)利用互斥事件概率计算公式、相互独立事件概率计算公式即可得出.【解答】解:(1)设“甲选做D题,且乙、丙都不选做D题”为事件E.甲选做D题的概率为,乙,丙不选做D题的概率都是.则.答:甲选做D题,且乙、丙都不选做D题的概率为.(2)X的所有可能取值为0,1,2,3.,,,.所以X的概率分布为X的数学期望.【点评】本题考查了古典概率计算公式、互斥事件概率计算公式、相互独立事件概率计算公式及其数学期望计算公式,考查了推理能力与计算能力,属于中档题.26.(2016秋•淮安期末)已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.【考点】二项式定理的应用;二项式系数的性质.【分析】(1)(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.即可证明.(2)当k∈N*时,=.即可证明.【解答】(1)解:(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.所以.(2)证明:当k∈N*时,=.所以=.由(1)知,即,所以.【点评】本题考查了二项式定理的性质、组合数的性质,考查了推理能力与计算能力,属于中档题.。

高三数学上册期末考试试卷

高三数学上册期末考试试卷

高三数学上册期末考试试卷一、选择题(每题5分,共60分)1. 设集合A = {x|x² - 3x + 2 = 0},B = {x|x² - ax + a - 1 = 0},若A∪B = A,则实数a的值为()A. 2B. 3C. 2或3D. 1或2或32. 已知复数z = (1 + i)/(1 - i),则z的共轭复数z̅为()A. iB. -iC. 1D. -13. 函数y = log₂(x² - 3x + 2)的定义域为()A. {x|x > 2或x < 1}B. {x|x > 2}C. {x|x < 1}D. {x|1 < x < 2}4. 若向量a = (1,2),b = (2,m),且a⊥b,则m的值为()A. -1B. -4C. 1D. 45. 已知等差数列{an}的前n项和为Sn,若a3 + a7 = 10,则S9等于()A. 45B. 50C. 90D. 1006. 在△ABC中,角A、B、C所对的边分别为a、b、c,若a = 2,b = 3,C = 60°,则c的值为()A. 7B. 19C. 7D. 197. 若函数f(x) = sin(ωx + φ)(ω>0, -π/2 < φ < π/2)的最小正周期为π,且图象过点(0, -1/2),则ω和φ的值分别为()A. ω = 2,φ = -π/6B. ω = 2,φ = -π/3C. ω = 1,φ = -π/6D. ω = 1,φ = -π/38. 已知双曲线x²/a² - y²/b² = 1(a > 0,b > 0)的一条渐近线方程为y = 3x,则双曲线的离心率为()A. 10B. 10/3C. 2D. 229. 一个几何体的三视图如图所示,则该几何体的体积为()(此处应给出三视图的描述以便计算体积,这里假设一个简单情况)假设主视图是一个边长为2的正方形,左视图是一个宽为1高为2的矩形,俯视图是一个边长为2的正方形,则该几何体是一个长方体,长、宽、高分别为2、2、1。

高三数学上学期期末考试试卷 理含解析 试题

高三数学上学期期末考试试卷 理含解析 试题

实验2021-2021学年度上学期期末考试创作人:历恰面日期:2020年1月1日高三理科数学试题第一卷选择题〔一共60分〕一、选择题〔一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个选项是符合题目要求的〕1.集合A=,B=,那么A B中元素的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,根据直线与圆的位置关系,即可求解集合中元素的个数,得到答案。

【详解】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又由圆与直线相交于两点,那么中有两个元素,应选C.【点睛】求集合的根本运算时,要认清集合元素的属性(是点集、数集或者其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2.,是虚数单位,假设,,那么〔〕A. 1或者B. 或者C.D.【答案】A由得,所以,应选A.【名师点睛】复数的一共轭复数是,据此结合条件,求得的方程即可.3.某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图复原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,那么AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.4.函数的最小正周期为〔〕A. B. C. D.【答案】C【解析】分析:根据正弦函数的周期公式直接求解即可.详解:由题函数的最小正周期应选C.点睛:此题考察正弦函数的周期,属根底题.5.展开式中x2的系数为A. 15B. 20C. 30D. 35【答案】C【解析】因为,那么展开式中含的项为,展开式中含的项为,故的系数为,选C.【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含的项一共有几项,进展相加即可.这类问题的易错点主要是未能分析清楚构成这一项的详细情况,尤其是两个二项展开式中的不同.6.椭圆的离心率是A. B. C. D.【答案】D【解析】【分析】根据椭圆的方程求得,得到,再利用离心率的定义,即可求解。

高三上学期期末考试数学试卷-附答案解析

高三上学期期末考试数学试卷-附答案解析

高三上学期期末考试数学试卷-附答案解析班级:___________姓名:___________考号:___________一、单选题 1.设全集{6}Ux N x =∈<∣,集合{1,2,3},{1,4}A B ==,则()UA B ⋃等于( )A .{1,2,3,4}B .{5}C .{2,4}D .{0,5}2.生物入侵指生物由原生存地入侵到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q ,一年四季均可繁殖,繁殖间隔T 为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型()ln K n n λ=来描述该物种累计繁殖数量n 与入侵时间K (单位:天)之间的对应关系,且1TQ λ=+,在物种入侵初期,基于现有数据得出9Q =和80T =.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为(ln 20.69≈,ln3 1.10≈)( ) A .6.9天B .11.0天C .13.8天D .22.0天3.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,偶函数()f x 满足()()2f x f x +=,当[]0,1x ∈时()f x x =,则( )A .()sgn 0f x >⎡⎤⎣⎦B .202112f ⎛⎫= ⎪⎝⎭C .()()sgn 211k f k +=⎡⎤⎣⎦∈ZD .()()sgn sgn f k k k =∈⎡⎤⎣⎦Z5.已知函数()f x 是定义在R 上的奇函数()()20f x f x --+=,当(]0,1x ∈时()2log f x x =,则4039924f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .3- B .1- C .2 D .36.已知函数()2log 2f x ax =-的图象关于直线x=2对称,则函数f (x )图象的大致形状为( )A .B .C .D .7.已知函数()41xf x x=+,则不等式()3213f x -<+<的解集是( ) A .1,2B .()2,1-C .()(),12,-∞-+∞D .()(),21,-∞-+∞8.下列关于命题的说法错误的是9.曲线(2)x y ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .810.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()()20xf x f x '->,()21f -= 则不等式()214f x x <的解集是( ) A .()2,2- B .()(),22,-∞-+∞C .()()2,00,2-⋃D .()(),00,2-∞11.关于函数()222e xx x f x +-=,有如下列结论:①函数()f x 有极小值也有最小值;②函数()f x 有且只有两个不同的零点;③当2262e e k -<<时()f x k =恰有三个实根;④若[]0,x t ∈时()2max 6ef x =,则t 的最小值为2.其中正确..结论的个数是( )A .1B .2C .3D .412.已知函数221552sin ,544()5log (1),4x x f x x x π⎧-≤≤⎪⎪=⎨⎪-⎪⎩>,若存在实数满足1234()()()()f x f x f x f x m ====,则()A .01m ≤≤B .1252x x += C .34340x x x x --= D .340x x >二、填空题13.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是______.14.在△ABC 中,点O 是BC 的三等分点2OC OB =,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB mAE =,AC nAF =(0m >,0n >),若()210t t m n+>的最小值为3,则正数t 的值为___________.15.已知函数()322sin x x x f x =+-,则不等式()()2650f x f x -+≤的解集为___________.16.已知()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x a =有3个不同实根,则实数a 取值范围为______.三、解答题 17.化简求值:(1)2302427216log log 839π-⎛⎫++- ⎪⎝⎭; (2)已知tan 2α,求2sin()sin 2cos()sin(3)ππααααπ⎛⎫-++ ⎪⎝⎭-+-的值.18.已知定义域为R 的函数()122xx b f x a+-=+是奇函数.(1)求实数a 、b 的值;(2)判断函数()f x 在R 的单调性并给予证明; (3)求函数()f x 的值域.19.已知函数()1xf x e ax =--.(1)当1a =时求()f x 的单调区间与极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.20.已知:函数()(1)ln()f x ax x ax =+-. (1)当1a =时讨论函数()f x 的单调性;(2)若()f x 在(0,)x ∈+∞上单调递增,求实数a 的取值范围.21.已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.22.已知函数()()2ln 2f x x ax a x =+++和a ∈R .(1)当2a =-时讨论()f x 的单调性;(2)当a<0时若关于x 的不等式()21f x b a≤-+-恒成立,求实数b 的取值范围;(3)设*n ∈N 时证明:()1111ln 12ln 22341n n n ⎛⎫+≥++++- ⎪+⎝⎭.参考答案与解析1.【答案】D故选:D . 2.【答案】C 【分析】根据1TQ λ=+,9Q =与80T =,求得λ,进而得到()ln K n n λ=求解. 【详解】因为1TQ λ=+,9Q =与80T =所以8091λ=+解得10λ=.设初始时间为1K ,初始累计繁殖数量为n ,累计繁殖数量增加3倍后的时间为2K 则()21442213.80K K ln n lnn ln ln λλλ-=-==≈天. 故选:C 3.【答案】A【分析】求出当12l l //时实数a 的值,再利用集合的包含关系判断可得出结论. 【详解】当12l l //时()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //; 当4a =时直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //. 因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件. 故选:A. 4.【答案】C【分析】利用特殊值法可判断AD 选项;利用函数的周期性以及题中定义可判断BC 选项. 【详解】对于A 选项 ()sgn 0sgn 00f ==⎡⎤⎣⎦,A 错; 对于B 选项 202111110102222f f f ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 错;对于C 选项,对任意的Z k ∈,()()2111f k f +== 则()sgn 21sgn11f k +==⎡⎤⎣⎦,C 对; 对于D 选项 ()()sgn 2sgn 0sgn 00f f ===⎡⎤⎡⎤⎣⎦⎣⎦,而sgn 21=,D 错. 故选:C. 5.【答案】D【分析】由函数()f x 是定义在R 上的奇函数,结合()()20f x f x --+=,可得函数的周期为4,然后利用周期和()()20f x f x --+=及奇函数的性质,分别对40399,24f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭化简,使其自变量在区间(]0,1上,然后代入解析式中求解即可【详解】解:因为函数()f x 是定义在R 上的奇函数,所以()()0f x f x +-= 因为()()20f x f x --+=,所以()(2)f x f x -=+ 所以()(2)f x f x =-+,所以(2)(4)f x f x +=-+所以()(4)f x f x =+,所以()f x 的周期为4所以403911711201945043222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=⨯++==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭911124444f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭因为当(]0,1x ∈时()2log f x x = 所以40399112424f f ff ⎛⎫⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211log log 24=--22log 2log 43=+=故选:D 6.【答案】A【分析】根据函数图象的变换和()2log 2f x ax =-的图象关于2x =对称得到220a -=,即1a =,然后再根据对数函数的图象和图象的变换判断即可.【详解】因为()2log 2f x ax =-的图象关于2x =对称,所以220a -=,解得1a =,则()2log 2f x x =- 所以()f x 的图象可由函数2log y x =的图象沿y 轴翻折,再向右平移2个单位得到. 故选:A. 7.【答案】B【分析】先判断函数()f x 的奇偶性和单调性,再利用函数的单调性化简得3213x -<+<,解不等式即得解. 【详解】因为()()f x f x -=-,所以()f x 是奇函数 当0x >时()44411x f x x x==-++是增函数,此时()0f x > 又(0)0f =所以()f x 在R 上是增函数.又因为()33f -=- ()33f = 所以()3213f x -<+<可化为()(3)21(3)f f x f -<+< 所以3213x -<+< 解得2<<1x -. 故选:B 8.【答案】D【分析】利用原命题与逆否命题的关系可判断出A 选项的正误;根据充分必要性判断出B 选项的正误;利用特称命题的否定可判断出C 选项的正误;利用作商法和指数函数的单调性可判断出D 选项的正误. 【详解】对于A 选项,命题的逆否命题,只需把原命题的结论否定当条件,条件否定当结论即可,A 选项正确;对于B 选项,若函数()log a f x x =在区间()0,∞+上为增函数,则1a >,所以,“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件,B 选项正确; 对于C 选项,特称命题的否定为全称,C 选项正确;对于D 选项,当0x <时由于函数32x y ⎛⎫= ⎪⎝⎭为增函数,则03331222x x x ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭ 23x x ∴>,D 选项错误.故选D.【点睛】本题考查四种命题的关系、充分不必要条件的判断、特称命题的否定以及特称命题真假的判断,考查逻辑推理能力,属于中等题. 9.【答案】B【解析】求函数导数,利用切线斜率求出a ,根据切线过点(0,2)求出b 即可. 【详解】因为(2)x y ax e =+ 所以(2)x y e ax a '=++ 故0|22x k y a ='==+=- 解得4a =- 又切线过点(0,2)所以220b =-⨯+,解得2b = 所以8ab =- 故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题. 10.【答案】C【解析】构造函数令2()()f x g x x =,依题意知()g x 为偶函数且在区间(0,)+∞单调递增;不等式2()1()(2)4f x g x g x <⇔<,利用单调性脱去“g ”即可求得不等式2()14f x x <的解集. 【详解】解:令2()()f xg x x=,则243()2()()2()()x f x xf x xf x f x g x x x '-'-'==因为()2()0xf x f x '->所以,当0x >时()0g x '>,即()g x 在区间(0,)+∞单调递增; 又()f x 是R 上的偶函数又()2f ()21f =-=; 故()2g 2(2)124f == 于是,不等式2()14f x x <化为()()2g x g < 故||2x <解得22x -<<,又0x ≠ 故选:C .【点睛】本题考查利用导数研究函数的单调性,考查函数奇偶性,考查化归思想与运算能力,属于难题. 11.【答案】C【分析】求导后,根据()f x '正负可确定()f x 的单调性;根据()0f x >在()2,+∞上恒成立,结合极值和最值的定义可知①正确;利用零点存在定理可说明②正确;作出()f x 图象,将问题转化为()f x 与y k =的交点个数问题,采用数形结合的方式可确定③错误;根据图象和函数值域可确定④正确. 【详解】()()()2224e e x xx x x f x +--'==∴当()(),22,x ∈-∞-+∞时()0f x '<;当()2,2x ∈-时0fx ;f x 在(),2-∞-,()2,+∞上单调递减,在()2,2-上单调递增;对于①,()f x 在2x =-处取得极小值,极小值为()222e 0f -=-<当2x >时2220x x +->恒成立,()0f x ∴>在()2,+∞上恒成立()2f ∴-为()f x 的最小值,则()f x 既有极小值也有最小值,①正确; 对于②()33e 0f -=> ()222e 0f -=-< ()110f =>ef x 在()3,2--和()2,1-上各有一个零点又当2x >时()0f x >恒成立,f x 有且只有两个不同的零点,②正确;对于③()262e f =,f x 图象如下图所示由图象可知:当22e 0k -<≤时()f x 与y k =有且仅有两个不同交点 即当22e 0k -<≤时()f x k =有且仅有两个不等实根,③错误; 对于④,若[]0,x t ∈时()2max 6e f x =,结合图象可知:2t ≥,即t 的最小值为2,④正确. 故选:C.【点睛】方法点睛:本题考查利用导数研究函数的相关性质的问题,其中考查了方程根的个数问题,解决此类问题的基本方法有:(1)直接法:直接求解方程得到方程的根来确定根的个数;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 12.【答案】C【分析】根据题意分段函数的定义,逐个分析即可. 【详解】由15544x -≤≤得3π2ππ252x -≤≤ ()[]2π2sin 2,25f x x ∴=∈- 由54x >得114x ->()()20log 1f x x ∴=-≥对应函数图像如图所示若1234()()()()f x f x f x f x m ==== 则2m <,A 错;1x ,2x 关于54x =-对称 1252x x ∴+=-,B 错;由()()34221log lo 1g x x -=-()()23420log l 11og x x ∴-+-=()()342110log x x ∴--=⎡⎤⎣⎦,得()()34111x x --=即34340x x x x --=,C 对; 由34340x x x x --=,得34111x x +=>(31x 41x ≠) 344x x ∴>,D 错.故选:C 13.【答案】【详解】2230ax ax --≤恒成立,当0a =时30-≤成立;当0a ≠时 20{4120a a a <∆=+≤得30a -≤< 30a ∴-≤≤ 14.【答案】3【分析】由平面向量基本定理可得2133AO mAE nAF =+,进而又由点E ,O ,F 三点共线,则21133m n +=,根据“1”的作用由基本不等式的性质,可解得t 的值.【详解】解:在ABC 中,点O 是BC 的三等分点 ||2||OC OB = ∴1121()3333AO AB BO AB BC AB AC AB AB AC =+=+=+-=+AB mAE = AC nAF = ∴2133AO mAE nAF =+ O ,E ,F 三点共线 ∴21133m n += ∴2222222112122222()()233333393333t t n mt t t t t m n m n m n m n +=++=+++++=++当且仅当2233n mt m n =,即2222m t n =时取等号,∴21t m n +的最小值为2233t +即22333t += 0t > 3t ∴=故答案为:3 15.【答案】[2,3]【分析】由奇偶性定义、导数判断()f x 的奇偶性及单调性,再应用奇函数、单调性求解不等式即可.【详解】由题设,()322sin ()f x x x f x x =-+=---且定义域为R ,故()f x 为奇函数又()()2321cos 0f x x x =+-≥',()f x 在定义域上递增 ∴()()2650f x f x -+≤,可得()2(65)(56)f x f x f x ≤--=-∴256(2)(3)0x x x x -+=--≤,解得23x ≤≤ ∴原不等式解集为[2,3]. 故答案为:[2,3]. 16.【答案】10,e ⎛⎫⎪⎝⎭【分析】利用导函数研究出函数()y f x =的单调性,极值情况,画出函数图象,并将函数的根的问题转化为两函数交点个数问题,数形结合求出实数a 的取值范围. 【详解】当0x ≥时()e xx f x = ()1e x xf x -'=当[)0,1x ∈时()10e x xf x -'=>,当()1,x ∈+∞时()10e xx f x -'=< 故()f x 在[)0,1x ∈上单调递增,在()1,x ∈+∞上单调递减 且()11e f =,当0x >时()ex xf x =恒为正当0x <时()33=-f x x x ()()()233311f x x x x '=-=+-当(),1x ∈-∞-时()2303'=-<f x x ,当()1,0x ∈-时()2303'=->f x x故()f x 在(),1x ∈-∞-上单调递减,在()1,0x ∈-上单调递增且()1312f -=-+=-画出()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩的图象如下:要想关于x 的方程()f x a =有3个不同实根,则要函数()y f x =与y a =有3个不同的交点即可显然当10,e a ⎛⎫∈ ⎪⎝⎭时符合要求.故答案为:10,e ⎛⎫⎪⎝⎭17.【答案】(1)49;(2)1-.【分析】(1)根据指数与对数的运算公式求解即可; (2)根据诱导公式,转化为其次问题进行求解即可.【详解】(1)原式2222241log log 333⎛⎫=++- ⎪⎝⎭2411log 92=++ 49=. (2)原式2sin cos cos sin αααα+=-2tan 11tan αα+=-1=-.18.【答案】(1)2,1a b == (2)单调递减,证明见详解 (3)11,22⎛⎫- ⎪⎝⎭【分析】(1)利用()00f =,()()011f f +-=列方程求出a 、b 的值,然后验证函数()f x 为奇函数即可; (2)任取12x x >,然后通过计算()()12f x f x -的正负来判断证明单调性; (3)以120x +>为基础,利用不等式的性质计算121222x +-+的范围,即为函数()f x 的值域.【详解】(1)定义域为R 的函数()122xx b f x a +-=+是奇函数∴()00f = ()()011f f +-=即110222041b ab b a a --⎧=⎪⎪+⎨--⎪+=⎪++⎩,解得21a b =⎧⎨=⎩ 即()11222x x f x +-=+又()()111112121221022222222x x x x x x x x f x f x -+-+++----+-=+=+=++++ ()11222xx f x +-∴=+是奇函数2,1a b ∴==;(2)由(1)得()11122222122x x x f x ++-=+=-++,其为定义域在R 上的单调减函数 任取12x x >()()()()()2112121112111122121222222222222x x x x x x f x f x ++++++⎛⎫⎛⎫∴-=---= ⎪ ⎪++++⎝+⎭-+⎝⎭ 12x x > 1211x x ∴+>+1211220x x ++∴>>()()120f x f x ∴-<,即()()12f x f x <∴函数()f x 是R 上单调递减函数;(3)120x +>1222x +∴+>1110222x +∴<<+120122x +∴<<+1121122222x +∴-<-<+即函数()f x 的值域为11,22⎛⎫- ⎪⎝⎭19.【答案】(1)在(),0∞-上单调递减,在()0,∞+上单调递增,函数()f x 有极小值0,无极大值 (2)2a e ≥-【分析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分0x =和0x >两种情况分析求解,当0x >时不等式变形为1()x e a x x x-+在[0x ∈,)∞+上有解,构造函数1()()x e g x x x x=-+,利用导数研究函数()g x 的单调性,求解()g x 的最小值,即可得到答案.(1)当1a =时()1x f x e x =--,所以()1xf x e '=-当0x <时()0f x '<;当0x >时0fx所以()f x 在(),0∞-上单调递减,在()0,∞+上单调递增 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,∞+上有解所以210x e x ax ---≤在[)0,∞+上有解 当0x =时不等式成立,此时a R ∈ 当0x >时1x e a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解令()1x e g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221111xx x e x e x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭由(1)知0x >时()()00f x f >=,即()10xe x -+>当01x <<时()0g x '<;当1x >时()0g x '> 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增 所以当1x =时()min 2g x e =-,所以2a e ≥- 综上可知,实数a 的取值范围是2a e ≥-.【点睛】利用导数研究不等式恒成立问题或有解问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围.20.【答案】(1)()0,∞+单调递增;(2)[]0,e .【解析】(1)由1a =得到()()1ln()f x x x x =+-,求导1ln 1()ln x x f x x x x+'=+=,再讨论其正负即可. (2)根据()f x 在(0,)x ∈+∞上单调递增,则1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立,转化ln 10ax x +≥,(0,)x ∈+∞恒成立,令()ln 1h x ax x =+求其最小值即可.【详解】(1)当1a =时()()1ln()f x x x x =+- 所以1ln 1()ln x x f x x x x+'=+= 令()ln 1g x x x =+,则()1ln g x x '=+ 当10x e<<时()0g x '<,()g x 递减; 当1x e>时()0g x '>,()g x 递增; 所以()g x 取得最小值1110g e e ⎛⎫=-> ⎪⎝⎭所以()0f x '>在()0,∞+上成立 所以()f x 在()0,∞+上递增; (2)因为()f x 在(0,)x ∈+∞上单调递增 所以1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立 即ln 10ax x +≥,(0,)x ∈+∞恒成立 令()ln 1h x ax x =+,则()()1ln h x a x '=+ 当0a >时当10x e<<时()0h x '<,()h x 递减; 当1x e>时()0h x '>,()h x 递增; 所以()h x 取得最小值11a h e e ⎛⎫=- ⎪⎝⎭所以10ae-≥ 0a e <≤当a<0时易知()ln 11ah x ax x e=+≤-,不成立 当a=0时()10h x =>成立综上:0a e ≤≤所以实数a 的取值范围[]0,e .【点睛】方法点睛:1、利用导数研究函数的单调性,当f(x)不含参数时关键在于准确判定导数的符号;当f(x)含参数时需依据参数取值对不等式解集的影响进行分类讨论.2、可导函数f(x)在指定的区间D 上单调递增(减),求参数范围问题,转化为f ′(x)≥0(或f ′(x)≤0)恒成立问题,构建不等式求解,要注意“=”是否取到.21.【答案】(1)1332y x =-;(2)直线l 的方程为13y x =,切点坐标为(226)--,. 【分析】(1)求导,由导数在切点处的导数值可求切线斜率,根据点斜式即可求解;(2)设切点,求出切线方程,根据切线方程经过()00,,代入切线方程即可求解. 【详解】(1)∵()3222166f =+-=- ∴点()26-,在曲线上. ∵()321631()f x x x x ''=+-=+ ∴在点()26-,处的切线的斜率为()2232113.k f '⨯==+= ∴切线的方程为)132(6)(y x =-+-. 即1332y x =-.(2)设切点为00()x y ,则直线l 的斜率为()2003 1f x x '=+∴直线l 的方程为:2300003116()()y x x x x x =+-++-.又∵直线l 过点(0,0)∴2300000 3 116()()x x x x =+-++-整理得308=-x∴3002221626()()x y =-,=-+--=-∴23()3211k ⨯=-+=∴直线l 的方程为13y x =,切点坐标为(226)-,-. 22.【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减(2)[)1,-+∞ (3)证明见解析【分析】(1)将2a =-代入()f x ,对其求导,利用导数与函数的单调性的关系即可得解;(2)先利用导数求得()f x 的最大值,再将问题转化为()max 21f x b a ≤-+-,从而得到11ln b a a⎛⎫≥-+ ⎪⎝⎭,构造函数()()ln 0g t t t t =->,求得()max g t 即可得解;(3)结合(2)中结论取特殊值得到2ln 21x x ≤-恒成立,进而得到()2ln 1ln ln 2n n n--≤-,利用累加法即可得证,注意1n =的验证.【详解】(1)当2a =-时()2ln 2f x x x =-,()0,x ∈+∞则()21144x f x x x x-'=-=. 当10,2x ⎛⎫∈ ⎪⎝⎭时0fx;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(2)当a<0时()()()1121212a x x ax x a f x x x ⎛⎫⎛⎫++ ⎪⎪++⎝⎭⎝⎭'==. 当10,x a ⎛⎫∈- ⎪⎝⎭时0f x ;当1,x a ∈-+∞⎛⎫⎪⎝⎭时()0f x '<所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.所以()max 111211ln ln 1a f x f a a a a a a+⎛⎫⎛⎫⎛⎫=-=-+-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由不等式()21f x b a ≤-+-恒成立,得112ln 11b a aa ⎛⎫---≤-+- ⎪⎝⎭恒成立即11ln b a a⎛⎫≥-+ ⎪⎝⎭在a<0时恒成立令1t a =-,()()ln 0g t t t t =->则()111tg t t t-'=-=.当()0,1t ∈时()()0,g t g t '>单调递增;当()1,t ∈+∞时()()0,g t g t '<单调递减. 所以()g t 的最大值为()11g =-所以1b ≥-,即实数b 的取值范围是[)1,-+∞.【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<. (2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔->⎡⎤⎣⎦;()()f x g x <恒成立()()max 0f x g x ⇔-<⎡⎤⎣⎦; (4)1x M ∀∈,2x N ∀∈与()()()()1212min max f x g x f x g x >⇔>.。

高三数学第一学期期末试题(附答案)

高三数学第一学期期末试题(附答案)

高三数学第一学期期末试题2cos 2sin2sin sin β-αβ+α=β+α 2sin2cos 2sin sin β-αβ+α=β-α 2cos 2cos 2cos cos β-αβ+α=β+α 2sin2sin 2cos cos β-αβ+α-=β-α一、选择题:(本大题共12道小题,每小题5分,共60分) 1.在等差数列}a {n 中,90S 15=,则8a 等于 A .3 B .4 C .6 D .122.如果)x (f )x (f -=π+且)x (f )x (f -=,则f(x)可以是 A .sin2x B .cosx C .sin|x| D .|sinx|3.题设:平面α、β、γ直线l 、m 满足:α⊥γ,γI α=m ,γI β=l ,l ⊥m ,结论:①β⊥γ;②m ⊥β;③α⊥β,那么由题设可以推出的正确结论是 A .①和② B .③ C .②和③ D .①和③4.从1、2、3…,100这100个数中任取两个数相乘,如果乘积是3的倍数,则不同的取法有A .167133C CB .233167133C C C + C .233CD .1C 2C 267100--5.若复数z 满足|z+2i|+|z-2i|=4,记|z+1+i|的最大值和最小值分别为M ,m 则mM等于( ) A .2 B .5 C .10 D .210 6.过抛物线x 4y 2=的焦点F 做直线与抛物线交于P ,Q 两点,当此直线绕其焦点F 施转时,弦PQ 中点的轨迹方程为( )A .)1x (2y 2-=B .1x 2y 2-=C .1x y 2-=D .21y y 2-= 7.设复数i 31z 1+=,i 3z 2+=,则)z z arg(21等于( ) A .2π B .3π C .4π D .6π 8.将长为2πcm ,宽为πcm 的长方形纸片围成一个容器(不考虑底面及粘接处),立放于桌面上,下面四个方案中,容积最大的是A .直三棱柱B .直四棱柱C .高为π的圆柱D .高为2π的圆柱9.椭圆1m )6y (4)3x (222=++-的一条准线为x=7,则随圆的离心率等于A .21 B .22 C .23 D .4110.在正方体1111D C B A ABCD -中,EF 为异面直线D A 1和AC 的公垂线,则直线EF 与1BD 的关系是A .异面B .平行C .相交且垂直D .相交但不垂直 11.(理)在极坐标系中,点)611,2(P π到直线1)6sin(=π-θρ的距离等于A .2B .1C .3D .31+(文)自点(-1,4)作圆012y 6x 4y x 22==--+的切线,则切线长为 A .5 B .5 C .10 D .312.某工厂8年来某种产品总产量c 与时间t (年)的函数关系如图,下列四种说法:①前三年中,产量增长的速度越来越慢;②前三年中,产量增长的速度越来越快;③第三年后,这种产品停止生产;④第三年后,年产量保持不变,其中说法正确的是( )A .②与③B .②与④C .①与③D .①与④二、填空题:(本大题共四道小题每小题4分共16分)13.已知曲线C 与曲线02y 2x 2==+关于直线x-y=0对称,则曲线C 的焦点坐标为_________。

最新高三数学上期末试卷附答案

最新高三数学上期末试卷附答案

最新高三数学上期末试卷附答案一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n =C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数3.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .14.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为3,则a 的值为( ) A .2B .3C .32D .15.正项等比数列中,的等比中项为,令,则( ) A .6B .16C .32D .646.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .27.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形8.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,………则2z x y =-的最大值为( ).A .10B .8C .3D .29.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( )A .15B .16C .17D .1410.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定11.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34D .3212.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .57二、填空题13.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .2C A π-=,1sin 3A =,3a =,则b =______.14.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则yx的最小值为__________.15.计算:23lim 123n n nn→+∞-=++++L ________16.已知变量,x y 满足约束条件2{41y x y x y ≤+≥-≤,则3z x y =+的最大值为____________.17.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________.18.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .19.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积623S =+形的外接圆半径是______20.已知等比数列{}n a 的公比为2,前n 项和为n S ,则42S a =______. 三、解答题21.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .23.已知等差数列{}n a 的公差为()0d d ≠,等差数列{}n b 的公差为2d ,设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,53A B =. (1)求数列{}n a ,{}n b 的通项公式; (2)设11n n n n c b a a +=+•,数列{}n c 的前n 项和为n S ,证明:2(1)n S n <+.24.已知等差数列{}n a 的所有项和为150,且该数列前10项和为10,最后10项的和为50.(1)求数列{}n a 的项数; (2)求212230a a a ++⋅⋅⋅+的值.25.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin 3sin sin A C B A C +-.(1)求角B ;(2)点D 在线段BC 上,满足DA DC =,且11a =,5cos()5A C -=,求线段DC 的长.26.已知公比为4的等比数列{}n a 的前n 项和为n S ,且485S =. (1)求数列{}n a 的通项公式; (2)求数列{(1)}n n a -的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.A解析:A 【解析】 【分析】先根据2n S n =,求出数列{}n a 的通项公式,然后利用错位相减法求出{}n b 的前n 项和n T .【详解】解:∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121n nn n b a n =-=--,∴()()()()()123113151121nn T n =⨯-+⨯-+⨯-+⋅⋅⋅+--①,∴()()()()()2341113151121n n T n +-=⨯-+⨯-+⨯-+⋅⋅⋅+--②,①-②,得()()()()()()23412121111211n n n T n +⎡⎤=-+⨯-+-+-+⋅⋅⋅+---⨯-⎣⎦()()()()()()211111122112111n n n n n -+⎡⎤---⎣⎦=-+⨯--⨯-=---,∴()1nn T n =-,∴数列{}n b 的前n 项和()1nn T n =-.故选:A . 【点睛】本题考查了根据数列的前n 项和求通项公式和错位相减法求数列的前n 项和,考查了计算能力,属中档题.3.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.4.B解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,23c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.5.D解析:D 【解析】因为,即,又,所以.本题选择D 选项.6.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .7.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.8.B解析:B 【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-,联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.9.C解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列, 又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.10.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.11.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.12.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.二、填空题13.7【解析】【分析】先求出再利用正弦定理求最后利用余弦定理可求【详解】因为所以故且为锐角则故由正弦定理可得故由余弦定理可得故即或因为为钝角故故故答案为:7【点睛】三角形中共有七个几何量(三边三角以及外解析:7 【解析】 【分析】先求出sin 3C =,再利用正弦定理求c ,最后利用余弦定理可求b . 【详解】 因为2C A π-=,所以2C A π=+,故sin sin cos 2C A A π⎛⎫=+= ⎪⎝⎭, 且A为锐角,则cos A =sin C = 由正弦定理可得sin sin a c A C =,故3sin 31sin 3a Cc A⨯=== 由余弦定理可得2222cos a b c bc A =+-,故29722b b =+-⨯即7b =或9b =, 因为C 为钝角,故c b >,故7b =. 故答案为:7. 【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量. (1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边); (3)如果知道两角及一边,用正弦定理.14.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线解析:【解析】 【分析】根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x=+,利用基本不等式求得其最小值,得到结果. 【详解】∵()1,a x =r , (),2b x y =-r ,其中0x >,且a r 与b r共线∴()12y x x ⨯-=⋅,即22y x =+∴222y x x x x x+==+≥,当且仅当2x x =即x =时取等号∴yx的最小值为 【点睛】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.15.【解析】【详解】结合等差数列前n 项和公式有:则: 解析:6【解析】 【详解】结合等差数列前n 项和公式有:()11232n n n +++++=L ,则:()()226231362lim lim lim lim61123111n n n n n n n n n n n n n n n→+∞→+∞→+∞→+∞----====+++++++L . 16.11【解析】试题分析:由题意得作出不等式组所表示的可行域如图所示由得平移直线则由图象可知当直线经过点时直线的截距最大此时有最大值由解得此时考点:简单的线性规划解析:11 【解析】试题分析:由题意得,作出不等式组所表示的可行域,如图所示,由3z x y =+,得3y x z =-+,平移直线3y x z =-+,则由图象可知当直线3y x z =-+经过点A 时,直线3y x z =-+的截距最大,此时z 有最大值,由2{1y x y =-=,解得(3,2)A ,此时33211z =⨯+=.考点:简单的线性规划.17.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n ()∴an+1an+2=2n+解析:512 【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈) ∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222nn a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.18.【解析】试题分析:约束条件的可行域如图△ABC 所示当目标函数过点A(11)时z 取最大值最大值为1+4×1=5【考点】线性规划及其最优解解析:【解析】 .试题分析:约束条件的可行域如图△ABC 所示.当目标函数过点A(1,1)时,z 取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.19.【解析】【分析】设三角形外接圆半径R 由三角形面积公式解方程即可得解【详解】由题:设三角形外接圆半径为R ()根据正弦定理和三角形面积公式:即解得:故答案为:【点睛】此题考查三角形面积公式和正弦定理的应 解析:2【解析】 【分析】设三角形外接圆半径R ,由三角形面积公式21sin 2sin sin sin 2S ab C R A B C ==解方程即可得解. 【详解】由题:232162sin sin 75sin(4530)222B +=︒=︒+︒=+=设三角形外接圆半径为R (0R >),根据正弦定理和三角形面积公式:211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅= 即223623226R ++=, 解得:22R = 故答案为:2【点睛】此题考查三角形面积公式和正弦定理的应用,利用正弦定理对面积公式进行转化求出相关量,需要对相关公式十分熟练.20.【解析】由等比数列的定义S4=a1+a2+a3+a4=+a2+a2q +a2q2得+1+q +q2=解析:152【解析】由等比数列的定义,S 4=a 1+a 2+a 3+a 4=2a q+a 2+a 2q +a 2q 2,得42S a =1q +1+q +q 2=152. 三、解答题21.(1)3π;(2)3. 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >, 则31sin cos cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin 3cos B B =,tan 3B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由13sin 2ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.22.tan sin sin()s θβαβ⋅+【解析】 【分析】 【详解】 在△BCD 中,CBD παβ∠=--.由正弦定理得,sin sin BC CDBDC CBD=∠∠所以sin sin CD BDCBC CBD∠=∠sin .sin()s βαβ⋅=+在Rt △ABC 中,tan AB BC ACB =∠tan sin .sin()s θβαβ⋅=+塔高AB 为tan sin sin()s θβαβ⋅+.23.(1)n a n =,21n b n =+;(2)见解析 【解析】 【分析】(1)由等差数列的通项公式及求和公式列1a d ,的方程组求解则n a n =可求,进而得21n b n =+(2)利用()111212111n c n n n n n n ⎛⎫=++=++- ⎪⋅++⎝⎭分组求和即可证明【详解】(1)因为数列{}n a ,{}n b 是等差数列,且23A =,53A B =,所以112351096a d a d d +=⎧⎨+=+⎩.整理得1123549a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,所以()11?n a a n d n =+-=,即n a n =,()11221n b b n d n =+-⋅=+,即21n b n =+.综上,n a n =,21n b n =+. (2)由(1)得()111212111n c n n n n n n ⎛⎫=++=++- ⎪⋅++⎝⎭,所以()11111352112231n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫=++⋯+++-+-+⋯+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦, 即()()22211211111n S n n n n n n =++-=+-<+++. 【点睛】本题考查等差数列的通项公式及求和公式,裂项相消求和,考查推理计算能力,是中档题 24.(1)50;(2)30 【解析】 【分析】(1)根据条件结合等差数列的性质可得16n a a +=,再根据{}n a 的所有项和为150,即可求出项数n 的值;(2)根据(1)求出{}n a 的首项1a 和公差d ,然后将212230a a a ++⋅⋅⋅+用1a 和d 表示,再求出其值. 【详解】解:(1)由题意,得1231010a a a a +++⋅⋅⋅+=,12950n n n n a a a a ---+++⋅⋅⋅+=, ∴()()()()1213210960n n n n a a a a a a a a ---++++++⋅⋅⋅++=, 根据等差数列性质,可知12132109n n n n a a a a a a a a ---+=+=+=⋅⋅⋅=+, ∴()11060n a a +=,∴16n a a +=, 又{}n a 的所有项和为150,∴()11502n n a a +=, ∴50n =,即数列{}n a 的项数为50.(2)由(1)知,1501610910102a a a d +=⎧⎪⎨⨯+=⎪⎩,即112496292a d a d +=⎧⎨+=⎩,∴11120110a d ⎧=⎪⎪⎨⎪=⎪⎩, ∴()2122233021305a a a a a a +++⋅⋅⋅+=+()15249a d =+11152492010⎛⎫=⨯+⨯ ⎪⎝⎭30=.【点睛】本题考查了等差数列的性质和前n 项和公式,考查了转化思想和方程思想,属基中档题. 25.(Ⅰ)6B π=;(Ⅱ)5AD =.【解析】【试题分析】(1)运用正弦定理将已知中的222sin sin sin sin A C B A C +-=等式转化为边的关系,再借助运用余弦定理求解;(2)借助题设条件DA DC =,且11a =,()cos A C -=,再运用正弦定理建立方程求解:(Ⅰ)由正弦定理和已知条件,222a c b +-=所以cos 2B =. 因为()0,B π∈,所以6B π=.(Ⅱ)由条件.由()()cos sin 55A C A C -=⇒-=.设AD x =,则CD x =,11BD x =-,在ABD ∆中,由正弦定理得sin sin BD ADBAD B=∠.故5125xx =⇒=.所以5AD DC ==. 26.(1)14n n a -=,*n N ∈;(2)4(34)49nn n T +-⋅=.【解析】 【分析】(1)设公比为q ,运用等比数列的求和公式,解方程可得首项,进而得到所求通项公式;(2)求得1(1)(1)4n n n a n --=-⋅,由数列的错位相减法求和,结合等比数列的求和公式,化简可得所求和. 【详解】(1)设公比q 为4的等比数列{}n a 的前n 项和为n S ,且485S =,可得41(14)8514a -=-,解得11a =,则14n n a -=,*n N ∈;(2)1(1)(1)4n n n a n --=-⋅,前n 项和2310142434(1)4n n T n -=+⋅+⋅+⋅+⋯+-⋅,23440142434(1)4n n T n =+⋅+⋅+⋅+⋯+-⋅,两式相减可得23134444(1)4n nn T n --=+++⋯+--⋅14(14)(1)414n n n --=--⋅-,化简可得4(34)49nn n T +-⋅=.【点睛】本题考查等比数列的通项公式和求和公式的运用、数列的错位相减法,考查化简运算能力,属于中档题.。

高三上学期期末考试数学试卷(WORD版,有答案)

高三上学期期末考试数学试卷(WORD版,有答案)

第一学期期末考试高三数学试题(考试时间:120分钟 总分:160分)注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知集合{}1,6,9A =,{}1,2B =,则A B =I ▲ .2.复数(1i +2)a bi =+(,a b 是实数,i 是虚数单位),则a b +的值为 ▲ . 3.函数2log (3)y x =-的定义域为 ▲ .4分层抽样的方法抽取300高中三个学段学生人数分别为1200,1000,800抽取的学生人数为 ▲ .5.已知一个算法的流程图如右图,则输出的结果S6.在ABC ∆中,2BD DC =u u u r u u u r ,若12AD AB AC λλ=+u u u r u u u r u u u r ,7.将一颗骰子先后抛掷两次,观察向上的点数.8.如图,在正三棱柱111C B A ABC -中,D 为棱1AA 14AA =,2AB =,则四棱锥1B ACC D -9.以双曲线221916x y -=的右焦点为圆心,且与双曲线的渐近线相切的圆的方程为 ▲ .10.设函数()()f x x a x a b =--+(,a b 都是实数).则下列叙述中,正确的序号是 ▲ .(请把所有叙述正确的序号都填上)①对任意实数,a b ,函数()y f x =在R 上是单调函数; ②存在实数,a b ,函数()y f x =在R 上不是单调函数; ③对任意实数,a b ,函数()y f x =的图像都是中心对称图形; ④存在实数,a b ,使得函数()y f x =的图像不是中心对称图形. 11.已知在等差数列{}n a 中,若22m n p s t r ++=++,,,,,,m n p s t r ∈N *则22m n p s t r a a a a a a ++=++,仿此类比,可得到等比数列{}n b 中的一个正确命题:若22m n p s t r ++=++,,,,,,m n p s t r ∈N *,则 ▲ . 12.设等差数列{}n a 的前n 项和为n S ,若2468120a a a a =,且4682682482461111760a a a a a a a a a a a a +++=,则9S 的值为 ▲ .13.在平面直角坐标系中,()0,0,(1,2)A B 两点绕定点P 顺时针方向旋转θ角后,分别到()4,4,A '(5,2)B '两点,则cos θ的值为 ▲ .14.已知函数()3f x x a =+与函数()32g x x a =+在区间(,)b c 上都有零点,则2222242a ab ac bc b bc c+++-+的最小值为 ▲ . 二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15. (本题满分14分)已知函数()2sin 24f x x π⎛⎫=+⎪⎝⎭. (1)求函数()y f x =的最小正周期及单调递增区间; (2)若06()85f x π-=-,求0()f x 的值.16. (本题满分14分)如图,在四棱锥E ABCD -中,ABD ∆为正三角形,,EB ED CB CD ==.(1)求证:EC BD ⊥;(2)若AB BC ⊥,,M N 分别为线段,AE AB 的中点,求证:平面//DMN 平面BEC .17. (本题满分15分)已知椭圆C :()222210x y a b a b+=>>和圆O :222x y a +=,()()121,0,1,0F F -分别是椭圆的左、右两焦点,过1F 且倾斜角为α0,2πα⎛⎫⎛⎤∈ ⎪⎥⎝⎦⎝⎭的动直线l 交椭圆C 于,A B 两点,交圆O 于,P Q 两点(如图所示,点A 在x 轴上方).当4πα=时,弦PQ(1)求圆O 与椭圆C 的方程;(2)若点M 是椭圆C 上一点,求当22,,AF BF AB 成等差数列时,MPQ ∆面积的最大值.18. (本题满分15分)某运输装置如图所示,其中钢结构ABD 是AB BD l ==,3B π∠=的固定装置,AB 上可滑动的点C 使CD 垂直于底面(C 不与,A B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D C A →→运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中DCB θ∠=的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子); (2)当t 最小时,C 点应设计在AB 的什么位置?DC19. (本题满分16分)设函数x ae x x f +=41121)((其中a 是非零常数,e 是自然对数的底),记1()()n n f x f x -'=(2≥n ,n ∈N *)(1)求使满足对任意实数x ,都有)()(1x f x f n n -=的最小整数n 的值(2≥n ,n ∈N *); (2)设函数)()()()(54x f x f x f x g n n +⋯++=,若对5≥∀n ,n ∈N *,)(x g y n =都存在极值点n t x =,求证:点))(,(n n n n t g t A (5≥n ,n ∈N *)在一定直线上,并求出该直线方程;(注:若函数)(x f y =在0x x =处取得极值,则称0x 为函数)(x f y =的极值点.) (3)是否存在正整数()4k k ≥和实数0x ,使0)()(010==-x f x f k k 且对于n ∀∈N *,)(x f n 至多有一个极值点,若存在,求出所有满足条件的k 和0x ,若不存在,说明理由.20. (本题满分16分)己知数列{}n a 是公差不为零的等差数列,数列{}n b 是等比数列. (1)若()1n n n n c a a b +=-(n ∈N *),求证:{}n c 为等比数列;(2)设n n n b a c =(n ∈N *),其中n a 是公差为2的整数项数列,nn b ⎪⎭⎫ ⎝⎛=1312,若1234516842c c c c c >>>>,且当17n ≥时,{}n c 是递减数列,求数列{}n a 的通项公式;(3)若数列{}n c 使得⎭⎬⎫⎩⎨⎧n n n c b a 是等比数列,数列{}nd 的前n 项和为n nn c c a -,且数列{}n d 满足:对任意2n ≥,n ∈N *,或者0n d =恒成立或者存在正常数M ,使M d Mn <<1恒成立,求证:数列{}n c 为等差数列.2013~2014学年度第一学期期末考试高三数学试题(附加题)21.[选做题]请考生在A 、B 、C 、D 四小题中任选两题作答,如果多做,则按所做的前两题记分.A .(本小题满分10分,几何证明选讲)如图,AB 是O e 的一条直径,,C D 是O e 上不同于,A B 的两点,过B 作O e 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN BM =. (1)求证:NBD DBM ∠=∠; (2)求证:AM 是BAC ∠的角平分线. B .(本小题满分10分,矩阵与变换)已知矩阵21n A m ⎡⎤=⎢⎥⎣⎦的一个特征根为2λ=,它对应的一个特征向量为12α⎡⎤=⎢⎥⎣⎦u r . (1)求m 与n 的值; (2)求1A -. C .(本小题满分10分,坐标系与参数方程选讲)己知在平面直角坐标系xOy 中,圆M的参数方程为2cos 272sin 2x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N是以点3π⎫⎪⎭为圆心,且过点)2,2(π的圆.(1)求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2)求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.MD .(本小题满分10分,不等式选讲)已知:1a b c ++=,,,0a b c >. (1)求证:127abc ≤; (2)求证:222a b c ++≥.[必做题]第22题,第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)己知直线42:-=x y l 与抛物线:C x y 42=相交于,A B 两点,(),0(0T t t >且2t ≠)为x 轴上任意一点,连接,AT BT 并延长与抛物线C 分别相交于11,A B .(1)设11A B 斜率为k ,求证:k t ⋅为定值; (2)设直线11,AB A B 与x 轴分别交于,M N ,令111234,,,ATM BTM B TN A TN S S S S S S S S ∆∆∆∆====,若1234,,,S S S S 构成等比数列,求t 的值.23.(本小题满分10分)如图,在三棱柱111ABC A B C -中,底面ABC ∆为直角三角形,2ACB π∠=,顶点1C 在底面ABC ∆内的射影是点B ,且13AC BC BC ===,点T 是平面1ABC 内一点.(1)若T 是1ABC ∆的重心,求直线1A T 与平面1ABC 所成角; (2)是否存在点T ,使1TB TC =且平面11TAC ⊥平面11ACC A ,若存在,求出线段TC 的长度,若不存在,说明理由.2013~2014学年度第一学期期末考试MN高三数学参考答案一、填空题1.{}1;2.2;3.{}|3x x>;4.100;5.7;6.29;7.16;8.9.22(5)16x y-+=;10.①③;11.()()22m n p s t rb b b b b b=;12.632;13.35-;14.1-.二、解答题15.(1)22Tππ==,………………2分增区间为31,,88k k k Zππππ⎡⎤-++∈⎢⎥⎣⎦;………………6分(2)6()85f xπ-=-即3sin(2)5x=-,所以4cos(2)5x=±,………………10分)0000()2sin(2)sin2cos245f x x x xπ=+=+=或5-. ………14分16.(1)取BD的中点O,连结EO,CO,∵△ABC为正三角形,且CD=CB∴CO⊥BD,E O⊥BD………………4分又0CO EO=I,∴BD⊥平面EOC,∵⊂EC平面EOC∴BD⊥EC. ………………7分(2)∵N是AB中点,ABD∆为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN//BC,∵BC⊂平面BCE DN⊄平面BCE,∴BC//平面BCE,………………10分∵M为AE中点,N为AB中点,∴MN//BE,∵MN⊄平面BCE,BE⊂平面BCE,∴MN//平面BCE,………………12分∵MN I DN=N,∴平面MND//平面BCE. ………………14分17.解:(1)取PQ的中点D,连OD,OP由4πα=,1c =,知2OD =22244PQ PQ OQ OD ==+=Q224,3a b ∴==∴椭圆C 的方程为:22143x y +=,22:4O x y +=e , ………………4分(2)设22,AF s BF t ==,Q 121224,24AF AF a BF BF a +==+==, ………………6分Q 22,,AF BF AB 的长成等差数列,8283t s s t t ∴=+--∴=设00(,)B x y ,由2200220064(1)9143x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩得4(,3B -, ………………10分k ∴=:1)PQ y x ∴=+,72PQ ∴=. ………………12分 易求得椭圆上一点到直线PQMPQ ∆的面积的最大值是16………………15分18.解:(1)在BCD ∆中,,3BCD B BD l πθ∠=∠==Qsin(120)sin l BC θθ︒-∴=,2sin CD θ= ………………4分sin(120)sin l AC AB BC l θθ︒-∴=-=-,则sin(120)333sin 2sin AC CD l l t v v v v v θθθ︒-=+=-+,2()33ππθ<< … ……8分 (2)t=(16l v -+3cos 6sin l v θθ-= ………………10分令3cos ()sin m θθθ-=,则'213cos ()sin m θθθ-= ………………12分 令'()0m θ=得1cos 3θ=,设01cos 3θ= 02(,)33ππθ∈,则0(,)3πθθ∈时,'()0m θ<;02(,)3πθθ∈时'()0m θ>1cos 3θ∴=时()m θ有最小值48BC l =. ………………14分答:当48BC l =时货物运行时间最短. ………………15分19.(1)411()12x f x x ae =+,321()3x f x x ae =+,23()x f x x ae =+,24()2x f x x ae =+,5()2x f x ae =+,6()x f x ae =,'()(6)x n f x ae n =≥,min 7n ∴=. ………………4分(2)()(2)(2)x x x x n g x x ae ae ae ae =+++++⋅⋅⋅+(22)(3)xx n ae =++-⋅ ①………………6分'()2(3)x n g x n ae =+-存在极值点n x t =⇒'()2(3)0n t n n g t n ae =+-= ②'()22(3)2n t n n n n g t t n ae t ⇒=++-= ………………8分n A ⇒在直线2y x =上. ………………9分(3)()0(6)xn f x ae n ==≥无解,5k ⇒≤ ………………10分①当5k =时,004500202()()0120x x ae f x f x x a e x ae ⎧+===⇒⇒=⇒=-⎨+=⎩而当2a e=-时,165()0()222x x x f x ae f x ae e -=<⇒=+=-单调减,且5(1)0f = 4()f x ⇒在(,1)-∞上增,(1,)+∞上减,44(1)0()0f f x =⇒≤Q 恒成立. 3()f x ⇒单调减,而21133322()2,(1)10,(0)20x f x x e f f e e--=--=->=-< ()3(1,0),0t f t ∃∈-=在(,)t -∞上32()0()f t f x <⇒在(,)t -∞上增,(,)t +∞上减,3121()23t f t t e -=-,又213223211()20,()(1)033t f t t e f t t t t t -=-=∴=-=-<Q1()f t ∴在R 上单调减综上所述,∴存在5k =,2a e=-满足条件. ………………13分 ②当4k =时,002400300()2()0x x f x x aef x x ae =+==+=,即00x =或2当00x =时4(0)0f a ==(舍)当02x =时2424(2)40f ae a e =+=⇒=-2624()40xx f x e e e-⇒=-=-< 25()24x f x e -⇒=-单调减,且5()0f x =时,2ln 2x =-4()f x ⇒在(,2ln 2)-∞-上增,(2ln 2,)-+∞上减,而4(2)0f =2ln 2m ⇒∃<-使得在(,)m -∞上,4()0f x <,在(,2)m 上4()0f x >,在(2,)+∞上,4()0f x <3()f x ⇒在(,)m -∞上减,在(,2)m 上增,在(2,)+∞上减(舍) ∴4k ≠综上①②所述:存在5k =,2a e=-满足条件. ………………16分20.(1)证明:1()n n n n c b a a +=-,设{}n a 公差为d 且0d ≠,{}n b 公比为q ,高三数学试卷第11页 共4页 ⇒112111()()n n n n n n n n n nc b a a b q c b a a b ++++++-===-=常数,{}n c ∴为等比数列………3分 (2)由题意得:12n n c c +>对1,2,3,4n =恒成立且1+>n n c c 对17n ∀≥恒成立,…5分)2(1312t n b a c nn n n +⋅⎪⎭⎫⎝⎛==n t t n t n nn 282414)2(13122)22(13121-<⇒+⎪⎭⎫⎝⎛>++⎪⎭⎫ ⎝⎛⇒+对4,3,2,1=n 恒成立744-<⇒t ………… ……7分 )22(1312)2(13121++⎪⎭⎫ ⎝⎛>+⎪⎭⎫ ⎝⎛+t n t n n nn t 224->⇒对17n ≥恒成立10t ⇒>- ………… ……9分44107t ∴-<<-而9,8,7t Z t ∈⇒=--- 27n a n ⇒=-或28n a n =-或29n a n =-. ………… ……10分(3)证明:设22112211,nn nn n n n n n a b A q b A q A q a c c A q ⎛⎫==⇒=⋅ ⎪⎝⎭不妨设A A A =12,n nn c Aq a q q q ⋅=⇒=1211n nn n n i i n Aq c c d Aq c =-⇒==-∑ ()1111(1)(2)nn n n i i i i d d d A q q n --==⇒=-=-≥∑∑,即1)1(--=n n qq A d (2)n ≥. ………… ……13分若1=q ,满足)2(0≥=n d n , 若1>q ,则对任给正数M ,则n 取(log ,)(1)qMA q +∞-内的正整数时,M d n >,与M d Mn <<1矛盾.高三数学试卷第12页 共4页 若10<<q ,则对任给正数T =1M,则n 取))1((log ∞+-q A Tq内的正整数时T d n <=1M ,与M d Mn <<1矛盾. 1=∴q ,n n Ac a =∴而n a 是等差数列,设公差为d ',111()n n n n d c c a a A A++'∴-=-=为定值,n c ∴为等差数列. ………… ……16分 附加题参考答案21.A .证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°而BN =BM ⇒△BNM 为等腰三角形⇒BD 为∠NBM 的角平分线⇒∠DBC =∠DBM. ………………5分(2)BM 是⊙O 的切线,DBM DAB CBD CAD DAB DAC DBC DBM ∠=∠⎫⎪∠=∠⇒∠=∠⎬⎪∠=∠⎭⇒AM 是∠CAB 的角平分线. ………………10分21.B .解:(1)由题意得:211121222n A m αλαλ⎡⎤⎡⎤⎡⎤⎡⎤=⇒==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦u r u v 2220242n n m m ⎧+==⎧⇒⇒⎨⎨+==⎩⎩……5分(2)设1a b A c d -⎡⎤=⎢⎥⎣⎦⇒20102101a b E c d ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1212200201211a a b b a c c b d d ⎧⎧==⎪⎪⎪⎪=⎪⎪=∴⇒⎨⎨+=⎪⎪=-⎪⎪+==⎪⎪⎩⎩即110211A -⎡⎤⎢⎥=⎢⎥-⎣⎦. ………………10分 21.C .解:(1)⊙M:227(()422x y -+-=,)3π对应直角坐系下的点为3)22,(2,)2π对应直角坐系下的点为(0,2),∴⊙N:223(()12x y -+-=.……5分高三数学试卷第13页 共4页 (2)PQ =MN -3=431-=. ………………10分21.D .证明:(1)3a b c ++≥1a b c ++=127abc ⇒≤,当且仅当13a b c ===时取“=”. ………………5分 (2)柯西不等式222211()33a b c a b c ++≥++=,由(113≤222a b c ∴++≥a b c ==时取“=”. ………………10分22.解:(1)2244y x y x =-⎧⇒⎨=⎩(4,4)A ,(1,2)B -,设A 12(,)4m m ,B 12(,)4n n ,122444(4)(4)44AT A T mk k m t m tm m m t m mt t =⇒=⇒-=-⇒-=--- 21(,)4t m t A t ⇒=-⇒-,同理:21(,2)B t t 22344.4t k kt t tt ⇒==⇒=-定值…5分 (2)A 1B 1:2242(),0(,0),(2,0)2t y t x t y N M t -=-=令得而1212122A B S y S S S y ==⇒=,1222441122488A A t t TN y S t t t S S S TM y t -⋅==⋅=⇒=⋅- 1223311(2)222444B A tt TN y S t t t S S S TM y t -⋅==⋅=⇒=⋅- 1234,,,S S S S 构成的等比数列,∴21t =而0t >⇒1t =. ………………10分23.解:如图以CB 、CA 分别为x ,y 轴,过C 作直线Cz //BC 1,以Cz 为z 轴)3,0,3(),0,3,0(),0,0,0(),0,0,3(1C A C B ∴)3,0,6()3,0,6(111B CB CC CB ⇒=+=高三数学试卷第14页 共4页 111(3,3,3)(3,3,3)CA CC CA A =+=⇒u u u r u u u u r u u u r(1)T 是△ABC 1重心1(2,1,1)(1,2,2)T TA ⇒⇒=u u u r设面ABC 1的法向量为1111(,,),(3,3,0)n x y z AB ==-u r u u u r1111111133003330x y z x y z x y -==⎧⎧⇒⇒⇒⎨⎨-+==⎩⎩取法向量)0,1,1(1=n1111cos ,,4TA n TA n π∴<>==⇒<>=u u u r u ru u u r u r 设TA 1与面ABC 1所成角为11,24TA n ππαα⇒=-<>=u u u r u r . ………………5分(2)T 在面ABC 1内,()133,3,3CT CB BT CB mBC nBA n n m =+=++=-u u u r u u u r u u u r u u u r u u u u r u u u r,即)3,3,33(m n n T -.由1TB TC =得222222(33)(3)(3)(33)(3)(33)241n n m n n m m n -++=+++-⇒-+=-①设面CAA 1C 1法向量为22221(,,),(0,3,0),(3,0,3)n x y z CA CC ===u u r u u u r u u u u r22230330y x z =⎧⇒⇒⎨+=⎩取)1,0,1(2-=n设面TA 1C 1法向量为3333111(,,),(0,3,0),(3,3,33)n x y z C A CT n n m ===--u u r u u u u r u u u r 33303(33)0y nx m z =⎧⇒⇒⎨-+-=⎩取),0,1(3n m n -=,由平面11TAC ⊥平面11ACC A 得10)1(21,cos 2232+=⇒=+-⋅-->=<n m nm n m n n ②由①②解得23,21==m n ,∴存在点T ⎪⎭⎫⎝⎛29,23,23,TC. ………10分。

最新高三数学上学期期末考试试卷含答案

最新高三数学上学期期末考试试卷含答案

一、选择题:(每小题5分,共60分) 1.已知条件p :2|1|>+x ,条件q :131>-x,则p 是q 的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D . 既不充分也不必要条件2.下列函数图象,经过平移或翻折后不能与函数x y 2log =的图象重合的函数是( )A.xy 2= B.x y 5.0log = C.24xy =D.11log 2+=xy3.若把函数)(x f 的图像按)2,3(--=π平移后得到x y cos =的图像,则)(x f 解析式为( )A.2)3cos(--=πx y B.2)3cos(+-=πx yC.2)3cos(-+=πx y D.2)3cos(++=πx y4.已知{n a }是等差数列,115a =,555S =,则过点2(3,)p a ,4(4,)Q a 的直线的斜率为( )A .4B .14 C .-4D .-145.若2,2,22,x y x y x y ≤⎧⎪≤+⎨⎪+≥⎩则的取值范围是( )A .[2,5]B .[2,6]C .[3,6]D .[3,5]6.已知向量)sin 2,cos 2(θθ=a ,)1,0(),,2(-=∈b ππθ,则向量与的夹角为( )A .θπ-23B .θπ+2C .2πθ- D .θ7.在△ABC 中,,,a b c 分别为,,A B C ∠∠∠的对边。

如果,,a b c 成等差数列30,B ∠=且△ABC 的面积为23,那么b =( )A .231+B .31+C .232+ D .32+8.51cos sin ,0=+<<ααπα,则ααtan 1tan 1+-的值为( )A.71B.7C.71- D.-79.已知等比数列}{n a 中,12=a ,则其前3项的和3S 的取值范围是( )A.]1,(--∞B.)0,(-∞∪),1(∞+C.),3[∞+D.]1,(--∞∪),3[∞+ 10.双曲线9322=-x y 的渐近线方程是( )A .y =±3xB .y =±31x C .y =±3x D .y =±33x11.已知互不相等的正数a 、b 、c 满足222a c bc +=,则下列不等式中可能..成立的是( ) A .a>b>c B .b>a>c C .b>c>aD .c>a>b12.已知函数x x f x 2log )31()(-=,正实数a 、b 、c 成公差为正数的等差数列,且满足f (a ) f (b )f (c)<0, 若实数d 是方程f (x )=0的一个解,那么下列四个判断:① d<a ;②d>b ; ③d<c ; ④d>c 中有可能...成立的为( ) A .①③④ B .②③ C .①④ D .①②③二、填空题:(每小题5分,共20分) 13.奇函数)(x f 的反函数是)(1x f-,若aa f -=)(,则)()(1a fa f -+-=___________.14.已知⎩⎨⎧≤<+-<≤---=10 ,101 ,1)(x x x x x f ,则使1)()(->--x f x f 成立的x 的取值范围是.15.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为____________.16.已知ABC ∆的顶点B )0,3(-、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为三、解答题:(共70分)17.(本小题满分10分)求函数)62sin(sin 22π++=x x y 的最小正周期和最小值,并求出该函数在],0[π上的单调递减区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【常考题】高三数学上期末试卷(带答案)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆则a 的值为( )A .2BC .2D .12.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD .23.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .05.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2016.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sinB =( ) A .25B .35C .45 D .857.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 8.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-9.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( )A .140B .280C .168D .5610.变量,x y 满足条件11y x ⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A .322B.5C .5D .9211.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-12.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.若,a b ∈R ,0ab >,则4441a b ab ++的最小值为___________.14.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.15.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 . 16.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =,则cos A =__________17.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .18.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且22cos C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.19.已知x ,y 满足10510x y x y ⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.20.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 23.已知在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c 且2cos 2a C c b +=. (1)求角A 的大小;(2)若1a =,求ABC ∆面积的最大值。

24.等差数列{a n }的前n 项和为S n ,且3a =9,S 6=60. (I )求数列{a n }的通项公式;(II )若数列{b n }满足b n+1﹣b n =n a (n∈N +)且b 1=3,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和T n . 25.已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,222sin 2cos 22B Aa b b c +=+. (1)求B ;(2)若6c =,[2,6]a ∈,求sin C 的取值范围.26.在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足(1)1(1)n n n n a b n n ++=+(*n N ∈),求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q 21222a a q ===,故选D. 3.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t qf t q tt t ++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减.可得t=12处,此时f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.4.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.5.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A .本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.6.A解析:A 【解析】试题分析:由3cos 5A =得,又2a b =,由正弦定理可得sin B =.考点:同角关系式、正弦定理.7.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 223tan 2bc c B B +=+,结合正弦定理及三角恒等变换知识3sinA cosA 1-=,从而得到角A. 【详解】∵2tan 23tan 2bc c B S B +=+∴2tan 1acsinB 223tan 2bc c B B +=+即c tan asinB a 3tan 13sin b B B B cosB+==++()3sinAsin B sinAcosB sinB sinC sinB sin A B +=+=++ 3sinA cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.8.C解析:C【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.9.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 10.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.11.A解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍,联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。

相关文档
最新文档