结构力学位移法题及其规范标准答案

合集下载

结构力学课后习题解答:9矩阵位移法习题解答.docx

结构力学课后习题解答:9矩阵位移法习题解答.docx

第9章矩阵位移法习题解答习题9.1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。

()(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。

()(3)单元刚度矩阵都具有对称性和奇异性。

()(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。

()(5)结构刚度矩阵与单元的编号方式有关。

()(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。

()【解】(1)正确。

(2)错误。

位移法中某些不独立的杆端位移不计入基本未知量。

(3)错误。

不计结点线位移的连续梁单元的单刚不具奇异性。

(4)正确。

(5)错误。

结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。

(6)错误。

二者只产生相同的结点位移。

习题9.2填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的,其二是分析,其三是分析。

(2)已知某单元的定位向量为[3 5 6 7 8 9]七则单元刚度系数炫应叠加到结构刚度矩阵的元素中去。

(3)将非结点荷载转换为等效结点荷载,等效的原则是。

(4)矩阵位移法中,在求解结点位移之前,主要工作是形成矩阵和_________________ 列阵。

(5)用矩阵位移法求得某结构结点2的位移为4=[. V2 ft]T=[0.8 0.3 0.5]T,单元①的始、末端结点码为3、2,单元定位向量为尸>=[0 0 0 3 4 5]T ,设单元与x轴之间的夹角为a =买,则2 尹> =O(6 )用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为F e =[7.5 -48 -70.9 -7.5 48 -121.09]T ,则该单元的轴力心=kN。

【解】(1)离散化,单元,整体;(2)灯8;(3)结点位移相等;(4)结构刚度,综合结点荷载;(5)[0 0 0 0.3 -0.8 0.5]。

(6)-7.5o离、空的值以及K ⑴中元素妍、愚、姒的值。

【解】各刚度系数的物理意义如习题解9.3图所示。

结构力学-第7章-位移法习题答案

结构力学-第7章-位移法习题答案



1 2
ql

1 12
ql 2
/ l

7 12
ql
由位移法方程得出:
r11Z1

R1 p

0

Z1

7ql 4 348EI
作出最终 M 图
7-9 试不经计算迅速画出图示结构的弯矩图形。
(a)
B
θA A
(b)
C B
yB
B′
A
C
题 7-9 图 7-10 试计算图示有剪力静定杆的刚架,并绘出 M 图。

13EI l
, r12

r21

3EI l2
r22

18EI l2
R1 p

1 16
ql 2 , R2 p

ql
代入,解得
Z1


66 3600

ql3 EI
,
Z2

211 3600

ql 4 EI
(4)求最终弯矩图
(e)
50kN·m
80kN·m 10kN·m 20kN
A 2EI B EI C
EI
(b)
B
3EI
C
EI
EI
A
D
Δ l
l
解:(1)求 M1, M 2 , M 3, M p 图。
(2)由图可知:
r11
16i, r12

r21

6i, r23

r32


6i l
, r22
16i, r33

24i l
R1 p

0, R2 p

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。

2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

结构力学 第八章 作业参考答案

结构力学 第八章 作业参考答案
基本体系
D
Z2
B
2I 2FL/9 I
M图
D
L
B
A
L
B
2FL/9
A
L
FL/9
B
解: (1)该结构为有两个基本未知量,分别为 Z1 和 Z 2 ,如图。 (2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
(3)做出基本结构的各单位内力图和荷载内力图。令 其中系数: r11 = 14i 自由项: R1 p = 0 (4)求解出多余未知力。
4
1m
E
E
E r12 2I
4m
I
I
4m
I
I
1m
0.75 E
1m
结构力学 第八章 习题 参考答案
(2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
(3)做出基本结构的各单位内力图和荷载内力图。 其中系数: r11 = r22 =
8-7 试用位移法计算连续梁,绘制弯矩图。 EI = 常数
A Z1 B 6m 6m
基本体系
Z1 C 6m
A B 6m 6m C 6m
D
D
解: (1)该结构为有两个基本未知量,分别为 Z1 和 Z 2 ,如图。 (2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。

2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

结构力学(5.1.2)--位移法习题及参考答案

结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。

6-2~6-6作图示刚架的M 图。

(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。

6-7 试用位移法计算图示结构,并作内力图。

6-8 试用位移法计算图示结构,并作内力图。

EI 为常数。

6-9试用位移法计算图示结构,并作弯矩图。

EI 为常数。

6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。

习题6-9图习题6-7图6-11作图示刚架的体系内力图。

6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。

6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。

6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。

10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。

6-16 试用弯矩分配法计算图示连续梁,并作M 图。

6-176-18 用力矩分配法计算图示结构,并作M 图。

6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。

6-20 求图示结构的力矩分配系数和固端弯矩。

已知q=20kN/m,各杆EI 相同。

习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。

EI=常数。

6-23~6-25用力矩分配法计算图示刚架,作M 图。

EI=常数。

参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。

位移法习题答案

位移法习题答案

位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。

2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。

3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。

4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。

5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。

例题:考虑一个简支梁,长度为L,受集中力P作用于中点。

使用位移法求解梁的弯矩和剪力分布。

解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。

接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。

对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。

最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。

结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。

通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。

请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。

在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)-CAL-FENGHAI.-(YICAI)-Company One120 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

Aa a21 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法一、就是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间得关系。

2、单元刚度矩阵均具有对称性与奇异性。

3、局部坐标系与整体坐标系之间得坐标变换矩阵T 就是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间得关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:,它就是整个结构所应满足得变形条件。

8、在直接刚度法得先处理法中,定位向量得物理意义就是变形连续条件与位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力得代数与。

10、矩阵位移法中,等效结点荷载得“等效原则”就是指与非结点荷载得结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下得单元刚度矩阵,就其性质而言,就是:A.非对称、奇异矩阵;B.对称、奇异矩阵;C.对称、非奇异矩阵;D.非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中得刚度矩阵相比:A.完全相同;B.第2、3、5、6行(列)等值异号;C.第2、5行(列)等值异号;D.第3、6行(列)等值异号。

4、矩阵位移法中,结构得原始刚度方程就是表示下列两组量值之间得相互关系:A.杆端力与结点位移;B.杆端力与结点力;C.结点力与结点位移;D.结点位移与杆端力。

结构力学课后习题解答:6位移法习题解答

结构力学课后习题解答:6位移法习题解答

第6章位移法习题解答习题6.1确定用位移法计算习题6.1图所示结构的基本未知量数目,并绘出基本结构。

(除注明者外,其余杆的EI为常数。

)(a) (b) (c) (d)习题6.1图【解】各题基本未知量(取独立未知结点位移为基本未知量)如下:(a)n=4 (b)n=2 (c)n=6 (d)n=8习题6.2是非判断(1)位移法基本未知量的个数与结构的超静定次数无关。

()(2)位移法可用于求解静定结构的内力。

()(3)用位移法计算结构由于支座移动引起的内力时,采用与荷载作用时相同的基本结构。

()(4)位移法只能用于求解连续梁和刚架,不能用于求解桁架。

()【解】(1)正确。

位移法求解时基本未知量是结构的未知结点位移,与结构是否超静定无关。

(2)正确。

无任何结点位移发生的静定结构内力图可利用载常数直接确定;有结点位移发生的静定结构则可利用位移法的一般步骤计算。

(3)正确。

用位移法计算支座位移引起的内力时,可采用与荷载作用相同的基本结构,自由项可根据形常数和支移值确定。

(4)错误。

只要能够取得杆端力与杆端位移之间的函数关系,位移法就可用于求解任何杆系结构。

习题6.3已知习题6.3图所示刚架的结点B产生转角θB =π/180,试用位移法概念求解所作用外力偶M。

习题 6.3图【解】30i π 。

发生转角θB 时,可直接求得结点B 所连的各杆端弯矩,再由结点B 的平衡条件即可得M 。

习题6.4 若习题6.4图所示结构结点B 向右产生单位位移,试用位移法中剪力分配法的概念求解应施加的力F P 。

习题 6.4图【解】315lEI。

结点B 向右产生单位位移时,横梁所连各柱端剪力之和即为F P 。

习题6.5 已知刚架的弯矩图如习题6.5图所示,各杆EI =常数,杆长l =4m ,试用位移法概念直接计算结点B 的转角θB 。

m习题 6.5图【解】由M 图可知,BC 杆上无外荷载,其杆端弯矩为330BC BC B M i θ==-,由此求得40B EIθ=-。

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。

2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

西北工业大学(王生楠)结构力学课后题答案第五章位移法

西北工业大学(王生楠)结构力学课后题答案第五章位移法

2 − 2 0 −4 0 0 0 0 − 2 4+ 2 0
4 0 0 8+ 2 0 − 2 0 −4 0 0 0 0
0 − 2 −4 4+ 2 0 0 8+ 2 0 − 2 0 −4
⎤ ⎥ ⎥ − 2 ⎥ ⎥ 2 ⎥ 0 ⎥ ⎥ 0 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎥ −4 ⎥ 0 ⎥ ⎥ 4 + 2⎦ ⎥ 0 0
K 1− 4
⎡ 1 3 −1 − 3⎤ ⎢ ⎥ 3 3 − 3 −3 ⎥ 3 EA ⎢ = 8l ⎢ − 1 − 3 1 3 ⎥ ⎢ ⎥ 3 3 ⎥ ⎢− 3 − 3 ⎣ ⎦

杆元 1-5,长度为 2l , θ = 30 , λ = cos θ =
3
2
, µ = sin θ = 1 . 2
K 1−5
2
4
6
60°
7
1 a
3 a
5 a
(b)
解:以节点 1 为原点,建立如图所示的总体坐标系。 建立元素刚度矩阵。杆元 1-3, l = a, θ = 0 , λ = cos θ = 1, µ = sin θ = 0.

K 1−3
⎡1 ⎢0 EA ⎢ = a ⎢− 1 ⎢ ⎣0
0 −1 0 0 0 1 0 0
0 0⎤ 0 − 1⎥ ⎥ 0 0⎥ ⎥ 0 1⎦
杆元 1-5,长度为 2l
θ = 60 � , λ = cos θ = 1 , µ = sin θ = 3 , 2 2 3,
K 1−5
⎡ 1 3 −1 − 3⎤ ⎢ ⎥ 3 3 − 3 −3 ⎥ 3 EA ⎢ = 8l ⎢ − 1 − 3 1 3 ⎥ ⎢ ⎥ 3 3 ⎥ ⎢− 3 − 3 ⎣ ⎦
K 1− 2

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

结构力学课后答案第8章矩阵位移法

结构力学课后答案第8章矩阵位移法

习 题8-1 试说出单元刚度矩阵的物理意义及其性质与特点。

8-2 试说出空间桁架和刚架单元刚度矩阵的阶数。

8-3 试分别采用后处理法和先处理法列出图示梁的结构刚度矩阵。

(a)解:(a )用后处理法计算 (1)结构标识(2)建立结点位移向量,结点力向量[]T44332211 θνθνθνθν=∆[]Ty M F M F M F M F F 4y43y32y211 =θ(3)计算单元刚度矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=2222322211211462661261226466126122EI 21 l l -l l l -l -l l -l l l l - l k k k k k ①①①①①⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222233332232223 33 6 3632336 362EI 21 l l - l l l - l -l l -l l l -l l k k k k k ②②②②②lll⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222234443343323 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ③③③③③(4)总刚度矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=222222222234443343333322322222112112 3300003 6 3 6 000 03403003601236000 0 3632600 363186120000 26460 0 0 06126122EI 0 0 00 0 0 4 3 2 1 4 3 2 1 l l -l l l - l - - l l -l l l l - l - - l l -l l -l l l l - -l -- l l -l l l l - l k k k k k k k k k k k k k ③③③③②②②②①①①①θ (5)建立结构刚度矩阵支座位移边界条件[][]00004311 θ θ θν=将总刚度矩阵中对应上述边界位移行列删除,得刚度结构矩阵。

结构力学习题含答案解析

结构力学习题含答案解析

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p7、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移∆DV 。

EI = 常数,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数。

l l l /3/3q13、图示结构,EI=常数,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数。

16、求图示刚架中D点的竖向位移。

EI=常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI =常数。

18、求图示刚架中D 点的竖向位移。

E I = 常数 。

ql l/219、求图示结构A、B两截面的相对转角,EI =常数。

l/23l/320、求图示结构A 、B 两点的相对水平位移,E I = 常数。

l l21、求图示结构B 点的竖向位移,EI =常数。

l l22、图示结构充满水后,求A 、B 两点的相对水平位移。

结构力学课后练习题+答案

结构力学课后练习题+答案
E
2cm
A CB 2cm 2cm
42、求图示结构 A 点竖向位移(向上为正) AV 。
M EI
EI A
a
EI
EI = ∞ 1
3 EI
K = a3
a
a
43、求图示结构 C 点水平位移 CH ,EI = 常数。
M B
2l
C 6 EI k=
l3
A l
44、求图示结构 D 点水平位移 DH 。EI= 常数。
a/ 2 D
a
A
c1
A'
a
B B'
aห้องสมุดไป่ตู้
c2
35、图示结构 B 支座沉陷 = 0.01m ,求 C 点的水平位移。
C l
A
B
l/2 l/2
—— 25 ——
《结构力学》习题集
36、结构的支座 A 发生了转角 和竖向位移 如图所示,计算 D 点的竖向位移。
A
D
l
l l/ 2
37、图示刚架 A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求 D 截面的角位移。
P
P
l
l
l
l
18、用力法计算图示结构并作弯矩图。
—— 31 ——
100 kN C EI
《结构力学》习题集
100 kN D
2 EI A
2 EI
4m
B
1m
6m
1m
19、已知 EI = 常数,用力法计算并作图示对称结构的 M 图。
q
q
EA=
l
l
l
20、用力法计算并作图示结构的 M 图。EI =常数。
a
P q

结构力学课后练习题+答案

结构力学课后练习题+答案
《结构力学》习题集
第三章 静定结构的位移计算
一、判断题:
1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内 力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰 C 左侧截面的转角时,其虚拟状态应取:
P 2I
I
I
6m
2I
I
I
6m
8m
25、用力法计算图示结构并作 M 图。EI =常数。
20 kN
4m
3m
4m
3m
26、用力法计算图示结构并作 M 图。EI =常数。
P
P
l
l /2 l /2
l
l /2 l /2
27、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。E =常数。
—— 33 ——
B A
l
2l
23、求图示刚架 C 点的水平位移 CH ,各杆 EI = 常数 。
2kN/m C
3m
4m
4m
24、求图示刚架 B 的水平位移 BH ,各杆 EI = 常数 。
7kN/m
B
q
4m
3m 4m
25、求图示结构 C 截面转角。已知 :q=10kN/m , P=10kN , EI = 常数 。
8、用力法作图示结构的 M 图。
28 kN 3
C
4kN/m
EI 3m
A
EI
B
3m
9、用力法作图示排架的 M 图。已知 A = 0.2 m2 ,I = 0.05 m4 ,弹性模量为 E0 。
—— 29 ——
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超静定结构计算——位移法
一、判断题:
1、判断下列结构用位移法计算时基本未知量的数目。

(1) (2) (3)
(4) (5) (6)
EI
EI
EI
EI 2EI EI EI
EI
EA EA a
b EI=
EI=EI=
24442
2、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

3、位移法未知量的数目与结构的超静定次数有关。

4、位移法的基本结构可以是静定的,也可以是超静定的。

5、位移法典型方程的物理意义反映了原结构的位移协调条件。

二、计算题:
12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。

2
13、用位移法计算图示结构并作M 图。

E I =常数。

l
l
l/2l/2
14、求对应的荷载集度q。

图示结构横梁刚度无限大。

已知柱顶的水平位移为
()
5123
/()
EI→。

12m12m 8m
q
15、用位移法计算图示结构并作M图。

EI =常数。

l
l l l
16、用位移法计算图示结构,求出未知量,各杆EI相同。

4m
19、用位移法计算图示结构并作M图。

q
l l
20、用位移法计算图示结构并作M 图。

各杆EI =常数,q = 20kN/m 。

23、用位移法计算图示结构并作M 图。

EI =常数。

l
l 2
24、用位移法计算图示结构并作M 图。

EI =常数。

l
q
l
29、用位移法计算图示结构并作M 图。

设各杆的EI 相同。

q
q
l l /2/2
32、用位移法作图示结构M 图。

E I =常数。

q
q
l l
/2
l /2l
36、用位移法计算图示对称刚架并作M 图。

各杆EI =常数。

l l
38、用位移法计算图示结构并作M 图。

EI =常数。

q
l l l l
42、用位移法计算图示结构并作M 图。

2m 2m
43、用位移法计算图示结构并作M 图。

EI =常数。

l
l
l
48、已知B 点的位移∆,求P 。

l
l
/2
/2
A
51、用位移法计算图示结构并作M 图。

q
超静定结构计算——位移法(参考答案)
1、(1)、4; (2)、4; (3)、9; (4)、5; (5)、7;
(6)、7。

2、(X )
3、(X )
4、(O )
5、(X )
12、 13、
617
3.5(×qh 2
40/)
69/104
21/10414/104
/4pl 15
104
()⨯Pl
14、kN/m 3=q
15、
Z
1ql 2
2=(18 )
i 91ql
29ql 29ql 2
11182
ql
2ql 2
M 图
l
l
l
l
16、θB EI =3207 ) , ∆B EI
=3328
21(→) 19、
()2
ql ⨯
20、
A
B
C
D
E
90
1806060M 图 kN m .( )
23、
ql 214
118
14
128
4
3图 M ()
×
24、
ql
2图 ( )×M
29、
1/82
1/82
ql
ql
..
32
ql 2
8
/ql 2
8
/
36
图 M (
/7 )ql 2
38、
7
1010
10
(⨯2332
ql /)
42
P 3
43、
(⨯ql 2

48、P EI
l =912253

51、

M 1056ql 2
856
ql 2。

相关文档
最新文档