2020年广东广州中考数学试卷及答案(WORD版)

合集下载

2020年广东省广州市中考数学试卷(含解析)打印版

2020年广东省广州市中考数学试卷(含解析)打印版

2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105 B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于°.12.(3分)化简:﹣=.13.(3分)方程=的解是.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm 时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).2020年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【分析】根据条形统计图得出即可.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF 的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【分析】根据补角的概念求解可得.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:﹣=.【分析】此题先把二次根式化简,再进行合并即可求出答案.【解答】解:﹣=2=.故填:.13.(3分)方程=的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【分析】构建二次函数,利用二次函数的性质即可解决问题.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x =﹣=时,w有最小值.故答案为10.0,.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答】解:在△ABC与△ADC 中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.【分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答】解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k +4+=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社676873757678808283848585909295区乙社666972747578808185858889919698区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y =(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC =60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。

2020年广东省中考数学试卷(含解析)打印版

2020年广东省中考数学试卷(含解析)打印版

2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+38.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤19.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.210.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4分)若+|b+1|=0,则(a+b)2020=.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选:A.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4【分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若+|b+1|=0,则(a+b)2020=1.【分析】根据非负数的意义,求出a、b的值,代入计算即可.【解答】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解答】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解答】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得并解得:直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).。

2020年广东广州中考数学试卷及参考答案

2020年广东广州中考数学试卷及参考答案

2020年广州市初中毕业生学业考试数 学题序一二三四五六七八总分得分满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140° 3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( C )(A )b a < (B )b a = (C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( A ) (A )2 (B )1 (C )-1 (D )-2 5. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( D ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( B )(A )222)(n m n m -=- (B ))0(122≠=-m m m (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( D ) (A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C ) (A )正十边形 (B )正八边形 (C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B ) (A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( A ) (A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分) 11. 已知函数xy 2=,当x =1时,y 的值是________2 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3 13. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2n+516. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。

2020年广东省广州中考数学试卷及答案(Word版)

2020年广东省广州中考数学试卷及答案(Word版)

2020年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题 (共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 实数3的倒数是( )A .31-B .31C .3-D .32. 将二次函数2x y =的图像向下平移1个单位,则平移后的二次函数的解析式为( )A .12-=x yB .12+=x yC .2)1(-=x yD .2)1(+=x y3. 一个几何体的三视图如图1所示,则这个几何体是( )A . 四棱锥B .四棱柱C .三棱锥D .四棱柱4.下面的计算正确的是( )A .156=-a aB .3233a a a =+C .b a b a +-=--)(D .b a b a +=+22)(5.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD=5, DC=4, DE ∥AB 交BC 于点E ,且EC=3.则梯形ABCD 的周长是( )A .26B .25C .21D .206. 已知071=-+-b a ,则=+b a ( )A .8-B .6-C .6D .87.在A C8A9A .四边相等的四边形是正方形 B .对角线相等的四边形是菱形 C .四个角相等的四边形是矩形D .对角线互相垂直的四边形是平行四边形10.如图3,正比例函数x k y 11=和反比例函数xk y 22=的图象交于)2,1(-A 、),(21-B 两点, 若21y y <,则x 的取值范围是 ( ) A .1-<x 或1>xB .1-<x 或10<<x图2ED CBAC.01<<-x或10<<x D.01<<-x或1>x第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠ABC=30°, BD是∠ABC的平分线,则∠ABD=_______度.12.不等式101≤-x的解集是_______.13.分解因式:aa83-=_______.14.如图4,在等边△ABC中,AB=6,D是BC上一点.且BC=3BD,△ABD绕点A旋转后的得到△ACE.则CE的长为_______.ED CBA15.已知关于x的一元二次方程0322=--kxx有两各项等的实数根,则k的值为_______.16.如图5,在标有刻度的直线l上,从点A开始.以AB=1为直径画半圆,记为第1个半圆以BC=2为直径画半圆,记为第2个半圆以CD=4为直径画半圆,记为第3个半圆以DE=8为直径画半圆,记为第4个半圆……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_______倍,第n个半圆的面积为_______.(结果保留π)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分) 解方程组:⎩⎨⎧=+=-1238y x y x18.(本小题满分9分)如图6,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C.求证:BE=CDEDBA19.(本小题满分10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境局公布的2006~2010这五年的全年空气质量优良的天数,绘制折线图如图7,根据图中信息回答:(1)这五年的全年空气质量是优良的天数的中位数是_______ ;极差是_______ ; (2) 这五年的全年空气质量优良天数与它的前一年相比较,增加最多的是______年(填写年份); (3)求这五年的全年空气质量优良天数的平均数.20.(本小题满分10分)已知511=+ba )(b a ≠,求)()(b a a b b a b a ---的值.21.(本小题满分12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上的所标的数值分别为7-、1-、3,乙袋中的三张卡片上所标的数值分别为2-、1、6 ,先从甲袋中随机取一张卡片,用x 表示取出的卡片上标的数值,再从乙袋从随机取出一张卡片,用y 表示取出的卡片上标的数值.把x 、y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点)(y x A ,的所有情况; (2)求点A 落在第三象限的概率 .22.(本小题满分12分)如图8,⊙P 的圆心为)(2,3-P ,半径为3,直线MN 过点)(0,5M 且平行于y 轴,点N 在点M 的上方.(1)在图中作出⊙P 关于y 轴的对称的⊙P ’,根据作图直接写出⊙P ’与直线MN 的位置关系 ;(2)若点N 在(1)中的⊙P ’上,求PN 的长.23.(本小题满分12分)某城市居民用水实施阶梯收费.每户每月用水量如果未超过20吨,按每吨1.9元收费:每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元。

2020年广东省广州市中考数学试卷(含解析)

2020年广东省广州市中考数学试卷(含解析)

2020年广东省广州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,满分30分)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:67 68 73 75 76 78 80 82 83 84 85 85 90 92 95甲社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98乙社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题1.【解答】解:15233000=1.5233×107,故选:C.2.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题11.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.【解答】解:﹣=2=.故填:.13.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.三、解答题17.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.【解答】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.【解答】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.20.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a。

广东省2020年中考数学试题(Word版,含解析)

广东省2020年中考数学试题(Word版,含解析)

2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .7 5.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣2 6.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF的周长为A .8B .22C .16D .4 7.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1 9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:△abc>0;△b2﹣4ac>0;△8a+c<0;△5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2020=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________. 15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 【答案】A【解析】正数的相反数是负数.【考点】相反数2.一组数据2、4、3、5、2的中位数是A.5B.3.5C.3D.2.5【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【答案】D【解析】关于x轴对称:横坐标不变,纵坐标互为相反数.【考点】对称性4.若一个多边形的内角和是540°,则该多边形的边数为A.4B.5C.6D.7【答案】B【解析】(n-2)×180°=540°,解得n=5.【考点】n边形的内角和5.若式子4-x2在实数范围内有意义,则x的取值范围是A.x≠2B.x≥2 C.x≤2 D.x≠﹣2【答案】B【解析】偶数次方根的被开方数是非负数.【考点】二次根式6.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF 的周长为2C.16D.4 A.8B.2【答案】A【解析】三角形的中位线等于第三边的一半.【考点】三角形中位线的性质.7.把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2.【考点】函数的平移问题.8.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1【答案】D【解析】解不等式.【考点】不等式组的解集表示.9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .2【答案】D【解析】解法一:排除法过点F 作FG ∥BC 交BE 与点G ,可得∠EFG=30°,∵FG=3,由三角函数可得EG=3,∴BE >3.解法二:角平分线的性质延长EF 、BC 、B’C’交于点O ,可知∠EOB=∠EOB’=30°,可得∠BEO=∠B’EO=60°, ∴∠AEB’=60°.设BE=B ’E=2x ,由三角函数可得AE=x ,由AE+BE=3,可得x=1,∴BE=2.【考点】特殊平行四边形的折叠问题、辅助线的作法、三角函数.10.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:△abc>0;△b2﹣4ac>0;△8a+c<0;△5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1【答案】B【解析】由a<0,b>0,c>0可得△错误;由△>0可得△正确;由x=-2时,y <0可得△正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c >0,两式相减得5a-b+2c>0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得△正确.【考点】二次函数的图象性质.二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy﹣x=____________.【答案】x(y-1)【解析】提公因式【考点】因式分解12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=________.【答案】4【解析】m=3,n=1【考点】同类项的概念13.若2-a +|b+1|=0,则(a+b )2020=_________.【答案】1【解析】算术平方根、绝对值都是非负数,∴a=2,b=-1,-1的偶数次幂为正【考点】非负数、幂的运算14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.【答案】7【解析】x+y=5,原式=3(x+y )-4xy ,15-8=7【考点】代数式运算15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.【答案】45°【解析】菱形的对角线平分对角,∠ABC=150°,∠ABD=75°【考点】垂直平分线的性质、菱形的性质16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .【答案】31 【解析】连接BO 、AO 可得△ABO 为等边,可知AB=1,l=32π,2πr=32π得r=31 【考点】弧长公式、圆锥17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD=52,BE=2【考点】直角三角形的性质、数学建模思想、最短距离问题三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.【答案】解:原式=x2+2xy+y2+x2-y2-2x2=2xy把x=2,y=3代入,原式=2×2×3=26【解析】完全平方公式、平方差公式,合并同类项【考点】整式乘除,二次根式19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】解:(1)由题意得24+72+18+x=120,解得x=6(2)1800×1207224 =1440(人) 答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】统计表的分析【考点】概率统计20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.【答案】证明:△BD=CE ,△ABE=△ACD ,△DFB=△CFE△△BFDF△△CFE (AAS )△△DBF=△ECF△△DBF+△ABE=△ECF+△ACD△△ABC=△ACB△AB=AC△△ABC 是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.【答案】解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x 由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a(2)该三角形的形状是等腰直角三角形,理由如下:由(1)得x 2﹣43x+12=0(x -32)2=0x 1=x 2=32△该三角形的形状是等腰三角形△(26)2=24,(32)2=12△(26)2=(32)2+(32)2△该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断【考点】二元一次方程组、一元二次方程、勾股定理逆定理22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.【答案】 (1)证明:过点O 作OE△CD 交于点E△AD△BC ,△DAB=90°△△OBC=90°即OB△BC△OE△CD ,OB△BC ,CO 平分△BCD△OB=OE△AB 是△O 的直径△OE 是△O 的半径△直线CD 与△O 相切E(2)连接OD 、OE△由(1)得,直线CD 、AD 、BC 与△O 相切△由切线长定理可得AD=DE=1,BC=CE=3,△ADO=△EDO ,△BCO=△ECO△△AOD=△EOD ,CD=3△AE △=AE △△△APE=21△AOE=△AOD △AD△BC △△ADE+△BCE=180° △△EDO+△ECO=90°即△DOC=90°△OE△DC ,△ODE=△CDO△△ODE△△CDO△CD OD OD DE =即3OD OD 1= △OD=3△在Rt△AOD 中,AO=2△tan△AOD=AO AD =22 △tan△APE=22 【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米.53x 602x 60•=+ 解得x=3经检验x=3是原方程的解△x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5△a 为正整数△a 的最大值为22y=40a+30(90-a )=10a+2700△10>0△y 随a 的增大而增大△当a=22时,y=10×22+2700=2920(元)答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键【考点】分式方程的应用,不等式的应用,一次函数应用五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x 8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=_2_______;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF=21BD •AO=83AB •AO=3 (3)连接OE由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4∴41CB CE =即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE∴△DEB ∽△FEC∴CF=31BD ∵OC=GC ,AB=OC∴FG=AB -CF=34BD -31BD=BD ∵AB ∥OG∴BD ∥FG∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关【考点】反比例函数、相似三角形、三角形的面积比、平行四边形的判定25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD . (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.【答案】解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b (2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3 ∴3DCBC OE OB == ∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x-1n -=1,解得x=332-1②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0) 【解析】分类讨论不重不漏,计算能力要求高【考点】一次函数、二次函数、平面直角坐标系、相似三角形、三角函数、分类讨论、二次根式计算。

2020年广东省广州市中考数学试题(含答案)

2020年广东省广州市中考数学试题(含答案)

2020年广州市初中毕业生学业考试数 学题序一二三四五六七八总分得分第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的4个选项中只有一项是符合题目要求的) 1.实数3的倒数是( )。

(A )、31-(B )、31(C )、3- (D )、32.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。

(A )、12-=x y(B )、 12+=x y (C )、2)1(-=x y(D )、2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。

(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱4.下面的计算正确的是( ) 。

(A )、156=-a a(B )、 223a a a =+(C )、b a b a +-=--)((D )、b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26 (B )、25 (C )、21(D )、206..已知,071=++-b a 则=+b a ( ) 。

(A )、-8 (B )、 -6 (C )、6(D )、87. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是( )。

(A )、536(B )、2512 (C )、49(D )、433 8.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。

(A )、a+c <b+c (B )、 a-c >b-c (C )、ac <bc(D )、ac >bc9.在平面中,下列命题为真命题的是( )。

(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形 (D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。

2020年广东省广州市中考数学试卷及答案解析

2020年广东省广州市中考数学试卷及答案解析

2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C .该圆锥的主视图既是轴对称图形,又是中心对称图形D .该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y =﹣3x +1的图象过点(x 1,y 1),(x 1+1,y 2),(x 1+2,y 3),则( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 27.(3分)如图,Rt △ABC 中,∠C =90°,AB =5,cos A =45,以点B 为圆心,r 为半径作⊙B ,当r =3时,⊙B 与AC 的位置关系是( )A .相离B .相切C .相交D .无法确定8.(3分)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,满分18分.) 11.(3分)已知∠A =100°,则∠A 的补角等于 °.12.(3分)化简:√20−√5= . 13.(3分)方程x x+1=32x+2的解是 .14.(3分)如图,点A 的坐标为(1,3),点B 在x 轴上,把△OAB 沿x 轴向右平移到△ECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .15.(3分)如图,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB 'C ,AB ',AC '分别交对角线BD 于点E ,F ,若AE =4,则EF •ED 的值为 .16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近似值,当a = mm 时,(a ﹣9.9)2+(a ﹣10.1)2+(a ﹣10.0)2最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )x 1,x 2,…,x n ,若用x 作为这条线段长度的近似值,当x = mm 时,(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.18.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k+1)2−4k.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧AB̂上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x10【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=4 5,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=12AB=12×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD=√OB2−BD2=√262−242=10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C .9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个【解答】解:∵直线y =x +a 不经过第二象限, ∴a ≤0,当a =0时,关于x 的方程ax 2+2x +1=0是一次方程,解为x =−12, 当a <0时,关于x 的方程ax 2+2x +1=0是二次方程, ∵△=22﹣4a >0,∴方程有两个不相等的实数根. 故选:D .10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125【解答】解:∵AB =6,BC =8,∴矩形ABCD 的面积为48,AO =DO =12AC =5, ∵对角线AC ,BD 交于点O , ∴△AOD 的面积为12, ∵EO ⊥AO ,EF ⊥DO ,∴S △AOD =S △AOE +S △DOE ,即12=12AO ×EO +12DO ×EF , ∴12=12×5×EO +12×5×EF ,∴5(EO+EF)=24,∴EO+EF=24 5,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:√20−√5=√5.【解答】解:√20−√5=2√5−√5=√5.故填:√5.13.(3分)方程xx+1=32x+2的解是x=32.【解答】解:方程xx+1=32x+2,去分母得:2x=3,解得:x=3 2,经检验x=32是分式方程的解.故答案为:x=3 2.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AEDE =EFAE,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=x1+x2+⋯+x nnmm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =−−60.06=10.0时,y 有最小值, 设w =(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2=nx 2﹣2(x 1+x 2+…+x n )x +(x 12+x 22+…+x n 2),∵n >0, ∴当x =−−2(x 1+x 2+⋯+x n )2n =x 1+x 2+⋯+x nn时,w 有最小值. 故答案为10.0,x 1+x 2+⋯+x nn.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.【解答】解:{2x −1≥x +2①x +5<4x −1②解不等式①得:x ≥3, 解不等式②得:x >2, 所以不等式组的解集为:x ≥318.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.【解答】解:在△ABC 与△ADC 中, {AB =AD∠BAC =∠DAC AC =AC, ∴△ABC ≌△ADC (SAS ), ∴∠D =∠B =80°,∴∠BCA =180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k +1)2−4k .【解答】解:∵反比例函数y =kx 的图象分别位于第二、第四象限, ∴k <0, ∴k ﹣1<0,∴k2k−4−16k−4+√(k+1)2−4k=(k−4)(k+4)k−4+√k2−2k+1=k+4+√(k−1)2=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)=412=13.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【解答】解:(1)∵点A(3,4)在y=kx上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=12x上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA=√32+42=5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=12BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC=√BC2−OB2=12,∴OA=12,∵四边形ABCD 是菱形, ∴AD =13,∴BF =12×12×5×2×2÷13=12013, 故点E 到AD 的距离是12013.24.(14分)如图,⊙O 为等边△ABC 的外接圆,半径为2,点D 在劣弧AB ̂上运动(不与点A ,B 重合),连接DA ,DB ,DC . (1)求证:DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.【解答】证明:(1)∵△ABC 是等边三角形, ∴∠ABC =∠BAC =∠ACB =60°,∵∠ADC =∠ABC =60°,∠BDC =∠BAC =60°, ∴∠ADC =∠BDC , ∴DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数, 理由如下:如图1,将△ADC 绕点逆时针旋转60°,得到△BHC ,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=√34CD2,∴S=√34x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=12EC,PE=√3PC=√32EC,∴EF=2PE=√3EC=√3CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4√3.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B (x 1,3),C (x 2,3),线段BC 上有一点E , ∴S 1=12×BE ×3=32BE ,S 2=12×CE ×3=32CE , ∵S 1=S 2+32. ∴32CE +32=32BE ,∴BE =CE +1, ∵b =﹣6a ,∴抛物线G :y =ax 2﹣6ax +c , ∴对称轴为x =−6a−2a=3, ∴BC 的中点M 坐标为(3,3),∵BE =BM +EM ,CE =CM ﹣EM ,BM =CM ,BE =CE +1, ∴EM =12,∴点E (72,3)或(52,3);(3)∵直线DE 与抛物线G :y =ax 2﹣6ax +c 的另一个交点F 的横坐标为6a+3,∴y =a (6a+3)2﹣6a ×(6a+3)+c =36a−9a +c , ∴点F (6a+3,36a−9a +c ),∵点D 是抛物线的顶点, ∴点D (3,﹣9a +c ),∴直线DF 的解析式为:y =6x ﹣18+c ﹣9a , ∴点E 坐标为(72,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。

2020年广东省广州市中考数学试题及答案

2020年广东省广州市中考数学试题及答案

广州市2020年高中阶段学校招生考试数学第Ⅰ卷(选择题, 共35分)一、选择题(每小题有四个选项,其中有且仅有一项是符合题意的,本题共有13小题,第1~4题每小题2分,第5~13题每小题3分,共35分)1.0.000 000 108这个数,用科学记数法表示为 ( )(A )91.0810-⨯ (B )81.0810-⨯ (C )71.0810-⨯ (D )61.0810-⨯2.计算()210.25712-⎛⎫⨯-+- ⎪⎝⎭所得的结果是 ( )(A )2 (B )54 (C )0 (D )17163.如果两圆只有一条公切线,那么这两个圆的位置关系是 ( )(A )外离 (B )外切 (C )相交 (D )内切4.如图1,若四边形ABCD 是半径为1cm 的⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为 ( )(A )()222cm π- (B )()221cm π- (C )()22cm π-(D )()21cm π-5.函数141y x x =++-中,自变量x 的取值范围是 ( ) (A )x>-4 (B )x>1 (C )x ≥-4 (D )x ≥16.如果已知一次函数y=kx+b 的图象不经过第三象限,也不经过原点,那么k 、b 的取值范围是 ( )(A )k>0且b>0 (B )k>0且b<0 (C )k<0且b>0 (D )k<0且b<07.若点()()()1232,11,y y y --、,、都在反比例函数1y x=-的图象上,则 ( ) (A )123y y y >> (B )213y y y >> (C )312y y y >> (D )132y y y >> 8.抛物线245y x x =-+的顶点坐标是 ( )(A )(-2,1) (B )(-2,-1) (C )(2,1) (D )(2,-1)9.某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水。

广东省广州市2020年中考数学试题【word精校精析版】

广东省广州市2020年中考数学试题【word精校精析版】

2020年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A. 5⨯ D. 80.1523310⨯1.523310152.3310⨯ B. 615.23310⨯ C. 7【答案】C【解析】【分析】根据科学记数法的表示方法表示即可.【详解】15233000=7⨯,1.523310故选C.【点睛】本题考查科学记数法的表示,关键在于熟练掌握科学记数法的表示方法.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A. 套餐一B. 套餐二C. 套餐三D. 套餐四【答案】A【解析】【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A .【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.3.下列运算正确的是( )=B. =C. 5630x x x ⋅=D. ()5210x x = 【答案】D【解析】【分析】根据二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则依次判断即可得到答案.【详解】A 不是同类二次根式,不能进行加法运算,故该选项错误;B 、6a =,故该选项错误;C 、5611x x x ⋅=,故该选项错误;D 、()5210x x =,故该选项正确,故选:D.【点睛】此题考查计算能力,正确掌握二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则是解题的关键.4.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A. 22︒B. 68︒C. 96︒D. 112︒【答案】B【解析】【分析】根据点,D E 分别是ABC ∆的边AB ,AC 的中点,得到DE 是ABC ∆的中位线,根据中位线的性质解答.【详解】如图,∵点,D E 分别是ABC ∆的边AB ,AC 的中点,∴DE 是ABC ∆的中位线,∴DE ∥BC ,∴AED =∠68C ∠=︒,故选:B.【点睛】此题考查三角形中位线的判定及性质,平行线的性质,熟记三角形的中位线的判定定理是解题的关键.5.如图所示的圆锥,下列说法正确的是( )A. 该圆锥的主视图是轴对称图形B. 该圆锥的主视图是中心对称图形C. 该圆锥的主视图既是轴对称图形,又是中心对称图形D. 该圆锥的主视图既不是轴对称图形,又不是中心对称图形【答案】A【解析】【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可得答案.【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A 正确,该圆锥的主视图是中心对称图形,故B 错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故C 错误,该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D 错误,故选A .【点睛】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识是解题的关键.6.一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( ) A. 123y y y <<B. 321y y y <<C. 213y y y <<D. 312y y y <<【答案】B【解析】【分析】根据一次函数的图象分析增减性即可.【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小.故选B .【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.7.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4cos 5A =,以点B 为圆心,r 为半径作B ,当3r =时,B 与AC 的位置关系是( )A. 相离B. 相切C. 相交D. 无法确定 【答案】B【解析】【分析】 根据Rt ABC ∆中,90C ∠=︒, 4cos 5A =,求出AC 的值,再根据勾股定理求出BC 的值,比较BC 与半径r 的大小,即可得出B 与AC 的位置关系.【详解】解:∵Rt ABC ∆中,90C ∠=︒, 4cos 5A =, ∴cosA=45AC AB = ∵5AB =,∴AC=4∴223BC AC -=当3r =时,B 与AC 的位置关系是:相切故选:B【点睛】本题考查了由三角函数解直角三角形,勾股定理以及直线和圆的位置关系等知识,利用勾股定理解求出BC 是解题的关键.8.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A. 8cmB. 10cmC. 16cmD. 20cm【答案】C【解析】【分析】 过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c -=-,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.9.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A. 0个B. 1个C. 2个D. 1个或2个【答案】D【解析】【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】∵直线y x a =+不经过第二象限,∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=2444b ac a -=-,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A. 485B. 325C. 245D. 125【答案】C【解析】【分析】根据勾股定理求出AC=BD=10,由矩形的性质得出AO=5,证明AOE ADC 得到OE 的长,再证明DEF DBA 可得到EF 的长,从而可得到结论.【详解】∵四边形ABCD 是矩形,AC BD ∴=,90ABC BCD ADC BAD ∠=∠=∠=∠=︒6AB =,8BC =8AD BC ∴==,6DC AB ==10AC ∴=,10BD =,152OA AC ∴==, OE AC ⊥,90AOE ∴∠=︒AOE ADC ∴∠=∠,又CAD DAC ∠=∠,AOEADC ∴, AO AE EO AD AC CD∴==, 58106AE EO ∴==, 254AE ∴=,154OE =, 74DE ∴=, 同理可证,DEF DBA ,DE EF BD BA∴=, 74106FF ∴=, 2120EF ∴=, 1521244205OE EF ∴+=+=, 故选:C .【点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知100A ∠=︒,则A ∠的补角等于________︒.【答案】80【解析】【分析】根据补角的概念计算即可.【详解】∠A 的补角=180°-100°=80°,故答案为:80.【点睛】本题考查补角的概念,关键在于牢记基础知识.12.=__________.【解析】【分析】先化简二次根式,再进行合并即可求出答案.==,【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.13.方程3122x x x =++的解是_______. 【答案】32 【解析】【分析】根据分式方程的解法步骤解出即可. 【详解】3122x x x =++ 左右同乘2(x +1)得: 2x =3解得x =32. 经检验x =32是方程的跟. 故答案为: 32. 【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.14.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.【答案】(4,3)【解析】【分析】过点A 作AH ⊥x 轴于点H ,得到AH=3,根据平移的性质证明四边形ABDC 是平行四边形,得到AC=BD ,根据平行四边形的面积是9得到9BD AH ⋅=,求出BD 即可得到答案.【详解】过点A 作AH ⊥x 轴于点H ,∵A (1,3),∴AH=3,由平移得AB ∥CD ,AB=CD ,∴四边形ABDC 是平行四边形,∴AC=BD ,∵9BD AH ⋅=,∴BD=3,∴AC=3,∴C(4,3)故答案为:(4,3).【点睛】此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系.15.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.【答案】16【解析】【分析】根据正方形及旋转的性质可以证明AEF DEA ~,利用相似的性质即可得出答案.【详解】解:在正方形ABCD 中,BAC=ADB 45∠∠=︒,∵ABC ∆绕点A 逆时针旋转到AB C ''∆,∴B AC =BAC 45''∠∠=︒,∴EAF=ADE 45∠∠=︒,∵AEF=AED ∠∠,∴AEF DEA ~, ∴AE EF DE AE=, ∴22EF ED AE 416•===.故答案为:16.【点睛】本题考查了正方形的性质,旋转的性质,相似三角形的判定及性质,掌握正方形的性质,旋转的性质,相似三角形的判定及性质是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mn 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小. 【答案】 (1). 10.0; (2).12n x x x n +++.【解析】【分析】 (1)把222(9.9)(10.1)(10.0)a a a -+-+-整理得:2360.0300.02a a -+,设2360.0300.02y a a =-+,利用二次函数性质求出当10.0a =时有最小值;(2)把()()()22212n x x x x x x -+-++-整理得:()()222212122n n nx x x x x x x x -++++++, 设()()222212122n n y nx x x x x x x x =-++++++,利用二次函数的性质即可求出当y 取最小值时x 的值.【详解】解:(1)整理222(9.9)(10.1)(10.0)a a a -+-+-得:2360.0300.02a a -+, 设2360.0300.02y a a =-+, 由二次函数的性质可知:当60.010.023a -=-=⨯时,函数有最小值, 即:当10.0a =时,222(9.9)(10.1)(10.0)a a a -+-+-的值最小, 故答案为:10.0;(2)整理()()()22212n x x x x x x -+-++-得:()()222212122n n nx x x x x x x x -++++++,设()()222212122n n y nx x x x x x x x =-++++++,由二次函数性质可知:当()121222n nx x x x x x x nn-++++++=-=⨯时,()()222212122n n y nx x x x x x x x =-++++++有最小值,即:当12n x x x x n+++=时,()()()22212n x x x x x x -+-++-的值最小,故答案为:12nx x x n+++.【点睛】本题考查了二次函数模型的应用,关键是设()()()22212n y x x x x x x =-+-++-,整理成二次函数,利用二次函数的性质—何时取最小值来解决即可.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.解不等式组:212541x x x x -+⎧⎨+<-⎩.【答案】x ≥3 【解析】 【分析】根据解不等式组的解法步骤解出即可. 【详解】212541x x x x -+⎧⎨+<-⎩①②由①可得x ≥3,由②可得x>2,∴不等式的解集为:x ≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.18.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.【答案】75°. 【解析】 【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案. 【详解】∵25DAC ∠=︒,80D ∠=︒, ∴∠DCA=75°, ∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC , ∴△ABC ≌△ADC , ∴∠BCA=∠DCA=75°. 【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.19.已知反比例函数k y x =的图象分别位于第二、第四象限,化简:2216(1)444k k k k k -++---【答案】5 【解析】 【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值. 【详解】由题意得k <0.()()22222441616(1)4214214444k k k k k k k k k k k k k k k +---+-++-=-+----()24141415k k k k k k +-=++-=+-+==【点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下: 甲社区 67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区 666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【答案】(1)中位数是82,众数是85;(2)13. 【解析】 【分析】(1)根据中位数及众数的定义解答; (2)列树状图解答即可.【详解】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82, 出现次数最多的年龄是85,故众数是85;(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A 、B 、C 、D , 列树状图如下:共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB ,BA ,CD ,DC , ∴P (这2名老人恰好来自同一个社区)=41123=. 【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.21.如图,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数()0ky x x=>的图象经过点()3,4A 和点M .(1)求k的值和点M的坐标;(2)求OABC的周长.【答案】(1)k=12,M(6,2);(2)28 【解析】【分析】(1)将点A(3,4)代入kyx=中求出k的值,作AD⊥x轴于点D,ME⊥x轴于点E,证明△MEC∽△ADC,得到12ME MCAD CA==,求出ME=2,代入12yx=即可求出点M的坐标;(2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.【详解】(1)将点A(3,4)代入kyx=中,得k=3412⨯=,∵四边形OABC是平行四边形,∴MA=MC,作AD⊥x轴于点D,ME⊥x轴于点E,∴ME∥AD,∴△MEC∽△ADC,∴12 ME MCAD CA==,∴ME=2,将y=2代入12yx=中,得x=6,∴点M的坐标为(6,2);(2)∵A (3,4), ∴OD=3,AD=4,∴5OA ==, ∵A (3,4),M (6,2), ∴DE=6-3=3, ∴CD=2DE=6, ∴OC=3+6=9, ∴OABC 的周长=2(OA+OC)=28.【点睛】此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%. (1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆. 【解析】 【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.【详解】解:(1)依题意得:()501-50%=25⨯(万元)(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260-x )辆,依题意得:()50260x +25x=9000⨯-解得:x=160答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆. 【点睛】本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程. 23.如图,ABD ∆中,ABD ADB ∠=∠.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,DC ,连接AC ,交BD 于点O . ①求证:四边形ABCD 是菱形;②取BC 的中点E ,连接OE ,若132OE =,10BD =,求点E 到AD 的距离. 【答案】(1)见解析;(2)①见解析:②12013.【解析】 【分析】(1)过点A 做BD 的垂线交BD 于点M ,在AM 的延长线上截取AM CM =,即可求出所作的点A 关于BD 的对称点C ;(2)①利用ABD ADB ∠=∠,AC BD ⊥得出BO DO =,利用AO CO =,以及AC BD ⊥得出四边形ABCD 是菱形;②利用OE 为中位线求出AB 的长度,利用菱形对角线垂直平分得出OB 的长度,进而利用Rt AOB ∆求出AO 的长度,得出对角线AC 的长度,然后利用面积法求出点E 到AD 的距离即可.【详解】(1)解:如图:点C 即为所求作的点;(2)①证明:∵ABD ADB ∠=∠,AC BD ⊥, 又∵AO AO =, ∴ABO ADO ∆≅∆; ∴BO DO =,又∵AO CO =,AC BD ⊥ ∴四边形ABCD 是菱形;②解:∵四边形ABCD 是菱形, ∴AO CO =,BO DO =,AC BD ⊥ 又∵10BD =, ∴=5BO , ∵E 为BC 的中点, ∴CE BE =, ∵AO CO =,∴OE 为ABC ∆的中位线, ∵132OE =, ∴13AB =, ∴菱形的边长为13, ∵AC BD ⊥,=5BO在Rt AOB ∆中,由勾股定理得:222AO AB BO =-,即:22135=12AO =-, ∴12224AC =⨯=,设点E 到AD 的距离为h ,利用面积相等得:12410132h ⨯⨯=, 解得:12013h =, 即E 到AD 的距离为12013.【点睛】本题考查了对称点作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.24.如图,O 为等边ABC ∆的外接圆,半径为2,点D 在劣弧AB 上运动(不与点,A B 重合),连接DA ,DB ,DC .(1)求证:DC 是ADB ∠的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点,M N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.【答案】(1)详见解析;(2)是, 23(234)4S x x =<≤;(3)3【解析】 【分析】(1)根据等弧对等角的性质证明即可;(2)延长DA 到E,让AE=DB,证明△EAC ≌△DBC,即可表示出S 的面积;(3)作点D 关于直线BC 、AC 的对称点D 1、D 2,当D 1、M 、N 、D 共线时△DMN 取最小值,可得t =D 1D 2,有对称性推出在等腰△D 1CD 2中,t 3x ,D 与O 、C 共线时t 取最大值即可算出. 【详解】(1)∵△ABC 为等边三角形,BC=AC , ∴AC BC =,都为13圆,∴∠AOC=∠BOC=120°, ∴∠ADC=∠BDC=60°, ∴DC 是∠ADB 的角平分线. (2)是.如图,延长DA 至点E ,使得AE=DB . 连接EC ,则∠EAC=180°-∠DAC =∠DBC . ∵AE =DB ,∠EAC =∠DBC,AC =BC ,∴△EAC ≌△DBC(SAS), ∴∠E=∠CDB=∠ADC=60°, 故△EDC 是等边三角形,∵DC=x ,∴根据等边三角形的特殊性可知DC 边上的高为32x ∴2133(234)2DBCADCEACADCCDES SSSSSx x x x =+=+==⋅⋅=<≤.(3)依次作点D 关于直线BC 、AC 的对称点D 1、D 2,根据对称性 C △DMN =DM+MN+ND=D 1M+MN+ND 2.∴D 1、M 、N 、D 共线时△DMN 取最小值t ,此时t =D 1D 2, 由对称有D 1C=DC=D 2C=x ,∠D 1CB=∠DCB ,∠D 2CA=∠DCA, ∴∠D 1CD 2=∠D 1CB+∠BCA+∠D 2CA=∠DCB+60°+∠DCA=120°. ∴∠CD 1D 2=∠CD 2D 1=60°,在等腰△D 1CD 2中,作CH ⊥D 1D 2,则在Rt △D 1CH 中,根据30°特殊直角三角形的比例可得D 1133x =,同理D 2H=23322CD x = ∴t =D 1D 2=33DC x =.∴x 取最大值时,t 取最大值.即D 与O 、C 共线时t 取最大值,x =4. 所有t 值中的最大值为43.【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.25.平面直角坐标系xOy 中,抛物线()2:012G y ax bx c a =++<<过点()1,5A c a -,()1,3B x ,()2,3C x ,顶点D 不在第一象限,线段BC 上有一点E ,设OBE △的面积为1S ,OCE △的面积为2S ,1232S S =+. (1)用含a 的式子表示b ; (2)求点E 的坐标;(3)若直线DE 与抛物线G 的另一个交点F 的横坐标为63a+,求2y ax bx c =++在16x <<时的取值范围(用含a 的式子表示). 【答案】(1)6b a =-;(2)7,32E ⎛⎫ ⎪⎝⎭或5,32E ⎛⎫ ⎪⎝⎭;(3)当16x <<时,有0<y <9.a 【解析】 【分析】(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<,即可得到答案; (2)先求解抛物线的对称轴,记对称轴与BC 的交点为H ,确定顶点的位置,分情况利用1232S S =+,求解OEH S ,从而可得答案;(3)分情况讨论,先求解DE 的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系数的关系求解,c 结合二次函数的性质可得答案.【详解】解:(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<, 5,c a a b c ∴-=++6,b a ∴=-(2)6,b a =-∴ 抛物线:()26012,y ax ax c a =-+<<∴ 抛物线的对称轴为:63,2ax a -=-=顶点D 不在第一象限,∴顶点D 在第四象限,如图,设1x <2,x 记对称轴与BC 的交点为H ,则,BH CH = ,OBH OCH S S ∴=1232S S =+,3,2OBH OHE OCH OHE S S S S ∴+=-+3,4OHE S ∴=133,24EH ∴⨯=1,2EH ∴=7,3,2E ⎛⎫∴ ⎪⎝⎭当1x >2,x 同理可得:5,3.2E ⎛⎫ ⎪⎝⎭综上:7,32E ⎛⎫ ⎪⎝⎭或5,3.2E ⎛⎫ ⎪⎝⎭(3)()22639,y ax ax c a x c a =-+=-+- ()3,9,D c a ∴-当7,32E ⎛⎫ ⎪⎝⎭,设DE 为:,y kx b =+ 73239k b k b c a⎧+=⎪∴⎨⎪+=-⎩解得:621876318k c a b c a =-+⎧⎨=--⎩ DE ∴为()621876318,y c a x c a =-++--()26621876318y ax ax c y c a x c a ⎧=-+⎪∴⎨=-++--⎪⎩消去y 得:()26224663180,ax c a x c a +-+--++= 由根与系数的关系得:6622433,c a a a-+-++=- 解得:9,c a = ()22693,y ax ax a a x ∴=-+=-当1x =时,4,y a =当6x =时,9,y a =当3x =时,0y =,当16x <<时,有0<y <9.a 当5,32E ⎛⎫ ⎪⎝⎭,()3,9,D c a - 同理可得DE 为:()218654518,y c a x c a =---++()22186545186y c a x c a y ax ax c ⎧=---++∴⎨=-+⎩同理消去y 得:()21226645180,ax a c x c a +-++--= 612266,a c a a-+∴+=- 解得:96,c a =+()2269636,y ax ac a a x ∴=-++=-+此时,顶点在第一象限,舍去,综上:当16x <<时,有0<y <9.a【点睛】本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题的关键.衡石量书整理。

2020年广东省中考数学试卷及答案(word解析版)

2020年广东省中考数学试卷及答案(word解析版)

2020年广东省初中毕业生学业考试数 学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。

2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

题序一二三四五六七八总分得分说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21B. 21C.-2D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。

2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。

3.据报道,2020年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。

2020年广东省广州市中考数学试题及参考答案(word解析版)

2020年广东省广州市中考数学试题及参考答案(word解析版)

2020年广州市初中毕业生学业考试数学(满分150分,考试用时120分钟)第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n 个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm 时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98 根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B (x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).答案与解析第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:15233000=1.5233×107,故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【知识考点】条形统计图.【思路分析】根据条形统计图得出即可.【解答过程】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.【总结归纳】本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【知识考点】同底数幂的乘法;幂的乘方与积的乘方;二次根式的混合运算.【思路分析】各项计算得到结果,即可作出判断.【解答过程】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.【总结归纳】此题考查了二次根式的混合运算,同底数幂的乘法,以及幂的乘方,熟练掌握运算法则是解本题的关键.4.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【知识考点】三角形中位线定理.【思路分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C =68°.【解答过程】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.【总结归纳】本题主要考查了三角形的中位线定理,能熟练地运用三角形的中位线定理是解此题的关键.5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【知识考点】轴对称图形;中心对称图形;简单几何体的三视图.【思路分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答过程】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.【总结归纳】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图及轴对称图形、中心对称图形的概念.6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【知识考点】一次函数图象上点的坐标特征.【思路分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答过程】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.【总结归纳】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【知识考点】直线与圆的位置关系;解直角三角形.【思路分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答过程】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.【总结归纳】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【知识考点】垂径定理的应用.【思路分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答过程】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【总结归纳】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【知识考点】根的判别式;一次函数的性质.【思路分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答过程】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.【总结归纳】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【知识考点】线段垂直平分线的性质;矩形的性质.【思路分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答过程】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.【总结归纳】本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.【知识考点】余角和补角.【思路分析】根据补角的概念求解可得.【解答过程】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.【总结归纳】本题主要考查补角,解题的关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12.化简:﹣=.【知识考点】二次根式的加减法.【思路分析】此题先把二次根式化简,再进行合并即可求出答案.【解答过程】解:﹣=2=.故填:.【总结归纳】此题考查了二次根式的加减,关键是把二次根式化简,再进行合并.13.方程=的解是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.【知识考点】三角形的面积;坐标与图形变化﹣平移.【思路分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答过程】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).【总结归纳】本题考查了坐标与图形的变换﹣平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.【知识考点】正方形的性质;旋转的性质;相似三角形的判定与性质.【思路分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答过程】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.【总结归纳】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【知识考点】二次函数的应用.【思路分析】构建二次函数,利用二次函数的性质即可解决问题.【解答过程】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.【总结归纳】本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答过程】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥3【总结归纳】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【知识考点】全等三角形的判定与性质.【思路分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答过程】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.【总结归纳】主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用的基础和关键.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.【知识考点】反比例函数的图象;反比例函数的性质.【思路分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答过程】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.【总结归纳】本题考查了反比例函数的性质,反比例函数图象的性质,平方差公式,分式和二次根式的化简等知识,确定k的取值范围是本题的关键.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【知识考点】中位数;众数;列表法与树状图法.【思路分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答过程】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.【总结归纳】本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M 的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答过程】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.【总结归纳】本题考查反比例函数图象上的点的坐标特征,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【知识考点】一元一次方程的应用.【思路分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答过程】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.【总结归纳】此题主要考查了一元一次方程的应用,正确找出等量关系是解题关键.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【知识考点】等腰三角形的性质;菱形的判定与性质;作图﹣轴对称变换.【思路分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答过程】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.【总结归纳】此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出BC,AC的长是解题关键.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【知识考点】圆的综合题.【思路分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC=60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC 的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答过程】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.【总结归纳】本题是圆的综合题,考查了圆的有关知识,等边三角形的性质,旋转的性质,轴对称的性质等知识,灵活运用这些性质进行推理是本题的关键.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B (x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【知识考点】二次函数综合题.【思路分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c =9a,由二次函数的性质可求解.【解答过程】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.【总结归纳】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,三角形面积公式,一次函数图象的性质,求出c=9a是本题的关键.。

2020年广东省广州市中考数学试和答案

2020年广东省广州市中考数学试和答案

2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2 7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B 为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm 9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于°.12.(3分)化简:﹣=.13.(3分)方程=的解是.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB 沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C 的坐标为.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF •ED的值为.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲676873757678808283848585909295社区乙666972747578808185858889919698社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x 轴上,对角线AC,OB交于点M,函数y =(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D 不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE 的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).答案一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.参考答案:解:15233000=1.5233×107,故选:C.2.参考答案:解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.参考答案:解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.参考答案:解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.参考答案:解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.参考答案:解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x1+2,∴y3<y2<y1,故选:B.7.参考答案:解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.参考答案:解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.参考答案:解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.参考答案:解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.参考答案:解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.参考答案:解:﹣=2=.故填:.13.参考答案:解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.参考答案:解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.参考答案:解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.参考答案:解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.参考答案:解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.参考答案:解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.参考答案:解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.20.参考答案:解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.参考答案:解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.参考答案:解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.参考答案:解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.参考答案:证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB =120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.参考答案:解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.第21页(共21页)。

2020年广东省广州市中考数学试卷和答案解析

2020年广东省广州市中考数学试卷和答案解析

2020年广东省广州市中考数学试卷和答案解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案::解:15233000=1.5233×107,故选:C.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四解析:根据条形统计图得出即可.参考答案::解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.点拨:本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10解析:各项计算得到结果,即可作出判断.参考答案::解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.点拨:此题考查了二次根式的混合运算,同底数幂的乘法,以及幂的乘方,熟练掌握运算法则是解本题的关键.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°解析:根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.参考答案::解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.点拨:本题主要考查了三角形的中位线定理,能熟练地运用三角形的中位线定理是解此题的关键.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形解析:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.参考答案::解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.点拨:本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图及轴对称图形、中心对称图形的概念.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2解析:先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.参考答案::解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x1+2,∴y3<y2<y1,故选:B.点拨:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B 为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定解析:根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.参考答案::解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.点拨:本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm解析:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.参考答案::解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.点拨:本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个解析:利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.参考答案::解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.点拨:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.解析:依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD =S△AOE+S△DOE,即可得到OE+EF的值.参考答案::解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.点拨:本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.解析:根据补角的概念求解可得.参考答案::解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.点拨:本题主要考查补角,解题的关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12.(3分)化简:﹣=.解析:此题先把二次根式化简,再进行合并即可求出答案.参考答案::解:﹣=2=.故填:.点拨:此题考查了二次根式的加减,关键是把二次根式化简,再进行合并.13.(3分)方程=的解是x=.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.参考答案::解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.点拨:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB 沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C 的坐标为(4,3).解析:根据平移的性质得出四边形ABDC是平行四边形,从而得A 和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.参考答案::解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).点拨:本题考查了坐标与图形的变换﹣平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF •ED的值为16.解析:根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.参考答案::解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.点拨:本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.解析:构建二次函数,利用二次函数的性质即可解决问题.参考答案::解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.点拨:本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.解析:根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.参考答案::解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥3点拨:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.解析:运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.参考答案::解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.点拨:主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用的基础和关键.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.解析:由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.参考答案::解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.点拨:本题考查了反比例函数的性质,反比例函数图象的性质,平方差公式,分式和二次根式的化简等知识,确定k的取值范围是本题的关键.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲676873757678808283848585909295社区乙666972747578808185858889919698社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.解析:(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.参考答案::解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.点拨:本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.解析:(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.参考答案::解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.点拨:本题考查反比例函数图象上的点的坐标特征,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.解析:(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.参考答案::解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.点拨:此题主要考查了一元一次方程的应用,正确找出等量关系是解题关键.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.解析:(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.参考答案::解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.点拨:此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出BC,AC的长是解题关键.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.解析:(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC=60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN 的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.参考答案::证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.点拨:本题是圆的综合题,考查了圆的有关知识,等边三角形的性质,旋转的性质,轴对称的性质等知识,灵活运用这些性质进行推理是本题的关键.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D 不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE 的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).解析:(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E 坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.参考答案::解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.点拨:本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,三角形面积公式,一次函数图象的性质,求出c=9a 是本题的关键.。

2020年广东省广州市中考数学试卷(含详细解析)

2020年广东省广州市中考数学试卷(含详细解析)
(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;
(2)求明年改装的无人驾驶出租车是多少辆.
23.如图, 中, .
(1)作点 关于 的对称点 ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 , ,连接 ,交 于点 .
①求证:四边形 是菱形;
②取 的中点 ,连接 ,若 , ,求点 到 的距离.
16.对某条线段的长度进行了3次测量,得到3个结果(单位: )9.9,10.1,10.0,若用 作为这条线段长度的近以值,当 ______ 时, 最小.对另一条线段的长度进行了 次测量,得到 个结果(单位: ) ,若用 作为这条线段长度的近似值,当 _____ 时, 最小.
评卷人
得分
三、解答题
17.解不等式组: .
保密★启用前
2020年广东省广州市中考数学试卷
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()
A. B. C. D.
A. B. C. D.
评卷人
得分
二、填空题
11.已知 ,则 的补角等于________ .
12.计算: __________.
13.方程 的解是_______.
14.如图,点 的坐标为 ,点 在 轴上,把 沿 轴向右平移到 ,若四边形 的面积为9,则点 的坐标为_______.
15.如图,正方形 中, 绕点 逆时针旋转到 , , 分别交对角线 于点 ,若 ,则 的值为_______.

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省初中学业水平考试数学(满分为120分,考试用时为90分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.75.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣26.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.47.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣38.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤19.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.210.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.若+|b+1|=0,则(a+b)2020=.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义即可求解.【解题过程】解:9的相反数是﹣9,故选:A.【总结归纳】此题主要考查相反数的定义,比较简单.2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【知识考点】中位数.【思路分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解题过程】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.【总结归纳】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解题过程】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.7【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解题过程】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【总结归纳】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣2【知识考点】二次根式有意义的条件.【思路分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解题过程】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【总结归纳】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.4【知识考点】三角形中位线定理.【思路分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解题过程】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.【总结归纳】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3【知识考点】二次函数图象与几何变换.【思路分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解题过程】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【总结归纳】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.2【知识考点】正方形的性质;翻折变换(折叠问题).【思路分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解题过程】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【总结归纳】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解题过程】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【总结归纳】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=x(y﹣1).【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式得出答案.【解题过程】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【知识考点】34:同类项.【思路分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解题过程】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.【总结归纳】本题考查同类项的定义,正确根据同类项的定义得到m,n的值是解题的关键.13.若+|b+1|=0,则(a+b)2020=1.【知识考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【思路分析】根据非负数的意义,求出a、b的值,代入计算即可.【解题过程】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.【总结归纳】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【知识考点】33:代数式求值.【思路分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解题过程】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.【总结归纳】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【知识考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【思路分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解题过程】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.【总结归纳】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【知识考点】M5:圆周角定理;MP:圆锥的计算.【思路分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解题过程】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.【总结归纳】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【知识考点】KP:直角三角形斜边上的中线;M8:点与圆的位置关系.【思路分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解题过程】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.【总结归纳】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【知识考点】4J:整式的混合运算—化简求值.【思路分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解题过程】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【知识考点】用样本估计总体.【思路分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解题过程】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【知识考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【思路分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解题过程】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【总结归纳】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【知识考点】二元一次方程组的解;解二元一次方程组;一元二次方程的解;根与系数的关系.【思路分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解题过程】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.【总结归纳】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【知识考点】直角梯形;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解题过程】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.【总结归纳】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【知识考点】B7:分式方程的应用;C9:一元一次不等式的应用.【思路分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解题过程】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【知识考点】GB:反比例函数综合题.【思路分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解题过程】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.【总结归纳】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【知识考点】HF:二次函数综合题.【思路分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解题过程】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).【总结归纳】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

2020年广东省广州市中考数学试卷及答案

2020年广东省广州市中考数学试卷及答案

A. 152.33 105
B. 15.233 106
C. 1.5233 107
D. 0.15233108
2.某校饭堂随机抽取了 100 名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图 的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )
A.套餐一
B.套餐二
3.下列运算正确的是( )
(2)在(1)所作的图中,连接 BC , DC ,连接 AC ,交 BD 于点 O .
①求证:四边形 ABCD 是菱形; ②取 BC 的中点 E ,连接 OE ,若 OE 13 , BD 10 ,求点 E 到 AD 的距离.
2 24.如图,O 为等边 ABC 的外接圆,半径为 2,点 D 在劣弧 AB 上运动(不与点 A, B 重合),连接 DA ,
B.1 个
C.2 个
D.1 个或 2 个
10.如图,矩形 ABCD 的对角线 AC , BD 交于点 O , AB 6 , BC 8,过点 O 作 OE AC ,交 AD 于
点 E ,过点 E 作 EF BD ,垂足为 F ,则 OE EF 的值为( )
A. 48 5
B. 32 5
C. 24 5
D.无法确定
8.往直径为 52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽 AB 48cm ,则水的最大深
度为( )
A. 8cm
B.10cm
C.16cm
D. 20cm
9.直线 y x a 不经过第二象限,则关于 x 的方程 ax2 2x 1 0 实数解的个数是( ).
A.0 个
D. 12 5
第二部分 非选择题(共 120 分)
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分.)

2020年部编人教版广州市中考数学试题及答案(Word精析版)

2020年部编人教版广州市中考数学试题及答案(Word精析版)

2020年广州市初中毕业生学业考试第一部分选择题(共30分)一、选择题:1.(2020年广州市)比0大的数是()A -1 B12C 0D 1分析:比0的大的数一定是正数,结合选项即可得出答案解:4个选项中只有D选项大于0.故选D.点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数2.(2020年广州市)图1所示的几何体的主视图是()(A)(B) (C) (D)正面分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从几何体的正面看可得图形.故选:A.点评:从几何体的正面看可得图形.故选:A..3.(2020年广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选D.点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2020年广州市)计算:的结果是()A B C D分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m3n)2=m6n2.故选:B.点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题5、(2020年广州市)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是(),图3中的a的值是()A全面调查,26B全面调查,24图3C抽样调查,26D抽样调查,24分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D.点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据6.(2020年广州市)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A B C D分析:根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可解:根据题意列方程组,得:.故选:C.点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.7.(2020年广州市)实数a在数轴上的位置如图4所示,则=()A B C D分析:首先观察数轴,可得a<2.5,然后由绝对值的性质,可得|a﹣2.5|=﹣(a﹣2.5),则可求得答案解:如图可得:a<2.5,即a﹣2.5<0,则|a﹣2.5|=﹣(a﹣2.5)=2.5﹣a.故选B.点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.8.(2020年广州市)若代数式有意义,则实数x的取值范围是()A B C D分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围解:根据题意得:,解得:x≥0且x≠1.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数9.(2020年广州市)若,则关于x的一元二次方程的根的情况是()A 没有实数根 B有两个相等的实数根C有两个不相等的实数根 D无法判断分析:根据已知不等式求出k的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况解:∵5k+20<0,即k<﹣4,∴△=16+4k<0,则方程没有实数根.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.(2020年广州市)如图5,四边形ABCD是梯形,AD∥BC,CA是的平分线,且则=()A B C D分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2,在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11. (2020年广州市)点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .分析:根据线段垂直平分线的性质得出PA=PB ,代入即可求出答案解:∵点P 在线段AB 的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等12. (2020年广州市)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ . 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. (2020年广州市)分解因式:=+xy x 2_______________. 分析:直接提取公因式x 即可解:x 2+xy=x (x+y )点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解14. (2020年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0,解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.15. (2020年广州市)如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .分析:根据旋转的性质得到A ′B ′=AB=16,然后根据直角三角形斜边上的中线性质求解即可解:∵Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,∴A ′B ′=AB=16,∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线,∴C ′D=A ′B ′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质.16. (2020年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.解:过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA ,∴OD=OA=3,在Rt △OPD 中,∵OP=,OD=3,∴PD===2,∴P (3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分9分)(2020年广州市)解方程:09102=+-x x .分析:分解因式后得出两个一元一次方程,求出方程的解即可解:x 2﹣10x+9=0,(x ﹣1)(x ﹣9)=0,x ﹣1=0,x ﹣9=0,x 1=1,x 2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程.18.(本小题满分9分)(2020年广州市)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.分析:根据菱形的性质得出AC ⊥BD ,再利用勾股定理求出BO 的长,即可得出答案解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO 的长是解题关键19.(本小题满分10分) (2020年广州市)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x 分析:分母不变,分子相减,化简后再代入求值解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的 题的关键20.(本小题满分10分)(2020年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.解:(1)如图:①作∠A′BD=∠ABD,②以B为圆心,AB长为半径画弧,交BA′于点A′,③连接BA′,DA′,则△A′BD即为所求;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,∴∠BA′D=∠C,A′B=CD,在△BA′E和△DCE中,,∴△BA′E≌△DCE(AAS).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2020年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比22.(本小题满分12分)(2020年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(本小题满分12分)(2020年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广州市初中毕业生学业考试
一、选择题(每小题3分,共30分) 1.四个数-5,-0.1,
21
,3中为无理数的是( ) A. -5 B. -0.1 C. 2
1
D. 3
2.已知□ABCD 的周长为32,AB=4,则BC=( ) A. 4 B. 12 C. 24 D. 28
3.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( ) A. 4 B. 5 C. 6 D. 10
4.将点A (2,1)向左平移2个单位长度得到点A ',则点A '的坐标是( ) A. (0,1) B. (2,-1) C. (4,1) D. (2,3)
5.下列函数中,当x>0时,y 值随x 值增大而减小的是( ) A.2
x y = B. 1-=x y C. x y 43=
D. x
y 1= 6.若a<c<0<b ,则abc 与0的大小关系是( )
A. abc<0
B. abc=0
C. abc>0
D. 无法确定 7.下面的计算正确的是( )
A. 2221243x x x =⋅
B. 1553x x x =⋅
C. 3
4x x x =÷ D. 7
2
5)(x x =
8.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( D )
9.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤9
10.如图,AB 切⊙O 于点B ,OA=23,AB=3,弦BC//OA ,则劣弧BC 的弧长为( A )
A.
π33 B. π23 C. π D. π2
3
二、填空题:(每小题3分,共18分) 11.9的相反数是______
12.已知α∠=260,则α∠的补角是______度。

13.方程
31=的解是______ (
14.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形E D C B A ''''',已知OA=10cm ,A O '=20cm ,
则五边形ABCDE 的周长与五边形E D C B A '''''的周长的比值是______ 15.已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题: ①如果a //b ,a ⊥C ,那么b ⊥c ; ②如果b //a ,c //a ,那么b//c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b//c. 其中真命题的是_________。

(填写所有真命题的序号) 16.定义新运算“⊗”,b a b a 43
1
-=
⊗,则)1(12-⊗=____8____。

三、解答题(本大题共9大题,满分102分) 17.(9分)解不等式组⎩⎨
⎧>+<-0
123
1x x
18. (9分)如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE=AF 。

求证:△AC E ≌△
ACF
19. (10分)分解因式:8(x 2-2y 2)-x(7x+y)+xy
20. (10分)5个棱长为1的正方体组成如图的几何体。

(1)该几何体的体积是____5_____(立方单位) 表面积是_____20____(平方单位) (2)画出该几何体的主视图和左视图。

21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买
会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。

已知小敏5月1日前不是该商店的会员。

(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算? A F E B
C
正面
22.(12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布
直方图,根据图中信息回答下列问题: (1)求a 的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少..
有1人的上网时间在8~10小时。

23.(12分)已知R t △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C(1,3)在反比例函数y=
x
k
的图象上,且sin ∠BAC=
5
3。

(1)求k 的值和边AC 的长;(2)求点B 的坐标。

24.(14分)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、
B,点A的坐标是(1,0)
(1)求c的值;
(2)求a的取值范围;
(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1- S2为常数,并求出该常数。

常数为1
25.(14分)如图7,⊙O中AB是直径,C是⊙O上一点,∠ABC=450,等腰直角三角形DCE中∠DCE是直
角,点D在线段AC上。

(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;
(3)将△DCE绕点C逆时针旋转α(00<α<900)后,记为△D1CE1(图8),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=2OM1是否成立?若是,请证明:若不是,说明理由。

2011年广州市中考数学试题答案
一、选择题
1、D
2、B
3、B
4、A
5、D
6、C
7、C
8、D
9、B 10、A
二、填空题
x=;14、1︰2;15、①②④;16、8。

11、﹣9;12、154;13、1
三、解答题
x<
17、解:解不等式①,得4

18
19
20
21
(2) 设所购商品的价格为x元,依题意得
168+0.8x<0.95x 解得x>1120
∴当所购商品的价格高于1120元时,选方案一更合算。

a=----=
22、解:(1) 506253214
(2)将上网时间在6~8小时的3人记为A、B、C,上网时间在8~10小时的2人记为D、E,从中选
取2人的所有情况为(A、B)、(A、C)、(A、D)、(A、E)、(B、C)、(B、D)、(B、E)、(C、D)、
(C、E)、(D、E)共10种等可能的结果,其中至少有一人上网时间在在8~10小时的有(A、D)、
(A、E)、(B、D)、(B、E)、(C、D)、(C、E)、(D、E)这7种,所以至少有一人上网时间在
在8~10小时的概率为0.7。

23、解:(1)∵点A (1,3)在反比例函数k
y x
=的图像上 ∴ 133k xy ==⨯= 作CD ⊥AB 于点D ,所以CD =3 在Rt △ACD 中,sin ∠BAC=
CD
, ∴ 35=(2) 在 cos 如图1 ∴ ∴ ∴ 如图2 24 ∵二次函数为()211y ax a x =-++的图像与x 轴交于不同的两点
∴ 0∆>,而()()2
2
2
2
14214211a a a a a a a a ∆=-+-=++-=-+=-⎡⎤⎣⎦
∴ a 的取值范围是 0a >且1a ≠ (3)证明: ∵ 01a <<
∴ 对称轴为11
122a a x a a
--+=-
=>
∴ 11212a a
AB a a +-⎛⎫=-=
⎪⎝⎭
把1y =代入()211y ax a x =-++得
()210ax a x -+=,解得 1210,a
x x a
+==
∴ 1a
CD a
+=
∴ 12PCD PAB ACD CAB S S S S S S ∆∆∆∆-=-=-

11
22CD OC AB OC ⨯⨯-⨯⨯
25、(1 (2) (3) 1M。

相关文档
最新文档