2018-2020年上海市中考数学各地区模拟试题分类(一)——《圆》(含解析)

合集下载

2020年中考沪教版数学模拟试卷1(含答案解析)

2020年中考沪教版数学模拟试卷1(含答案解析)

2020年中考沪教版数学模拟试卷1一、选择题:(本大题共6题,每题4分,满分24分)1. 下列各数中是无理数的是( )【A 】722 【B 】9【C 】212112111.0【D 】π2. 在下列代数式中:2x ,ab 2,n -,1,x2,单项式的个数有( ) 【A 】2个【B 】3个【C 】4个【D 】5个3. 下列方程中,有实数根的方程是( )【A 】430x +=【B x =-【C 】22111x x x =--【D 1-4.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( )【A 】该班总人数为50人【B 】骑车人数占总人数的20%【C 】步行人数为30人【D 】乘车人数是骑车人数的2.5倍5. 下列图形中,是轴对称图形但不是中心对称图形的是( )【A 】正方形【B 】菱形【C 】矩形【D 】等腰梯形6. 下列命题中假命题是( )【A 】平分弦的半径垂直于弦【B 】垂直平分弦的直线必经过圆心【C 】垂直于弦的直径平分这条弦所对的弧【D 】平分弧的直径垂直平分这条弧所对的弦.二、填空题:(本大题共12题,每题4分,满分48分)7._________8. 因式分解:2422+-x x =__________9.的根是__________10. 不等式组34,222x x x x -<⎧⎪⎨+≤⎪⎩的解集是__________ 11. 已知关于x 的方程220x x m --=没有实数根,那么m 的取值范围是__________12. 将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是__________13. 如图,已知在梯形ABCD 中, //AB CD ,且 3AB CD =.设AB a =,AD b =,那么AO =_________(用a 、b 的式子表示).14. 布袋中有除颜色以外完全相同的8个球,3个黄球,5个白球,从布袋中随机摸出一个球是白球的概率为___________15. 在Rt ABC 中,90C ∠=︒,3AC =,4BC =.如果以点C 为圆心,r 为半径的圆与直线AB 相切,那么r =____________ 16. 经过测量,不挂重物时弹簧长度为6厘米,挂上5.2千克的重物时弹簧长度为5.7厘米,那么弹簧长度y (厘米)与所挂重物的质量x (千克)的函数解析式为_________ ABDC (第13题图) O。

2020年上海市中考数学模拟试题及答案(解析版) (2)

2020年上海市中考数学模拟试题及答案(解析版)  (2)
【详解】
∵ ,
∴ ,
∴抛物线 开口向上;对称轴为y轴(即x=0);在y轴左侧;y随x的增大而减小;在y轴右侧;y随x的增大而增大
A(-3; );B(-1; );
点A距对称轴的距离为|-3|=3;点B距对称轴的距离为|-1|=1.
又 抛物线开口向上;抛物线上的点距对称轴越远;y值越大;
> .
故答案:>.
11.函数 的图象是开口向下的抛物线.(______)
12.如果向量 、 、 之间满足关系式 ,那么 _________(用向量 、 表示)
13.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为100km,在一张比例尺为 的交通旅游图上,它们之间的距离相当于_____cm.
14.若 ,则 ______.
本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.
5.已知二次函数 自变量x与函数值y之间满足下列数量关系:
x
2
4
5
y
0.37
0.37
4
那么 的值为()
A.24B.20C.10D.4
(2)如图3,∠ACB≠ 90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC= ,当BM=时,BP的最大值为.
21.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(如
22.如图,直线EF分别交△ABC的边AC,AB于点E,F,交边BC的延长线于点D,且AB·BF=BC·BD.求证:AE·EC=EF·ED.
A. ∥ B.

2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》一.选择题1.(2019•芦淞区一模)如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是()A.8°B.15°C.18°D.28°2.(2019•虹口区二模)如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取()A.2 B.3 C.4 D.53.(2019•虹口区二模)正六边形的半径与边心距之比为()A.B.C.D.4.(2019•金山区二模)已知⊙O1与⊙O2内切于点A,⊙O1的半径等于5,O1O2=3,那么O2A的长等于()A.2 B.3 C.8 D.2或8 5.(2019•闵行区二模)在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定()A.与x轴和y轴都相交B.与x轴和y轴都相切C.与x轴相交、与y轴相切D.与x轴相切、与y轴相交6.(2019•嘉定区一模)已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部7.(2019•崇明区一模)如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交8.(2019•金山区一模)如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外9.(2019•长宁区一模)在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B 中有一点在圆O内,另一点在圆O外,那么r的值可以取()A.5 B.4 C.3 D.2 10.(2019•崇明区二模)在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内11.(2019•嘉定区二模)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补12.(2018•虹口区二模)如图,在矩形ABCD中,点E是CD的中点,联结BE,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()A.外离B.外切C.相交D.内切13.(2018•松江区二模)如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4 B.5 C.6 D.7 14.(2018•长宁区一模)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能15.(2018•奉贤区二模)直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定二.填空题16.(2020•嘉定区一模)如果正多边形的边数是n(n≥3),它的中心角是α°,那么α关于n的函数解析式为.17.(2020•崇明区一模)两圆的半径之比为3:1,当它们外切时,圆心距为4,那么当它们内切时,圆心距为.18.(2020•闵行区一模)已知在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙C与斜边AB 相切,那么⊙C的半径为.19.(2020•嘉定区一模)如图,⊙O的半径长为5cm,△ABC内接于⊙O,圆心O在△ABC的内部.如果AB =AC ,BC =8cm ,那么△ABC 的面积为 cm 2.20.(2020•闵行区一模)半径分别为3cm 与cm 的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB =4cm ,那么圆心距O 1O 2的长为 cm .21.(2020•奉贤区一模)公元263年左右,我国数学家刘徽发现当正多边形的边数无限增加时,这个正多边形面积可无限接近它的外接圆的面积,因此可以用正多边形的面积来近似估计圆的面积,如图,⊙O 是正十二边形的外接圆,设正十二边形的半径OA 的长为1,如果用它的面积来近似估计⊙O 的面积,那么⊙O 的面积约是 .22.(2020•闵行区一模)正五边形的边长与边心距的比值为 .(用含三角比的代数式表示)23.(2020•崇明区一模)正五边形的中心角的度数是 .24.(2019•青浦区二模)如图,在⊙O 中,OA 、OB 为半径,连接AB ,已知AB =6,∠AOB =120°,那么圆心O 到AB 的距离为 .25.(2019•杨浦区二模)如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD =5,AE =2,AF =4.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是 .三.解答题26.(2020•静安区二模)在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.点D在边AB上(不与点A、B重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G.(1)如图,设AD=x,用x的代数式表示DE的长;(2)如果点E是的中点,求∠DFA的余切值;(3)如果△AFD为直角三角形,求DE的长.27.(2020•长宁区二模)已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD=CB.(1)如图1,如果BO平分∠ABC,求证:=;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.28.(2020•青浦区二模)如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为的中点时,求弦BC的长;(2)设OD=x,=y,求y与x的函数关系式;(3)当△AOD与△CDE相似时,求线段OD的长.29.(2020•浦东新区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.30.(2020•闵行区二模)如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点G、H 分别在射线CD、EF上(点G不与点C、D重合),且∠GBH=60°,设CG=x,EH=y.(1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.参考答案一.选择题1.解:∵正五边形的内角的度数是×(5﹣2)×180°=108°,又∵正方形的内角是90°,∴∠1=108°﹣90°=18°;故选:C.2.解:如图,过点A作AF⊥BC于点F,连接CD交AF于点G,∵AB=AC,BC=4,∴BF=CF=2,∵tan B=2,∴,即AF=4,∴AB=,∵D为AB的中点,∴BD=,G是△ABC的重心,∴GF=AF=,∴CG=,∴CD=CG=,∵点B在⊙D内,点C在⊙D外,∴<r<,故选:B.3.解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.4.解:设⊙O2的半径为r,∵⊙O1与⊙O2内切于点A,∴O2A=r,O1A=5,∴r﹣5=3或5﹣r=3,∴r=8或r=2,即O2A的长等于2或8.故选:D.5.解:∵点(3,4),∴点到x轴的距离是4,到y轴的距离是3,∴在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定与x轴相切,与y 轴相交,故选:D.6.解:∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,∴点C可以在圆O1的内部,故A错误,B正确;∵过点B、C的圆记作为圆O2,∴点A可以在圆O2的外部,故C错误;∵过点C、A的圆记作为圆O3,∴点B可以在圆O3的外部,故D错误.故选:B.7.解:∵r>1,∴2<3+r,∴这两个圆的位置关系不可能外离.故选:C.8.解:∵在Rt△ABC中,∠C=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=2BC=4,AC=BC=2,∵⊙A的半径为3,4>3,2>3,∴点B、点C都在⊙A外.故选:D.9.解:∵点A的坐标是(3,2),点B的坐标是(3,﹣4),∴OA==,OB==5,∵以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,∴<r<5,∴r=4符合要求.故选:B.10.解:如图:∵A(1,0),⊙A的半径是2,∴AC=AE=2,∴OE=1,OC=3,A、当a=﹣1时,点B在E上,即B在⊙A上,正确,故本选项不合题意;B、当a=﹣3时,B在⊙A外,即说当a<1时,点B在圆A内错误,故本选项符合题意;C、当a<﹣1时,AB>2,即说点B在圆A外正确,故本选项不合题意;D、当﹣1<a<3时,B在⊙A内正确,故本选项不合题意;故选:B.11.解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.12.解:如图所示:连接MN,可得M是AD的中点,N是BE的中点,则MN是梯形ABED的中位线,则MN=(AB+DE)=4.5,∵EC=3,BC=AD=4,∴BE=5,则⊙N的半径为2.5,⊙M的半径为2,则2+2.5=4.5.故⊙M与⊙N的位置关系是:外切.故选:B.13.解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵⊙A、⊙B没有公共点,∴⊙A与⊙B外离或内含,∵⊙B的半径为1,∴若外离,则⊙A半径r的取值范围为:0<r<5﹣1=4,若内含,则⊙A半径r的取值范围为r>1+5=6,∴⊙A半径r的取值范围为:0<r<4或r>6.故选:D.14.解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,15.解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.二.填空题(共10小题)16.解:由题意可得:边数为360°÷α=n,则α=.故答案为α=.17.解:设大圆的半径为R,小圆的半径为r,则有r:R=1:3;又R+r=4,解,得R=3,r=1,∴当它们内切时,圆心距=3﹣1=2.故答案为:2.18.解:Rt△ABC中,∠C=90°,AC=3,BC=4;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;∵S△ABC=AC•BC=AB•r,∴r=,故答案为:.19.解:作AD⊥BC于D,∵AB=AC,∴BD=CD=BC=4,∴AD垂直平分BC,∴圆心O在AD上,连接OB,在Rt△OBC中,∵BD=4,OB=5,∴OD===3,如图,AD=OA+OD=5+3=8,此时S△ABC=×8×8=32;故答案为:32.20.解:如图,∵⊙O1与⊙O2相交于A、B两点,∴O1O2⊥AB,且AD=BD;又∵AB=4厘米,∴AD=2厘米,∴在Rt△AO1D中,根据勾股定理知O1D=1厘米;在Rt△AO2D中,根据勾股定理知O2D=3厘米,∴O1O2=O1D+O2D=4厘米;同理知,当小圆圆心在大圆内时,解得O1O2=3厘米﹣1厘米=2厘米.故答案是:4或2;21.解:设AB为正十二边形的边,连接OB,过A作AD⊥OB于D,如图所示:∴∠AOB==30°,∵AD⊥OB,∴AD=OA=,∴△AOB的面积=OB×AD=×1×=∴正十二边形的面积=12×=3,∴⊙O的面积≈正十二边形的面积=3,故答案为:3.22.解:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=×360°=72°,∴∠1=∠BOC=×72°=36°,设这个正五边形的边长为a,半径为R,边心距为r,R2﹣r2=(a)2=a2,a=R sin36°,a=2R sin36°;a=r tan36°,∴a=2r tan36°,∴=2tan36°,故正五边形的边长与边心距的比值为2tan36°,故答案为:2tan36°.23.解:正五边形的中心角为:=72°.故答案为:72°.24.解:过O作OC⊥AB交AB于C点,如右图所示:由垂径定理可知,OC垂直平分AB,则AC=AB=3,∵OA=OB,∠AOB=120°,∴∠OAB=30°,∴tan∠OAB=tan30°=,∴OC=AC•tan30°=3×=,即圆心O到AB的距离为;故答案为:.25.解:如图,连接EF,∵四边形ABCD是矩形,∴∠BAC=90°,则EF是⊙O的直径,取EF的中点O,连接OD,作OG⊥AF,则点G是AF的中点,∴GF=AF=2,∴OG是△AEF的中位线,∴OG=AE=1,∴OF==,OD==,∵圆D与圆O有两个公共点,∴﹣<r<+,故答案为:﹣<r<+.三.解答题(共5小题)26.解:(1)如图,过点D作DH⊥AC,垂足为H.在Rt△AEH中,,.在⊙A中,AE=AD=x,∴,∴;(2)∵,∴可设BC=4k(k>0),AB=5k,则AC==3k.∵AC=15,∴3k=15,∴k=5.∴BC=20,AB=25.∵点E是的中点,由题意可知此时点E在边AC上,点F在BC的延长线上,∴∠FAC=∠BAC.∵∠FCA=∠BCA=90°,AC=AC,∴△FCA≌△BCA(ASA),∴FC=BC=20.∵,又∵∠AED=∠FEC,且∠AED、∠FEC都为锐角,∴tan∠FEC=2.∴.∴AE=AC﹣EC=20﹣10=5.过点A作AM⊥DE,垂足为M,则.∵,∴.在Rt△EFC中,.∴在Rt△AFM中,.答:∠DFA的余切值为;(3)当点E在AC上时,只有可能∠FAD=90°.∵FC=CE•tan∠FEC=2(15﹣x),∴.∴.∵,又∵∠AED=∠ADE,且∠AED、∠ADE都为锐角,∴.∴.∴AD=x=.∴.当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF.∵∠AFC、∠AEF都为锐角,∴tan∠AEF=tan∠AFC=2.∵CE=AE﹣AC=x﹣15,∴CF=CE•tan∠AEF=2(x﹣15).∴.∴AD=x=.∴.综上所述,△AFD为直角三角形时,DE的长为或.27.(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC,∴=.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴3∠C+90°=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,∴EC2+2EC﹣4=0,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.28.解:(1)如图1,联结OF,交BC于点H.∵F是中点,∴OF⊥BC,BC=2BH.∴∠BOF=∠COF.∵OA=OF,OC⊥AF,∴∠AOC=∠COF,∴∠AOC=∠COF=∠BOF=60°,在Rt△BOH中,sin∠BOH==,∵AB=6,∴OB=3,∴BH=,∴BC=2BH=3;(2)如图2,联结BF.∵AF⊥OC,垂足为点=D,∴AD=DF.又∵OA=OB,∴OD∥BF,BF=2OD=2x.∴,∴,即,∴,∴y=.(3)△AOD∽△CDE,分两种情况:①当∠DCE=∠DOA时,AB∥CB,不符合题意,舍去.②当∠DCE=∠DAO时,联结OF.∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.∵∠DCE=∠DAO,∴∠OAF=∠OFA=∠OCB=∠OBC.∵∠AOD=∠OCB+∠OBC=2∠OAF,∴∠OAF=30°,∴OD=.即线段OD的长为.29.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.30.解:(1)连接OQ,如图①所示:∵六边形ABCDEF是正六边形,∴BC=DE,∠ABC=120°,BE∥CD,∴=,∠EBC=∠ABC=60°,∵点Q是的中点,∴=,∴+=+,即=,∴∠BOQ=∠EOQ,∵∠BOQ+∠EOQ=180°,∴∠BOQ=∠EOQ=90°.∵BO=OQ,∴∠OBQ=∠BQO=45°,∴∠CBG=∠EBC﹣∠OBQ=60°﹣45°=15°;(2)在BE上截取EM=HE,连接HM,如图②所示:∵正六边形ABCDEF,直径BE=8,∴BO=OE=BC=4,∠BCD=∠FED=120°,∴∠FEB=∠FED=60°,∵EM=HE,∴△HEM是等边三角形,∴EM=HE=HM=y,∠HME=60°,∴∠BCD=∠HMB=120°,∵∠EBC=∠GBH=60°,∴∠EBC﹣∠GBE=∠GBH﹣∠GBE,即∠GBC=∠HBE,∴△BCG∽△BMH,∴.又∵CG=x,BE=8,CD=BC=4,∴,∴y与x的函数关系式为(0<x<4).(3)如图③,当点G在边CD上时.由于△AFH∽△EDG,且∠CDE=∠AFE=120°,①当.∵AF=ED,∴FH=DG,∴CG=EH,即:,解分式方程得:x=4.经检验x=4是原方程的解,但不符合题意舍去.②当.即:,解分式方程得:x=12.经检验x=12是原方程的解,但不符合题意舍去.如图④,当点G在CD的延长线上时.由于△AFH∽△EDG,且∠EDG=∠AFH=60°,①当.∵AF=ED,∴FH=DG,∴CG=EH,即:,解分式方程得:x=4.经检验x=4是原方程的解,但不符合题意舍去.②当.即:,解分式方程得:x=12.经检验x=12是原方程的解,且符合题意.综上所述,如果△AFH与△DEG相似,那么CG的长为12.。

【2020年】上海市中考数学模拟试题(含答案)

【2020年】上海市中考数学模拟试题(含答案)

2020年上海市中考数学模拟试题含答案(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. 212-等于(A )2; (B )2-; (C )22; (D )22-. 2.下列二次根式里,被开方数中各因式的指数都为1的是(A )22y x ; (B )22y x +; (C )2)(y x +; (D )2xy . 3.关于x 的一元二次方程012=--mx x 的根的情况是(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )不能确定.4.一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:那么这8位学生做对题目数的众数和中位数分别是(A )9和8; (B )9和8.5 ; (C )3和2; (D )3和1. 5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为(A )正五边形; (B )正六边形; (C )等腰梯形; (D )平行四边形.做对题目数 6 7 8 9 10 人数112316.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD //BC ,下列判断中错误..的是 (A )如果AB =CD ,AC =BD ,那么四边形ABCD 是矩形; (B )如果AB //CD ,AC =BD ,那么四边形ABCD 是矩形; (C )如果AD =BC ,AC ⊥BD ,那么四边形ABCD 是菱形; (D )如果OA =OC ,AC ⊥BD ,那么四边形ABCD 是菱形. 二、填空题:(本大题共12题,每题4分,满分48分) [在答题纸相应题号后的空格内直接填写答案] 7.计算:=--0122 ▲ .8.在实数范围内分解因式:=-622x ▲ .9.不等式组⎩⎨⎧->->-5,032x x 的解集是 ▲ .10.函数32--=x x y 的定义域是 ▲ . 11.如果函数xm y 13-=的图像在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大,那么m 的取值范围是 ▲ . 12.如果实数x 满足02)1()1(2=-+-+x x x x ,那么xx 1+的值是 ▲ . 13.为了解全区5000名初中毕业生的体重情况,随机抽 测了400名学生的体重,频率分布如图所示(每小 组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克 的学生人数约为 ▲ 人.14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同, 从布袋里摸出两个球,摸到两个红球的概率是 ▲ . 15.如图,在△ABC 中,点D 是边AC 的中点,如果b BC a AB ==,, 那么= ▲ (用向量表示). 16.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上, △AEF 是等边三角形,如果AB =1,那么CE 的长是 ▲ . ABCD F(第16题图)(第15题图)AD(第13题图)组距频率 体重(千克)40 45 50 55 60 65 7017. 在Rt △ABC 中,∠C =90°,∠B =70°,点D 在边AB 上, △ABC 绕点D 旋转后点B 与点C 重合,点C 落在点C ’, 那么∠ACC ’的度数是 ▲ .18.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线 AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分) 化简:(632-++x x x -42-x x )21+÷x ,并求321-=x 时的值. 20.(本题满分10分)解方程:.1521=-++x x 21.(本题满分10分,每小题满分5分)已知:如图,在Rt △ABC 和Rt △BCD 中,∠ABC =∠BCD =90°,BD 与AC 相交于点E ,AB =9,53cos =∠BAC ,125tan =∠DBC .求:(1)边CD 的长; (2)△BCE 的面积.22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共50个.设小盒有n 个,所有盒子所装物品的总量为w 克.①求w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.23.(本题满分12分,第小题满分6分)已知:如图,在菱形ABCD 中,点E 在边BC 上,点F 在BA 的延长线上,BE =AF ,C F //AE ,EC(第21题图)CF 与边AD 相交于点G .求证:(1)FD =CG ; (2)FC FG CG ⋅=2.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知二次函数c bx x y ++-=221的图像与x 轴的正半轴相交于点A (2,0)和点B 、 与y 轴相交于点C ,它的顶点为M 、对称轴与x 轴相交于点N . (1) 用b 的代数式表示顶点M 的坐标; (2) 当tan∠MAN =2时,求此二次函数的解析式 及∠ACB 的正切值.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O 的半径OA 的长为2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C ,AC 的延长线与⊙O 相交于点D .设线段AB 的长为x , 线段OC 的长为y .(1)求y 关于x 的函数解析式,并写出定义域; (2)当四边形ABDO 是梯形时,求线段OC 的长.(第25题图)ABDOC(第24题图)AOx2y2数学试卷参考答案及评分标准 一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6.A .二.填空题:(本大题共12题,满分48分)7.21-; 8.)3)(3(2+-x x ; 9.523<<x ;10.3≠x ; 11.31<m ; 12.2;13.1500; 14.103; 15.a b 2121-;16.13-; 17.50°; 18.23或29.三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分) 19.解:原式=21])2)(2()2)(3(3[+÷-+--++x x x x x x x ……………………………………(3分) =)2(])2)(2()2)(2(2[+⋅-+--++x x x xx x x ……………………………………(2分) =22-x .…………………………………………………………………………(2分) 当32321+=-=x 时,…………………………………………………………(1分) 原式=32=332.……………………………………………………………………(2分)20.解:1152+-=-x x ,………………………………………………………………(1分)112152+++-=-x x x ,…………………………………………………………(2分)x x -=+712.………………………………………………………………………(1分)2144944x x x +-=+,………………………………………………………………(2分)045182=+-x x ,……………………………………………………………………(1分)15,321==x x ,………………………………………………………………………(1分)经检验:15,321==x x 都是增根,………(1分)所以原方程无解.…………(1分)21.解:(1)在Rt △ABC 中,53cos ==∠AC AB BAC .………………………………………(1分)∴1535==AB AC ,………………………………………………………………(1分)∴BC =129152222=-=-AB AC .…………………………………………(1分)在Rt △BCD 中,125tan ==∠BC CD DBC ,………………………………………(1分)∴CD =5.…………………………………………………………………………(1分)(2)过点E 作EH ⊥BC ,垂足为H ,…………………………………………………(1分)∵∠ABC =∠BCD =90°,∴∠ABC +∠BCD =180°,∴CD //AB . ∴95==AB DC AE CE .………………………………………………………………(1分)∵∠EHC =∠ABC =90°,∴EH//AB ,∴145==CA CE AB EH .…………………(1分) ∴14459145145=⨯==AB EH .…………………………………………………(1分)∴71351445122121=⨯⨯=⋅=∆EH BC S EBC .……………………………………(1分)22.解:(1)设小盒每个可装这一物品x 克,…………………………………………………(1分)∴120120120=+-x x ,…………………………………………………………………(2分)02400202=-+x x ,……………………………………………………………(1分)60,4021-==x x ,………………………………………………………………(1分)它们都是原方程的解,但60-=x 不合题意.∴小盒每个可装这一物品40克.(1分)(2)①n n n w 203000)50(6040-=-+=,(n n ,500<<为整数)…………(2分)②)50(6040n n -=,30=n ,2400=w .…………………………………(2分)∴所有盒子所装物品的总量为2400克.23.证明:(1)∵在菱形ABCD 中,AD //BC ,∴∠FAD =∠B ,……………………………(1分)又∵AF=BE ,AD =BA ,∴△ADF ≌△BAE .……………………………………(2分)∴FD =EA ,…………………………………………………………………………(1分)∵CF //AE ,AG //CE ,∴EA =CG .…………………………………………………(1分) ∴FD=CG .…………………………………………………………………………(1分)(2)∵在菱形ABCD 中,CD //AB ,∴∠DCF =∠BFC .……………………………(1分) ∵CF //AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE .……………………………(1分)∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA .…………………(1分) 又∵∠DFG =∠CFD ,∴△FDG ∽△FCD .……………………………………(1分) ∴FDFGFC FD =,FC FG FD ⋅=2.…………………………………………………(1分)∵FD=CG ,FC FG CG ⋅=2.……………………………………………………(1分)24.解:(1)∵二次函数c bx x y ++-=221的图像经过点A (2,0),∴c b ++⨯-=24210,………………………………………………………………(1分)∴b c 22-=,…………………………………………………………………………(1分)∴244)(212221212222+-+--=-++-=++-=b b b x b bx x c bx x y ,………(2分)∴顶点M 的坐标为(b ,2442+-b b ).……………………………………………(1分)(2)∵tan∠MAN ==ANMN2,∴MN =2AN .………………………………………………(1分)∵M (b ,2442+-b b ),∴ N (b ,0),22)2(21244-=+-=b b b MN .……(1分)①当点B 在点N 左侧时, AN =b -2,∴)2(2)2(212b b -=-,2-=b .不符合题意.…………………………………………………………………………(1分)②当点B 在点N 右侧时, AN =2-b , ∴)2(2)2(212-=-b b ,6=b .…………(1分)∴二次函数的解析式为106212-+-=x x y .………………………………………(1分)∴点C (0,–10),∵点A 、B 关于直线MN 对称,∴点B (10,0).∵OB =OC =10,∴BC =102,∠OBC =45°.………………………………………(1分)过点A 作AH ⊥BC ,垂足为H ,∵AB =8,∴AH =BH =42,∴CH =62.∴322624tan ===∠CH AH ACB .……………………………………………………(1分)25.解:(1)在⊙O 与⊙A 中,∵OA=OB ,AB=AC ,∴∠ACB =∠ABC =∠OAB .……(2分)∴△ABC ∽△OAB .…………………………………………………………………(1分)∴OAABAB BC =,∴2x x BC =,………………………………………………………(1分)∴221x BC =,∵OC=OB –BC ,∴y 关于x 的函数解析式2212x y -=,……(1分)定义域为20<<x .………………………………………………………………(1分)(2)①当OD //A B 时,∴OD AB CO BC =,∴22122122x x x=-,……………………………(1分)∴2212x x -=,∴0422=-+x x ,……………………………………………(1分)∴51±-=x (负值舍去).……………………………………………………(1分)∴AB =15-,这时AB ≠OD ,符合题意. ∴OC =15)15(21221222-=--=-x .………………………………………(1分)②当BD //OA 时,设∠ODA =α,∵BD //OA ,OA =OD ,∴∠BDA =∠OAD =∠ODA =α, 又∵OB =OD ,∴∠BOA =∠OBD =∠ODB =α2.…………………………………(1分) ∵AB =AC ,OA =OB ,∴∠OAB =∠ABC =∠ACB =∠COA +∠CAO =α3.………(1分) ∵∠AOB +∠OAB +∠OBA =180°,∴︒=++180332ααα,∴︒=5.22α,∠BOA =45°.………………………………………………………(1分)∴∠ODB =∠OBD =45°,∠BOD =90°,∴BD =22. ∵BD //OA ,∴OABDCO BC =. ∴2222=-y y ,∴222-=y .222-=OC .………………………………(1分)由于BD ≠OA ,222-=OC 符合题意.∴当四边形ABDO 是梯形时,线段OC 的长为15-或222-.或:过点B 作BH ⊥OA ,垂足为H , BH =OH =2,AH =2–2, ∴248)2()22(22222-=+-=+=BH AH AB . ∴222)224(221221222-=--=-=-=AB x OC .…………………………(1分)。

上海市各区2018届九年级中考二模数学试卷汇编——圆

上海市各区2018届九年级中考二模数学试卷汇编——圆

上海市各区2018届九年级中考二模数学试卷精选汇编圆【金山】16.如果一个正多边形的中心角等于30°,那么这个正多边形的边数是 ▲ .17.如果两圆的半径之比为3:2,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d 的的取值范围是 ▲ .【松江】6.如图,在△ABC 中,∠C =90°,AC =3,BC =4,⊙B 的半径为1,已知⊙A 与直线BC 相交,且与⊙B 没有公共点,那么⊙A 的半径可以是(▲)(A )4;(B )5; (C )6; (D )7.【崇明】16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI的边AG 、GH 上,如果4AB =,那么CH 的长为 ▲ .【崇明】17.在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A 为圆心,AE 为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 ▲ .【宝山】6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cm O O 321=,那么圆1O 与圆2O 的位置关系是( )(A )外离; (B )外切; (C )相交; (D )内切.【宝山】17.如图2,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么AOC ∠度数为 度.【嘉定】5.已知⊙A 的半径长为2,⊙B 的半径长为5,如果⊙A 与⊙B 内含,那么圆心距AB 的长度可以为 ·························································· ········································· ···················· ( )(A )0; (B )3; (C )6; (D )9.【静安】15.如图,已知▲O 中,直径AB 平分弦CD ,且交CD 于点E ,如果OE =BE ,那么弦CD 所对的圆心角是 ▲ 度.【静安】16.已知正多边形的边长为a ,且它的一个外角是其内角的一半,那么此正多边形的边心距是 ▲ .(用含字母a 的代数式表示).【静安】18.等腰△ABC 中,AB =AC ,它的外接圆⊙O 半径为1,如果线段OB 绕点O 旋转90°后可与线段OC 重合,那么∠ABC 的余切值是 ▲ .【普陀】17. 如图5,矩形ABCD 中,如果以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,那么AB BC 的值等于 ▲ .(结果保留两位小数)【青浦】17.如图4,在△ABC 中,BC=7,AC =32,tan 1C ,点P为AB 边上一动点(点P 不与点B 重合),以点P 为圆心,PB 为半径画圆,如果点C 在圆外,那么PB 的取值范围是 ▲ .【长宁】5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.【浦东】4.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36° B .54° C .72° D .108°【浦东】5.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .0<d <1B .d >5C .0<d <1或d >5D .0≤d <1或d >5【浦东】17.已知一个弓形所在圆的直径10厘米,弓形的高为2厘米,那么这个弓形的弦长为 厘米.【徐汇】5. 如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A. 45°B. 60°C. 120°D. 135°【徐汇】6. 下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A. 1个B. 2个C. 3个D. 4个【徐汇】16. 已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是 ;【闵行】6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.【闵行】16.如果正n 边形的中心角为2α,边长为5,那么它的边心距为 ▲ .(用锐角α的三角比表示)【黄浦】6.下列命题中,假命题是( )(A )如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;(B )如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;(C )如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;(D )如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【黄浦】15.半径为1的圆的内接正三角形的边长为 .【奉贤】6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( )(A )相离; (B )相切; (C )相交; (D )不确定.【奉贤】17.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A 与圆C 外切,那么圆C 的半径长r 的取值范围是 .【崇明】21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点,过点P 作PD OP ⊥交圆O 于点D .(1)如图1,当PD AB ∥时,求PD 的长;(2)如图2,当BP 平分OPD ∠时,求PC 的长.【浦东】22.如图,在△ABC中,AB=AC=10,sin ∠ABC=,圆O 经过点B 、C ,圆心O 在△ABC 的内部,且到点A 的距离为2,求圆O 的半径.。

2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》一.选择题1.(2019•闵行区一模)已知二次函数y=ax2+bx+c的图象如图所示,那么根据图象,下列判断中不正确的是()A.a<0 B.b>0 C.c>0 D.abc>0 2.(2019•金山区一模)已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0 B.a<0、b<0、c>0C.a<0、b>0、c<0 D.a<0、b<0、c<03.(2019•浦东新区一模)已知二次函数y=﹣(x+3)2,那么这个二次函数的图象有()A.最高点(3,0)B.最高点(﹣3,0)C.最低点(3,0)D.最低点(﹣3,0)4.(2019•闵行区一模)将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4 B.y=2(x﹣1)2+3C.y=2(x﹣1)2﹣3 D.y=2x2﹣35.(2019•浦东新区一模)如果将抛物线y=x2+4x+1平移,使它与抛物线y=x2+1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位6.(2019•嘉定区一模)下列函数中,是二次函数的是()A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=1﹣x2D.y=7.(2019•金山区一模)下列函数是二次函数的是()A.y=x B.y=C.y=x﹣2+x2D.y=8.(2019•长宁区一模)抛物线y=2(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)9.(2019•黄浦区一模)在平面直角坐标系中,如果把抛物线y=﹣2x2向上平移1个单位,那么得到的抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣1 10.(2019•杨浦区模拟)二次函数的复习课中,夏老师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k为实数).夏老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论.夏老师作为活动一员,又补充了一些结论,并从中选择了如下四条:①存在函数,其图象经过点(1,0);②存在函数,该函数的函数值y始终随x的增大而减小;③函数图象有可能经过两个象限;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.上述结论中正确个数为()A.1个B.2个C.3个D.4个11.(2018•虹口区二模)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2D.y=(x﹣1)2.12.(2018•金山区二模)如果将抛物线y=﹣2x2向上平移1个单位,那么所得新抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2﹣1 D.y=﹣2x2+1 13.(2018•浦东新区模拟)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣214.(2018•金山区一模)将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位B.向上平移3个单位C.向左平移4个单位D.向右平移4个单位15.(2018•黄浦区一模)已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>0二.填空题16.(2020•静安区一模)某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为x(x>0),六月份的营业额为y万元,那么y关于x的函数解析式是.17.(2020•金山区一模)如果一条抛物线经过点A(2,5),B(﹣3,5),那么它的对称轴是直线.18.(2020•静安区一模)已知二次函数y=a2x2+8a2x+a(a是常数,a≠0),当自变量x分别取﹣6、﹣4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1y2(填“>”、“<”或“=”).19.(2020•浦东新区一模)将抛物线y=﹣3x2向下平移4个单位,那么平移后所得新抛物线的表达式为.20.(2020•浦东新区一模)二次函数y=﹣2(x+1)2的图象在对称轴左侧的部分是.(填“上升”或“下降”)21.(2020•青浦区一模)如果抛物线y=ax2﹣1的顶点是它的最低点,那么a的取值范围是.22.(2020•金山区一模)抛物线y=2x2﹣1在y轴左侧的部分是.(填“上升”或“下降”)23.(2020•松江区一模)在直角坐标平面中,将抛物线y=2(x+1)2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线表达式是.24.(2020•嘉定区一模)将抛物线y=x2+4x+5向右平移2个单位后,所得抛物线的表达式为.三.解答题25.(2020•金山区二模)在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),其顶点为C.(1)求抛物线的解析式和顶点C的坐标;(2)我们把坐标为(n,m)的点叫做坐标为(m,n)的点的反射点,已知点M在这条抛物线上,它的反射点在抛物线的对称轴上,求点M的坐标;(3)点P是抛物线在第一象限部分上的一点,如果∠POA=∠ACB,求点P的坐标.26.(2020•徐汇区二模)如图,抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和B,与y轴交于点C,顶点为点D.(1)求抛物线的表达式、点B和点D的坐标;(2)将抛物线y=ax2﹣2ax+3向右平移后所得新抛物线经过原点O,点B、D的对应点分别是点B',D',联结B'C,B'D',CD',求△CB'D'的面积.27.(2020•闵行区一模)如图,已知一个抛物线经过A(0,1),B(1,3),C(﹣1,1)三点.(1)求这个抛物线的表达式及其顶点D的坐标;(2)联结AB、BC、CA,求tan∠ABC的值;(3)如果点E在该抛物线的对称轴上,且以点A、B、C、E为顶点的四边形是梯形,直接写出点E的坐标.28.(2020•虹口区一模)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C(0,3),点P在该抛物线的对称轴上,且纵坐标为2.(1)求抛物线的表达式以及点P的坐标;(2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”.①当D在射线AP上,如果∠DAB为△ABD的特征角,求点D的坐标;②点E为第一象限内抛物线上一点,点F在x轴上,CE⊥EF,如果∠CEF为△ECF的特征角,求点E的坐标.29.(2020•虹口区一模)在平面直角坐标系中,将抛物线C1:y=x2﹣2x向左平移2个单位,向下平移3个单位得到新抛物线C2.(1)求新抛物线C2的表达式;(2)如图,将△OAB沿x轴向左平移得到△O′A′B′,点A(0,5)的对应点A′落在平移后的新抛物线C2上,求点B与其对应点B′的距离.30.(2020•青浦区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.参考答案一.选择题1.解:(A)由图象的开口方向可知:a<0,故A正确;(B)由对称轴可知:x=<0,∴b<0,故B错误;(C)由图象可知:c>0,故C正确;(D)∵a<0,b<0,c>0,∴abc>0,故D正确;故选:B.2.解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,由对称轴可知:<0,∴a<0,b<0,c<0,故选:D.3.解:在二次函数y=﹣(x+3)2中,a=﹣1<0,∴这个二次函数的图象有最高点(﹣3,0),故选:B.4.解:由“上加下减,左加右减”的原则可知,将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,y=2(x﹣2+1)2﹣3,即y=2(x﹣1)2﹣3,故选:C.5.解:∵抛物线y=x2+4x+1=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),抛物线y=x2+1的顶点坐标为(0,1),∴顶点由(﹣2,﹣3)到(0,1)需要向右平移2个单位再向上平移4个单位.故选:C.6.解:A、y=2x+1,是一次函数,故此选项错误;B、y=(x﹣1)2﹣x2,是一次函数,故此选项错误;C、y=1﹣x2,是二次函数,符合题意;D、y=,是反比例函数,不合题意.故选:C.7.解:A、y=x属于一次函数,故本选项错误;B、y=的右边不是整式,不是二次函数,故本选项错误;C、y=x﹣2+x2=x2+x﹣2,符合二次函数的定义,故本选项正确;D、y=的右边不是整式,不是二次函数,故本选项错误;故选:C.8.解:∵y=2(x+2)2﹣3∴抛物线的顶点坐标是(﹣2,﹣3)故选:B.9.解:把抛物线y=﹣2x2向上平移1个单位,则得到的抛物线的表达式是:y=﹣2x2+1.故选:C.10.解:①将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0,此选项正确.②当k=0时,y=﹣x+1,该函数的函数值y始终随x的增大而减小;此选项正确;③当k=0时,y=﹣x+1,经过3个象限,当k≠0时,△=(4k+1)2﹣4×2k(﹣k+1)=24k2+1>0,∴抛物线必与x轴相交,∴图象必经过三个象限,此选项错误;④当k=0时,函数无最大、最小值;k≠0时,y=﹣,当k>0时,有最小值,最小值为负;当k<0时,有最大值,最最大值为正;此选项正确.正确的是①②④.故选:C.11.解:∵抛物线y=x2向左平移1个单位后,所得新抛物线的表达式为y=(x+1)2,故选:C.12.解:∵将抛物线y=﹣2x2向上平移1个单位,∴平移后的抛物线的解析式为:y=﹣2x2+1.故选:D.13.解:抛物线y=(x﹣1)2的顶点坐标为(1,0),∵向左平移2个单位,∴平移后的抛物线的顶点坐标为(﹣1,0),∴所得抛物线的表达式为y=(x+1)2.故选:A.14.解:y=﹣(x+1)2+4=﹣x2﹣2x+3向下平移3个单位,使它经过原点y=﹣x2﹣2x,故选:A.15.解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<0,﹣>1,c>0,∴b>﹣2a,∴b+2a>0.故选:D.二.填空题(共9小题)16.解:根据题意,得y=200(1+x)2=200x2+400x+200.故答案为y=200x2+400x+200.17.解:因为A(2,5),B(﹣3,5)的纵坐标相同,∴A、B关于x==﹣对称,∴抛物线的对称轴x=﹣,故答案为x=﹣.18.解:y=a2x2+8a2x+a=a2(x2+8x)+a=a2(x+4)2+a﹣16a2,∴对称轴x=﹣4,∵x分别取﹣6、﹣4时,在对称轴左侧,∴y随x的增大而减小,∴y1>y2,故答案为>.19.解:∵抛物线y=﹣3x2向下平移4个单位,∴抛物线的解析式为y=﹣3x2﹣4,故答案为:y=﹣3x2﹣4.20.解:∵﹣2<0,∴二次函数的开口向下,则图象在对称轴左侧的部分y随x值的增大而增大,故答案为上升.21.解:∵抛物线y=ax2﹣1的顶点是它的最低点,∴抛物线的开口向上,∴a>0,故答案为a>0.22.解:抛物线y=2x2﹣1的对称轴x=0,抛物线开口向上,∴在对称轴左侧y随x的增加而减小,故答案为下降.23.解:抛物线y=2(x+1)2向上平移1个单位后的解析式为:y=2(x+1)2+1.再向右平移1个单位所得抛物线的解析式为:y=2x2+1.故答案为:y=2x2+1.24.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线y=x2+4x+5向右平移2个单位后,所得抛物线的表达式为y=x2+1.故答案为:y=x2+1.三.解答题(共6小题)25.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴顶点C(1,4).(2)设M(m,﹣m2+2m+3),∴M的反射点为(﹣m2+2m+3,m),∵M点的反射点在抛物线的对称轴上,∴﹣m2+2m+3=1,∴m2﹣2m﹣2=0,解得m=1±,∴M(1+,1)或(1﹣,1).(3)如图,设P(a,﹣a2+2a+3).∵A(3,0),B(0,3),C(1,4),∴BC=,AB=3,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴tan∠ACB===3,∵∠POA=∠ACB,∴tan∠POA=3,∴=3,整理得:a2+a﹣3=0解得a=或(舍弃),∴P(,).26.解:(1)将点A的坐标代入抛物线表达式得:0=a+2a+3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;抛物线的对称轴为:x=1,点D的坐标为:(1,4),令y=0,y=﹣x2+2x+3=0,解得:x=3或﹣1,令x=0,则y=3,故点B的坐标为:(3,0)、点C(0,3);故抛物线的表达式为:y=﹣x2+2x+3,B的坐标为(3,0)、点D的坐标为(1,4);(2)设抛物线向右平移了m个单位,则B'、D'的坐标分别为:(m+3,0)、(m+1,4),平移后抛物线的表达式为:y=﹣(x﹣m﹣1)2+4,∵新抛物线经过原点O,∴当x=0时,y=﹣(0﹣m﹣1)2+4=0,解得:m=1或﹣3(舍去﹣3),故点B'、D'的坐标分别为:(4,0)、(2,4),如下图,过点D′作D′H∥y轴交B′C于点H,设直线B′C的表达式为:y=kx+b,则,解得:,故直线B′C的表达式为:y=﹣x+3,当x=2时,y=,故D′H=4﹣=;+S△D′HB′=×D′H×OB′=××4=5.△CB'D'的面积=S△D′HC27.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0).由题意可得:解得:∴抛物线的解析式为:y=x2+x+1,∵y=x2+x+1=(x+)2+,∴顶点D的坐标(﹣,);(2)如图,过点B作BF⊥x轴于F,延长CA交BF于点D,过点A作AM⊥BC于M,∴BF=3,∵A(0,1),C(﹣1,1),∴AC∥x轴,∴CD⊥BF,∴CD=BD=2,AD=1,CA=1,∴BC=2,∠BCD=∠CBD=45°,∵AM⊥BC,∴∠MAC=∠MCA=45°,∴CM=AM,∴CM=AM==,∴BM=BC﹣CM=,∴tan∠ABC==;(3)∵A(0,1),B(1,3),C(﹣1,1),∴直线AC解析式为:y=1,直线AB解析式为:y=2x+1,直线BC解析式为:y=x+2,若BE∥AC,则点E的纵坐标为3,且点E在对称轴上,∴点E(﹣,3);若CE∥AB,则CE的解析式为;y=2x+3,∵点E在对称轴上,∴x=﹣,∴y=2,即点E(﹣,2);若AE∥BC,则AE解析式为:y=x+1,∵点E在对称轴上,∴x=﹣,∴y=,即点E(﹣,),综上所述:点E的坐标为(﹣,3)或(﹣,2)或(﹣,).28.解:(1)抛物线y=﹣x2+bx+c与y轴交于点C(0,3),则c=3,将点A的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+3;点P(1,2);(2)由点A、P的坐标知,∠PAB=60°,直线AP的表达式为:y=(x+1)…①,当α=60°,∠DBA==30°时,△ABD为直角三角形,由面积公式得:y D×AB=AD•BD,即y D×4=2×,解得:y D=,点D在AP上,故点D(0,);当∠ADB=β时,则∠ABD=90°,故点D(3,4);综上,点D的坐标为:(0,)或(3,4);(3)∠CEF为△ECF的特征角,则△CEF为等腰直角三角形,过点E分别作x轴、y轴的垂线交于点M、N,则△CNE≌△EMF(AAS),则EN=EM,即x=y,x=y=﹣x2+2x+3,解得:x=,故点E(,).29.解:(1)由抛物线C1:y=x2﹣2x=(x﹣1)2﹣1知,将其向左平移2个单位,向下平移3个单位得到新抛物线C2的表达式是:y=(x﹣1+2)2﹣1﹣3,即y=(x+1)2﹣4;(2)由平移的性质知,点A与点A′的纵坐标相等,所以将y=5代入抛物线C2,得(x+1)2﹣4=5,则x=﹣4或x=2(舍去)所以AA′=4,根据平移的性质知:BB′=AA′=4,即点B与其对应点B′的距离为4个单位.30.解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、∴y=x2﹣4x+3,∴C(0,3).∵B(3,0),∴OB=OC=3.∵∠COB=90°,∴∠OCB=∠BCM=45°.又∵∠ACB=∠PCB,∴∠OCB﹣∠ACB=∠BCM﹣∠PCB,即∠OCA=∠PCM.∴tan∠OCA=tan∠PCM.∴=.故设PM=a,MC=3a,PN=3﹣a.∴P(3a,3﹣a),将其代入抛物线解析式y=x2﹣4x+3,得(3a)2﹣4(3﹣a)+3=3﹣a.解得a1=,a2=0(舍去).∴P(,).(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D(2,﹣1﹣m).如图2,过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED=∠QFD=∠ODQ=90°,∴∠EOD+∠ODE=90°,∠ODE+∠QDP=90°.∴∠EOD=∠QDF.∴tan∠EOD=tan∠QDF,∴=.∴=.解得m=.故抛物线平移的距离为.。

2018全国各地中考数学试题《圆》试题汇编(解答题)

2018全国各地中考数学试题《圆》试题汇编(解答题)

2018全国各地中考数学试题《圆》试题汇编(解答题)2018全国各地中考数学试题《圆》解答题汇编1.(2018?黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.2.(2018?长春)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求AD的长.(结果保留π)3.(2018?德州)如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是BF的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,⊙O的半径为3,⼀只蚂蚁从点B出发,沿着BE-EC-CB爬回⾄点B,求蚂蚁爬过的路程(π≈3.14,3≈1.73,结果保留⼀位⼩数).4.(2018?北京)如图,AB是⊙O的直径,过⊙O外⼀点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.5.(2018?昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.6.(2018?兰陵县⼆模)如图,已知三⾓形ABC的边AB是⊙O的切线,切点为B.AC经过圆⼼O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.7.(2018?⾚峰)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径是2cm,E是AD的中点,求阴影部分的⾯积(结果保留π和根号)8.(2018?天津)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为AB的中点,求∠ABC和∠ABD的⼤⼩;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的⼤⼩.9.(2018?福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂⾜为E,DE的延长线交此圆于点F.BG⊥AD,垂⾜为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;⼩.10.(2018?潍坊)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;11.(2018?邵阳)如图所⽰,AB是⊙O的直径,点C为⊙O上⼀点,过点B作BD⊥CD,垂⾜为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.12.(2018?襄阳)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上⼀点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;13.(2018?孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB 的延长线于点G.(1)求证:DF是⊙O的切线;,CF=2,求AE和BG的长.14.(2018?抚顺)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上⼀点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.15.(2018?泰州)如图,AB为⊙O的直径,C为⊙O上⼀点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的⾯积.15.(2018?攀枝花)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的⾯积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.16.(2018?扬州)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆⼼,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的⾯积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最⼩值时,直接写出BP的长.17.(2018?云南)如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB 的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的⾯积.18.(2018?聊城)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.19.(2018?长沙)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE ∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三⾓形.(3)求△ABC的外接圆圆⼼P与内切圆圆⼼Q之间的距离.20.(2018?河南)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC 交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:21.(2018?咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC 交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=5,求DE的长.22.(2018?齐齐哈尔)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的⾯积.23.(2018?郴州)已知BC是⊙O的直径,点D是BC延长线上⼀点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂⾜为M,⊙O的半径为4,求AE的长.24.(2018?陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.25.(2018?宿迁)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.26.(2018?淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的⾯积.27.(2018?随州)如图,AB是⊙O的直径,点C为⊙O上⼀点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=45,求MC的长.27.(2018?湖北)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上⼀点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.28.(2018?宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE⾄点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的⾯积.29.(2018?黄⽯)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2 3,∠BCD=120°,A为BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.30.(2018?衡阳)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB 的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求BD的长度.(结果保留π)31.(2018?怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF 的延长线于点D,垂⾜为点D.(1)求扇形OBC的⾯积(结果保留π);(2)求证:CD是⊙O的切线.32.(2018?达州)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由DE、DF、EF围成的阴影部分⾯积.33.(2018?湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.34.(2018?临沂)如图,△ABC为等腰三⾓形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=3,BE=1.求阴影部分的⾯积.35.(2018?常德)如图,已知⊙O是等边三⾓形ABC的外接圆,点D在圆上,在CD的延长线上有⼀点F,使DF=DA,AE∥BC 交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.36.(2018?沈阳)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A 作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.37.(2018?官渡区⼆模)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上⼀点,连接OD,过点B作BE∥OD 交⊙O于点E,连接DE并延长交BN于点C.(1)求证:DE是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.38.(2018?⾦⽔区校级模拟)如图所⽰,PB是⊙O的切线,B为切点,圆⼼O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.39.(2018?历城区⼀模)某居民⼩区的⼀处圆柱形的输⽔管道破裂,维修⼈员为更换管道,需要确定管道圆形截⾯的半径.如图,若这个输⽔管道有⽔部分的⽔⾯宽AB=16cm,⽔最深的地⽅的⾼度为4cm,求这个圆形截⾯的半径.40.(2018?昌平区⼆模)如图,AB是⊙O的直径,弦CD⊥AB于点E,过点C 的切线交AB的延长线于点F,连接DF.(1)求证:DF是⊙O的切线;(2)连接BC,若∠BCF=30°,BF=2,求CD的长.41.(2018?天⽔模拟)已知,如图AB是⊙O的直径,点P在BA的延长线上,弦BC平分∠PBD,且BD⊥PD于点D.(1)求证:PD是⊙O的切线.(2)若AB=8cm,BD=6cm,求CD的长.42.(2018?葫芦岛⼀模)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC 是平⾏四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=8,求图中阴影部分的⾯积.(结果保留根号和π)43.(2018?内乡县⼀模)如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平⾏四边形;(2)探究:②当∠B满⾜什么条件时,AD与⊙O相切?请说明理由.43.(2018?资中县⼀模)如图,AB是⊙O的⼀条弦,OD⊥AB,垂⾜为点C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.44.(2018?合肥模拟)如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.。

2018-2020年上海市中考数学各地区模拟试题分类(一)——《一次函数》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(一)——《一次函数》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(一)——《一次函数》一.选择题1.(2020•虹口区二模)直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2020•浦东新区二模)一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限3.(2020•金山区二模)一次函数y=2x﹣3的图象在y轴的截距是()A.2 B.﹣2 C.3 D.﹣3 4.(2020•崇明区二模)已知一次函数y=(m﹣3)x+6+2m,如果y随自变量x的增大而减小,那么m的取值范围为()A.m<3 B.m>3 C.m<﹣3 D.m>﹣3 5.(2020•兰州模拟)一次函数y=3x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2019•青浦区二模)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、三象限,那么k、b应满足的条件是()A.k>0且b>0 B.k>0且b<0 C.k<0且b>0 D.k<0且b<0 7.(2019•浦东新区二模)直线y=2x﹣7不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(2019•海曙区一模)若一次函数y=kx+b的图象位置如图所示,则k,b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>0 9.(2019•虹口区二模)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3 B.a>3 C.a<﹣3 D.a>﹣3.10.(2019•松江区二模)如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x的不等式kx+b>0的解集是()A.x>﹣1 B.x<﹣1 C.x>2 D.x<2二.填空题11.(2020•浦东新区三模)直线y=﹣2x﹣3的截距是.12.(2020•普陀区二模)将正比例函数y=kx(k是常数,k≠0)的图象,沿着y轴的一个方向平移|k|个单位后与x轴、y轴围成一个三角形,我们称这个三角形为正比例函数y =kx的坐标轴三角形,如果一个正比例函数的图象经过第一、三象限,且它的坐标轴三角形的面积为5,那么这个正比例函数的解析式是.13.(2020•杨浦区二模)定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为“k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为“3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为“k级函数”,那么k的值是.14.(2020•松江区二模)某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为元.15.(2020•青浦区二模)如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.16.(2020•徐汇区二模)已知直线y=kx+b(k≠0)与x轴和y轴的交点分别是(1,0)和(0,﹣2),那么关于x的不等式kx+b<0的解集是.17.(2020•徐汇区二模)已知正比例函数y=kx(k≠0)的函数值y随着自变量x的值增大而减小,那么符合条件的正比例函数可以是.(只需写出一个)18.(2020•金山区二模)上海市居民用户燃气收费标准如表:年用气量(立方米)每立方米价格(元)第一档0﹣﹣﹣310 3.00第二档310(含)﹣﹣﹣520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是.19.(2020•奉贤区二模)如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而.(填“增大”或“减小”)20.(2020•虹口区二模)某公司市场营销部的个人月收入y(元)与其每月的销售量x(件)成一次函数关系,其图象如图所示,根据图中给出的信息可知,当营销人员的月销售量为0件时,他的月收入是元.三.解答题21.(2020•浦东新区三模)甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?22.(2020•普陀区二模)在平面直角坐标系xOy中(如图),已知一次函数y=2x+m与y =﹣x+n的图象都经过点A(﹣2,0),且分别与y轴交于点B和点C.(1)求B、C两点的坐标;(2)设点D在直线y=﹣x+n上,且在y轴右侧,当△ABD的面积为15时,求点D的坐标.23.(2020•嘉定区二模)已知汽车燃油箱中的y(单位:升)与该汽车行驶里程数x(单位:千米)是一次函数关系.贾老师从某汽车租赁公司租借了一款小汽车,拟去距离出发地600公里的目的地旅游(出发之前,贾老师往该汽车燃油箱内注满了油).行驶了200千米之后,汽车燃油箱中的剩余油量为40升;又行驶了100千米,汽车燃油箱中的剩余油量为30升.(1)求y关于x的函数关系式(不要求写函数的定义域);(2)当汽车燃油箱中的剩余油量为8升的时候,汽车仪表盘上的燃油指示灯就会亮起来.在燃油指示灯亮起来之前,贾老师驾驶该车可否抵达目的地?请通过计算说明.24.(2020•青浦区二模)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.25.(2020•静安区二模)疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.参考答案一.选择题1.解:∵直线y=﹣x+1中,k=﹣1<0,b=1>0,∴直线的图象经过第一,二,四象限.∴不经过第三象限,故选:C.2.解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限.故选:D.3.解:当x=0时,y=2x﹣3=﹣3,∴一次函数y=2x﹣3的图象在y轴的截距是﹣3.故选:D.4.解:根据题意,得:m﹣3<0,解得:m<3,故选:A.5.解:∵一次函数y=3x﹣2中,k=3>0,b=﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B.6.解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、三象限,∴k>0,b>0,故选:A.7.解:∵直线y=2x﹣1,k=2>0,b=﹣1,∴该直线经过第一、三、四象限,不经过第二象限,故选:B.8.解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:D.9.解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.10.解:由题意可得:一次函数y=kx+b中,y>0时,图象在x轴上方,x>﹣1,则关于x的不等式kx+b>0的解集是x>﹣1,故选:A.二.填空题(共10小题)11.解:∵b=﹣3,∴直线y=﹣2x﹣3的截距为﹣3.故答案为:﹣3.12.解:∵正比例函数的图象经过第一、三象限,∴k>0,∴当正比例函数y=kx(k是常数,k≠0)的图象,沿着y轴向上平移|k|个单位时,所得函数的解析式为y=kx+k,∴与x轴的交点坐标为(﹣1,0),与y轴的交点坐标为(0,k),∵它的坐标轴三角形的面积为5,∴=5,∴k=10,∴这个正比例函数的解析式是y=10x,∵当正比例函数y=kx(k是常数,k≠0)的图象,沿着y轴向下平移|k|个单位时,所得函数的解析式为y=kx﹣k,∴与x轴的交点坐标为(1,0),与y轴的交点坐标为(0,﹣k),∵它的坐标轴三角形的面积为5,∴=5,∴k=10,∴这个正比例函数的解析式是y=10x,故答案为:y=10x.13.解:对于一次函数y=2x﹣1(1≤x≤5),当x=1时,y=1;当x=5时,y=9.因为y=2x﹣1(1≤x≤5)是“k级函数”,所以有9﹣1=k(5﹣1),解得k=2.故答案为214.解:由图象可知,出租车的起步价是14元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2.4x+6.8,∴出租车行驶了10千米则y=2.4×10+6.8=30.8(元),故答案为30.8.15.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.16.解:把(1,0)和(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣2,解不等式2x﹣2<0得x<1.故答案为x<1.17.解:∵正比例函数y=kx(k≠0)的函数值y随着自变量x的值增大而减小,∴k<0,∴符合条件的正比例函数可以是y=﹣2x,故答案为:y=﹣2x.18.解:根据题意得第一档燃气收费标准为3.00(元/立方米),∴该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是y=3x(0≤x<310).故答案为:y=3x(0≤x<310).19.解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.20.解:设y与x的函数关系式为y=kx+b,,解得,,即y与x的函数关系式为y=50x+3000,当x=0时,y=3000,即当营销人员的月销售量为0件时,他的月收入是3000元,故答案为:3000.三.解答题(共5小题)21.解:(1)设y1关于x的函数解析为y1=kx,120k=100,得k=,即y1关于x的函数解析为y1=x(0≤x≤120),设y2关于x的函数解析为y2=ax+b,,得,即y2关于x的函数解析为y2=x﹣20(15≤x≤90);(2)令x=x﹣20,得x=40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.22.解:(1)将A(﹣2,0)代入y=2x+m,解得m=4,∴y=2x+4,令x=0,则y=4,即B(0,4),将A(﹣2,0)代入y=﹣x+n,解得n=﹣1,∴y=﹣x﹣1,令x=0,则y=﹣1,即C(0,﹣1),(2)如图,过D作DE⊥BC于E,当△ABD的面积为15时,S△ABC +S△BCD=15,即AO×BC+DE×BC=15,∴×2×5+×DE×5=15,∴DE=4,y=﹣x﹣1中,令x=4,则y=﹣3,∴D(4,﹣3).23.解:(1)设y关于x的函数关系式为y=kx+b由题意,得,解得,∴y关于x的函数关系式为;(2)当y=8时,,解得x=520.∵520<600,∴在燃油指示灯亮起来之前,贾老师驾驶该车不能抵达目的地.24.解:(1)点A的实际意义为:20分钟时,甲乙两人相距500米.(2)根据题意得,(米/分),(米/分),依题意,可列方程:75(x﹣20)+50(x﹣20)=500,解这个方程,得x=24,答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24.25.解:(1)设一次函数的解析式为y=kx+b(k、b为常数,k≠0),由一次函数的图象可知,其经过点(0,0.8)、(10,20.3),代入得,解得,∴这个一次函数的解析式为y=1.95x+0.8.(2)如果在A公司购买,所需的费用为:y=1.95×40+0.8=78.8万元;如果在B公司购买,所需的费用为:2×30+1.9×(40﹣30)=79万元;∵78.8<79,∴在A公司购买费用较少.。

2020年中考数学上海市各地全真模拟题:圆的知识点

2020年中考数学上海市各地全真模拟题:圆的知识点

必刷全真模拟题:《圆》(上海市专版)1.(2020•宝山区一模)如图,直线l :y =x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1为半径画弧交x 轴于点A 2;再过点A 2作x 的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去. 求:(1)点B 1的坐标和∠A 1OB 1的度数; (2)弦A 4B 3的弦心距的长度.2.(2020•闵行区一模)如图,梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =4,tan B =3.以AB 为直径作⊙O ,交边DC 于E 、F 两点. (1)求证:DE =CF ; (2)求:直径AB 的长.3.(2020•亳州模拟)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.4.(2019•杨浦区三模)△ABC中,∠ACB=90°,tan B=,AB=5,点O为边AB上一动点,以O为圆心,OB为半径的圆交射线BC于点E,以A为圆心,OB为半径的圆交射线AC于点G.(1)如图1,当点E、G分别在边BC、AC上,且CE=CG时,请判断圆A与圆O的位置关系,并证明你的结论;(2)当圆O与圆A存在公共弦MN时(如图2),设OB=x,MN=y,求y关于x的函数解析式,并写出定义域;(3)设圆A与边AB的交点为F,联结OE、EF,当△OEF为以OE为腰的等腰三角形时,求圆O的半径长.5.(2019•青浦区二模)已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点,以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,连接EF交CD于点G.(1)如图1,如果BC=2,求DE的长;(2)如图2,设BC=x,=y,求y关于x的函数关系式及其定义域;(3)如图3,连接CE,如果CG=CE,求BC的长.6.(2019•静安区二模)已知:如图,△ABC内接于⊙O,AB=AC,点E为弦AB的中点,AO 的延长线交BC于点D,联结ED.过点B作BF⊥DE交AC于点F.(1)求证:∠BAD=∠CBF;(2)如果OD=DB.求证:AF=BF.7.(2019•普陀区二模)如图1,在Rt△ABC中,∠ACB=90°,AB=5,cos∠BAC=,点O是边AC上一个动点(不与A、C重合),以点O为圆心,AO为半径作⊙O,⊙O与射线AB交于点D,以点C为圆心,CD为半径作⊙C,设OA=x.(1)如图2,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.8.(2019•嘉定区二模)在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC 于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.9.(2019•虹口区二模)如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC上一动点,以P为圆心,BP长为半径作⊙P,交射线BC于点Q,联结BD、AQ相交于点G,⊙P 与线段BD、AQ分别相交于点E、F.(1)如果BE=FQ,求⊙P的半径;(2)设BP=x,FQ=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结PE、PF,如果四边形EGFP是梯形,求BE的长.10.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.点O 在边BC上,以O为圆心,OB为半径的弧经过点A.P是弧AB上的一个动点.(1)求半径OB的长;(2)如果点P是弧AB的中点,联结PC,求∠PCB的正切值;(3)如果BA平分∠PBC,延长BP、CA交于点D,求线段DP的长.11.(2019•宝山区二模)如图已知:AB是圆O的直径,AB=10,点C为圆O上异于点A、B 的一点,点M为弦BC的中点.(1)如果AM交OC于点E,求OE:CE的值;(2)如果AM⊥OC于点E,求∠ABC的正弦值;(3)如果AB:BC=5:4,D为BC上一动点,过D作DF⊥OC,交OC于点H,与射线BO 交于圆内点F,请完成下列探究.探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.12.(2019•徐汇区二模)如图,△ABC中,AC=BC=10,cos C=,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长13.(2019•杨浦区二模)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图1,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图2,当点B为的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.14.(2019•奉贤区二模)如图,已知△ABC,AB=,BC=3,∠B=45°,点D在边BC 上,联结AD,以点A为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF ⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是的中点,求BD:CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.15.(2019•金山区二模)如图,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D 由点C向点A以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D,点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA.(2)设经过点D、C、E三点的圆为⊙P.①当⊙P与边AB相切时,求t的值.②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧),联结CP并延长CP交边AB于点M,当△PFM与△CDE相似时,求t的值.16.(2019•金山区一模)已知多边形ABCDEF是⊙O的内接正六边形,联结AC、FD,点H 是射线AF上的一个动点,联结CH,直线CH交射线DF于点G,作MH⊥CH交CD的延长线于点M,设⊙O的半径为r(r>0).(1)求证:四边形ACDF是矩形.(2)当CH经过点E时,⊙M与⊙O外切,求⊙M的半径(用r的代数式表示).(3)设∠HCD=α(0<α<90°),求点C、M、H、F构成的四边形的面积(用r及含α的三角比的式子表示).参考答案1.解:(1)∵直线的解析式y =x ,∴tan ∠A 1OB 1==,∴∠A 1OB 1=60°,OA 1=1, ∴A 1B 1=,OA 2=OB 1=2, ∴B 1(1,).(2)连接A 4B 3,作OH ⊥A 4B 3于H . 由题意OA 1=1,OA 2=2,OA 3=4,OA 4=8, ∵OA 4=OB 3,OH ⊥A 4B 3, ∴∠A 4OH =∠A 4OB 3=30°, ∴OH =OA 4•cos30°=8×=4.2.(1)证明:过点O 作OH ⊥DC ,垂足为H . ∵AD ∥BC ,∠ADC =90°,OH ⊥DC , ∴∠BCN =∠OHC =∠ADC =90°. ∴AD ∥OH ∥BC . 又∵OA =OB . ∴DH =HC .∵OH ⊥DC ,OH 过圆心, ∴EH =HF , ∴DH ﹣EH =HC ﹣HF . 即:DE =CF .(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.3.(1)证明:连接O1A,∵点E为AD的中点,∴O1E⊥AD,∵⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴O1C⊥AB,在Rt△O1EA和Rt△O1CA中,,∴Rt△O1EA≌Rt△O1CA(HL)∴O1E=O1C;(2)解:设⊙O2的半径长为r,∵O1E=O1C=6,∴O2C=10﹣6=4,在Rt△O1EO2中,O2E==8,则AC=AE=8﹣r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8﹣r)2+42,解得,r=5,即⊙O2的半径长为5.4.解:(1)圆A与圆O外切,理由如下:∵∠ACB=90°,tan B=,AB=5,∴AC=3,BC=4,作OP⊥BE于P,如图1所示:则PB=PE,OP∥AC,∴=,设PB=PE=x,则CG=CE=4﹣2x,∴OB==x,AG=AC﹣CG=2x﹣1,∵AG=OB,∴2x﹣1=x,解得:x=,∴OB═,∴OA=AB﹣OB=5﹣==2OB,∴圆A与圆O外切;(2)连接OM,如图2所示:∵圆O与圆A存在公共弦MN,∴OA与MN垂直平分,∴∠ODM=90°,DM=MN=y,AD=OD=(5﹣x),由勾股定理得:DM2=OM2﹣OD2,即(y)2=x2﹣()2,整理得:y2=3x2+10x﹣25,∴y=(<x<5);(3)分三种情况:①当圆O与圆A外切,OE=OF时,圆O与圆A外切,圆O的半径长OB=;②当OE=FE时,圆O与圆A相交,如图3所示:作EH⊥OF于H,则OF=OH=﹣OB,∵∠B=∠B,∠EHB=90°=∠C,∴△BEH∽△BAC,∴=,∴EH==,在Rt△OEH中,由勾股定理得:()2+(﹣OB)2=OE2=OB2,解得:OB=;③当O与A重合时,OE=OF,F与B重合,OE=AB=5;综上所述,当△OEF为以OE为腰的等腰三角形时,圆O的半径长为或或5.5.解:(1)如图1中,连接CE.在Rt△ACB中,∵∠ACB=90°,AC=1,BC=2,∴AB==,∵CD是⊙Q的直径,∴∠CED=90°,∴CE⊥AB,∵BD=AD,∴CD=AB=,∵•AB•CE=•BC•AC,∴CE=,在Rt△CDE中,DE===.(2)如图2中,连接CE,设AC交⊙Q于K,连接FK,DF,DK.∵∠FCK=90°,∴FK是⊙Q的直径,∴直线FK经过点Q,∵CD是⊙Q的直径,∴∠CFD=∠CKD=90°,∴DF⊥BC,DK⊥AC,∵DC=DB=DA,∴BF=CF,CK=AK,∴FK∥AB,∴=,∵BC=x,AC=1,∴AB=,∴DC=DB=DA=,∵△ACE∽△ABC,∴可得AE=,∴DE=AD﹣AE=﹣,∴=,∴=,∴y=(x>1).(3)如图3中,连接FK.∵CE=CG,∴∠CEG=∠CGE,∵∠FKC=∠CEG,∵FK∥AB,∴∠FKC=∠A,∵DC=DA,∴∠A=∠DCA,∴∠A=∠DCA=∠CEG=∠CGE,∴∠CDA=∠ECG,∴EC=DE,由(2)可知:=﹣,整理得:x2﹣2x﹣1=0,∴x=1+或1﹣(舍弃),∴BC=1+.6.(1)证明:如图1所示:∵AB=AC,∴∠ABC=∠C,∵直线AD经过圆心O,∴AD⊥BC,BD=CD,∵点E为弦AB的中点,∴DE是△ABC的中位线.∴DE∥AC,∵BF⊥DE,∴∠BPD=90°,∴∠BFC=90°,∴∠CBF+∠ACB=90°.∵AB=AC,∴∠ABC=∠ACB,∴∠CBF+∠ABC=90°,又∵AD⊥BC,∴∠BAD+∠ABC=90°,∴∠BAD=∠CBF;(2)证明:连接OB.如图2所示:∵AD⊥BC,OD=DB,∴△ODB是等腰直角三角形,∴∠BOD=45°.∵OB=OA,∴∠OBA=∠OAB.∵∠BOD=∠OBA+∠OAB,∴∠BAO=∠BOD=22.5°,∵AB=AC,且AD⊥BC,∴∠BAC=2∠BAO=45°.∵∠2=90°,即BF⊥AC,∴在△ABF中,∠ABF=90°﹣45°=45°,∴∠ABF=∠BAC,∴AF=BF.7.解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,AB=5,cos∠BAC=,∴AC=4,BC===3,∵OA=OB=x,∴OC=4﹣x,在Rt△BOC中,∵OB2=BC2+OC2,∴x2=32+(4﹣x)2,∴x=(2)如图2中,作CH⊥AB于H,OG⊥AB于G,EK⊥AC于K,连接CE.∵•AB•CH=•BC•AC,∴CH=,AH=,∵OD=OA=x,OG⊥AD,∴AG=DG=OA•cos A=x,∴AD=x,DH=x﹣,∴CD2=()2+(x﹣)2,∵AK=AE•cos A=y,EK=y,∴CE2=(4﹣y)2+(y)2,∵CD=CE,∴()2+(x﹣)2=(4﹣y)2+(y)2,∴x2﹣x=y2﹣y,∴(y﹣)2=(x﹣2)2,∵y<,x>2,∴﹣y=x﹣,∴y=﹣x+(2<x≤).(3)①如图3﹣1中,当⊙C经过点B时,易知:BH=DH=,∴BD=,∴AD=5﹣=,∴x=,∴x=,观察图象可知:当0<x<时,⊙C与线段AB只有一个公共点.②如图3﹣2中,当⊙C与AB相切时,CD⊥AB,易知OA=2,此时x=2,③如图3﹣3中,当<x<4时,⊙C与线段AB只有一个公共点.综上所述,当0<x<或x=2或<x<4时,⊙C与线段AB只有一个公共点.8.解:(1)过点O作ON∥BC交AM于点N,如图1∴,,∵∴∵点M是弦BC的中点∴BM=MC∴,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°,又∵∠MOC=∠EOM∴△MOC∽△EOM;∴,∵OE:CE=1:2∴,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,∴;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM ∵DF⊥OC,∴DL∥OC,∴∠LDB=∠C=∠B∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=∵DL∥OC,∴设BD=x,则CD=8﹣x,∴BL=DL=x,CH=(8﹣x),OH=OC﹣CH=5﹣(8﹣x),∵OH∥DL,∴,∴=;∴y关于x的函数解析式是定义域是,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5﹣x,∴,解得:x=,∴BD=.9.解:(1)∵BE=FQ,∴∠BPE=∠FPQ,∵PE=PB,∴∠EBP=(180°﹣∠EPB),同理∠FQP=(180°﹣∠FPQ),∴∠EBP=∠FQP,∵AD∥BC,∴∠ADB=∠EBP,∴∠FQP=∠ADB,∴tan∠FQP=tan∠ADB=,设⊙P的半径为r,则tan∠FQP==,∴=,解得:r=,∴⊙P的半径为;(2)过点P作PM⊥FQ,垂足为点M,如图1所示:在Rt△ABQ中,cos∠AQB====,在Rt△PQM中,QM=PQ cos∠AQB=,∵PM⊥FQ,PF=PQ,∴FQ=2QM=,∴,当圆与D点相交时,x最大,作DH⊥BC于H,如图2所示:则PD=PB=x,DH=AB=4,BH=AD=3,则PH=BP﹣BH=x﹣3,在Rt△PDH中,由勾股定理得:42+(x﹣3)2=x2,解得:x=,∴x的取值范围为:;(3)设BP=x,分两种情况:①EP∥AQ时,∴∠BEP=∠BGQ,∵PB=PE,∴∠PBE=∠BEP,∴∠BGQ=∠PBE,∴QG=QB=2x,同理:AG=AD=3,在Rt△ABQ中,由勾股定理得:42+(2x)2=(3+2x)2,解得:x=,∴QG=QB=2x=,∵EP∥AQ,PB=PQ,∴BE=EG,∵AD∥BC,∴=,即=,解得:BG=,∴BE=BG=;②PF∥BD时,同①得:BG=BQ=2x,DG=AD=3,在Rt△ABD中,由勾股定理得:42+32=(3+2x)2,解得:x=1或x=﹣4(舍去),∴BQ=2,∴BP=1,作PN⊥BG于N,则BE=2BN,如图3所示:∵AD∥BC,∴∠PBN=∠ADB,∴cos∠PBN=cos∠ADB=,即=,∴BN=,∴BE=2BN=;综上所述,或.10.解:(1)∵Rt△ABC中,∠ACB=90°,AC=,BC=16,∴AB==12,如图1,过O作OH⊥AB于H,则BH=AB=6,∵∠BHO=∠ACB=90°,∠B=∠B,∴△BHO∽△BCA,∴,∴=,∴OB=9;(2)如图2,连接OP交AB于H,过P作PE⊥BC于E,∵点P是弧AB的中点,∴OP⊥AB,AH=BH=AB=6,在Rt△BHO中,OH===3,在△POE与△BOH中,,∴△POE≌△BOH(AAS),∴PE=HB=6,OE=OH=3,∴CE=BC﹣OB+OE=10,∴∠PCB的正切值==;(3)如图3,过A作AE⊥BD于E,连接CP,∵BA平分∠PBC,AC⊥BC,∴AE=AC=4,∵∠AED=∠ACB=90°,∠D=∠D,∴△ADE∽△BDC,∴=,设DE=x,∴=,∴AD=,在Rt△ACB与Rt△AEB中,,∴Rt△ACB≌Rt△AEB(HL),∴BE=BC=16,∵CD2+BC2=BD2,∴(4+)2+162=(16+x)2,解得:x=,∴AD=,BD=16+=,∴CD=,∴OB=9,过O作OF⊥PB交PB于F,则△OBF∽△DBC,∴,∴=,∴BF=7,∴PB=2BF=14,∴PD=BD﹣BP=.11.解:(1)如图1,过点O作ON∥BC交AM于点N,∵点O是AB的中点,∴点N是AM的中点,∴ON=BM,∵点M为弦BC的中点,∴BM=CM,∴ON=CM,∵ON∥BC,∴=;(2)如图1,连接OM,∵点M为弦BC的中点,∴OM⊥BC,∵AM⊥OC于点E,∴∴∠OME+∠CME=∠CME+∠C=90°,∴∠OME=∠MCE,∴△OME∽△MCE,∴ME2=OE•CE,设OE=x,则CE=2x,ME=x,在Rt△MCE中,CM==x,∴sin∠ECM===∴sin∠ABC=;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,∵DF⊥OC,∴DL∥OC,∴∠LDB=∠C=∠B,∴BL=DL,∵AB=10,AB:BC=5:4,设BD=x,则CD=8﹣x,BL=DL=x,CH=,OH=OC﹣CH=5﹣(8﹣x),∵OH∥DL,∴=,∴,∴y=(其中);探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5﹣x,∴,解得:x=,∴BD=.12.解:(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cos C=,则sin C=,sin C===,解得:R=;(2)在△ABC中,AC=BC=10,cos C=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=BC sin C=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4﹣x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,PD∥BE,tanβ=2,则cosβ=,sinβ=,EB=BD cosβ=(4﹣x)×=4﹣x,∴PD∥BE,∴,即:=,整理得:y=(0<x<10);(3)以EP为直径作圆Q如下图所示,点D在圆P上,EP是圆Q的直径,则点D也在圆Q上,故GD为相交所得的公共弦,设∠DCP=∠PDC=∠α,GD是公共弦,则GD⊥PE,则∠PED=∠BDE,∵∠EDP=90°,∴∠PDE+∠EPD=90°=∠EPD+∠GDP,故∠PED=∠EDP=∠α,由(2)知tan∠BAC=tanβ=2,故tan,则cosα=,则AD=AG=x,在Rt△EPD中,ED=2PD=2x,在Rt△BED中,ED=2x,则EB=ED=x,则EC=CB﹣BE=10﹣x,在Rt△CGE中,CG=AC﹣AG=10﹣2x,cos∠C===,解得:x=;GD=2PD cosα=2x cosα=2××=.13.解:(1)连接OB、OC.∵OB=OC=OA=BC∴△OBC是等边三角形∴∠BOC=60°∵D为BC中点∴∠COD=∠BOC=30°∵OA=OC∴∠OCA=∠OAC=α∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α∴∠AOD=∠AOC﹣∠COD=180°﹣2α﹣30°=150°﹣2α(2)连接AB、OB、OC、OD∵B为的中点∴∴AB=BC∵BC=AO=2∴OA=AB=OB=BC=OC=2∴△AOB与△BOC是等边三角形∴∠AOB=∠BOC=60°∵D是BC中点∴∠BOD=∠BOC=30°,BD=BC=1∴OD2=OB2﹣BD2=4﹣1=3∵∠AOD=∠AOB+∠BOD=90°∴AD=(3)如图3中,作直线OD交⊙D于M,N.由题意△OBC是等边三角形,OB=OC=BC=2,∵BD=CD=1,∴OD⊥BC,∴OD=,当AD=OM=﹣1时,以O为圆心,AD为半径的圆与以BC为直径的圆外切,∵AD•DE=BD•CD,∴DE=,∴AE=.当AD=ON=+1时,以O为圆心,AD为半径的圆与以BC为直径的圆内切,∵AD•DE=BD•CD,∴DE=,∴AE=,综上所述满足条件的AE的值为或.14.解:(1)过点A作AH⊥BC,垂足为点H.∵∠B=45°,AB=,∴BH=AH=AB•cos B=1.∵BD=x,∴DH=|x﹣1|.在Rt△ADH中,∠AHD=90°,∴AD==.联结DF,点D、F之间的距离y即为DF的长度.∵点F在圆A上,且AF⊥AD,∴AD=AF,∠ADF=45°.在Rt△ADF中,∠DAF=90°,∴DF==.∴y=.(0≤x≤3).(2)∵E是的中点,∴AE⊥DF,AE平分DF.∵BC=3,∴HC=3﹣1=2.∴AC==.设DF与AE相交于点Q,在Rt△DCQ中,∠DCQ=90°,tan∠DCQ=.在Rt△AHC中,∠AHC=90°,tan∠ACH==.∵∠DCQ=∠ACH,∴=.设DQ=k,CQ=2k,AQ=DQ=k,∵3k=,k=,∴DC==.∵BD=BC﹣CD=,∴=.(3)如果四边形ADCF是梯形则①当AF∥DC时,∠AFD=∠FDC=45°.∵∠ADF=45°,∴AD⊥BC,即点D与点H重合.∴BD=1.②当AD∥FC时,∠ADF=∠CFD=45°.∵∠B=45°,∴∠B=∠CFD.∵∠B+∠BAD=∠DF+∠FDC,∴∠BAD=∠FDC.∴△ABD∽△DFC.∴=.∵DF=AD,DC=BC﹣CD.∴AD2=BC﹣BD.即()2=3﹣x.整理得x2﹣x﹣1=0,解得x=(负数舍去).综上所述,如果四边形ADCF是梯形,BD的长是1或.15.(1)证明:由题意得:CD=t,CE=t,由勾股定理得,BC==12,=,==,∴=,又∠C=∠C,∴△DCE∽△BCA;(2)①连结CP并延长CP交AB于点H,∵∠ACB=90°,∴DE是⊙P的直径,即P为DE中点,∴CP=DP=PE=DE,∴∠PCE=∠PEC,∵△DCE∽△BCA,∴∠CDE=∠B,∵∠CDE+∠CED=90°,∴∠B+∠HCB=90°,即CH⊥AB,∵⊙P与边AB相切,∴点H为切点,CH为⊙P的直径,∵sin A==,∴=,解得,CH=,∴DE=,sin A=sin∠CED==,即=,解得,CD=,∴t=;②由题意得,0<t≤12,即0<t≤9,∵CD=t,CE=t,∴DE==t,由①得,CM=,CP=DE=t,CM⊥AB,∴PM=﹣t,PF=CP=t,∠PMF=90°,当△FMP∽△DCE时,=,即=,解得,t=;当△PMF∽△DCE时,=,即=,解得,t=;∴综上所述:当△PFM与△CDE相似时.t=或t=.16.解:(1)证明:∵多边形ABCDEF是⊙O的内接正六边形,∴AB=AC,,∴∠BAC=∠BCA,∵∠BAC+∠BCA+∠ABC=180°,∴∠BAC=30°,得∠CAF=90°,同理∠ACD=90°,∠AFD=90°,∴四边形ACDF是矩形.(2)如图1,连接OC、OD,由题意得:OC=OD,∠COD=,∴△OCD为等边三角形,∴CD=OC=r,∠OCD=60°,作ON⊥CD,垂足为N,即ON为CD弦的弦心距,∴CN=CD=r,由得,作OP⊥AC垂足为P,即OP为AC弦的弦心距,∴CP=AC,∵∠OCP=90°﹣60°=30°,∴CP=OC•cos30°=,得AC=r,当CH经过点E时,可知∠ECD=30°,∵四边形ACDF是矩形,∴AF∥CD,∴∠AHC=∠ECD=30°,∴在Rt△ACH中,CH=2AC=2r,∵MH⊥CH,∴cos∠HCM=,得CM=4r,∴MN=,∴在Rt△MON中,OM=,∵⊙M与⊙O外切,∴r Q+r M=OM,即⊙M的半径为(﹣1)r.(3)如图2,作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,∵AF∥CD,AC⊥CD,∴HQ=AC=r,∴CQ=HQ•cot∠HCQ=r•cotα,MQ=HQ•tan∠QHM=r•tanα,即CM=r(tanα+cotα),①当0°<α<60°时,点H在边AF的延长线上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CQ﹣CD=r•cotα﹣r,∴S==.②当α=60°时,点H与点F重合,此时点C、M、H、F构成三角形,非四边形,所以舍去.③当60°<α<90°时,点H在边AF上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CD﹣CQ=r﹣r•cotα,∴S==.综上所述,当∠HCD=α(0°<α<90°)时,点C、M、H、F构成的四边形的面积为或.。

上海市2020年中考数学模拟试卷(含答案解析)

上海市2020年中考数学模拟试卷(含答案解析)

的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.
16. 已知 Rt △ ABC中,∠ C=90°AC,=3,BC= , CD⊥ AB,垂足为点D,以点 D为圆
心作⊙ D,使得点 A在⊙ D外,且点 B在⊙ D内.设⊙ D的半径为 r ,那么 r 的取值范
围是

【分析】 先根据勾股定理求出 AB的长,进而得出 CD的长,由点与圆的位置关系即
口方向是解题的关键.
11. 二次函数 y=(x﹣1)2﹣ 3的图象与 y轴的交点坐标是( 0,﹣ 2)

【分析】 求自变量为 0时的函数值即可得到二次函数的图象与 y轴的交点坐标. 【解答】 解:把x=0代入 y=(x﹣1)2﹣3得y=1﹣3=﹣2,所以 该二次函数的图象与 y轴的交点坐标为( 0,﹣ 2), 故答案为( 0,﹣ 2). 【点评】本题考查了二次函数图象上点的坐标特征,在 y轴上的点的横坐标为 0.
似三角形的性质是解题关键. 6. 如图,已知 AB和CD是⊙O的两条等弦. OM⊥AB, ON⊥ CD,垂足分别为点 M、N,
BA、 DC的延长线交于点 P,联结 OP.下列四个说法中:

;② OM=O;N③ PA=PC;④∠ BPO∠= DPO,正确的个数是(

A.1
B.2
C.3
D.4
【分析】 如图连接 OB、OD,只要证明 Rt△OM≌B Rt△OND,Rt△OPM≌
C、正确.因为
,所以 ∥ ;
D、正确.因为
,所以 | |=5| | ;
故选: A.
【点评】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,
也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.

2020年上海市中考数学模拟考试试卷及答案解析

2020年上海市中考数学模拟考试试卷及答案解析

2020年上海市中考数学模拟考试试卷
一.选择题(共6小题,满分24分,每小题4分)
1.下列计算正确的是()
A .
B .
C .
D .
2.下列一元二次方程中,有两个相等的实数根的是()
A.x2﹣4x﹣4=0B.x2﹣36x+36=0
C.4x2+4x+1=0D.x2﹣2x﹣1=0
3.二次函数y=x2+2x﹣3的图象的对称轴是()
A.直线x=1B.直线x=﹣1C.直线x=4D.直线x=﹣4 4.为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:
则这15户家庭的月用水量的众数与中位数分别为()
A.9、6B.6、6C.5、6D.5、5
5.已知▱ABCD,对角线AC,BD相交于点O,要使▱ABCD为矩形,需添加下列的一个条件是()
A.OA=OB B.∠BAC=∠DAC C.AC⊥BD D.AB=BC
6.如图,半径为4的两等圆外切,它们的一条外公切线与两圆围成的部分中,存在最大圆的半径等于()
A.B.C.D.1
二.填空题(共12小题,满分48分,每小题4分)
7.计算=.
8.若x+y=1,x﹣y=5,则xy=.
第1 页共21 页。

2018-2020年上海市中考数学各地区模拟试题分类——《三角形》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类——《三角形》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类——《三角形》一.选择题1.(2020•青浦区二模)如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A.B.C.D.2.(2020•松江区二模)如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为()A.2 B.3 C.4 D.4.5 3.(2020•奉贤区二模)如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN 4.(2020•虹口区二模)已知在△ABC中,小明按照下列作图步骤进行尺规作图(示意图与作图步骤如表),那么交点O是△ABC的()示意图作图步骤(1)分别以点B、C为圆心,大于BC长为半径作圆弧,两弧分别交于点M、N,联结MN交BC于点D;(2)分别以点A、C为圆心,大于AC长为半径作圆弧,两弧分别交于点P、Q,联结PQ交AC于点E;(3)联结AD、BE,相交于点OA.外心B.内切圆的圆心C.重心D.中心5.(2020•黄浦区二模)在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)6.(2020•嘉定区一模)三角形的重心是()A.三角形三边的高所在直线的交点B.三角形的三条中线的交点C.三角形的三条内角平分线的交点D.三角形三边中垂线的交点7.(2020•奉贤区一模)在Rt△ABC中,∠C=90°,如果∠A 的正弦值是,那么下列各式正确的是()A.AB=4BC B.AB=4AC C.AC=4BC D.BC=4AC 8.(2020•崇明区一模)在Rt△ABC中,∠C=90°,如果AC=8,BC=6,那么∠B的余切值为()A .B .C .D .9.(2019•杨浦区三模)下列说法中正确的是()A.三角形三条角平分线的交点到三个顶点的距离相等B.三角形三条角平分线的交点到三边的距离相等C.三角形三条中线的交点到三个顶点的距离相等D.三角形三条中线的交点到三边的距离相等10.(2019•奉贤区二模)如图,已知△ABC,点D、E分别在边AC、AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是()A.AE=AD B.BD=CE C.∠ECB=∠DBC D.∠BEC=∠CDB 11.(2018•金山区一模)在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<10二.填空题12.(2020•浦东新区三模)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC 于点E、F,如果,那么=.13.(2020•浦东新区三模)如图,已知在△ABC中,∠A=70°,⊙O截△ABC三边所得弦长相等,那么∠BOC=度.14.(2020•杨浦区二模)如图,已知在5×5的正方形网格中,点A、B、C在小正方形的顶点上,如果小正方形的边长都为1,那么点C到线段AB所在直线的距离是.15.(2020•黄浦区二模)已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是16.(2020•松江区二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.17.(2020•崇明区二模)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为16,阴影部分三角形的面积为9.如果AA'=1,那么A'D的长为.18.(2020•闵行区一模)如果三角形的两个内角∠α与∠β满足2α+β=90°,那么,我们将这样的三角形称为“准互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC =4(如图所示),点D在AC边上,联结BD.如果△ABD为“准互余三角形”,那么线段AD的长为(写出一个答案即可).19.(2020•虹口区一模)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是.20.(2020•松江区一模)以一个等腰直角三角形的腰为边分别向形外作等边三角形,我们把这两个等边三角形重心之间的距离称作这个等腰直角三角形的“肩心距”,如果一个等腰直角三角形的腰长为2,那么它的“肩心距”为.三.解答题21.(2020•浦东新区三模)已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D 是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.22.(2020•嘉定区二模)如图所示的方格纸是由9个大小完全一样的小正方形组成的.点A、B、C、D均在方格纸的格点(即图中小正方形的顶点)上,线段AB与线段CD相交于点E.设图中每个小正方形的边长均为1.(1)求证:AB⊥CD;(2)求sin∠BCD的值.23.(2020•闵行区二模)已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求CD的长;(2)求点C到ED的距离.24.(2020•虹口区一模)如图,在Rt△ABC中,∠ABC=90°,点G是Rt△ABC的重心,联结BG并延长交AC于点D,过点G作GE⊥BC交边BC于点E.(1)如果=,=,用、表示向量;(2)当AB=12时,求GE的长.25.(2020•虹口区一模)如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S=y,求y关于x的函数关系式(不需△DAF要写函数的定义域);(3)如果AG=8,求DE的长.26.(2020•奉贤区一模)如图,已知AB是⊙O的直径,C是⊙O上一点,CD⊥AB,垂足为点D,E是的中点,OE与弦BC交于点F.(1)如果C是的中点,求AD:DB的值;(2)如果⊙O的直径AB=6,FO:EF=1:2,求CD的长.27.(2020•黄浦区一模)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.28.(2020•崇明区一模)如图,AC是⊙O的直径,弦BD⊥AO于点E,联结BC,过点O作OF⊥BC于点F,BD=8,AE=2.(1)求⊙O的半径;(2)求OF的长度.29.(2020•徐汇区一模)如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC 交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.参考答案一.选择题1.解:∵G是△ABC的重心,∴AG=2DG,∴AD=3DG,∴=3=3,∵=+=﹣+3,DB=BD,∴=2=6﹣2,故选:C.2.解:∵将△ABC平移得到△GEF,∴GE∥AB,GF∥AC,∴∠GMN=∠B,∠GNM=∠C,∴△GMN∽△ABC,∴=,∵点G是△ABC的重心,∴AG=2GD,∴=,∴△GMN的周长=×(2+3+4)=3.故选:B.3.解:∵线段AN是△ABC边BC上的高,∴AN⊥BC,由垂线段最短可知,AM≥AN,故选:B.4.解:由尺规作图可知,MN、PQ分别是线段BC、AC的垂直平分线,∴点D、E分别是BC、AC的中点,∴AD、BE是△ABC的中线,∴点O是△ABC的重心,故选:C.5.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.6.解:∵三角形的重心是三角形三条边中线的交点,∴选项B正确.故选:B.7.解:在Rt△ABC中,∵∠C=90°,∴sin A==,∴AB=4BC,故选:A.8.解:如图,在Rt△ABC中,∵∠C=90°,AC=8,BC=6,∴cot B===,故选:A.9.解:A、三角形三条角平分线的交点到三边的距离相等,故错误;B、三角形三条角平分线的交点到三边的距离相等,故正确;C、三角形三条垂直平分线的交点到三个顶点的距离相等,故错误;D、三角形三条角平分线的交点到三边的距离相等,故错误;故选:B.10.解:A、添加AE=AD,在△ABD和△ACE中,∴△ABD≌△ACE(AAS),∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;B、添加BD=CE,在△ABD和△ACE中,∴△ABD≌△ACE(AAS),∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;C、添加∠ECB=∠DBC,又∵∠ABD=∠ACE,∴∠ABC=∠ACB,∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;D、添加∠BEC=∠CDB,不能证明△ABD≌△ACE,因此也不能证明AB=AC,进而得不到△ABC为等腰三角形,故此选项符合题意;故选:D.11.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,∴AB==15,CD=AB=7.5,∵G是△ABC的重心,∴DG=CD=2.5,∴CG=7.5﹣2.5=5,CE=7.5+2.5=10,∵以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,∴r的取值范围是5<r<10,故选:D.二.填空题(共9小题)12.解:如图,连接AG延长AG交BC于T.∵G是△ABC的重心,∴AG=2GF,∵EF∥BC,∴==2,∴=,∴==,∵=,∴=,∴=﹣,故答案为﹣.13.解:过点O作OH⊥DE于H,OK⊥FG于K,OP⊥MN于P,如图,∵DE=FG=MN,∴OH=OK=OP,∴OB平分∠ABC,OC平分∠OCB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+×70°=125°.故答案为125.14.解:连接AD、AC,作CE⊥AD于点E,∵小正方形的边长都为1,∴AD==2,AC==3,CD==,∵(2)2=(3)2+()2,∴△ACD是直角三角形,∠ACD=90°,∴,即,解得,CE=,即点C到线段AB所在直线的距离是,故答案为:.15.解:如图,∵点G是等边△ABC的重心,∴AD垂直平分BC,AD是∠BAC的角平分线,∴AG=2GN,设AB=3a,则AN=×3a=a,∵△DEF与△ABC关于点G成中心对称,∴△DEF≌△ABC,AG=DG,EF∥BC,∴∠AQH=∠ABC=∠AHQ=∠ACB=60°,∴△AQH是等边三角形,∴AQ=HQ=AH=AB=a,∴AP=a,∴它们重叠部分为边长=QH的正六边形,∴S1=6×a2,S2=×(3a)2,∴==,故答案为:.16.解:设直角三角形的最小内角为x,另一个内角为y,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.17.解:如图,∵S△ABC =16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE =S△A′EF=4.5,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则,即,解得A′D=3或A′D=﹣(舍),故答案为3.18.解:过点D作DM⊥AB于M.设∠ABD=α,∠A=β.①当2α+β=90°时,∵α+β+∠DBC=90°,∴∠DBC=∠DBA,∵DM⊥AB,DC⊥BC,∴DM=DC,∵∠DMB=∠C=90°,DM=DC,BD=BD,∴Rt△BDC≌Rt△BDM(HL),∴BM=BC=3,∵∠C=90°,BC=3,AC=4,∴AB==5,∴AM=5﹣3=2,设AD=x,则CD=DM=4﹣x,在Rt△ADM中,则有x2=(4﹣x)2+22,解得x=.∴AD=.②当α+2β=90°时,∵α+β+∠DBC=90°,∴∠DBC=β=∠A,∵∠C=∠C,∴△CBD∽△CAB,∴BC2=CD•CA,∴CD=,∴AD=AC﹣CD=4﹣=.故答案为或.19.解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tanθ=短边:长边=a:b=5:12.所以b=a,①又以为b=a+7,②联立①②,得a=5,b=12.所以大正方形的面积是:a2+b2=25+144=169.故答案是:169.20.解:如图,△ABC中,AB=AC=2,∠BAC=90°,△ABD,△ACE都是等边三角形,P,Q 是△ABD,△ACE的重心.取BC的中点H,连接AH.∵AB=AC,BH=CH,∠BAC=90°,∴HA=HB=HC,∵DA=DB,EA=EC,∴DH垂直平分线段AB,EH垂直平分线段AC,∴P,Q分别在DH,EH上,△PQH是等腰直角三角形,∵AB=2,∴DF=BD•sin60°=,∵P是重心,∴PF=,∵FH═AB=1,∴PH=QH=1+,∴PQ=PH=+,故答案为+.三.解答题(共9小题)21.解:(1)如图1,过E作EM⊥AB于M,当x=1时,CE=1,AE=4﹣1=3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5,sin∠A==,∴,∴EM=,∵EF∥AB,∴,即,∴EF=x=,∴△DEF的面积=•EM==;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,∵点D关于EF的对称点为D′,∴DD'⊥EF,QD=DD',∴∠EQD'=90°,∵EF∥AB,∴∠ADQ=∠EQD'=90°,∵D是AB的中点,∴AD=AB=,tan∠A=,∴DD'==,∴QD=,∵EF∥AB,EN⊥AB,QD⊥AB,∴∠END=∠NDQ=∠EQD=90°,∴四边形ENDQ是矩形,∴EN=QD=,Rt△AEN中,sin∠A=,∴,AE=4﹣x,∴x=;(3)如图3,连接AF,交ED于G,Rt△CEF中,∠ECF=90°,tan∠CEF=tan∠CAB=,∴,CF=x,∴EF=x,∴AF===,∵EF∥AB,∴,即=,∴,∴AG=,∵⊙A与⊙F相交于点E、H,且H在ED上,∴AF⊥DE,∴∠AGE=90°,∴∠AGE=∠ACF=90°,∵∠EAG=∠FAC,∴△AEG∽△AFC,∴,即AG•AF=AC•AE,∴=4(4﹣x),解得:x1=0(舍),x2=.22.(1)证明:如图,∵AG=DF=1,∠G=∠CFD=90°,BG=CF=3,∴△BAG≌△CDF(SAS),∴∠BAG=∠CDF,又∵∠BAG+∠ABG=90°,∴∠CDF+∠ABG=90°,∴∠BED=180°﹣(∠CDF+∠ABG)=90°,∴AB⊥CD;(2)解:在Rt△CFD中,∵DF=1,CF=3,∴,同理,,∵,,∴,解得,∴.23.解:如图,(1)过A点作AF⊥BC于点F.∵AB=AC=6,BC=4,AF⊥BC,∴BF=FC=2,∠BFA=90°,∴在Rt△ABF中,,∵AB的垂直平分线交AB于点E,AB=6,∴AE=BE=3,∠DEB=90°,在Rt△DEB中,,∴BD=9,∴CD=5.(2)过C点作CH⊥ED于点H,∵CH⊥ED,AB⊥ED,∴∠DEB=∠DHC=90°,∴CH∥AB,∴,∵BE=3,BD=9,CD=5,∴.∴点C到ED的距离CH为.24.解:(1)∵=+,∵点G是Rt△ABC的重心,∴AD=AC,∵=,=,∴=,∴=﹣+,∴==(﹣+)=﹣+;(2)过点D作DF⊥BC,∵GE∥DF,∴=,∵DF∥AB,D是AC的中点,∴DF=AB,∵AB=12,∴DF=6,∴GE=4.25.解:(1)∵∠ACB=90°,BC=4,sin∠ABC=,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,即AC=3,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC==;(2)∵AG∥BD,∴∠AGF=∠CBF,∴tan∠AGF=tan∠CBF,∴,,∴,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S==;△DAF(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴DC=,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.26.解:(1)连接OC,∵E是的中点,∴=,OE⊥BC,∵C是的中点,∴=,∴==,∴∠AOC=∠COE=∠EOB=60°,∴∠OCD=30°,在Rt△COD中,∠OCD=30°,∴OD=OC,∴AD:DB=1:3;(2)∵AB=6,FO:EF=1:2,∴OF=1,在Rt△BOF中,BF===2,∴BC=4,∵CD⊥AB,OE⊥BC,∴∠BDC=∠BFO=90°,又∠B=∠B,∴△BFO∽△BDC,∴=,即=,解得,CD=.27.解:(1)∵△ABC是等边三角形,∴AB=BC=AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.28.解:(1)连接OB,设⊙O的半径为x,则OE=x﹣2,∵OA⊥BD,∴BE=ED=BD=4,在Rt△OEB中,OB2=OE2+BE2,即x2=(x﹣2)2+42,解得,x=5,即⊙O的半径为5;(2)在Rt△CEB中,BC===4,∵OF⊥BC,∴BF=BC=2,∴OF==.29.解:(1)作AH⊥BC于H,BM⊥AC于M.∵AB=AC,AH⊥BC,∴BH=CH=3,∴AH===4,=•BC•AH=•AC•BM,∵S△ABC∴BM==,∴AM===,∴cos A==.(2)设AH交CD于K.∵∠BAC=2∠ACD,∠BAH=∠CAH,∴∠CAK=∠ACK,∴CK=AK,设CK=AK=x,在Rt△CKH中,则有x2=(4﹣x)2+32,解得x=,∴AK=CK=,∵∠ADK=∠ADC,∠DAK=∠ACD,∴△ADK∽△CDA,∴====,设AD=m,DK=n,则有,解得m=,n=.∴AD=.(3)结论:AD:BE=5:6值不变.理由:∵∠GBE=∠ABC,∠BAC+2∠ABC=180°,∠GBE+∠EBC+∠ABC=180°,∴∠EBC=∠BAC,∵∠EDC=∠BAC,∴∠EBC=∠EDC,∴D,B,E,C四点共圆,∴∠EDB=∠ECB,∵∠EDB+∠EDC=∠ACD+∠DAC,∠EDC=∠DAC,∴∠EDB=∠ACD,∴∠ECB=∠ACD,∴△ACD∽△BCE,∴==.31 /31。

2020年上海市中考数学各地区模拟试题分类(上海专版)(一)——方程与不等式(含解析)

2020年上海市中考数学各地区模拟试题分类(上海专版)(一)——方程与不等式(含解析)

2020年上海市中考数学各地区模拟试题分类(上海专版)(一)——方程与不等式一.选择题1.(2020•浦东新区三模)如果a<b,那么下列结论不正确的是()A.a+3<b+3 B.a﹣3<b﹣3 C.3a<3b D.﹣3a<﹣3b 2.(2020•路桥区模拟)某公司拟购进A,B两种型号机器人.已知用240万元购买A型机器人和用360万元购买B型机器人的台数相同,且B型机器人的单价比A型机器人多10万元.设A型机器人每台x万元,则所列方程正确的是()A.B.C.=10 D.=103.(2020•虹口区二模)如果关于x的方程x2﹣4x+m=0有两个不相等的实数根,那么m的取值范围为()A.m≤4 B.m<4 C.m≥4 D.m>4 4.(2020•奉贤区二模)如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0 B.1 C.2 D.3 5.(2020•静安区二模)如果关于x的方程x2+2x+m=0有实数根,那么m的取值范围是()A.m<1 B.m≤1 C.m>1 D.m≥1 6.(2020•黄浦区二模)下列方程没有实数根的是()A.x2=0 B.x2+x=0 C.x2+x+1=0 D.x2+x﹣1=0 7.(2020•松江区二模)不等式组的解集是()A.x>﹣2 B.x<﹣2 C.x>2 D.x<2 8.(2020•徐汇区二模)下列方程中,有实数根的是()A.x2+1=0 B.x2﹣1=0 C.=﹣1 D.=0 9.(2020•崇明区二模)如果a>b,那么下列结论中一定成立的是()A.2﹣a>2﹣b B.2+a>2+b C.ab>b2D.a2>b210.(2020•闵行区二模)方程x2﹣2x+3=0根的情况()A.有两个不相等的实数根B.有一个实数根C.无实数根D.有两个相等的实数根二.填空题11.(2020•无锡二模)方程x2+x﹣2=0的解是.12.(2020•普陀区二模)如果把二次方程x2﹣xy﹣2y2=0化成两个一次方程,那么所得的两个一次方程分别是.13.(2020•普陀区二模)如果关于x的方程(x﹣2)2=m﹣1没有实数根,那么m的取值范围是.14.(2020•普陀区二模)方程=﹣x的解是.15.(2020•中宁县一模)某品牌的衬衣每件进价是80元,售价为120元,“五•一”期间搞活动打9折,则销售1件衬衣的利润是元16.(2020•黄浦区二模)如果一个矩形的一边长是某个正方形边长的2倍,另一边长比该正方形边长少1厘米,且矩形的面积比该正方形的面积大8平方厘米,那么该正方形的边长是厘米.17.(2020•杨浦区二模)不等式组的解集是.18.(2020•松江区二模)方程组的解是.19.(2020•嘉定区二模)方程=3的根是.20.(2020•静安区二模)方程=0的根为.三.解答题21.(2020•普陀区二模)解不等式组:,并把解集在数轴上表示出来.22.(2020•长宁区二模)解方程:﹣=.23.(2020•金山区二模)解方程组:.24.(2020•黄浦区二模)解方程组:.25.(2020•松江区二模)解方程:﹣=2.26.(2020•静安区二模)解方程:=1.27.(2020•虹口区二模)解不等式组:并把解集在数轴上表示出来.28.(2020•浦东新区二模)学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?参考答案一.选择题1.解:A、两边都加3,不等号的方向不变,故A结论正确;B、两边都减3,不等号的方向不变,故B结论正确;C、两边都乘以3,不等号的方向不变,故C结论正确;D、两边都乘以﹣3,不等号的方向改变,故D结论不正确.故选:D.2.解:设A型机器人每台x万元,则B型机器人每台(x+10)万元,依题意,得:=.故选:A.3.解:根据题意知△=(﹣4)2﹣4m>0,解得m<4,故选:B.4.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1,所以m可以取0.故选:A.5.解:根据题意知△=22﹣4m≥0,解得m≤1,故选:B.6.解:A.此方程判别式△=02﹣4×1×0=0,故方程有两个相等的实数根;B.此方程判别式△=12﹣4×1×0=1>0,故方程有两个不相等的实数根;C.此方程判别式△=12﹣4×1×1=﹣3<0,故方程没有实数根;D.此方程判别式△=12﹣4×1×(﹣1)=5>0,故方程有两个不相等的实数根;故选:C.7.解:解不等式x+2>0,得:x>﹣2,解不等式6﹣2x<2,得:x>2,则不等式组的解集为x>2,8.解:A 、方程变形得x 2=﹣1<0,故没有实数根,此选项错误;B 、方程变形得x 2=1,故有实数根,此选项正确;C 、二次根式非负,故没有实数根,此选项错误;D 、方程两边乘x ﹣1得1=0,没有实数根,此选项错误.故选:B . 9.解:A 、∵a >b ,∴2﹣a <2﹣b ,故本选项错误,不符合题意;B 、∵a >b ,∴2+a >2+b ,故本选项正确,符合题意;C 、∵a >b ,∴当b >0时,ab >b 2,当b <0时,ab <b 2,不能判断ab 和b 2的大小,故本选项错误,不符合题意;D 、∵a >b ,不能判断a 2和b 2的大小,故本选项错误,不符合题意; 故选:B .10.解:由题意可知:△=(﹣2)2﹣4×1×3=12﹣12=0,故选:D .二.填空题(共10小题) 11.解:(x +2)(x ﹣1)=0,x +2=0或x ﹣1=0,所以x 1=﹣2,x 2=1. 故答案为x 1=﹣2,x 2=1. 12.解:∵x 2﹣xy ﹣2y 2=0, ∴(x ﹣2y )(x +y )=0, ∴x ﹣2y =0或x +y =0. 故答案为:x ﹣2y =0或x +y =013.解:∵关于x 的方程(x ﹣2)2=m ﹣1没有实数根, ∴m ﹣1<0,所以m 的取值范围是m <1. 故答案为:m <1. 14.解:把方程=﹣x 两边平方,得5x =x 2, ∴x 2﹣5x =0, ∴x (x ﹣5)=0, ∴x =0或x ﹣5=0, ∴x 1=0,x 2=5.检验:把x 1=0,x 2=5代入方程=﹣x ,可知x 1=0是原方程的根,x 2=5是原方程的增根, 所以原方程的解为x =0. 故答案为:x =0.15.解:设销售1件衬衣的利润为x 元, 依题意,得:80+x =120×0.9, 解得:x =28. 故答案为:28.16.解:设正方形的边长为x 厘米,则矩形的一边长为2x 厘米,另一边长为(x ﹣1)厘米, 由题意得,2x (x ﹣1)﹣x 2=8, 整理得,x 2﹣2x ﹣8=0, 解得,x 1=﹣2(舍去),x 2=4, 故答案为:4. 17.解:, 解不等式①,得x;解不等式②,得x ≤3; 所以原不等式组的解集为:,故答案为:. 18.解:方程组,由①得,y =2﹣x ③,把③代入②得,x (2﹣x )=﹣3, 解得:x 1=3,x 2=﹣1,把x 1=3,x 2=﹣1分别代入③得,y 1=﹣1,y 2=3, ∴原方程组的解为:或.故答案为:或.19.解:两边平方得x ﹣2=9,解得x =11, 经检验x =11为原方程的解. 故答案为x =11.20.解:根据题意得x ﹣4=0或x +2=0, 解得x =4或x =﹣2, 经检验x =4为原方程的解. 故答案为x =4. 三.解答题(共8小题) 21.解:,解不等式①,得:x ≤2, 解不等式②,得:x >﹣1, 将不等式解集表示在数轴上如下:所以不等式组的解集为﹣1<x ≤2.22.解:两边乘(x +3)(x ﹣3)得到:x (x ﹣3)+6=x +3 解得x 1=1,x 2=3,经检验:x =1是分式方程的解. 23.解:,由①得:x =y +2…③,把③代入②并整理得:y 2﹣2y ﹣3=0,解这个方程得,y1=3,y2=﹣1,把y的值分别代入③,得x1=5,x2=1.∴原方程组的解为.24.解:由①得:y=3﹣x…③,把③代入②得:x2+3x(3﹣x)+(3﹣x)2=5,整理得:x2﹣3x﹣4=0,解这个方程得,x1=4,x2=﹣1,把x的值分别代入③,得y1=﹣1,y2=4.∴原方程组的解为,.25.解:去分母得:x(x+1)﹣6=2x2+8x+6,移项得:x2+x﹣6﹣2x2﹣8x﹣6=0,整理得:x2+7x+12=0,即(x+3)(x+4)=0,解得:x1=﹣3,x2=﹣4,经检验,x1=﹣3是增根,舍去,∴原方程的根是x=﹣4.26.解:去分母得:x﹣1+2=x2﹣1,整理得:x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得x=﹣1或x=2,经检验:x=﹣1是增根,舍去;x=2是原方程的根,∴原方程的根是x=2.27.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:28.解:设科普类图书平均每本的价格是x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意可得:=﹣100,解得:x=20,经检验得:x=20是原方程的根,答:科普类图书平均每本的价格是20元.。

2018上海各区一模分类整理(圆与多边形)

2018上海各区一模分类整理(圆与多边形)

2018年初三一模知识点分类整理——圆与正多边形一、选择题1. (崇明)如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是( ).A. 外离;B. 外切;C. 相交;D. 内切.2. (嘉定)下列四个命题中,真命题是 ( )A. 相等的圆心角所对的两条弦相等;B. 圆既是中心对称图形也是轴对称图形;C. 平分弦的直径一定垂直于这条弦;D. 相切两圆的圆心距等于这两圆的半径之和. 3. (金山)在Rt △ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( ) A. 5r <; B. 5r >; C. 10r <; D. 510r <<. 4. (闵行)下列命题中正确的个数是( )① 直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为524; ② 如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切; ③ 过三点可以确定一个圆; ④ 两圆的公共弦垂直平分连心线.A. 0个;B. 4个;C. 2个;D. 3个. 5. (普陀)如图1-5,已知AB 和CD 是O 的两条等弦.OM ⊥AB ,ON ⊥CD ,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中, ①AB CD =;②OM =ON ;③P A =PC ;④∠BPO =∠DPO ,正确的个数是( ). A. 1个; B. 2个; C. 3个; D. 4个.6. (长宁) 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ) A. 相离; B. 相切; C. 相交; D. 相离、相切、相交都有可能. 二、填空题1. (崇明)正八边形的中心角的度数为_________度.2. (崇明)如图2-2,在5×5正方形网络中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(-2,3),点C 的坐标是(1,2),那么这条圆弧 所在圆的圆心坐标是_________.3. (嘉定)已知弓形的高是1厘米,弓形的半径长是13厘米,那么弓形的弦长是 厘米.4. (嘉定)已知⊙1O 的半径长为4,⊙2O 的半径长为r ,圆心距621=O O ,当⊙1O 与⊙2O 外切时,r 的长为 .CBA2-21-55. (金山)如图2-5,AB 是⊙O 的弦,∠OAB=30°.OC ⊥OA ,交AB 于点C ,若OC=6,则AB 的长等于 .6. (金山)如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是 .7. (金山)两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于 .8. (闵行)已知在直角坐标平面内,以点P (1,2)为圆心,r 为半径画圆,⊙P9. (闵行)半径分别为20cm 与15cm 的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB 的长为24cm ,那么圆心距O 1O 2的长为 cm .10. (普陀)已知Rt △ABC 中,∠C =90°,AC =3,BC =7,CD ⊥AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内,设⊙D 的半径为r ,那么r 的取值范围是_________. 11. (长宁)正六边形的中心角等于 度.12. (长宁)已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021 O O ,则R 的值为 . 三、简答题1. (崇明)如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为点E ,CE =2.(1)求AB 的长; (2)求⊙O 的半径.(第21题图)CD 2-52. (嘉定)如图,在Rt △ABC 中,︒=∠90C ,5=AC ,52=BC ,以点C 为圆心,CA 长为半径的⊙C 与边AB 交于点D ,以点B 为圆心,BD 长为半径的⊙B 与⊙C 另一个交点为点E . (1)求AD 的长; (2)求DE 的长.3. (金山)如图,已知AB 是⊙O 的弦,C 是AB 的中点,AB=8,AC=25,求⊙O 半径的长.4. (闵行)如图,已知OC 是⊙O 半径,点P 在⊙O 的直径BA 的延长线上,且OC ⊥PC ,垂足为C .弦CD 垂直平分半径AO ,垂足为E ,P A = 6. 求:(1)⊙O 的半径; (2)求弦CD 的长.ACBDE A DCEPO5. (普陀) 如图,已知O 经过△ABC 的顶点A 、B ,交边BC 于点D ,点A 恰为BD 的中点,且BD=8,AC=9,求O 的半径.6. (长宁)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =,联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值.DAOB。

2020年上海中考数学仿真试卷1

2020年上海中考数学仿真试卷1

2020年上海中考数学仿真试卷1一.选择题(共6题,每题4分,共24分) 1.下列各组中,两个代数式是同类项的为().A .mn -与mnpB .22x yz 与23yx zC .3323a b 与333b aD .25-与2x【答案】B【解析】同类项的定义:所含的字母相同,且相同字母的指数也相同的单项式叫做同类项,与系数与字母系数无关,故选择B .【总结】本题考查了同类项的定义.2.对于一元二次方程20(0)ax bx c a ++=?给出下面4个条件:①0c =;②a c ,异号;③240b ac +>;④0a b c ++=.使方程有实数根的条件有( )A .1个B .2个C .3个D .4个【答案】C【解析】方程有实数根,只需要240b ac ∆=-≥成立即可,由此可得:①0c =,20b ∆=≥恒成立,方程有实数根(方程必有一根为0);②a c ,异号,则0ac <,240b ac ∆=->恒成立,方程有实数根;③240b ac +>,不能确定24b ac ∆=-与0的大小关系,不能确定是否有实数根;④0a b c ++=,即得方程必有一根为1x =,综上所述,故选C .【总结】方程是否有实数根,只需判断在给定条件下240b ac ∆=-≥是否恒成立即可.3.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数相等,则这组数据的中位数是( )A .100分B .95分C .90分D .85分 【答案】C .【解析】由已知得:众数是90或80.当众数是80时,80x =,平均数为:909080804854+++⨯=,不符合题意.当众数是80时,平均数为:909080904x +++=.解得:100x =.此时这组数据的中位数为90.【总结】本题考察了平均数、众数和中位数的概念及计算.4.一辆客车从上海出发开往北京,设客车发t 小时后与北京的距离为S 千米,下列图像能大致反应S 和t 的函数关系的是( )【答案】A【解析】客车发车时,与北京距离最远,即对应y 值最大;客车到达北京时,与北京距离最近为0,符合条件的图像为A 选项.【总结】考查图像法表达函数关系,注意相应函数图像上的点的意义.5.下列说法中正确的是( )A . AB AC BC -= B .对任意两个向量a b 、,-a b b a -,与都是相反向量 C .在△ABC 中,0AB BC AC +-> D .在四边形ABCD 中,0AB BC CD DA +-+=()() 【答案】B【解析】A 正确应为AB AC CB -=,C 正确应为0AB BC AC +-=; D 正确应为2AB BC CD DA AC CA AC +-+=-=()(). 【总结】考察向量的加减法的综合运用.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ). (A)△ABD 与△ABC 的周长相等; (B)△ABD 与△ABC 的面积相等; (C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【解析】菱形知识点 【答案】B二.填空题(共12题,每题4分,共48分) 7.计算:【解析】实数运算 【答案】5 8.=2的解是【解析】解无理方程 【答案】X=5 9. 如果分式32+x x有意义,那么x 的取值范围是____________. 【解析】分式概念 【答案】X ≠—310.某商品成本为a 元,利润率是10%,那么售价是 元(用含字母a 的代数式表示). 【解析】代数式 【答案】1.1a11 如果关于的一元二次方程:(为常数)有两个实数根,那么的取值范围是__________.【解析】一元二次方程根的判别式:0<∆ 【参考答案】且 12掷一枚质地均匀的骰子,掷两次的点数之和是合数的概率为 . 【解析】概率、等可能事件 【参考答案】71213若将抛物线221y x x =-+沿着x 轴向左平移1个单位,再沿y 轴向下平移2个单位,则得到的新抛物线的顶点坐标是_________.【解析】二次函数的平移 【参考答案】()0,2-14梯形ABCD 中,AB //CD ,E 、F 是AD 、BC 的中点,若AB a =,CD b =,那么用a 、b 的线性组合表示向量EF = . 【解析】平面向量、三角形一边上的平行线 【参考答案】b a2121-15为了解各年龄段观众对某电视节目的收视率,小明调查了部分观众的收视情况,并分成A 、B 、C 、D 、E 、F 六组进行调查,其频率分布直方图如图所示,各长方形上方的数据表示该组的频率,若E 组的频数为24,那么被调查的观众总人数为_________人.【解析】统计问题【参考答案】10016已知E 是正方形ABCD 的对角线AC 上一点,AD AE =,过点E 作AC 的垂线,交边CD 于点F ,那么=∠FAD 度.【解析】全等【参考答案】22.517如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =________.x 012=++x mx m m 41≤m 0≠m【解析】中位线 【参考答案】6 18.一、分享试题所属板块图形的旋转翻折二、分享理由图形的旋转与翻折是中考的必考点,一般作为填空题18题,属于较难部分三、分享价值本题所用到的数学模型或者知识点有 1、等腰三角形基本性质 2、旋转全等 3、旋转相似 4、四边形内角和四、题目正文与解析、正确答案如图,在四边形ABCD 中,AB=AD ,∠BAD+∠BCD=90°,AC=2AB ,试探究BC 、CD 、BD 之间的等量关系_______.19. ()-12+27-3-13-1⎛⎫⎪ ⎪⎝⎭【答案】733-22【解析】1=+33-13+13-1=+33-1231=+33--122733=-22原式20.解方程组:221484x y x y xy ⎧+⎪⎨++=⎪⎩.【答案】12128228x x y y ==⎧⎧⎨⎨==⎩⎩,.【解析】设x y m n +==,则()()2222222x y xy x y xy xy x y xy m n ++=+-+=+-=-, 原方程组可转化为221484m n m n +=⎧⎨-=⎩,因为()()()221484m n m n m n m n -=+-=⨯-=, 所以可得6m n -=,又因为14m n +=,联立得104m n =⎧⎨=⎩,即1016x y xy +=⎧⎨=⎩,根据韦达定理设以,x y 为两实数解的一元二次方程为210160t t -+=, 因式分解得()()820t t --=,得1282t t ==,. 所以方程组1016x y xy +=⎧⎨=⎩的解为12128228x x y y ==⎧⎧⎨⎨==⎩⎩,.即原方程组的解为12128228x x y y ==⎧⎧⎨⎨==⎩⎩,. 21.(10分)在一次课外实践活动中,同学们要知道校园内A ,B 两处的距离,但无法直接测得.已知校园内A 、B 、C 三点形成的三角形如图所示,现测得AC=6m ,BC=14m ,∠CAB=120°,请计算A ,B 两处之间的距离.【考点】: 勾股定理的应用.菁优网版权所有 【专题】: 应用题. 【分析】: 过C 作CH ⊥AB 于H 构造直角三角形,在两个直角三角形中分别求得BH 、AH ,相减即可求得AB 的长. 【解答】: 解:过C 作CH ⊥AB 于H , ∵∠CAB=120°, ∴∠CAH=60°, ∵AC=6,∴AH=3,HC=,在Rt △BCH 中,∵BC=14,HC=, ∴BH=∴AB=BH ﹣AH=13﹣3=10即A ,B 两处之间的距离为10米. 【点评】: 本题考查了勾股定理的应用,解决本题的关键是作出钝角三角形的高,从而构造两个直角三角形,利用勾股定理解之.22.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与B 港的距离分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为为_______km ,a =________;图中点P 的坐标_______,并解释该点坐标所表示的实际意义:_____________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2020年上海市中考数学各地区模拟试题分类(一)——《圆》一.选择题1.(2020•普陀区二模)如图,已知A、B、C、D四点都在⊙O上,OB⊥AC,BC=CD,在下列四个说法中,①=2;②AC=2CD;③OC⊥BD;④∠AOD=3∠BOC,正确的个数是()A.1个B.2个C.3个D.4个2.(2020•杨浦区二模)已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d 的取值范围是()A.0<d<3 B.0<d<7 C.3<d<7 D.0≤d<3 3.(2020•杨浦区二模)如果正十边形的边长为a,那么它的半径是()A.B.C.D.4.(2020•金山区二模)如图,∠MON=30°,OP是∠MON的角平分线,PQ∥ON交OM于点Q,以P为圆心半径为4的圆与ON相切,如果以Q为圆心半径为r的圆与⊙P相交,那么r的取值范围是()A.4<r<12 B.2<r<12 C.4<r<8 D.r>4 5.(2020•长宁区二模)如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切6.(2020•黄浦区二模)已知⊙O1与⊙O2的直径长4厘米与8厘米,圆心距为2厘米,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切7.(2020•浦东新区二模)如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°8.(2020•浦东新区二模)矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12 B.18<r<25 C.1<r<8 D.5<r<8 9.(2020•崇明区二模)如果一个正多边形的外角是锐角,且它的余弦值是,那么它是()A.等边三角形B.正六边形C.正八边形D.正十二边形10.(2020•闵行区一模)如果两个圆的圆心距为3,其中一个圆的半径长为4,另一个圆的半径长大于1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外切D.相交.11.(2020•金山区一模)已知在矩形ABCD中,AB=5,对角线AC=13.⊙C的半径长为12,下列说法正确的是()A.⊙C与直线AB相交B.⊙C与直线AD相切C.点A在⊙C上D.点D在⊙C内12.(2020•嘉定区一模)下列四个选项中的表述,正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线13.(2020•奉贤区一模)在△ABC中,AB=9,BC=2AC=12,点D、E分别在边AB、AC上,且DE∥BC,AD=2BD,以AD为半径的⊙D和以CE为半径的⊙E的位置关系是()A.外离B.外切C.相交D.内含14.(2019•青浦区二模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是()A.4<OC≤B.4≤OC≤C.4<OC D.4≤OC≤二.填空题15.(2020•普陀区二模)已知正方形的半径是4,那么这个正方形的边心距是.16.(2020•金山区二模)我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.17.(2020•嘉定区二模)如图,在正六边形ABCDEF中,如果向量=,,那么向量用向量,表示为.18.(2020•黄浦区二模)已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是.19.(2020•青浦区二模)已知点C在线段AB上,且0<AC<AB.如果⊙C经过点A,那么点B与⊙C的位置关系是.20.(2020•静安区二模)如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.21.(2020•长宁区二模)如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是.22.(2020•松江区二模)已知⊙O1和⊙O2相交,圆心距d=5,⊙O1的半径为3,那么⊙O2的半径r的取值范围是.23.(2020•徐汇区二模)如图,⊙O的弦AB和直径CD交于点E,且CD平分AB,已知AB=8,CE=2,那么⊙O的半径长是.24.(2020•静安区二模)已知矩形ABCD,对角线AC与BD相交于点O,AB=6,BC=8,分别以点O、D为圆心画圆,如果⊙O与直线AD相交、与直线CD相离,且⊙D与⊙O内切,那么⊙D的半径长r的取值范围是.三.解答题25.(2020•普陀区二模)如图,已知在四边形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O交边DC于E、F两点,AD=1,BC=5,设⊙O的半径长为r.(1)联结OF,当OF∥BC时,求⊙O的半径长;(2)过点O作OH⊥EF,垂足为点H,设OH=y,试用r的代数式表示y;(3)设点G为DC的中点,联结OG、OD,△ODG是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.26.(2020•杨浦区二模)如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P 是射线AC上一点(不与点A、C重合),过P作PM⊥AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q是边BC上一点,且CQ =2CP,联结NQ.(1)如果⊙M与直线BC相切,求⊙M的半径长;(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.27.(2020•虹口区二模)如图1,在梯形ABCD中,AD∥BC,∠ABC=90°,cos C=,DC=5,BC=6,以点B为圆心,BD为半径作圆弧,分别交边CD、BC于点E、F.(1)求sin∠BDC的值;(2)联结BE,设点G为射线DB上一动点,如果△ADG相似于△BEC,求DG的长;(3)如图2,点P、Q分别为边AD、BC上动点,将扇形DBF沿着直线PQ折叠,折叠后的弧D'F'经过点B与AB上的一点H(点D、F分别对应点D',F'),设BH=x,BQ =y,求y关于x的函数关系式(不需要写定义域).28.(2020•杨浦区二模)如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.29.(2020•金山区二模)如图,在△ABC中,∠C=90°,AC=6,BC=8,P是线段BC 上任意一点,以点P为圆心PB为半径的圆与线段AB相交于点Q(点Q与点A、B不重合),∠CPQ的角平分线与AC相交于点D.(1)如果DQ=PB,求证:四边形BQDP是平行四边形;(2)设PB=x,△DPQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADQ是以DQ为腰的等腰三角形,求PB的长.30.(2020•奉贤区二模)如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.参考答案一.选择题1.解:∵OB⊥AC,BC=CD,∴,,∴=2,故①正确;AC<AB+BC=BC+CD=2CD,故②错误;OC⊥BD,故③正确;∠AOD=3∠BOC,故④正确;故选:C.2.解:由题意知,两圆内含,则0≤d<5﹣2,即如果这两圆内含,那么圆心距d的取值范围是0≤d<3,故选:D.3.解:设AB是圆内接正十边形的边长,连接OA、OB,过O作OC⊥AB于C,则∠AOB==36°,∴=18°,AC=AB=,∴OA==,故选:C.4.解:如图,过点P作PA⊥OM于点A.∵圆P与ON相切,设切点为B,连接PB.∴PB⊥ON.∵OP是∠MON的角平分线,∴PA=PB.∴PA是半径,∴OM是圆P的切线.∵∠MON=30°,OP是∠MON的角平分线,∴∠1=∠2=15°.∵PQ∥ON,∴∠3=∠2=15°.∴∠4=∠1+∠3=30°.∵PA=4,∴PQ=2PA=8.∴r最小值=8﹣4=4,r最大值=8+4=12.∴r的取值范围是4<r<12.故选:A.5.解:设圆心距为d,因为5﹣3=2,3+5=8,圆心距为7cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.6.解:由题意可知:r1=2,r2=4,圆心距d=2,∴d=r2﹣r1,∴两圆相内切,故选:B.7.解:这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B.8.解:∵在矩形ABCD中,AB=5,BC=12,∴AC==13,∵点D在⊙C内,点B在⊙C外,∴⊙C的半径R的取值范围为:5<R<12,当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是R c,即R c+r=13,又∵5<R c<12,则r的取值范围是1<r<8.故选:C.9.解:∵一个外角为锐角,且其余弦值为,∴这个一个外角=30°,∴360÷30=12.故它是正十二边形.故选:D.10.解:∵一个圆的半径R为4,另一个圆的半径r大于1,∴R﹣r<4﹣1,R+r>5即:R﹣r<3,∵圆心距为3,∴两圆不可能外切,故选:C.11.解:∵在△ABC中,∠ACB=90°,AC=13,AB=5,∴BC===12,∵⊙C的半径长为12,∴⊙C与直线AB相切,故A选项不正确,∵CD=AB=5<12,∴⊙C与直线AD相交,故B选项不正确,∵AC=13>12,∴点A在⊙C外,故C选项不正确,∵CD=5<12,∴点D在⊙C内,故D选项正确,故选:D.12.解:由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C选项正确,故选:C.13.解:如图,∵DE∥BC,∴,∵BC=12,AD=2BD,∴,DE=8,∵⊙D的半径为AD=6,⊙E的半径CE=2,∴AD+CE=6+2=8=DE,∴以AD为半径的⊙D和以CE为半径的⊙E的位置关系是外切,故选:B.14.解:作DE⊥BC于E,如图所示:则DE=AB=4,BE=AD=2,∴CE=4=DE,当⊙O与边AD相切时,切点为D,圆心O与E重合,即OC=4;当OA=OC时,⊙O与AD交于点A,设OA=OC=x,则OB=6﹣x,在Rt△ABO中,由勾股定理得:42+(6﹣x)2=x2,解得:x=;∴以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是4≤x≤;故选:B.二.填空题(共10小题)15.解:如图,根据正方形的性质知:△BOC是等腰直角三角形,过O作OE⊥BC于E,∵正方形的半径是4,∴BO=4,∴OE=BE=BO=2,故答案为:2.16.解:设正多边形的边数为n,根据题意得,:=3,解得:n=8,答:内外比为3的正多边形的边数为8,故答案为:8.17.解:如图,连接BE交AD于O.∵ABCDEF是正六边形,∴△AOB是等边三角形,AO=OD,∴∠FAO=∠AOB=60°,OB=AB=AF,∴AF∥OB,∴==,∵=+=+,∵AD=2AO,∴=2+2,故答案为2+2.18.解:当⊙D与⊙C在直径AB的同侧时,作DH⊥OC于H,DN⊥OB于N,连接CD,连接OD并延长交⊙O于G,设⊙D的半径为r,则OD=2﹣r,CD=1+r,∵⊙O的直径AB=4,⊙C的半径为1,⊙C与⊙O内切,∴⊙C与⊙O内切于点O,∴CO⊥AB,∵CO⊥AB,DH⊥OC,DN⊥OB,∴四边形HOND为矩形,∴OH=DN=r,DH=ON=,∴CH=1﹣r,在Rt△CDH中,CH2+DH2=CD2,即(1﹣r)2+(2﹣r)2﹣r2=(1+r)2,解得,r=,当⊙D与⊙C在直径AB的两侧时,⊙C与⊙D的半径相等,都是1,故答案为:或1.19.解:如图,∵点C在线段AB上,且0<AC<AB,∴BC>AC,∴点B在⊙C外,故答案为:点B在⊙C外.20.解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.21.解:根据题意画图如下:连接BD,与AC交与点M,∵四边形ABCD是菱形,∴∠AMD=∠DMC=90°,∠ACD=∠ACB,CD=CD,AM=CM,∴DM2=AD2﹣AM2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.22.解:由题意可知:|3﹣r|<5<3+r,解得:2<r<8,故答案为:2<r<8.23.解:连接OA,∵,⊙O的弦AB和直径CD交于点E,且CD平分AB,∴AB⊥CD,∴AE=AB=4,又OE=OC﹣CE=r﹣2,OA=r,在Rt△AOE中,由勾股定理,得AE2+OE2=OA2,即42+(r﹣2)2=r2,解得:r=5,故答案为:5.24.解:设⊙O的半径为r1,⊙D半径为r,由⊙O与直线AD相交、与直线CD相离可知:3<r1<4,由题意可知:r>r1,否则⊙D与⊙O不能内切,∵OD=AC=5,∴圆心距d=5,∴d=r﹣r1,∴r=5+r1,∴8<r<9,故答案为:8<r<9.三.解答题(共6小题)25.解:(1)∵OF∥BC,OA=OB,∴OF为梯形ABCD的中位线,∴OF=(AD+BC)=(1+5)=3,即⊙O的半径长为3;(2)连接OD、OC,过点D作DM⊥BC于M,如图1所示:则BM=AD=1,∴CM=BC﹣BM=4,∴DC===2,∵四边形ABCD的面积=△DOC的面积+△AOD的面积+△BOC的面积,∴(1+5)×2r=×2×y+×r×1+×r×5,整理得:y=;(3)△ODG能成为等腰三角形,理由如下:∵点G为DC的中点,OA=OB,∴OG是梯形ABCD的中位线,∴OG∥AD,OG=(AD+BC)=(1+5)=3,DG=CD=,由勾股定理得:OD==,分三种情况:①DG=DO时,则=,无解;②OD=OG时,如图2所示:=3,解得:r=2;③GD=GO时,作OH⊥CD于H,如图3所示:∠GOD=∠GDO,∵OG∥AD,∴∠ADO=∠GOD,∴∠ADO=∠GDO,在△ADO和△HDO中,,∴△ADO≌△HDO(AAS),∴OA=OH,则此时圆O和CD相切,不合题意;综上所述,△ODG能成为等腰三角形,r=2.26.(1)解:如图1,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=8,∴,设⊙M的半径长为R,则,过M作MH⊥BC,垂足为点H,∴MH∥AC,∵MH∥AC,∴△BHM∽△BCA,∴,∵⊙M与直线BC相切,∴MA=MH,∴,∴,即.(2)如图2,∵AP=x,∴CP=4﹣x,∵CQ=2CP,∴CQ=8﹣2x,∴BQ=BC﹣CQ=8﹣(8﹣2x)=2x,过Q作QG⊥AB,垂足为点G,∵,∴,∴,同理:,∵PM⊥AB,∴∠AMP=90°,∴,∵AP=x,∴,∴,在Rt△QNG中,根据勾股定理得,QN2=NG2+QG2,∴,∴(0<x<4);(3)当点P在线段AC上,如图3,设以NQ为直径的⊙O与⊙M的另一个交点为点E,连接EN,MO,则MO⊥EN,∴∠NMO+∠ANE=90°,∵以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,即P、E、N在同一直线上,又∵PM⊥AB,MA=MN,∴PN=PA,∴∠PAN=∠ANE,∵∠ACB=90°,∴∠PAN+∠B=90°,∴∠NMO=∠B,连接AQ,∵M、O分别是线段AN、NQ的中点,∴MO∥AQ∴∠NMO=∠BAQ,∴∠BAQ=∠B,∴QA=QB,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,∴(2x)2=42+(8﹣2x)2,∴,同理:当点P在线段AC的延长线上,,即线段AP的长为或.27.解:(1)如图1中,连接BE,过点D作DK⊥BC于K,过点B作BJ⊥CD于J.在Rt△CDK中,∵∠DKC=90°,CD=5,cos∠C==,∴CK=3,∵BC=6,∴BK=CK=3,∵AD∥BC,∠ABC=90°,∴∠A=90°∵DK⊥BC,∴∠A=∠ABC=∠DKB=90°,∴四边形ABKD是矩形,∴AD=BK=3,∴DB=DC=5,DK===4,∵S△DCB=•BC•DK=•CD•BJ,∴BJ=,∴DJ===,∵BD=BE,BJ⊥DE,∴DJ=JE=,∴EC=CD﹣DJ=JE=5﹣=,∴sin∠BDC===.(2)如图2中,∵AD∥BC,∴∠ADG=∠DBC,∵DB=DC,∴∠DBC=∠C,∴∠ADG=∠C,∵△ADG相似△BEC,∴有两种情形:当△ADG∽△BCE时,∴=,∴=,∴DG=,当△ADG∽△ECB时,=,=,∴DG=.(3)如图3中,过点B作BJ⊥PQ交于J,连接BJ,JH,JQ,过点J作JG⊥BH于G,过点Q作QK⊥JH于K.由题意:QB=QJ=y,BJ=BD=5,∵JB=JH,JG⊥BH,∴BG=GH=x,∴JG==,∵∠GBQ=∠BGK=∠QKG=90°,∴四边形BGKQ是矩形,∴BQ=GK=y,QK=GB=x,在Rt△QKJ中,∵JQ2=QK2+KJ2,∴y2=x2+(﹣y)2,∴y=.28.解:(1)∵,DC⊥AB,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,∵OD⊥AB,∴∠ACO=90°,在Rt△ACO中,∵OA2=AC2+OC2,∴R2=(R﹣2)2+42,解之得R=5.答:桥拱所在圆的半径长为5米.(2)设OD与EF相交于点G,联结OE,∵EF∥AB,OD⊥AB,∴OD⊥EF,∴∠EGD=∠EGO=90°,在Rt△EGD中,,∴EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,∴EG=6﹣3x,在Rt△EGO中,∵EG2+OG2=OE2,∴(6﹣3x)2+(3+x)2=52,化简得x2﹣3x+2=0,解得x1=2(舍去),x2=1,答:水面上升的高度为1米.29.证明:(1)∵BP=PQ,∴∠PBQ=∠PQB,∵DP平分∠CPQ,∴∠CPD=∠QPD,∵∠CPQ=∠PBQ+∠PQB=2∠PBQ,∴∠CPD=∠PBQ=∠DPQ=∠PQB,∴DP∥BQ,∵DQ=PB,PQ=PB,∴DQ=QP,∴∠QDP=∠QPD=∠PQB=∠PBQ,又∵PB=DQ,∴△DPQ≌△BQP(AAS)∴DP=BQ,∴四边形BPDQ是平行四边形;(2)如图,设BC与⊙P的交点为E,连接DE,∵EP=PQ,∠DPE=∠DPQ,DP=DP,∴△DPE≌△DPQ(SAS),∴S△DPE=S△DPQ=y,DQ=DE,∵BP=x,∴PC=8﹣x,∵DP∥AB,∴△DCP∽△ACB,∴,∴,∴CD=(8﹣x),∴S△DPQ=y=×EP×CD=×x×(8﹣x)=﹣x2+3x(0<x<);(3)当DQ=AD时,∵AD=AC﹣CD,∴AD=6﹣(8﹣x)=x,∴DQ=DE=AD=x,∵DE2=DC2+CE2,∴(x)2=(6﹣x)2+(8﹣2x)2,∴x1=4,x2=(不合题意舍去),当AQ=DQ时,过点P作PF⊥AB于F,∵∠C=90°,AC=6,BC=8,∴AB===10,∵cos∠B==,∴,∴BF=x,∵PB=PQ,PF⊥AB,∴BQ=2BF=x,∴AQ=10﹣x,∴AQ=DQ=DE=10﹣x,∵DE2=DC2+CE2,∴(10﹣x)2=(6﹣x)2+(8﹣2x)2,∴x3=0(不合题意舍去),x4=,综上所述:BP的长为4和.30.解:(1)连接EO,交弦CD于点H,∵E为弧CD的中点,∴EO⊥AB,∵CD∥AB,∴OH⊥CD,∴CH=,连接CO,∵AB=10,CD=8,∴CO=5,CH=4,∴,∴EH=EO﹣OH=2,∵点F与点B重合,∴∠OBE=∠HGE=45°,∵PE⊥BE,∴∠HPE=∠HGE=45°,∴PE=GE,∴PH=HG=2,∴CP=CH﹣PH=4﹣2=2;(2)如图2,连接OE,交CD于H,∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE,∵∠PHE=∠EOF=90°,∴△PEH∽△EFO,∴,∵EH=2,FO=y,PH=4﹣x,EO=5,∴,∴.(3)如图3,过点P作PQ⊥AB,垂足为Q,∵GP=GF,∴∠GPF=∠GFP,∵CD∥AB,∴∠GPF=∠PFQ,∵PE⊥EF,∴PQ=PE,由(2)可知,△PEH∽△EFO,∴,∵PQ=OH=3,∴PE=3,∵EH=2,∴,∴,∴,∴.。

相关文档
最新文档