RC正弦波振荡器设计实验
rc正弦波振荡器测量数据试验报告
rc正弦波振荡器测量数据试验报告一、实验目的1、学习RC正弦波振荡器的组成及其振荡条件;2、学会测量、调试振荡器。
二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。
1、RC移相振荡器:电路如右图1所示,选择R>>Ri。
起振条件:放大器A的电压放大倍数|A|>29电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。
频率范围:几赫~数十千赫。
2、RC串并联网络(文氏桥)振荡器:本实验电路图如下面的图2所示。
电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
3、双T选频网络振荡器:本实验电路如下图3所示:电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。
三、实验器材1、+12V直流电源;2、函数信号发生器;3、双踪示波器;4、频率计;5、直流电压表;6、数字万用表;7、15K电阻2个、103电容4个、10电位器1个。
四、实验内容1、RC串并联选频网络振荡器:(1)按图2连接线路。
(2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。
(3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。
再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数A(3.2倍,要断开RC串并联网络测量)。
(4)用频率表测量振荡频率(893HZ),并与计算值进行比较。
(5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。
2、双T选频网络振荡器:(1)按图3组接线路。
其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。
3.RC正弦波振荡器实验报告之欧阳地创编
RC正弦波振荡器实验报告
时间:2021.03.04 创作:欧阳地
学号 200800120228姓名辛义磊实验台号
30
一、实验目的
1、掌握RC正弦波振荡器的基本工作原理及特点;
2、掌握RC正弦波振荡器的基本设计、分析和测试方法。
二、实验仪器
双踪示波器数字频率计晶体管毫伏表直流稳压电源数字万用表
三、实验原理
1、RC正弦波振荡器的原理
文氏电桥振荡器时应用最广泛的RC正弦波振荡器,它由同相集成运算放大器与串并联选频电路组成。
由于二极管的导通电阻r D具有随外加正偏电压增加而减小的非线性特性,所以振荡器的起振条件为
当适当减小,提高负反馈深度,调整输出信号幅度,即可实现稳定输出信号幅度的目的。
振荡器的振荡角频率
欲产生振荡频率符合上式的正弦波,要求所选的运算放大器的单位增益带宽积至少大于振荡频率的3倍。
电路选用的电阻均在千欧姆数量级,并尽量满足平衡电阻
的条件。
2、实验电路
本实验采用RC正弦波振荡器,如图所示为实验电路
图。
RC振荡器
四、实验步骤及内容
准备:接通电路电源。
(一)电路调试
按照电路图连接电路,并进行调试
(二)振荡频率的测量
通过数字示波器测量电路的振荡频率
实验所测得的振荡频率为=858.96Hz
时间:2021.03.04 创作:欧阳地。
rc正弦波振荡实验报告
竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。
按图1-1连接实验电路,输出端uo接示波器。
1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。
描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。
1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。
1.4.器振荡频率fo,并与理论值进行比较。
图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。
图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。
2.(1)二极管控制电路增益,实现稳幅。
二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。
稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。
也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。
(2)若断开二极管,波形会变得极不稳定。
RC正弦波振荡器
实验十四 RC 正弦波振荡器一、实验目的1、掌握RC 正弦波振荡器的电路结构及其工作原理。
2、熟悉正弦波振荡器的测试方法。
3、观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。
二、实验仪器1、双踪示波器2、低频信号发生器3、频率计4、交流毫伏表5、直流电源。
三、实验原理及测量方法正弦振荡电路一般包括两部分,放大电路A 和反馈网络F ,如图1所示。
图1 正弦振荡电路原理框图由于振荡电路不需要外界输入信号,因此,通过反馈网络输出的反馈信号X f 就是基本放大电路的输入信号X id 。
该信号经基本放大电路放大后,输出为X o ,若能使X f 与X id 大小相等,极性相同,构成正反馈电路,那么这个电路就能维持稳定的输出。
因而,X f =X id 可引出正弦振荡条件。
由方框图1可知:o id X AX =而X f =FX o 当X f =X id 时,则有:AF =1上述条件可写成|AF|=1,称幅值平衡条件。
即放大倍数A 与反馈系数F 乘积的模为1,表明振荡电路已达到稳幅振荡,但若要求电路能够自行振荡,开始时必须满足|AF|>1的起振条件。
由X f 与X id 极性相同,可得:2A F n φφπ+= 称相位平衡条件即放大电路的相角和反馈网络的相角之和为2n π,其中n 为整数。
要使振荡电路输出确定频率的正弦信号,电路还应包含选频网络和稳幅电路两部分。
选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。
RC 正弦振荡电路也称为文氏桥振荡电路。
它的主要特点是利用RC 串并联网络作为选频和反馈网络。
如图2所示R123.5kΩ(a )电路图(b )串并联网络频率特性 图2 RC 串并联正弦振荡电路由串并联网络的幅频特性,可知当信号频率为12o f RCπ=时,选频网络的相角为0度,传递系数为1/3。
所以,要满足正弦振荡条件,要求放大电路的相角为0度,传递系数稍大于3。
rc正弦波振荡器电路设计及仿真
rc正弦波振荡器电路设计及仿真
!
正弦波振荡器电路的设计和仿真是电子技术的一个重要课题,对电子技术的研究有重
要的意义。
正弦波振荡器是一种典型的振荡电路,它可以用来产生正弦波和方波。
因其电
路简单,性能稳定,用途广泛,在电子电路技术中被广泛应用。
正弦波振荡器的基本原理是把正弦波加以无穷次平均,用此组成两极结构,即动态输
入和动态输出端口,把正弦波作为输入量,由输入端口输送到输出端口,通过反馈回路在
输入端口进一步处理,使其可以不断循环。
根据正弦波振荡器的工作原理,结合实际的应用需求,可以设计出一种满足要求的正
弦波振荡器电路。
其核心电路为双极复放机构,由输入阻抗器连接在振荡管的基极,另一
极连接地;反馈分支由调节圈提供反馈能量,当振荡管的基极的电压超过一定的值得时候,参考管会调节输出端口的电压,而正弦波振荡器就是通过这种反应机制实现正弦波振荡的。
在正弦波振荡器的设计与仿真中,可以采用SPICE模拟工具,运用电路技术与分析技术,对正弦波振荡器电路进行仿真,加以验证电路设计的可行性,并评估其性能参数,致
力于达到设计规定的要求。
总之,正弦波振荡器电路的设计与仿真是一个相当重要的课题,可以通过SPICE模拟
工具与电路技术来实现,并有效地验证仿真结果,为电子技术提供参考,提高电子产品的
质量。
RC正弦波振荡电路设计
RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。
振荡器是一种电路,它能够将直流电源的能量转换为交流信号。
在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。
在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。
时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。
接下来,我们将详细介绍如何设计RC正弦波振荡电路。
设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。
振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。
2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。
一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。
3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。
时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。
4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。
通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。
5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。
放大器电路一般采用运算放大器、晶体管等元件实现。
6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。
7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。
最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。
总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。
rc正弦波振荡器实验报告
rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。
实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。
根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。
在电容未充电时,电流通过电阻,而电容不导电。
当电压施加到电路上时,电容开始充电,电流开始减小。
随着时间的流逝,电容上的电压也在增加。
当电容经过一段时间充电后,电压达到最大值,电流达到最小值。
此时电容开始放电,电流再次增大。
随着电容的放电,电压逐渐减小。
电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。
实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。
2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。
3. 将电流表连接到电阻上,以测量通过电阻的电流。
4. 将电压表连接到电容上,以测量电容上的电压。
实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。
当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。
电流和电压的变化是周期性的,证明了电路中存在振荡现象。
实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。
2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。
3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。
实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。
实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。
实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。
模拟电子技术---RC正弦波振荡器实验报告
模拟电子技术---RC 正弦波振荡器实验报告一、实验室名称第一实训楼216二、实验目的1、 进一步学习RC 正弦波振荡器的组成及其振荡条件2、 学会测量、调试振荡器三、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
RC 串并联网络(文氏桥)振荡器电路型式如图12-2所示。
振荡频率 RC21f O π 起振条件 |A|>3 电路特点 可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
实验电路构成①RC 串并联选频网络②电压串联负反馈放大电路由带星号的电位器*w R 和电阻F R 构成的支路,将输出端信号引到1T 的射极,与1T 的射极电阻(1.2K )组成电压串联负反馈,从而引入两级间的电压串联负反馈。
图12-2RC串并联选频网络图12-4 RC串并联选频网络振荡器图12-2 RC串并联网络振荡器原理图注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。
四、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等五、实验内容1、 RC串并联选频网络振荡器(1)按图12-4组接线路图12-4 RC 串并联选频网络振荡器(2) 断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。
(3) 接通RC 串并联网络,并使电路起振,用示波器观测输出电压u O 波形,调节R f 使获得满意的正弦信号,记录波形及其参数。
(4) 测量振荡频率,并与计算值进行比较。
(5) 改变R 或C 值,观察振荡频率变化情况。
(6) RC 串并联网络幅频特性的观察将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。
集成rc正弦波振荡器实验报告
集成RC正弦波振荡器实验报告引言在电子技术领域中,正弦波振荡器是一种常见且重要的电路。
它能够产生稳定的正弦波信号,被广泛应用于通信、测量以及控制系统中。
本实验旨在通过集成RC电路设计和实现一个正弦波振荡器,并进行详细的探索和分析。
一、电路设计1. RC电路原理RC电路是由电阻(R)和电容(C)组成的一种基本电路。
在充电过程中,电容器会通过电阻放电,导致电压逐渐减小;在放电过程中,电容器会再次通过电阻充电,导致电压逐渐增大。
当电容器充放电周期很短而频率很高时,RC电路就能产生连续变化的电压,形成一个振荡器。
2. RC正弦波振荡器的设计要求一个RC正弦波振荡器的设计需要满足以下要求:•可以产生稳定的正弦波信号;•输出波形的频率和幅度应可调节。
3. RC正弦波振荡器的基本原理RC正弦波振荡器的基本原理是通过将一个放大器的输出信号反馈至输入端,形成一个正反馈回路。
当回路增益大于等于1时,系统会不断振荡产生正弦波信号。
二、电路实现1. 基本RC正弦波振荡器电路图为了实现RC正弦波振荡器,我们可以采用如下电路图:•在非反相输入端连接一个电阻R和电容C,形成一个低通RC滤波器;•输出通过一个放大器反馈至输入端,产生正反馈。
2. 具体电路参数的选择在设计RC正弦波振荡器时,我们需要选择合适的电阻和电容数值,以控制振荡器的频率和幅度。
这里我们选择R=10kΩ和C=1μF。
3. 搭建电路实验平台为了实现RC正弦波振荡器,我们需要搭建一个电路实验平台:•使用集成运算放大器(Op-Amp)作为放大器,例如LM741;•将电阻R和电容C按照电路图连接至Op-Amp;•使用函数发生器作为输入信号源,连接至Op-Amp的输入端;•连接示波器至Op-Amp的输出端,用于观测输出波形。
三、实验过程1. 搭建实验电路根据电路图和参数选择,通过实验器材搭建RC正弦波振荡器实验电路。
2. 设置函数发生器参数设置函数发生器的频率和幅度,以达到所需的正弦波输出。
正弦波振荡电路的实验报告
新疆大学实训(实习)设计报告所属院系:机械工程学院专业:工业设计课程名称:电工电子学设计题目:正弦波振荡电路设计(RC)班级:机械10-5班学生姓名:盛晓亮学生学号:20102001007指导老师: 玛依拉完成日期:2012.7.5RCfnπ21=;(式4)图6 RC串并联电路这说明只有符合上述频率nf的反馈电压才能与0•U相位相同。
这时的反馈系数为31==••UUF f(式5)可见,RC串、并联电路既是反馈电路又是选频电路。
ωω•υF31ωωο90ο90-fϕο图7 幅频特性图8 相频特性2.自励振荡的幅度条件:反馈电压的大小必须与放大电路所需要的输入电压的大小相等,即必须有合适的反馈量。
用公式表示即ifUU=(式6)由于iUUA0=(式7)对于图6所示振荡电路,由于101R R A F+==3,故起振时o A >3, 即12R R F >, 因而要求F R 由起振时的大于12R 逐渐减小到稳定振荡时的等于12R 。
所以F R 采用了非线性电阻。
改变R 和C 即可改变输出电压的频率。
四、设计内容与步骤1.内容(1)根据设计结果连接电路。
(2)分析和观察不同时间段输出波形由小到达的起振过程和稳定到某一幅度的全过程。
(3)参数设置,若参数不能达到设计要求,按指标要求调试电路。
2.步骤(1)在Multisim 平台上建立如图9所示的实验电路,仪器参数按图8所示设置:nF C C 1.021==;电阻4R +5R >23R ;4R >5R .调节1R (即21,R R 同时改变)使振荡稳定时满足Ω==K R R 5.521。
图9 RC 正弦波振荡仿真电路图调节直至震荡稳定时的输出信号观测示波器显示(如图10、11)a. 起震:电位器8%图10 起震时的图形b. 振幅最大且不失真:电位器55%图11 震荡稳定时输出信号的图形(2)单击仿真开关运行动态分析,观测频率计数据(如图12所示)。
RC正弦振荡器的设计与调试(设计性实验)
② 将规定的振荡频率下的RC参数的实测值和理论 估算值列表进行比较,整理测试数据并分析误差。 ③根据实验结果,总结所设计的RC振荡器的特点。 (2) 思考与总结 表6-1
fO (
有稳 压管 VOP- VPP- V形
fO (
当ω =ω 0=1/RC时,F=1/3,根据振幅平衡条件, 只有A=3,电路才能维持振荡。 振荡电路自行起振的条件是AF>1,因F=1/3,则 A>3有利于电路起振,但A过大,波形严重失真。为 了达到稳幅和改善输出波形,电路中引入了两个二 极管及反馈元件R5。 此电路为RC串并联网络(文氏桥)振荡器。 振荡频率:
起振条件: |
|>3
电路特点: 可方便地连续改变振荡频率,便 于加负反馈稳幅,容易得到良好的振
荡波形。 4.实验步骤 (1) 连接电路。 (2) 振荡电路的调整。 调RP,用示波器观察输出电压VO,测其频率和幅 度,记录于表6-1中。 将RP调到0,再增大RP,观测VO波形变化。 (3)用示波器观察VP、VN,将结果填入表5-1中。 (4)去掉稳压管,重复第(2)、(3)步。 5. 实验总结与分析 (1) 实验报告要求 ① 画出设计电路和提供元器件选择依据;
SL-162
0-20M 待选 待选
1台
1台 1台 1块
5 6 7
稳压管 电位器 电阻 电容器 集成运算放大器
2CW53 100K 10K 0.1uF 741
2个 1个 4个 2个 1块
3. 设计要求与提示 (1) 设计要求 ① 本振荡器要求振荡频率为f0=160Hz(误差在1%), 放大环节用集成运算放大器,输出无明显失真,取 UCC=+12V,VEE=-12V。 ②计算选择元器件参数,进行元器件测试。(实验 报告中要有设计过程) ③连接实验电路。 ④测量振荡器的振荡频率,记录波形及其参数。
正弦波振荡器实验报告
正弦波振荡器实验报告引言:正弦波振荡器是一种很重要的电路,在电子工程中有着广泛的应用。
它是实现信号产生和调制的基础,因此学习正弦波振荡器是学习电子工程的基础。
在实验中,我们将会学习到如何制作一个简单的正弦波振荡器电路,以及探究它的参数和特性。
实验设计:1.电路连接正弦波振荡器的基本构成为反馈电容C和反馈电阻R,而共同作用下,振荡器能够自持续发生正弦振荡信号。
电路连接如下图所示。
2.器材准备我们需要以下器材:- 电阻R,可调范围0-22kohm;- 电容C,为470nF;- 操作放大器,使用的是UA741;- 示波器。
3.参数测量和分析首先,我们需要测量电路中的R和C值。
然后,通过调整电位器,我们可以改变电路中的R值,进而观察输出波形的变化。
利用示波器,我们可以测量电路的输出波形,并通过测量峰峰值、频率和相位等参数,从而对电路性能进行分析。
实验结果:通过测量,我们得到了以下结果:在电容值为470nF的情况下,电路的输出波形为正弦波,并且频率在1KHZ左右。
当调整电位器改变电路中的R值时,可以观察到波形振幅随着R值的增加而增大,同时频率也有所变化。
具体数据如下:R/kohm|频率/KHZ|峰-峰值/V|相位/°--|--|--|--4.7||||10|1.18|495mV||15|1.03|863mV||20|0.91|1.2V||22|0.84|1.38V||24|0.78|1.54V||从数据可以看出,随着R值的增加,频率变低,峰-峰值变大。
我们还可以发现,在较大的R值下,电路的频率变得稳定,同时峰-峰值也变得更加平稳。
结论:通过实验,我们探究了正弦波振荡器的参数和特性,并得到了如下结论:1.正弦波振荡器中,反馈电容和反馈电阻是关键构成部分,能够实现自持续发生正弦振荡信号。
2.在电容值不变的情况下,随着电阻R值的增加,电路中的正弦波的频率降低,同时峰-峰值增大。
3.当R值达到一定范围时,电路的频率和峰-峰值变得更加稳定。
RC正弦波振荡电路
实验7 RC 正弦波振荡电路1 实验目的:1.1 熟悉集成运算放大器构成的正弦波振荡电路的原理与设计方法。
1.2 掌握由运放构成的函数发生器。
2 预习要求:2.1分析图10-1电路工作原理,按照图中的元件参数,计算符合振荡条件的R W 值及振荡频率fo 。
2.2分析图10-4电路的工作原理,画出1o v 、2o v 的波形,推导1o v 、2o v 的波形的周期和幅度的计算公式。
2.3 按图10-4中给出的元件参数计算1o v 、2o v 的波形的周期和幅度,与实验实测值进行比较。
3 实验器材(1) 模拟实验箱 (2) 数字万用表 (3)示波器 (4) 集成运算放大器LM324/A 1片 (5)电子元件若干4 实验电路与原理及实验内容 4.1 RC 桥式正弦振荡电路RC 桥式正弦振荡电路如图10-1所示。
其中R 1、C 1、R 2、C 2是选频网络,接在集成运算放大器的输出与同相输入端之间。
构成正反馈,产生正弦自激振荡。
图中虚线框内的部分是带有负反馈的同相放大电路,其中R 3、R W 及R 4为负反馈网络,调节R W 即可改变负反馈的反馈系数,从而调节放大电路的电压增益,使之满足振荡的幅度条件。
二极管D 1、D 2起限制输出幅度,改善输出波形。
4.1.1 RC 串并联选频网络的选频特性一般取R 1=R 2=R ,C 1=C 2=C ,令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC 1,则Z 1=RC j R ω+1,Z 2=R Cj ω1+ 推出正反馈的反馈系数为)//(31211ωωωωo o o f J Z Z Z V V F -+=+==(10-1) 由此可得RC 串并联选频网络的幅频特性与相频特性分别是R 1 16K22)//(31ωωωωO O F -+=(10-2)3)//(ωωωωϕO O F arctg--= (10-3)由(10-2)、(10-3)两式可画出其幅频特性与相频特性的曲线,如图10-3所示由(10-2)、(10-3)两式可知,当ω=ωO =RC 1时,反馈系数的幅值为最大,即F=31,而相频响应的相角φF =0。
本科毕业设计论文--rc正弦波振荡器课程设计
摘要振荡器是一种在没有外加激励信号,而自动的将直流电源产生的能量转化为具有一定频率、一定幅度和一定波形的交流信号的电路。
振荡器一般由晶体管等有源器件和具有选频能力的无源网络所组成。
振荡器的种类很多,根据工作原理来分,可分为反馈式振荡器和负阻式振荡器两大类。
根据所产生波形的不同,可分为正弦波振荡器和非正弦波振荡器。
根据选频网络所采用的器件来分,可分为LC振荡器、晶体振荡器以及RC振荡器等。
正弦波振荡器在无线电技术中应用非常广泛。
在通信系统中,可用来产生发射极部分的载波信号和接收机中的本地震荡信号。
在电子测量仪器中,可用来各种频段的正弦波信号。
本课程主要研究RC正弦波振荡器的电路设计与proteus软件仿真。
滤波器是对波进行过滤的器件。
它的作用实质上是“选频”,即允许某一部分的信号顺利通过。
在无线电技术、自动测量和控制系统中,常被用来对模拟信号进行处理,如数据传送、抑制干扰。
滤波器根据工作信号的频率范围,可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
本课程主要是对带通滤波器的设计与仿真。
关键词:RC正弦波振荡器;滤波器;proteus仿真目录1 绪论 (1)2 设计任务 (2)2.1课程设计的目的 (2)2.2课程设计任务与要求 (2)2.3课程设计技术指标 (2)3 RC正弦波振荡器工作原理 (3)3.1 电路原理及元件选择 (3)3.2 参数计算 (3)4 4阶带通滤波器工作原理 (5)4.1 电路原理及元件选择 (5)4.2 参数计算 (5)5Proteus软件介绍 (6)6电路仿真与结果分析 (7)6.1 RC正弦波振荡器仿真与结果分析 (7)6.2 4阶带通滤波器器仿真与结果分析 (7)致谢 (10)参考文献 (11)1 绪论本次课程设计的内容包括RC正弦波振荡器电路和高阶带通滤波器电路的设计与仿真两部分。
RC正弦波振荡器电路由四部分组成:放大电路,反馈网络,选频网络,稳幅环节。
其中放大电路和反馈网络构成正反馈系统,共同满足AF=1。
实验8RC正弦波振荡器
实验8RC正弦波振荡器比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大进入实验室的几点要求和希望1、要像上理论课一样,积极准备,认真实验;要像上理论课一样,积极准备,认真实验;2、要像到自己家里一样,保持实验环境整洁;要像到自己家里一样,保持实验环境整洁;3、要像爱护自己一样,爱护我们的实验设备。
要像爱护自己一样,爱护我们的实验设备。
实验前的准备工作1、检查实验台和相关设备是否供电正常;检查实验台和相关设备是否供电正常;2、检查实验所用到的电线是否完好无损;检查实验所用到的电线是否完好无损;3、输入设备与测试设备不要随意开关;输入设备与测试设备不要随意开关;4、完成后要关设备电源,整理实验台。
完成后要关设备电源,整理实验台。
比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大模拟电子技术实验实验八RC正弦波振荡器电工电子实验中心模电实验室2022年3月2022年比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大主要内容1、实验目的2、实验原理3、实验设备与器件4、实验内容及步骤5、思考题6、实验报告要求很大1实验目的比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大1实验目的了解选频网络的组成及其选频特性;掌握RC正弦波振荡器的组成及其振荡条件;学会测量、调试选频网络和振荡器。
比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理信号产生电路特点:无输入,自动产生输出(正弦、方波、三角波);原理:正反馈的自激振荡。
类型正弦波振荡电路:RC或LC正弦波振荡电路等;非正弦波振荡电路:比较器、方波/锯齿波产生电路;集成函数发生器:YB1605H、8038等。
产生振荡的条件是什么呢?振荡电路是由什么构成的?产生振荡的条件是什么呢?振荡电路是由什么构成的?很大2实验原理信号产生电路-振荡条件某i+–某f某idA某o某i++某f某idA某oFF&A&AF=&&1+AF&&AF=1&&AF=1&A&AF=&&1AF&&AF=1&&AF=1a+f=180°(2nπ+π)负反馈a+f=0°(2nπ)正反馈比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理信号产生电路-振荡条件振荡平衡条件&&AF=1&&AF=1a+f=0°(2nπ)某idA动画演示某o某fF&&如何起振?AF≥1如何保证输出频率?选频网络(RC/LC选频网络);起振原因是什么?内部噪声、接通电源时的阶跃。
基于Multisim的RC正弦波振荡器设计
基于Multisim的RC正弦波振荡器设计摘要:能将直流电源产生的能量自动转换成某一特定的频率、幅度、波形的交流信号,且是在没有外界激励信号的作用下产生的电路就称为振荡器。
使正弦波的波形频率趋于某值不再变动、振幅在一定数值上不再改变就是正弦波振荡器的作用。
本设计对RC正弦波振荡器进行仿真运用的是电路仿真软件Multisim14,得到RC正弦波振荡电路的振荡周期、振荡波形和稳幅环节。
为了能对RC正弦波振荡电路进行深刻的理解,本文通过分析图像和数据的综合分析,即比较容易的设计出RC正弦波振荡器。
关键词:Multisim14,RC正弦波振荡器,仿真,设计1引言电路理论是一门工程学,研究电路的基本定律和计算方法[1]。
它包括电路分析,电路综合和设计。
电路分析的使命是根据已知的电路布局和组件参数办理电路特征。
电路综合和设计是基于提出的电路性能要求,设计适当的电路结构和参数,以达到所需的电路性能[2]。
本文主要介绍利用Multisim14仿真软件进行RC正弦振荡电路分析的基本规律和计算方法。
RC正弦波振荡器电路由选频网络、反馈网络、稳幅环节和放大电路等几部分构成[3]。
其中,反馈网络与放大电路一起组成了正反馈系统,即满足环路增益AF=1;由电容和电阻元件配合构成的选频网络,可以实现频率单一的正弦波振荡;稳幅环节可以在过程使用放大元件的非线性特性让振荡波形的振幅不变。
负反馈放大电路的自激振荡的条件是AF=-1[2],由于在放大电路中,为了提高电路增益的稳定性、扩展通频带、减小非线性失真等,故而将负反馈引入,但在振荡电路中,其是为了产生一个正弦波振荡为目的的,所以我们要有意识的将负反馈接成正反馈。
因为正反馈电路能确保提供给振荡器输入端的反馈信号处于同一相位,这样才能使电路持续振荡。
选频网络则只有容许某一特定的频率f0通过,才能使振荡器产生的频率为单一的输出。
在RC正弦波振荡电路的设计中,传统的办法不能准确地分析出振荡频率的大小、起振和幅值等,可以应用Multisim14软件进行灵活灵便的仿真分析,所以,振荡器会广泛应用在各种电设备和研究设备中。
十一RC正弦波振荡器电路
1、简述电路的工作原理和主要元件的作用 2、电路参数的确定 3、整理实验数据,填写表格,并与理论值比较,分析误差产生的原因 4、调试中所遇到的问题以及解决方法 5、思考题 (1)在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调 整? (2)简述图中D1、D2 的稳幅过程。 (3)在本实验中,对 D1、D2 的选取有何要求?
Vo (V)
fo (V)
表 5-1 (3)观察在 R3=R4=8.2KΩ 、C1=C2=10nF(0.01μ f)和 R3=R4=10kΩ 、C1=C2=0.1μ f 两种情 况下的输出波形(不失真),测量 Vo、fo,填入表 5-2 中,并与计算结果比较。(加入二极管 D1、D2 的振荡器 )
测试条件 R=8.2K C=0.01μ f
实验十一 RC 正弦波振荡器电路实验
一、实验目的
1、学习RC 正弦波振荡器的组成及其振荡条件。 2、学习如何设计、调试上述电路和测量电路输出波形的频率、幅度。
二、预习要求
1、复习RC 桥式震荡电路有哪些环节组成 2、复习RC 桥式震荡电路的工作原理及参数选择
三、实验内容及步骤
1、仿真电路
图11.1 RC桥式震荡电路
R=10K C=0.1μ f
测试项目
Vo(V)
fo(KHz)
最小 最大
Vo(V)
fo(KHz)
最小 最大
测量值
表 5-2 (4)除去 D1、D2 环节的桥式电桥振荡器
断开二极管 D1、D2 的接线,接通电源,调节 RP 使 Vo 输出为无明显失真的正弦波,测量 Vo、 和 fo,填入表 5-3 中,并与计算结果比较。
2、实验步骤 (1)按图11.1 所示在Proteus中绘制电路,SW1 断开,Vout 接示波器()注意接线+12V、 -12V 电源)。
rc正弦波振荡实验报告
竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。
按图1-1连接实验电路,输出端uo接示波器。
1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。
描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。
1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。
1.4.器振荡频率fo,并与理论值进行比较。
图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。
图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。
2.(1)二极管控制电路增益,实现稳幅。
二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。
稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。
也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。
(2)若断开二极管,波形会变得极不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合设计 正弦波振荡器的设计与测试
一.实验目的
1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法
4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理
在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加
的选频网络,用以确定振荡频率。
正弦波振荡的平衡条件为:..
1AF = 起振条件为..
||1A F > 写成模与相角的形式:..
||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示:
1. 电路分析
RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路,
决定振荡频率0f 。
1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。
该电路的振荡频率 : 0f =RC
π21
① 起振幅值条件:311
≥+
=R R A f v ②
式中
d f r R R R //32+= ,d r 为二极管的正向动态电阻
2. 电路参数确定
(1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC=
21f π ③
为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使
R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求
(2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常
取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。
此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R
(3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实
现稳幅。
图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。
实验证明,取3R ≈d r 时,效果最佳。
三.实验任务
1.预习要求
(1) 复习RC 正弦波振荡电路的工作原理。
(2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务
设计一个RC 正弦波振荡电路。
其正弦波输出要求:
(1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1)
四.实验报告要求
1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定
3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题
1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整?
2. 简述图-1中21D D 和的稳幅过程。
六.仪器与器件
仪器: 同实验2 单管
器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干
举例说明:实验容 1.连接选频网络 测量RC 串并联选频电路的幅频特性和
相频特性,
R233k
R31k
C1
0.01uF C2
0.1uF
C3
0.01uF C40.1uF
R533k
R61k
5
4XFG1
XBP1
IN
OUT
XSC1
A B Ext Trig
+
+
_
_
+
_
7
1
V: -40.4 mV
V(峰-峰): 667 mV V(有效值): 236 mV V(直流): 3.66 uV I:
I(峰-峰): I(有效值): I(直流):
频率: 1.56 kHz
V: -108 mV
V(峰-峰): 2.00 V V(有效值): 707 mV V(直流): 12.1 uV I:
I(峰-峰): I(有效值): I(直流):
频率: 1.56 kHz
反馈系数:.
.
.
1//
1
111
//
3()
f o
R U j C
F U R R RC j C j C
RC
ωωωωω=
=
=
+++-
令1o RC ω=,则1
2o f RC π= 代入上式,得出:.13()o o F f f j f f
=+-
幅频特性为: .
22
||()
3F f fo fo f
=
+- 相频特性为:1arctan ()3o
F o f f f f
ψ=-- 当12o f f RC π==时,.13F =,即..
1||||3f o U U =,0o F ψ=。
6
11
2210000.110o f RC ππ-==
⨯⨯⨯=1.59155kHz
2.运算放大器组成的RC 桥式正弦波振荡器.
利用电流增大时二极管动态电阻减小,电流减小时二极管动态电阻增大的特点,加入非线性元件,从而使输出电压稳定,此时比例系数为311
≥+
=R R A f v d f r R R R //32+=
改变串并联电路的参数,调节Rp,使电路产生正弦振荡。
用示波器观察其输出波形,然后测出振荡频率。
U1
7413
2
4
7
6
51D1
DIODE_VIRTUAL
D2DIODE_VIRTUAL
R11k
R233k
R3100k
C1
0.01uF C2
0.1uF
Rp
10K _LIN Key = A
70%C3
0.01uF C40.1uF
R4
10k
R533k
R6100k
VCC 12V VEE -12V VEE VCC 1
24507
XSC1
A
B
Ext Trig
+
+
_
_
+
_
3
8 V: 3.98 V
V(峰-峰): 19.2 V V(有效值): 6.88 V V(直流): -12.9 mV I:
I(峰-峰): I(有效值): I(直流): 频率: 15.8 Hz
V: 1.22 V
V(峰-峰): 6.50 V V(有效值): 2.29 V V(直流): -5.68 mV I:
I(峰-峰): I(有效值): I(直流): 频率: 15.8 Hz
U1
7413
2
4
7
6
51D1
DIODE_VIRTUAL
D2DIODE_VIRTUAL
R11k
R233k
R31k
C1
0.01uF C2
0.1uF
Rp
10K _LIN Key = A
70%C3
0.01uF C40.1uF
R4
10k
R533k
R61k
VCC 12V VEE -12V VEE VCC 1
24507
XSC1
A
B
Ext Trig
+
+
_
_
+
_
3
8 V: 9.12 V
V(峰-峰): 19.2 V V(有效值): 6.89 V V(直流): 3.62 mV I:
I(峰-峰): I(有效值): I(直流):
频率: 1.57 kHz
V: 3.08 V
V(峰-峰): 6.50 V V(有效值): 2.29 V V(直流): -4.40 uV I:
I(峰-峰): I(有效值): I(直流):
频率: 1.57 kHz
3.放大电路电压放大倍数Auf 的测定
① 用毫伏表先测出图中电路的输出电压U0后,再测出运放同相输入端的电压U1值,根据下式计算
Auf=U0/UI=?
② 保持R P 不变,把低频信号发生器输出电压(频率同上述实验的产生频率)接至运放的同相输入端,调节Ui 使U0等于原值,用毫伏表测出此时的Ui 值,则Au=U0/Ui=?比较上述
放大倍数有何误差,并进行分析
33K 0.01uF
100K 0.1uF。